aboutsummaryrefslogtreecommitdiffstats
path: root/capstone/arch/ARM/ARMAddressingModes.h
diff options
context:
space:
mode:
authorAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
committerAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
commitaf1a266670d040d2f4083ff309d732d648afba2a (patch)
tree2fc46203448ddcc6f81546d379abfaeb323575e9 /capstone/arch/ARM/ARMAddressingModes.h
parente02cda008591317b1625707ff8e115a4841aa889 (diff)
Add submodule dependency filesHEADmaster
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'capstone/arch/ARM/ARMAddressingModes.h')
-rw-r--r--capstone/arch/ARM/ARMAddressingModes.h698
1 files changed, 698 insertions, 0 deletions
diff --git a/capstone/arch/ARM/ARMAddressingModes.h b/capstone/arch/ARM/ARMAddressingModes.h
new file mode 100644
index 000000000..c4a2f98ab
--- /dev/null
+++ b/capstone/arch/ARM/ARMAddressingModes.h
@@ -0,0 +1,698 @@
+//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the ARM addressing mode implementation stuff.
+//
+//===----------------------------------------------------------------------===//
+
+/* Capstone Disassembly Engine */
+/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
+
+#ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+#define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
+
+#include "capstone/platform.h"
+#include "../../MathExtras.h"
+
+/// ARM_AM - ARM Addressing Mode Stuff
+typedef enum ARM_AM_ShiftOpc {
+ ARM_AM_no_shift = 0,
+ ARM_AM_asr,
+ ARM_AM_lsl,
+ ARM_AM_lsr,
+ ARM_AM_ror,
+ ARM_AM_rrx
+} ARM_AM_ShiftOpc;
+
+typedef enum ARM_AM_AddrOpc {
+ ARM_AM_sub = 0,
+ ARM_AM_add
+} ARM_AM_AddrOpc;
+
+static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op)
+{
+ return Op == ARM_AM_sub ? "-" : "";
+}
+
+static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op)
+{
+ switch (Op) {
+ default: return ""; //llvm_unreachable("Unknown shift opc!");
+ case ARM_AM_asr: return "asr";
+ case ARM_AM_lsl: return "lsl";
+ case ARM_AM_lsr: return "lsr";
+ case ARM_AM_ror: return "ror";
+ case ARM_AM_rrx: return "rrx";
+ }
+}
+
+static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op)
+{
+ switch (Op) {
+ default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!");
+ case ARM_AM_asr: return 2;
+ case ARM_AM_lsl: return 0;
+ case ARM_AM_lsr: return 1;
+ case ARM_AM_ror: return 3;
+ }
+}
+
+typedef enum ARM_AM_AMSubMode {
+ ARM_AM_bad_am_submode = 0,
+ ARM_AM_ia,
+ ARM_AM_ib,
+ ARM_AM_da,
+ ARM_AM_db
+} ARM_AM_AMSubMode;
+
+static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode)
+{
+ switch (Mode) {
+ default: return "";
+ case ARM_AM_ia: return "ia";
+ case ARM_AM_ib: return "ib";
+ case ARM_AM_da: return "da";
+ case ARM_AM_db: return "db";
+ }
+}
+
+/// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
+///
+static inline unsigned rotr32(unsigned Val, unsigned Amt)
+{
+ //assert(Amt < 32 && "Invalid rotate amount");
+ return (Val >> Amt) | (Val << ((32-Amt)&31));
+}
+
+/// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
+///
+static inline unsigned rotl32(unsigned Val, unsigned Amt)
+{
+ //assert(Amt < 32 && "Invalid rotate amount");
+ return (Val << Amt) | (Val >> ((32-Amt)&31));
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #1: shift_operand with registers
+//===--------------------------------------------------------------------===//
+//
+// This 'addressing mode' is used for arithmetic instructions. It can
+// represent things like:
+// reg
+// reg [asr|lsl|lsr|ror|rrx] reg
+// reg [asr|lsl|lsr|ror|rrx] imm
+//
+// This is stored three operands [rega, regb, opc]. The first is the base
+// reg, the second is the shift amount (or reg0 if not present or imm). The
+// third operand encodes the shift opcode and the imm if a reg isn't present.
+//
+static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm)
+{
+ return ShOp | (Imm << 3);
+}
+
+static inline unsigned getSORegOffset(unsigned Op)
+{
+ return Op >> 3;
+}
+
+static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op)
+{
+ return (ARM_AM_ShiftOpc)(Op & 7);
+}
+
+/// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
+/// the 8-bit imm value.
