diff options
author | Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> | 2023-10-10 11:40:56 +0000 |
---|---|---|
committer | Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> | 2023-10-10 11:40:56 +0000 |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /contrib/plugins | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'contrib/plugins')
-rw-r--r-- | contrib/plugins/Makefile | 45 | ||||
-rw-r--r-- | contrib/plugins/cache.c | 860 | ||||
-rw-r--r-- | contrib/plugins/execlog.c | 153 | ||||
-rw-r--r-- | contrib/plugins/hotblocks.c | 155 | ||||
-rw-r--r-- | contrib/plugins/hotpages.c | 203 | ||||
-rw-r--r-- | contrib/plugins/howvec.c | 372 | ||||
-rw-r--r-- | contrib/plugins/hwprofile.c | 320 | ||||
-rw-r--r-- | contrib/plugins/lockstep.c | 356 |
8 files changed, 2464 insertions, 0 deletions
diff --git a/contrib/plugins/Makefile b/contrib/plugins/Makefile new file mode 100644 index 000000000..54ac5ccd9 --- /dev/null +++ b/contrib/plugins/Makefile @@ -0,0 +1,45 @@ +# -*- Mode: makefile -*- +# +# This Makefile example is fairly independent from the main makefile +# so users can take and adapt it for their build. We only really +# include config-host.mak so we don't have to repeat probing for +# cflags that the main configure has already done for us. +# + +BUILD_DIR := $(CURDIR)/../.. + +include $(BUILD_DIR)/config-host.mak + +VPATH += $(SRC_PATH)/contrib/plugins + +NAMES := +NAMES += execlog +NAMES += hotblocks +NAMES += hotpages +NAMES += howvec +NAMES += lockstep +NAMES += hwprofile +NAMES += cache + +SONAMES := $(addsuffix .so,$(addprefix lib,$(NAMES))) + +# The main QEMU uses Glib extensively so it's perfectly fine to use it +# in plugins (which many example do). +CFLAGS = $(GLIB_CFLAGS) +CFLAGS += -fPIC -Wall $(filter -W%, $(QEMU_CFLAGS)) +CFLAGS += $(if $(findstring no-psabi,$(QEMU_CFLAGS)),-Wpsabi) +CFLAGS += -I$(SRC_PATH)/include/qemu + +all: $(SONAMES) + +%.o: %.c + $(CC) $(CFLAGS) -c -o $@ $< + +lib%.so: %.o + $(CC) -shared -Wl,-soname,$@ -o $@ $^ $(LDLIBS) + +clean: + rm -f *.o *.so *.d + rm -Rf .libs + +.PHONY: all clean diff --git a/contrib/plugins/cache.c b/contrib/plugins/cache.c new file mode 100644 index 000000000..b9226e7c4 --- /dev/null +++ b/contrib/plugins/cache.c @@ -0,0 +1,860 @@ +/* + * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com> + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#include <inttypes.h> +#include <stdio.h> +#include <glib.h> + +#include <qemu-plugin.h> + +#define STRTOLL(x) g_ascii_strtoll(x, NULL, 10) + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; + +static GHashTable *miss_ht; + +static GMutex hashtable_lock; +static GRand *rng; + +static int limit; +static bool sys; + +enum EvictionPolicy { + LRU, + FIFO, + RAND, +}; + +enum EvictionPolicy policy; + +/* + * A CacheSet is a set of cache blocks. A memory block that maps to a set can be + * put in any of the blocks inside the set. The number of block per set is + * called the associativity (assoc). + * + * Each block contains the the stored tag and a valid bit. Since this is not + * a functional simulator, the data itself is not stored. We only identify + * whether a block is in the cache or not by searching for its tag. + * + * In order to search for memory data in the cache, the set identifier and tag + * are extracted from the address and the set is probed to see whether a tag + * match occur. + * + * An address is logically divided into three portions: The block offset, + * the set number, and the tag. + * + * The set number is used to identify the set in which the block may exist. + * The tag is compared against all the tags of a set to search for a match. If a + * match is found, then the access is a hit. + * + * The CacheSet also contains bookkeaping information about eviction details. + */ + +typedef struct { + uint64_t tag; + bool valid; +} CacheBlock; + +typedef struct { + CacheBlock *blocks; + uint64_t *lru_priorities; + uint64_t lru_gen_counter; + GQueue *fifo_queue; +} CacheSet; + +typedef