diff options
author | 2023-10-10 14:33:42 +0000 | |
---|---|---|
committer | 2023-10-10 14:33:42 +0000 | |
commit | af1a266670d040d2f4083ff309d732d648afba2a (patch) | |
tree | 2fc46203448ddcc6f81546d379abfaeb323575e9 /capstone/arch/ARM/ARMAddressingModes.h | |
parent | e02cda008591317b1625707ff8e115a4841aa889 (diff) |
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'capstone/arch/ARM/ARMAddressingModes.h')
-rw-r--r-- | capstone/arch/ARM/ARMAddressingModes.h | 698 |
1 files changed, 698 insertions, 0 deletions
diff --git a/capstone/arch/ARM/ARMAddressingModes.h b/capstone/arch/ARM/ARMAddressingModes.h new file mode 100644 index 000000000..c4a2f98ab --- /dev/null +++ b/capstone/arch/ARM/ARMAddressingModes.h @@ -0,0 +1,698 @@ +//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the ARM addressing mode implementation stuff. +// +//===----------------------------------------------------------------------===// + +/* Capstone Disassembly Engine */ +/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */ + +#ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H +#define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H + +#include "capstone/platform.h" +#include "../../MathExtras.h" + +/// ARM_AM - ARM Addressing Mode Stuff +typedef enum ARM_AM_ShiftOpc { + ARM_AM_no_shift = 0, + ARM_AM_asr, + ARM_AM_lsl, + ARM_AM_lsr, + ARM_AM_ror, + ARM_AM_rrx +} ARM_AM_ShiftOpc; + +typedef enum ARM_AM_AddrOpc { + ARM_AM_sub = 0, + ARM_AM_add +} ARM_AM_AddrOpc; + +static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op) +{ + return Op == ARM_AM_sub ? "-" : ""; +} + +static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op) +{ + switch (Op) { + default: return ""; //llvm_unreachable("Unknown shift opc!"); + case ARM_AM_asr: return "asr"; + case ARM_AM_lsl: return "lsl"; + case ARM_AM_lsr: return "lsr"; + case ARM_AM_ror: return "ror"; + case ARM_AM_rrx: return "rrx"; + } +} + +static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op) +{ + switch (Op) { + default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!"); + case ARM_AM_asr: return 2; + case ARM_AM_lsl: return 0; + case ARM_AM_lsr: return 1; + case ARM_AM_ror: return 3; + } +} + +typedef enum ARM_AM_AMSubMode { + ARM_AM_bad_am_submode = 0, + ARM_AM_ia, + ARM_AM_ib, + ARM_AM_da, + ARM_AM_db +} ARM_AM_AMSubMode; + +static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode) +{ + switch (Mode) { + default: return ""; + case ARM_AM_ia: return "ia"; + case ARM_AM_ib: return "ib"; + case ARM_AM_da: return "da"; + case ARM_AM_db: return "db"; + } +} + +/// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. +/// +static inline unsigned rotr32(unsigned Val, unsigned Amt) +{ + //assert(Amt < 32 && "Invalid rotate amount"); + return (Val >> Amt) | (Val << ((32-Amt)&31)); +} + +/// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. +/// +static inline unsigned rotl32(unsigned Val, unsigned Amt) +{ + //assert(Amt < 32 && "Invalid rotate amount"); + return (Val << Amt) | (Val >> ((32-Amt)&31)); +} + +//===--------------------------------------------------------------------===// +// Addressing Mode #1: shift_operand with registers +//===--------------------------------------------------------------------===// +// +// This 'addressing mode' is used for arithmetic instructions. It can +// represent things like: +// reg +// reg [asr|lsl|lsr|ror|rrx] reg +// reg [asr|lsl|lsr|ror|rrx] imm +// +// This is stored three operands [rega, regb, opc]. The first is the base +// reg, the second is the shift amount (or reg0 if not present or imm). The +// third operand encodes the shift opcode and the imm if a reg isn't present. +// +static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm) +{ + return ShOp | (Imm << 3); +} + +static inline unsigned getSORegOffset(unsigned Op) +{ + return Op >> 3; +} + +static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op) +{ + return (ARM_AM_ShiftOpc)(Op & 7); +} + +/// getSOImmValImm - Given an encoded imm field for the reg/imm form, return +/// the 8-bit imm value. +static inline unsigned getSOImmValImm(unsigned Imm) +{ + return Imm & 0xFF; +} + +/// getSOImmValRot - Given an encoded imm field for the reg/imm form, return +/// the rotate amount. +static inline unsigned getSOImmValRot(unsigned Imm) +{ + return (Imm >> 8) * 2; +} + +/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, +/// computing