+static inline unsigned getSOImmValImm(unsigned Imm)
+{
+ return Imm & 0xFF;
+}
+
+/// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
+/// the rotate amount.
+static inline unsigned getSOImmValRot(unsigned Imm)
+{
+ return (Imm >> 8) * 2;
+}
+
+/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
+/// computing the rotate amount to use. If this immediate value cannot be
+/// handled with a single shifter-op, determine a good rotate amount that will
+/// take a maximal chunk of bits out of the immediate.
+static inline unsigned getSOImmValRotate(unsigned Imm)
+{
+ unsigned TZ, RotAmt;
+ // 8-bit (or less) immediates are trivially shifter_operands with a rotate
+ // of zero.
+ if ((Imm & ~255U) == 0) return 0;
+
+ // Use CTZ to compute the rotate amount.
+ TZ = CountTrailingZeros_32(Imm);
+
+ // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
+ // not 9.
+ RotAmt = TZ & ~1;
+
+ // If we can handle this spread, return it.
+ if ((rotr32(Imm, RotAmt) & ~255U) == 0)
+ return (32-RotAmt)&31; // HW rotates right, not left.
+
+ // For values like 0xF000000F, we should ignore the low 6 bits, then
+ // retry the hunt.
+ if (Imm & 63U) {
+ unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U);
+ unsigned RotAmt2 = TZ2 & ~1;
+ if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
+ return (32-RotAmt2)&31; // HW rotates right, not left.
+ }
+
+ // Otherwise, we have no way to cover this span of bits with a single
+ // shifter_op immediate. Return a chunk of bits that will be useful to
+ // handle.
+ return (32-RotAmt)&31; // HW rotates right, not left.
+}
+
+/// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
+/// into an shifter_operand immediate operand, return the 12-bit encoding for
+/// it. If not, return -1.
+static inline int getSOImmVal(unsigned Arg)
+{
+ unsigned RotAmt;
+ // 8-bit (or less) immediates are trivially shifter_operands with a rotate
+ // of zero.
+ if ((Arg & ~255U) == 0) return Arg;
+
+ RotAmt = getSOImmValRotate(Arg);
+
+ // If this cannot be handled with a single shifter_op, bail out.
+ if (rotr32(~255U, RotAmt) & Arg)
+ return -1;
+
+ // Encode this correctly.
+ return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
+}
+
+/// isSOImmTwoPartVal - Return true if the specified value can be obtained by
+/// or'ing together two SOImmVal's.
+static inline bool isSOImmTwoPartVal(unsigned V)
+{
+ // If this can be handled with a single shifter_op, bail out.
+ V = rotr32(~255U, getSOImmValRotate(V)) & V;
+ if (V == 0)
+ return false;
+
+ // If this can be handled with two shifter_op's, accept.
+ V = rotr32(~255U, getSOImmValRotate(V)) & V;
+ return V == 0;
+}
+
+/// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
+/// return the first chunk of it.
+static inline unsigned getSOImmTwoPartFirst(unsigned V)
+{
+ return rotr32(255U, getSOImmValRotate(V)) & V;
+}
+
+/// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
+/// return the second chunk of it.
+static inline unsigned getSOImmTwoPartSecond(unsigned V)
+{
+ // Mask out the first hunk.
+ V = rotr32(~255U, getSOImmValRotate(V)) & V;
+
+ // Take what's left.
+ //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
+ return V;
+}
+
+/// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
+/// by a left shift. Returns the shift amount to use.
+static inline unsigned getThumbImmValShift(unsigned Imm)
+{
+ // 8-bit (or less) immediates are trivially immediate operand with a shift
+ // of zero.
+ if ((Imm & ~255U) == 0) return 0;
+
+ // Use CTZ to compute the shift amount.
+ return CountTrailingZeros_32(Imm);
+}
+
+/// isThumbImmShiftedVal - Return true if the specified value can be obtained
+/// by left shifting a 8-bit immediate.
+static inline bool isThumbImmShiftedVal(unsigned V)
+{
+ // If this can be handled with
+ V = (~255U << getThumbImmValShift(V)) & V;
+ return V == 0;
+}
+
+/// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
+/// by a left shift. Returns the shift amount to use.
+static inline unsigned getThumbImm16ValShift(unsigned Imm)
+{
+ // 16-bit (or less) immediates are trivially immediate operand with a shift
+ // of zero.
+ if ((Imm & ~65535U) == 0) return 0;
+
+ // Use CTZ to compute the shift amount.