struct { + CacheSet *sets; + int num_sets; + int cachesize; + int assoc; + int blksize_shift; + uint64_t set_mask; + uint64_t tag_mask; + uint64_t accesses; + uint64_t misses; +} Cache; + +typedef struct { + char *disas_str; + const char *symbol; + uint64_t addr; + uint64_t l1_dmisses; + uint64_t l1_imisses; + uint64_t l2_misses; +} InsnData; + +void (*update_hit)(Cache *cache, int set, int blk); +void (*update_miss)(Cache *cache, int set, int blk); + +void (*metadata_init)(Cache *cache); +void (*metadata_destroy)(Cache *cache); + +static int cores; +static Cache **l1_dcaches, **l1_icaches; + +static bool use_l2; +static Cache **l2_ucaches; + +static GMutex *l1_dcache_locks; +static GMutex *l1_icache_locks; +static GMutex *l2_ucache_locks; + +static uint64_t l1_dmem_accesses; +static uint64_t l1_imem_accesses; +static uint64_t l1_imisses; +static uint64_t l1_dmisses; + +static uint64_t l2_mem_accesses; +static uint64_t l2_misses; + +static int pow_of_two(int num) +{ + g_assert((num & (num - 1)) == 0); + int ret = 0; + while (num /= 2) { + ret++; + } + return ret; +} + +/* + * LRU evection policy: For each set, a generation counter is maintained + * alongside a priority array. + * + * On each set access, the generation counter is incremented. + * + * On a cache hit: The hit-block is assigned the current generation counter, + * indicating that it is the most recently used block. + * + * On a cache miss: The block with the least priority is searched and replaced + * with the newly-cached block, of which the priority is set to the current + * generation number. + */ + +static void lru_priorities_init(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + cache->sets[i].lru_priorities = g_new0(uint64_t, cache->assoc); + cache->sets[i].lru_gen_counter = 0; + } +} + +static void lru_update_blk(Cache *cache, int set_idx, int blk_idx) +{ + CacheSet *set = &cache->sets[set_idx]; + set->lru_priorities[blk_idx] = cache->sets[set_idx].lru_gen_counter; + set->lru_gen_counter++; +} + +static int lru_get_lru_block(Cache *cache, int set_idx) +{ + int i, min_idx, min_priority; + + min_priority = cache->sets[set_idx].lru_priorities[0]; + min_idx = 0; + + for (i = 1; i < cache->assoc; i++) { + if (cache->sets[set_idx].lru_priorities[i] < min_priority) { + min_priority = cache->sets[set_idx].lru_priorities[i]; + min_idx = i; + } + } + return min_idx; +} + +static void lru_priorities_destroy(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + g_free(cache->sets[i].lru_priorities); + } +} + +/* + * FIFO eviction policy: a FIFO queue is maintained for each CacheSet that + * stores accesses to the cache. + * + * On a compulsory miss: The block index is enqueued to the fifo_queue to + * indicate that it's the latest cached block. + * + * On a conflict miss: The first-in block is removed from the cache and the new + * block is put in its place and enqueued to the FIFO queue. + */ + +static void fifo_init(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + cache->sets[i].fifo_queue = g_queue_new(); + } +} + +static int fifo_get_first_block(Cache *cache, int set) +{ + GQueue *q = cache->sets[set].fifo_queue; + return GPOINTER_TO_INT(g_queue_pop_tail(q)); +} + +static void fifo_update_on_miss(Cache *cache, int set, int blk_idx) +{ + GQueue *q = cache->sets[set].fifo_queue; + g_queue_push_head(q, GINT_TO_POINTER(blk_idx)); +} + +static void fifo_destroy(Cache *cache) +{ + int i; + + for (i = 0; i < cache->num_sets; i++) { + g_queue_free(cache->sets[i].fifo_queue); + } +} + +static inline uint64_t extract_tag(Cache *cache, uint64_t addr) +{ + return addr & cache->tag_mask; +} + +static inline uint64_t extract_set(Cache *cache, uint64_t addr) +{ + return (addr & cache->set_mask) >> cache->blksize_shift; +} + +static const char *cache_config_error(int blksize, int assoc, int cachesize) +{ + if (cachesize % blksize != 0) { + return "cache size must be divisible by block size"; + } else if (cachesize % (blksize * assoc) != 0) { + return "cache size must be divisible by set size (assoc * block size)"; + } else { + return NULL; + } +} + +static bool bad_cache_params(int blksize, int assoc, int cachesize) +{ + return (cachesize % blksize) != 0 || (cachesize % (blksize * assoc) != 0); +} + +static Cache *cache_init(int blksize, int assoc, int cachesize) +{ + Cache *cache; + int i; + uint64_t blk_mask; + + /* + * This function shall not be called directly, and hence expects suitable + * parameters. + */ + g_assert(!bad_cache_params(blksize, assoc, cachesize)); + + cache = g_new(Cache, 1); + cache->assoc = assoc; + cache->cachesize = cachesize; + cache->num_sets = cachesize / (blksize * assoc); + cache->sets = g_new(CacheSet, cache->num_sets); + cache->blksize_shift = pow_of_two(blksize); + cache->accesses = 0; + cache->misses = 0; + + for (i = 0; i < cache->num_sets; i++) { + cache->sets[i].blocks = g_new0(CacheBlock, assoc); + } + + blk_mask = blksize - 1; + cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift); + cache->tag_mask = ~(cache->set_mask | blk_mask); + + if (metadata_init) { + metadata_init(cache); + } + + return cache; +} + +static Cache **caches_init(int blksize, int assoc, int cachesize) +{ + Cache **caches; + int i; + + if (bad_cache_params(blksize, assoc, cachesize)) { + return NULL; + } + + caches = g_new(Cache *, cores); + + for (i = 0; i < cores; i++) { + caches[i] = cache_init(blksize, assoc, cachesize); + } + + return caches; +} + +static int get_invalid_block(Cache *cache, uint64_t set) +{ + int i; + + for (i = 0; i < cache->assoc; i++) { + if (!cache->sets[set].blocks[i].valid) { + return i; + } + } + + return -1; +} + +static int get_replaced_block(Cache *cache, int set) +{ + switch (policy) { + case RAND: + return g_rand_int_range(rng, 0, cache->assoc); + case LRU: + return lru_get_lru_block(cache, set); + case FIFO: + return fifo_get_first_block(cache, set); + default: + g_assert_not_reached(); + } +} + +static int in_cache(Cache *cache, uint64_t addr) +{ + int i; + uint64_t tag, set; + + tag = extract_tag(cache, addr); + set = extract_set(cache, addr); + + for (i = 0; i < cache->assoc; i++) { + if (cache->sets[set].blocks[i].tag == tag && + cache->sets[set].blocks[i].valid) { + return i; + } + } + + return -1; +} + +/** + * access_cache(): Simulate a cache access + * @cache: The cache under simulation + * @addr: The address of the requested memory location + * + * Returns true if the requsted data is hit in the cache and false when missed. + * The cache is updated on miss for the next access. + */ +static bool access_cache(Cache *cache, uint64_t addr) +{ + int hit_blk, replaced_blk; + uint64_t tag, set; + + tag = extract_tag(cache, addr); + set = extract_set(cache, addr); + + hit_blk = in_cache(cache, addr); + if (hit_blk != -1) { + if (update_hit) { + update_hit(cache, set, hit_blk); + } + return true; + } + + replaced_blk = get_invalid_block(cache, set); + + if (replaced_blk == -1) { + replaced_blk = get_replaced_block(cache, set); + } + + if (update_miss) { + update_miss(cache, set, replaced_blk); + } + + cache->sets[set].blocks[replaced_blk].tag = tag; + cache->sets[set].blocks[replaced_blk].valid = true; + + return false; +} + +static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info, + uint64_t vaddr, void *userdata) +{ + uint64_t effective_addr; + struct qemu_plugin_hwaddr *hwaddr; + int cache_idx; + InsnData *insn; + bool hit_in_l1; + + hwaddr = qemu_plugin_get_hwaddr(info, vaddr); + if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { + return; + } + + effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr; + cache_idx = vcpu_index % cores; + + g_mutex_lock(&l1_dcache_locks[cache_idx]); + hit_in_l1 = access_cache(l1_dcaches[cache_idx], effective_addr); + if (!hit_in_l1) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l1_dmisses, 1, __ATOMIC_SEQ_CST); + l1_dcaches[cache_idx]->misses++; + } + l1_dcaches[cache_idx]->accesses++; + g_mutex_unlock(&l1_dcache_locks[cache_idx]); + + if (hit_in_l1 || !use_l2) { + /* No need to access L2 */ + return; + } + + g_mutex_lock(&l2_ucache_locks[cache_idx]); + if (!access_cache(l2_ucaches[cache_idx], effective_addr)) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); + l2_ucaches[cache_idx]->misses++; + } + l2_ucaches[cache_idx]->accesses++; + g_mutex_unlock(&l2_ucache_locks[cache_idx]); +} + +static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata) +{ + uint64_t insn_addr; + InsnData *insn; + int cache_idx; + bool hit_in_l1; + + insn_addr = ((InsnData *) userdata)->addr; + + cache_idx = vcpu_index % cores; + g_mutex_lock(&l1_icache_locks[cache_idx]); + hit_in_l1 = access_cache(l1_icaches[cache_idx], insn_addr); + if (!hit_in_l1) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l1_imisses, 1, __ATOMIC_SEQ_CST); + l1_icaches[cache_idx]->misses++; + } + l1_icaches[cache_idx]->accesses++; + g_mutex_unlock(&l1_icache_locks[cache_idx]); + + if (hit_in_l1 || !use_l2) { + /* No need to access L2 */ + return; + } + + g_mutex_lock(&l2_ucache_locks[cache_idx]); + if (!access_cache(l2_ucaches[cache_idx], insn_addr)) { + insn = (InsnData *) userdata; + __atomic_fetch_add(&insn->l2_misses, 1, __ATOMIC_SEQ_CST); + l2_ucaches[cache_idx]->misses++; + } + l2_ucaches[cache_idx]->accesses++; + g_mutex_unlock(&l2_ucache_locks[cache_idx]); +} + +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + size_t n_insns; + size_t i; + InsnData *data; + + n_insns = qemu_plugin_tb_n_insns(tb); + for (i = 0; i < n_insns; i++) { + struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); + uint64_t effective_addr; + + if (sys) { + effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn); + } else { + effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn); + } + + /* + * Instructions might get translated multiple times, we do not create + * new entries for those instructions. Instead, we fetch the same + * entry from the hash table and register it for the callback again. + */ + g_mutex_lock(&hashtable_lock); + data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr)); + if (data == NULL) { + data = g_new0(InsnData, 1); + data->disas_str = qemu_plugin_insn_disas(insn); + data->symbol = qemu_plugin_insn_symbol(insn); + data->addr = effective_addr; + g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr), + (gpointer) data); + } + g_mutex_unlock(&hashtable_lock); + + qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access, + QEMU_PLUGIN_CB_NO_REGS, + rw, data); + + qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, + QEMU_PLUGIN_CB_NO_REGS, data); + } +} + +static void insn_free(gpointer data) +{ + InsnData *insn = (InsnData *) data; + g_free(insn->disas_str); + g_free(insn); +} + +static void cache_free(Cache *cache) +{ + for (int i = 0; i < cache->num_sets; i++) { + g_free(cache->sets[i].blocks); + } + + if (metadata_destroy) { + metadata_destroy(cache); + } + + g_free(cache->sets); + g_free(cache); +} + +static void caches_free(Cache **caches) +{ + int i; + + for (i = 0; i < cores; i++) { + cache_free(caches[i]); + } +} + +static void append_stats_line(GString *line, uint64_t l1_daccess, + uint64_t l1_dmisses, uint64_t l1_iaccess, + uint64_t l1_imisses, uint64_t l2_access, + uint64_t l2_misses) +{ + double l1_dmiss_rate, l1_imiss_rate, l2_miss_rate; + + l1_dmiss_rate = ((double) l1_dmisses) / (l1_daccess) * 100.0; + l1_imiss_rate = ((double) l1_imisses) / (l1_iaccess) * 100.0; + + g_string_append_printf(line, "%-14lu %-12lu %9.4lf%% %-14lu %-12lu" + " %9.4lf%%", + l1_daccess, + l1_dmisses, + l1_daccess ? l1_dmiss_rate : 0.0, + l1_iaccess, + l1_imisses, + l1_iaccess ? l1_imiss_rate : 0.0); + + if (use_l2) { + l2_miss_rate = ((double) l2_misses) / (l2_access) * 100.0; + g_string_append_printf(line, " %-12lu %-11lu %10.4lf%%", + l2_access, + l2_misses, + l2_access ? l2_miss_rate : 0.0); + } + + g_string_append(line, "\n"); +} + +static void sum_stats(void) +{ + int i; + + g_assert(cores > 1); + for (i = 0; i < cores; i++) { + l1_imisses += l1_icaches[i]->misses; + l1_dmisses += l1_dcaches[i]->misses; + l1_imem_accesses += l1_icaches[i]->accesses; + l1_dmem_accesses += l1_dcaches[i]->accesses; + + if (use_l2) { + l2_misses += l2_ucaches[i]->misses; + l2_mem_accesses += l2_ucaches[i]->accesses; + } + } +} + +static int dcmp(gconstpointer a, gconstpointer b) +{ + InsnData *insn_a = (InsnData *) a; + InsnData *insn_b = (InsnData *) b; + + return insn_a->l1_dmisses < insn_b->l1_dmisses ? 