the rotate amount to use. If this immediate value cannot be +/// handled with a single shifter-op, determine a good rotate amount that will +/// take a maximal chunk of bits out of the immediate. +static inline unsigned getSOImmValRotate(unsigned Imm) +{ + unsigned TZ, RotAmt; + // 8-bit (or less) immediates are trivially shifter_operands with a rotate + // of zero. + if ((Imm & ~255U) == 0) return 0; + + // Use CTZ to compute the rotate amount. + TZ = CountTrailingZeros_32(Imm); + + // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, + // not 9. + RotAmt = TZ & ~1; + + // If we can handle this spread, return it. + if ((rotr32(Imm, RotAmt) & ~255U) == 0) + return (32-RotAmt)&31; // HW rotates right, not left. + + // For values like 0xF000000F, we should ignore the low 6 bits, then + // retry the hunt. + if (Imm & 63U) { + unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U); + unsigned RotAmt2 = TZ2 & ~1; + if ((rotr32(Imm, RotAmt2) & ~255U) == 0) + return (32-RotAmt2)&31; // HW rotates right, not left. + } + + // Otherwise, we have no way to cover this span of bits with a single + // shifter_op immediate. Return a chunk of bits that will be useful to + // handle. + return (32-RotAmt)&31; // HW rotates right, not left. +} + +/// getSOImmVal - Given a 32-bit immediate, if it is something that can fit +/// into an shifter_operand immediate operand, return the 12-bit encoding for +/// it. If not, return -1. +static inline int getSOImmVal(unsigned Arg) +{ + unsigned RotAmt; + // 8-bit (or less) immediates are trivially shifter_operands with a rotate + // of zero. + if ((Arg & ~255U) == 0) return Arg; + + RotAmt = getSOImmValRotate(Arg); + + // If this cannot be handled with a single shifter_op, bail out. + if (rotr32(~255U, RotAmt) & Arg) + return -1; + + // Encode this correctly. + return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); +} + +/// isSOImmTwoPartVal - Return true if the specified value can be obtained by +/// or'ing together two SOImmVal's. +static inline bool isSOImmTwoPartVal(unsigned V) +{ + // If this can be handled with a single shifter_op, bail out. + V = rotr32(~255U, getSOImmValRotate(V)) & V; + if (V == 0) + return false; + + // If this can be handled with two shifter_op's, accept. + V = rotr32(~255U, getSOImmValRotate(V)) & V; + return V == 0; +} + +/// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, +/// return the first chunk of it. +static inline unsigned getSOImmTwoPartFirst(unsigned V) +{ + return rotr32(255U, getSOImmValRotate(V)) & V; +} + +/// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, +/// return the second chunk of it. +static inline unsigned getSOImmTwoPartSecond(unsigned V) +{ + // Mask out the first hunk. + V = rotr32(~255U, getSOImmValRotate(V)) & V; + + // Take what's left. + //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); + return V; +} + +/// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed +/// by a left shift. Returns the shift amount to use. +static inline unsigned getThumbImmValShift(unsigned Imm) +{ + // 8-bit (or less) immediates are trivially immediate operand with a shift + // of zero. + if ((Imm & ~255U) == 0) return 0; + + // Use CTZ to compute the shift amount. + return CountTrailingZeros_32(Imm); +} + +/// isThumbImmShiftedVal - Return true if the specified value can be obtained +/// by left shifting a 8-bit immediate. +static inline bool isThumbImmShiftedVal(unsigned V) +{ + // If this can be handled with + V = (~255U << getThumbImmValShift(V)) & V; + return V == 0; +} + +/// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed +/// by a left shift. Returns the shift amount to use. +static inline unsigned getThumbImm16ValShift(unsigned Imm) +{ + // 16-bit (or less) immediates are trivially immediate operand with a shift + // of zero. + if ((Imm & ~65535U) == 0) return 0; + + // Use CTZ to compute the shift amount. + return CountTrailingZeros_32(Imm); +} + +/// isThumbImm16ShiftedVal - Return true if the specified value can be +/// obtained by left shifting a 16-bit immediate. +static inline bool isThumbImm16ShiftedVal(unsigned V) +{ + // If this can be handled with + V = (~65535U << getThumbImm16ValShift(V)) & V; + return V == 0; +} + +/// getThumbImmNonShiftedVal - If V is a value that satisfies +/// isThumbImmShiftedVal, return the non-shiftd value. +static inline unsigned