+ return CountTrailingZeros_32(Imm);
+}
+
+/// isThumbImm16ShiftedVal - Return true if the specified value can be
+/// obtained by left shifting a 16-bit immediate.
+static inline bool isThumbImm16ShiftedVal(unsigned V)
+{
+ // If this can be handled with
+ V = (~65535U << getThumbImm16ValShift(V)) & V;
+ return V == 0;
+}
+
+/// getThumbImmNonShiftedVal - If V is a value that satisfies
+/// isThumbImmShiftedVal, return the non-shiftd value.
+static inline unsigned getThumbImmNonShiftedVal(unsigned V)
+{
+ return V >> getThumbImmValShift(V);
+}
+
+
+/// getT2SOImmValSplat - Return the 12-bit encoded representation
+/// if the specified value can be obtained by splatting the low 8 bits
+/// into every other byte or every byte of a 32-bit value. i.e.,
+/// 00000000 00000000 00000000 abcdefgh control = 0
+/// 00000000 abcdefgh 00000000 abcdefgh control = 1
+/// abcdefgh 00000000 abcdefgh 00000000 control = 2
+/// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
+/// Return -1 if none of the above apply.
+/// See ARM Reference Manual A6.3.2.
+static inline int getT2SOImmValSplatVal(unsigned V)
+{
+ unsigned u, Vs, Imm;
+ // control = 0
+ if ((V & 0xffffff00) == 0)
+ return V;
+
+ // If the value is zeroes in the first byte, just shift those off
+ Vs = ((V & 0xff) == 0) ? V >> 8 : V;
+ // Any passing value only has 8 bits of payload, splatted across the word
+ Imm = Vs & 0xff;
+ // Likewise, any passing values have the payload splatted into the 3rd byte
+ u = Imm | (Imm << 16);
+
+ // control = 1 or 2
+ if (Vs == u)
+ return (((Vs == V) ? 1 : 2) << 8) | Imm;
+
+ // control = 3
+ if (Vs == (u | (u << 8)))
+ return (3 << 8) | Imm;
+
+ return -1;
+}
+
+/// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
+/// specified value is a rotated 8-bit value. Return -1 if no rotation
+/// encoding is possible.
+/// See ARM Reference Manual A6.3.2.
+static inline int getT2SOImmValRotateVal(unsigned V)
+{
+ unsigned RotAmt = CountLeadingZeros_32(V);
+ if (RotAmt >= 24)
+ return -1;
+
+ // If 'Arg' can be handled with a single shifter_op return the value.
+ if ((rotr32(0xff000000U, RotAmt) & V) == V)
+ return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
+
+ return -1;
+}
+
+/// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
+/// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
+/// encoding for it. If not, return -1.
+/// See ARM Reference Manual A6.3.2.
+static inline int getT2SOImmVal(unsigned Arg)
+{
+ int Rot;
+ // If 'Arg' is an 8-bit splat, then get the encoded value.
+ int Splat = getT2SOImmValSplatVal(Arg);
+ if (Splat != -1)
+ return Splat;
+
+ // If 'Arg' can be handled with a single shifter_op return the value.
+ Rot = getT2SOImmValRotateVal(Arg);
+ if (Rot != -1)
+ return Rot;
+
+ return -1;
+}
+
+static inline unsigned getT2SOImmValRotate(unsigned V)
+{
+ unsigned RotAmt;
+
+ if ((V & ~255U) == 0)
+ return 0;
+
+ // Use CTZ to compute the rotate amount.
+ RotAmt = CountTrailingZeros_32(V);
+ return (32 - RotAmt) & 31;
+}
+
+static inline bool isT2SOImmTwoPartVal (unsigned Imm)
+{
+ unsigned V = Imm;
+ // Passing values can be any combination of splat values and shifter
+ // values. If this can be handled with a single shifter or splat, bail
+ // out. Those should be handled directly, not with a two-part val.
+ if (getT2SOImmValSplatVal(V) != -1)
+ return false;
+ V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
+ if (V == 0)
+ return false;
+
+ // If this can be handled as an immediate, accept.
+ if (getT2SOImmVal(V) != -1) return true;
+
+ // Likewise, try masking out a splat value first.
+ V = Imm;
+ if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
+ V &= ~0xff00ff00U;
+ else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
+ V &= ~0x00ff00ffU;
+ // If what's left can be handled as an immediate, accept.
+ if (getT2SOImmVal(V) != -1) return true;
+
+ // Otherwise, do not accept.