1 : -1; +} + +static int icmp(gconstpointer a, gconstpointer b) +{ + InsnData *insn_a = (InsnData *) a; + InsnData *insn_b = (InsnData *) b; + + return insn_a->l1_imisses < insn_b->l1_imisses ? 1 : -1; +} + +static int l2_cmp(gconstpointer a, gconstpointer b) +{ + InsnData *insn_a = (InsnData *) a; + InsnData *insn_b = (InsnData *) b; + + return insn_a->l2_misses < insn_b->l2_misses ? 1 : -1; +} + +static void log_stats(void) +{ + int i; + Cache *icache, *dcache, *l2_cache; + + g_autoptr(GString) rep = g_string_new("core #, data accesses, data misses," + " dmiss rate, insn accesses," + " insn misses, imiss rate"); + + if (use_l2) { + g_string_append(rep, ", l2 accesses, l2 misses, l2 miss rate"); + } + + g_string_append(rep, "\n"); + + for (i = 0; i < cores; i++) { + g_string_append_printf(rep, "%-8d", i); + dcache = l1_dcaches[i]; + icache = l1_icaches[i]; + l2_cache = use_l2 ? l2_ucaches[i] : NULL; + append_stats_line(rep, dcache->accesses, dcache->misses, + icache->accesses, icache->misses, + l2_cache ? l2_cache->accesses : 0, + l2_cache ? l2_cache->misses : 0); + } + + if (cores > 1) { + sum_stats(); + g_string_append_printf(rep, "%-8s", "sum"); + append_stats_line(rep, l1_dmem_accesses, l1_dmisses, + l1_imem_accesses, l1_imisses, + l2_cache ? l2_mem_accesses : 0, l2_cache ? l2_misses : 0); + } + + g_string_append(rep, "\n"); + qemu_plugin_outs(rep->str); +} + +static void log_top_insns(void) +{ + int i; + GList *curr, *miss_insns; + InsnData *insn; + + miss_insns = g_hash_table_get_values(miss_ht); + miss_insns = g_list_sort(miss_insns, dcmp); + g_autoptr(GString) rep = g_string_new(""); + g_string_append_printf(rep, "%s", "address, data misses, instruction\n"); + + for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { + insn = (InsnData *) curr->data; + g_string_append_printf(rep, "0x%" PRIx64, insn->addr); + if (insn->symbol) { + g_string_append_printf(rep, " (%s)", insn->symbol); + } + g_string_append_printf(rep, ", %ld, %s\n", insn->l1_dmisses, + insn->disas_str); + } + + miss_insns = g_list_sort(miss_insns, icmp); + g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n"); + + for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { + insn = (InsnData *) curr->data; + g_string_append_printf(rep, "0x%" PRIx64, insn->addr); + if (insn->symbol) { + g_string_append_printf(rep, " (%s)", insn->symbol); + } + g_string_append_printf(rep, ", %ld, %s\n", insn->l1_imisses, + insn->disas_str); + } + + if (!use_l2) { + goto finish; + } + + miss_insns = g_list_sort(miss_insns, l2_cmp); + g_string_append_printf(rep, "%s", "\naddress, L2 misses, instruction\n"); + + for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) { + insn = (InsnData *) curr->data; + g_string_append_printf(rep, "0x%" PRIx64, insn->addr); + if (insn->symbol) { + g_string_append_printf(rep, " (%s)", insn->symbol); + } + g_string_append_printf(rep, ", %ld, %s\n", insn->l2_misses, + insn->disas_str); + } + +finish: + qemu_plugin_outs(rep->str); + g_list_free(miss_insns); +} + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + log_stats(); + log_top_insns(); + + caches_free(l1_dcaches); + caches_free(l1_icaches); + + g_free(l1_dcache_locks); + g_free(l1_icache_locks); + + if (use_l2) { + caches_free(l2_ucaches); + g_free(l2_ucache_locks); + } + + g_hash_table_destroy(miss_ht); +} + +static void policy_init(void) +{ + switch (policy) { + case LRU: + update_hit = lru_update_blk; + update_miss = lru_update_blk; + metadata_init = lru_priorities_init; + metadata_destroy = lru_priorities_destroy; + break; + case FIFO: + update_miss = fifo_update_on_miss; + metadata_init = fifo_init; + metadata_destroy = fifo_destroy; + break; + case RAND: + rng = g_rand_new(); + break; + default: + g_assert_not_reached(); + } +} + +QEMU_PLUGIN_EXPORT +int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, + int argc, char **argv) +{ + int i; + int l1_iassoc, l1_iblksize, l1_icachesize; + int l1_dassoc, l1_dblksize, l1_dcachesize; + int l2_assoc, l2_blksize, l2_cachesize; + + limit = 32; + sys = info->system_emulation; + + l1_dassoc = 8; + l1_dblksize = 64; + l1_dcachesize = l1_dblksize * l1_dassoc * 32; + + l1_iassoc = 8; + l1_iblksize = 64; + l1_icachesize = l1_iblksize * l1_iassoc * 32; + + l2_assoc = 16; + l2_blksize = 64; + l2_cachesize = l2_assoc * l2_blksize * 2048; + + policy = LRU; + + cores = sys ? qemu_plugin_n_vcpus() : 1; + + for (i = 0; i < argc; i++) { + char *opt = argv[i]; + g_autofree char **tokens = g_strsplit(opt, "=", 2); + + if (g_strcmp0(tokens[0], "iblksize") == 0) { + l1_iblksize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "iassoc") == 0) { + l1_iassoc = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "icachesize") == 0) { + l1_icachesize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "dblksize") == 0) { + l1_dblksize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "dassoc") == 0) { + l1_dassoc = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "dcachesize") == 0) { + l1_dcachesize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "limit") == 0) { + limit = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "cores") == 0) { + cores = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2cachesize") == 0) { + use_l2 = true; + l2_cachesize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2blksize") == 0) { + use_l2 = true; + l2_blksize = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2assoc") == 0) { + use_l2 = true; + l2_assoc = STRTOLL(tokens[1]); + } else if (g_strcmp0(tokens[0], "l2") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &use_l2)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", opt); + return -1; + } + } else if (g_strcmp0(tokens[0], "evict") == 0) { + if (g_strcmp0(tokens[1], "rand") == 0) { + policy = RAND; + } else if (g_strcmp0(tokens[1], "lru") == 0) { + policy = LRU; + } else if (g_strcmp0(tokens[1], "fifo") == 0) { + policy = FIFO; + } else { + fprintf(stderr, "invalid eviction policy: %s\n", opt); + return -1; + } + } else { + fprintf(stderr, "option parsing failed: %s\n", opt); + return -1; + } + } + + policy_init(); + + l1_dcaches = caches_init(l1_dblksize, l1_dassoc, l1_dcachesize); + if (!l1_dcaches) { + const char *err = cache_config_error(l1_dblksize, l1_dassoc, l1_dcachesize); + fprintf(stderr, "dcache cannot be constructed from given parameters\n"); + fprintf(stderr, "%s\n", err); + return -1; + } + + l1_icaches = caches_init(l1_iblksize, l1_iassoc, l1_icachesize); + if (!l1_icaches) { + const char *err = cache_config_error(l1_iblksize, l1_iassoc, l1_icachesize); + fprintf(stderr, "icache cannot be constructed from given parameters\n"); + fprintf(stderr, "%s\n", err); + return -1; + } + + l2_ucaches = use_l2 ? caches_init(l2_blksize, l2_assoc, l2_cachesize) : NULL; + if (!l2_ucaches && use_l2) { + const char *err = cache_config_error(l2_blksize, l2_assoc, l2_cachesize); + fprintf(stderr, "L2 cache cannot be constructed from given parameters\n"); + fprintf(stderr, "%s\n", err); + return -1; + } + + l1_dcache_locks = g_new0(GMutex, cores); + l1_icache_locks = g_new0(GMutex, cores); + l2_ucache_locks = use_l2 ? g_new0(GMutex, cores) : NULL; + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + + miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free); + + return 0; +} diff --git a/contrib/plugins/execlog.c b/contrib/plugins/execlog.c new file mode 100644 index 000000000..a5275dcc1 --- /dev/null +++ b/contrib/plugins/execlog.c @@ -0,0 +1,153 @@ +/* + * Copyright (C) 2021, Alexandre Iooss <erdnaxe@crans.org> + * + * Log instruction execution with memory access. + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ +#include <glib.h> +#include <inttypes.