getThumbImmNonShiftedVal(unsigned V) +{ + return V >> getThumbImmValShift(V); +} + + +/// getT2SOImmValSplat - Return the 12-bit encoded representation +/// if the specified value can be obtained by splatting the low 8 bits +/// into every other byte or every byte of a 32-bit value. i.e., +/// 00000000 00000000 00000000 abcdefgh control = 0 +/// 00000000 abcdefgh 00000000 abcdefgh control = 1 +/// abcdefgh 00000000 abcdefgh 00000000 control = 2 +/// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 +/// Return -1 if none of the above apply. +/// See ARM Reference Manual A6.3.2. +static inline int getT2SOImmValSplatVal(unsigned V) +{ + unsigned u, Vs, Imm; + // control = 0 + if ((V & 0xffffff00) == 0) + return V; + + // If the value is zeroes in the first byte, just shift those off + Vs = ((V & 0xff) == 0) ? V >> 8 : V; + // Any passing value only has 8 bits of payload, splatted across the word + Imm = Vs & 0xff; + // Likewise, any passing values have the payload splatted into the 3rd byte + u = Imm | (Imm << 16); + + // control = 1 or 2 + if (Vs == u) + return (((Vs == V) ? 1 : 2) << 8) | Imm; + + // control = 3 + if (Vs == (u | (u << 8))) + return (3 << 8) | Imm; + + return -1; +} + +/// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the +/// specified value is a rotated 8-bit value. Return -1 if no rotation +/// encoding is possible. +/// See ARM Reference Manual A6.3.2. +static inline int getT2SOImmValRotateVal(unsigned V) +{ + unsigned RotAmt = CountLeadingZeros_32(V); + if (RotAmt >= 24) + return -1; + + // If 'Arg' can be handled with a single shifter_op return the value. + if ((rotr32(0xff000000U, RotAmt) & V) == V) + return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); + + return -1; +} + +/// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit +/// into a Thumb-2 shifter_operand immediate operand, return the 12-bit +/// encoding for it. If not, return -1. +/// See ARM Reference Manual A6.3.2. +static inline int getT2SOImmVal(unsigned Arg) +{ + int Rot; + // If 'Arg' is an 8-bit splat, then get the encoded value. + int Splat = getT2SOImmValSplatVal(Arg); + if (Splat != -1) + return Splat; + + // If 'Arg' can be handled with a single shifter_op return the value. + Rot = getT2SOImmValRotateVal(Arg); + if (Rot != -1) + return Rot; + + return -1; +} + +static inline unsigned getT2SOImmValRotate(unsigned V) +{ + unsigned RotAmt; + + if ((V & ~255U) == 0) + return 0; + + // Use CTZ to compute the rotate amount. + RotAmt = CountTrailingZeros_32(V); + return (32 - RotAmt) & 31; +} + +static inline bool isT2SOImmTwoPartVal (unsigned Imm) +{ + unsigned V = Imm; + // Passing values can be any combination of splat values and shifter + // values. If this can be handled with a single shifter or splat, bail + // out. Those should be handled directly, not with a two-part val. + if (getT2SOImmValSplatVal(V) != -1) + return false; + V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; + if (V == 0) + return false; + + // If this can be handled as an immediate, accept. + if (getT2SOImmVal(V) != -1) return true; + + // Likewise, try masking out a splat value first. + V = Imm; + if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) + V &= ~0xff00ff00U; + else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) + V &= ~0x00ff00ffU; + // If what's left can be handled as an immediate, accept. + if (getT2SOImmVal(V) != -1) return true; + + // Otherwise, do not accept. + return false; +} + +static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) +{ + //assert (isT2SOImmTwoPartVal(Imm) && + // "Immedate cannot be encoded as two part immediate!"); + // Try a shifter operand as one part + unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm; + // If the rest is encodable as an immediate, then return it. + if (getT2SOImmVal(V) != -1) return V; + + // Try masking out a splat value first. + if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) + return Imm & 0xff00ff00U; + + // The other splat is all that's left as an option. + //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); + return Imm & 0x00ff00ffU; +} + +static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) +{ + // Mask out the first hunk + Imm ^= getT2SOImmTwoPartFirst(Imm); + // Return what's left + //assert (getT2SOImmVal(Imm) != -1 && + // "Unable to encode second part of T2 two part SO immediate"); + return