+ return false;
+}
+
+static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm)
+{
+ //assert (isT2SOImmTwoPartVal(Imm) &&
+ // "Immedate cannot be encoded as two part immediate!");
+ // Try a shifter operand as one part
+ unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm;
+ // If the rest is encodable as an immediate, then return it.
+ if (getT2SOImmVal(V) != -1) return V;
+
+ // Try masking out a splat value first.
+ if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
+ return Imm & 0xff00ff00U;
+
+ // The other splat is all that's left as an option.
+ //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
+ return Imm & 0x00ff00ffU;
+}
+
+static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm)
+{
+ // Mask out the first hunk
+ Imm ^= getT2SOImmTwoPartFirst(Imm);
+ // Return what's left
+ //assert (getT2SOImmVal(Imm) != -1 &&
+ // "Unable to encode second part of T2 two part SO immediate");
+ return Imm;
+}
+
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #2
+//===--------------------------------------------------------------------===//
+//
+// This is used for most simple load/store instructions.
+//
+// addrmode2 := reg +/- reg shop imm
+// addrmode2 := reg +/- imm12
+//
+// The first operand is always a Reg. The second operand is a reg if in
+// reg/reg form, otherwise it's reg#0. The third field encodes the operation
+// in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
+// fourth operand 16-17 encodes the index mode.
+//
+// If this addressing mode is a frame index (before prolog/epilog insertion
+// and code rewriting), this operand will have the form: FI#, reg0, <offs>
+// with no shift amount for the frame offset.
+//
+static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO,
+ unsigned IdxMode)
+{
+ //assert(Imm12 < (1 << 12) && "Imm too large!");
+ bool isSub = Opc == ARM_AM_sub;
+ return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
+}
+
+static inline unsigned getAM2Offset(unsigned AM2Opc)
+{
+ return AM2Opc & ((1 << 12)-1);
+}
+
+static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc)
+{
+ return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add;
+}
+
+static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc)
+{
+ return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7);
+}
+
+static inline unsigned getAM2IdxMode(unsigned AM2Opc)
+{
+ return (AM2Opc >> 16);
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #3
+//===--------------------------------------------------------------------===//
+//
+// This is used for sign-extending loads, and load/store-pair instructions.
+//
+// addrmode3 := reg +/- reg
+// addrmode3 := reg +/- imm8
+//
+// The first operand is always a Reg. The second operand is a reg if in
+// reg/reg form, otherwise it's reg#0. The third field encodes the operation
+// in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
+// index mode.
+
+/// getAM3Opc - This function encodes the addrmode3 opc field.
+static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset,
+ unsigned IdxMode)
+{
+ bool isSub = Opc == ARM_AM_sub;
+ return ((int)isSub << 8) | Offset | (IdxMode << 9);
+}
+
+static inline unsigned char getAM3Offset(unsigned AM3Opc)
+{
+ return AM3Opc & 0xFF;
+}
+
+static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc)
+{
+ return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
+}
+
+static inline unsigned getAM3IdxMode(unsigned AM3Opc)
+{
+ return (AM3Opc >> 9);
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #4
+//===--------------------------------------------------------------------===//
+//
+// This is used for load / store multiple instructions.
+//
+// addrmode4 := reg, <mode>
+//
+// The four modes are:
+// IA - Increment after
+// IB - Increment before
+// DA - Decrement after
+// DB - Decrement before
+// For VFP instructions, only the IA and DB modes are valid.
+
+static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode)
+{
+ return (ARM_AM_AMSubMode)(Mode & 0x7);
+}
+
+static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode)
+{
+ return (int)SubMode;
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #5
+//===--------------------------------------------------------------------===//
+//
+// This is used for coprocessor instructions, such as FP load/stores.
+//
+// addrmode5 := reg +/- imm8*4
+//
+// The first operand is always a Reg. The second operand encodes the
+// operation in bit 8 and the immediate in bits 0-7.
+
+/// getAM5Opc - This function encodes the addrmode5 opc field.
+static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
+{
+ bool isSub = Opc == ARM_AM_sub;
+ return ((int)isSub << 8) | Offset;
+}
+static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc)
+{
+ return AM5Opc & 0xFF;
+}
+static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc)
+{
+ return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #5 FP16
+//===--------------------------------------------------------------------===//
+//
+// This is used for coprocessor instructions, such as 16-bit FP load/stores.
+//
+// addrmode5fp16 := reg +/- imm8*2
+//
+// The first operand is always a Reg. The second operand encodes the
+// operation (add or subtract) in bit 8 and the immediate in bits 0-7.