Imm; +} + + +//===--------------------------------------------------------------------===// +// Addressing Mode #2 +//===--------------------------------------------------------------------===// +// +// This is used for most simple load/store instructions. +// +// addrmode2 := reg +/- reg shop imm +// addrmode2 := reg +/- imm12 +// +// The first operand is always a Reg. The second operand is a reg if in +// reg/reg form, otherwise it's reg#0. The third field encodes the operation +// in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The +// fourth operand 16-17 encodes the index mode. +// +// If this addressing mode is a frame index (before prolog/epilog insertion +// and code rewriting), this operand will have the form: FI#, reg0, <offs> +// with no shift amount for the frame offset. +// +static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO, + unsigned IdxMode) +{ + //assert(Imm12 < (1 << 12) && "Imm too large!"); + bool isSub = Opc == ARM_AM_sub; + return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; +} + +static inline unsigned getAM2Offset(unsigned AM2Opc) +{ + return AM2Opc & ((1 << 12)-1); +} + +static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc) +{ + return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add; +} + +static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) +{ + return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7); +} + +static inline unsigned getAM2IdxMode(unsigned AM2Opc) +{ + return (AM2Opc >> 16); +} + +//===--------------------------------------------------------------------===// +// Addressing Mode #3 +//===--------------------------------------------------------------------===// +// +// This is used for sign-extending loads, and load/store-pair instructions. +// +// addrmode3 := reg +/- reg +// addrmode3 := reg +/- imm8 +// +// The first operand is always a Reg. The second operand is a reg if in +// reg/reg form, otherwise it's reg#0. The third field encodes the operation +// in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the +// index mode. + +/// getAM3Opc - This function encodes the addrmode3 opc field. +static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset, + unsigned IdxMode) +{ + bool isSub = Opc == ARM_AM_sub; + return ((int)isSub << 8) | Offset | (IdxMode << 9); +} + +static inline unsigned char getAM3Offset(unsigned AM3Opc) +{ + return AM3Opc & 0xFF; +} + +static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc) +{ + return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; +} + +static inline unsigned getAM3IdxMode(unsigned AM3Opc) +{ + return (AM3Opc >> 9); +} + +//===--------------------------------------------------------------------===// +// Addressing Mode #4 +//===--------------------------------------------------------------------===// +// +// This is used for load / store multiple instructions. +// +// addrmode4 := reg, <mode> +// +// The four modes are: +// IA - Increment after +// IB - Increment before +// DA - Decrement after +// DB - Decrement before +// For VFP instructions, only the IA and DB modes are valid. + +static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode) +{ + return (ARM_AM_AMSubMode)(Mode & 0x7); +} + +static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode) +{ + return (int)SubMode; +} + +//===--------------------------------------------------------------------===// +// Addressing Mode #5 +//===--------------------------------------------------------------------===// +// +// This is used for coprocessor instructions, such as FP load/stores. +// +// addrmode5 := reg +/- imm8*4 +// +// The first operand is always a Reg. The second operand encodes the +// operation in bit 8 and the immediate in bits 0-7. + +/// getAM5Opc - This function encodes the addrmode5 opc field. +static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset) +{ + bool isSub = Opc == ARM_AM_sub; + return ((int)isSub << 8) | Offset; +} +static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc) +{ + return AM5Opc & 0xFF; +} +static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc) +{ + return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; +} + +//===--------------------------------------------------------------------===// +// Addressing Mode #5 FP16 +//===--------------------------------------------------------------------===// +// +// This is used for