+
+/// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
+static inline unsigned getAM5FP16Opc(ARM_AM_AddrOpc Opc, unsigned char Offset)
+{
+ bool isSub = Opc == ARM_AM_sub;
+ return ((int)isSub << 8) | Offset;
+}
+
+static inline unsigned char getAM5FP16Offset(unsigned AM5Opc)
+{
+ return AM5Opc & 0xFF;
+}
+
+static inline ARM_AM_AddrOpc getAM5FP16Op(unsigned AM5Opc)
+{
+ return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add;
+}
+
+//===--------------------------------------------------------------------===//
+// Addressing Mode #6
+//===--------------------------------------------------------------------===//
+//
+// This is used for NEON load / store instructions.
+//
+// addrmode6 := reg with optional alignment
+//
+// This is stored in two operands [regaddr, align]. The first is the
+// address register. The second operand is the value of the alignment
+// specifier in bytes or zero if no explicit alignment.
+// Valid alignments depend on the specific instruction.
+
+//===--------------------------------------------------------------------===//
+// NEON Modified Immediates
+//===--------------------------------------------------------------------===//
+//
+// Several NEON instructions (e.g., VMOV) take a "modified immediate"
+// vector operand, where a small immediate encoded in the instruction
+// specifies a full NEON vector value. These modified immediates are
+// represented here as encoded integers. The low 8 bits hold the immediate
+// value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
+// the "Cmode" field of the instruction. The interfaces below treat the
+// Op and Cmode values as a single 5-bit value.
+
+static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val)
+{
+ return (OpCmode << 8) | Val;
+}
+static inline unsigned getNEONModImmOpCmode(unsigned ModImm)
+{
+ return (ModImm >> 8) & 0x1f;
+}
+static inline unsigned getNEONModImmVal(unsigned ModImm)
+{
+ return ModImm & 0xff;
+}
+
+/// decodeNEONModImm - Decode a NEON modified immediate value into the
+/// element value and the element size in bits. (If the element size is
+/// smaller than the vector, it is splatted into all the elements.)
+static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits)
+{
+ unsigned OpCmode = getNEONModImmOpCmode(ModImm);
+ unsigned Imm8 = getNEONModImmVal(ModImm);
+ uint64_t Val = 0;
+ unsigned ByteNum;
+
+ if (OpCmode == 0xe) {
+ // 8-bit vector elements
+ Val = Imm8;
+ *EltBits = 8;
+ } else if ((OpCmode & 0xc) == 0x8) {
+ // 16-bit vector elements
+ ByteNum = (OpCmode & 0x6) >> 1;
+ Val = (uint64_t)Imm8 << (8 * ByteNum);
+ *EltBits = 16;
+ } else if ((OpCmode & 0x8) == 0) {
+ // 32-bit vector elements, zero with one byte set
+ ByteNum = (OpCmode & 0x6) >> 1;
+ Val = (uint64_t)Imm8 << (8 * ByteNum);
+ *EltBits = 32;
+ } else if ((OpCmode & 0xe) == 0xc) {
+ // 32-bit vector elements, one byte with low bits set
+ ByteNum = 1 + (OpCmode & 0x1);
+ Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
+ *EltBits = 32;
+ } else if (OpCmode == 0x1e) {
+ // 64-bit vector elements
+ for (ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if ((ModImm >> ByteNum) & 1)
+ Val |= (uint64_t)0xff << (8 * ByteNum);
+ }
+ *EltBits = 64;
+ } else {
+ //llvm_unreachable("Unsupported NEON immediate");
+ }
+ return Val;
+}
+
+ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode);
+
+//===--------------------------------------------------------------------===//
+// Floating-point Immediates
+//
+static inline float getFPImmFloat(unsigned Imm)
+{
+ // We expect an 8-bit binary encoding of a floating-point number here.
+ union {
+ uint32_t I;
+ float F;
+ } FPUnion;
+
+ uint8_t Sign = (Imm >> 7) & 0x1;
+ uint8_t Exp = (Imm >> 4) & 0x7;
+ uint8_t Mantissa = Imm & 0xf;
+
+ // 8-bit FP iEEEE Float Encoding
+ // abcd efgh aBbbbbbc defgh000 00000000 00000000
+ //
+ // where B = NOT(b);
+
+ FPUnion.I = 0;
+ FPUnion.I |= ((uint32_t) Sign) << 31;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
+ FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
+ FPUnion.I |= (Exp & 0x3) << 23;
+ FPUnion.I |= Mantissa << 19;
+ return FPUnion.F;
+}
+
+#endif
+