coprocessor instructions, such as 16-bit FP load/stores. +// +// addrmode5fp16 := reg +/- imm8*2 +// +// The first operand is always a Reg. The second operand encodes the +// operation (add or subtract) in bit 8 and the immediate in bits 0-7. + +/// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field. +static inline unsigned getAM5FP16Opc(ARM_AM_AddrOpc Opc, unsigned char Offset) +{ + bool isSub = Opc == ARM_AM_sub; + return ((int)isSub << 8) | Offset; +} + +static inline unsigned char getAM5FP16Offset(unsigned AM5Opc) +{ + return AM5Opc & 0xFF; +} + +static inline ARM_AM_AddrOpc getAM5FP16Op(unsigned AM5Opc) +{ + return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; +} + +//===--------------------------------------------------------------------===// +// Addressing Mode #6 +//===--------------------------------------------------------------------===// +// +// This is used for NEON load / store instructions. +// +// addrmode6 := reg with optional alignment +// +// This is stored in two operands [regaddr, align]. The first is the +// address register. The second operand is the value of the alignment +// specifier in bytes or zero if no explicit alignment. +// Valid alignments depend on the specific instruction. + +//===--------------------------------------------------------------------===// +// NEON Modified Immediates +//===--------------------------------------------------------------------===// +// +// Several NEON instructions (e.g., VMOV) take a "modified immediate" +// vector operand, where a small immediate encoded in the instruction +// specifies a full NEON vector value. These modified immediates are +// represented here as encoded integers. The low 8 bits hold the immediate +// value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold +// the "Cmode" field of the instruction. The interfaces below treat the +// Op and Cmode values as a single 5-bit value. + +static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) +{ + return (OpCmode << 8) | Val; +} +static inline unsigned getNEONModImmOpCmode(unsigned ModImm) +{ + return (ModImm >> 8) & 0x1f; +} +static inline unsigned getNEONModImmVal(unsigned ModImm) +{ + return ModImm & 0xff; +} + +/// decodeNEONModImm - Decode a NEON modified immediate value into the +/// element value and the element size in bits. (If the element size is +/// smaller than the vector, it is splatted into all the elements.) +static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits) +{ + unsigned OpCmode = getNEONModImmOpCmode(ModImm); + unsigned Imm8 = getNEONModImmVal(ModImm); + uint64_t Val = 0; + unsigned ByteNum; + + if (OpCmode == 0xe) { + // 8-bit vector elements + Val = Imm8; + *EltBits = 8; + } else if ((OpCmode & 0xc) == 0x8) { + // 16-bit vector elements + ByteNum = (OpCmode & 0x6) >> 1; + Val = (uint64_t)Imm8 << (8 * ByteNum); + *EltBits = 16; + } else if ((OpCmode & 0x8) == 0) { + // 32-bit vector elements, zero with one byte set + ByteNum = (OpCmode & 0x6) >> 1; + Val = (uint64_t)Imm8 << (8 * ByteNum); + *EltBits = 32; + } else if ((OpCmode & 0xe) == 0xc) { + // 32-bit vector elements, one byte with low bits set + ByteNum = 1 + (OpCmode & 0x1); + Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); + *EltBits = 32; + } else if (OpCmode == 0x1e) { + // 64-bit vector elements + for (ByteNum = 0; ByteNum < 8; ++ByteNum) { + if ((ModImm >> ByteNum) & 1) + Val |= (uint64_t)0xff << (8 * ByteNum); + } + *EltBits = 64; + } else { + //llvm_unreachable("Unsupported NEON immediate"); + } + return Val; +} + +ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode); + +//===--------------------------------------------------------------------===// +// Floating-point Immediates +// +static inline float getFPImmFloat(unsigned Imm) +{ + // We expect an 8-bit binary encoding of a floating-point number here. + union { + uint32_t I; + float F; + } FPUnion; + + uint8_t Sign = (Imm >> 7) & 0x1; + uint8_t Exp = (Imm >> 4) & 0x7; + uint8_t Mantissa = Imm & 0xf; + + // 8-bit FP iEEEE Float Encoding + // abcd efgh aBbbbbbc defgh000 00000000 00000000 + // + // where B = NOT(b); + + FPUnion.I = 0; + FPUnion.I |= ((uint32_t) Sign) << 31; + FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; + FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; + FPUnion.I |= (Exp & 0x3) << 23; + FPUnion.I |= Mantissa << 19; + return FPUnion.F; +} + +#endif + |