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> + +#include <qemu-plugin.h> + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +/* Store last executed instruction on each vCPU as a GString */ +GArray *last_exec; + +/** + * Add memory read or write information to current instruction log + */ +static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t info, + uint64_t vaddr, void *udata) +{ + GString *s; + + /* Find vCPU in array */ + g_assert(cpu_index < last_exec->len); + s = g_array_index(last_exec, GString *, cpu_index); + + /* Indicate type of memory access */ + if (qemu_plugin_mem_is_store(info)) { + g_string_append(s, ", store"); + } else { + g_string_append(s, ", load"); + } + + /* If full system emulation log physical address and device name */ + struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(info, vaddr); + if (hwaddr) { + uint64_t addr = qemu_plugin_hwaddr_phys_addr(hwaddr); + const char *name = qemu_plugin_hwaddr_device_name(hwaddr); + g_string_append_printf(s, ", 0x%08"PRIx64", %s", addr, name); + } else { + g_string_append_printf(s, ", 0x%08"PRIx64, vaddr); + } +} + +/** + * Log instruction execution + */ +static void vcpu_insn_exec(unsigned int cpu_index, void *udata) +{ + GString *s; + + /* Find or create vCPU in array */ + while (cpu_index >= last_exec->len) { + s = g_string_new(NULL); + g_array_append_val(last_exec, s); + } + s = g_array_index(last_exec, GString *, cpu_index); + + /* Print previous instruction in cache */ + if (s->len) { + qemu_plugin_outs(s->str); + qemu_plugin_outs("\n"); + } + + /* Store new instruction in cache */ + /* vcpu_mem will add memory access information to last_exec */ + g_string_printf(s, "%u, ", cpu_index); + g_string_append(s, (char *)udata); +} + +/** + * On translation block new translation + * + * QEMU convert code by translation block (TB). By hooking here we can then hook + * a callback on each instruction and memory access. + */ +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + struct qemu_plugin_insn *insn; + uint64_t insn_vaddr; + uint32_t insn_opcode; + char *insn_disas; + + size_t n = qemu_plugin_tb_n_insns(tb); + for (size_t i = 0; i < n; i++) { + /* + * `insn` is shared between translations in QEMU, copy needed data here. + * `output` is never freed as it might be used multiple times during + * the emulation lifetime. + * We only consider the first 32 bits of the instruction, this may be + * a limitation for CISC architectures. + */ + insn = qemu_plugin_tb_get_insn(tb, i); + insn_vaddr = qemu_plugin_insn_vaddr(insn); + insn_opcode = *((uint32_t *)qemu_plugin_insn_data(insn)); + insn_disas = qemu_plugin_insn_disas(insn); + char *output = g_strdup_printf("0x%"PRIx64", 0x%"PRIx32", \"%s\"", + insn_vaddr, insn_opcode, insn_disas); + + /* Register callback on memory read or write */ + qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, + QEMU_PLUGIN_CB_NO_REGS, + QEMU_PLUGIN_MEM_RW, NULL); + + /* Register callback on instruction */ + qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec, + QEMU_PLUGIN_CB_NO_REGS, output); + } +} + +/** + * On plugin exit, print last instruction in cache + */ +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + guint i; + GString *s; + for (i = 0; i < last_exec->len; i++) { + s = g_array_index(last_exec, GString *, i); + if (s->str) { + qemu_plugin_outs(s->str); + qemu_plugin_outs("\n"); + } + } +} + +/** + * Install the plugin + */ +QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, + const qemu_info_t *info, int argc, + char **argv) +{ + /* + * Initialize dynamic array to cache vCPU instruction. In user mode + * we don't know the size before emulation. + */ + last_exec = g_array_new(FALSE, FALSE, sizeof(GString *)); + + /* Register translation block and exit callbacks */ + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + + return 0; +} diff --git a/contrib/plugins/hotblocks.c b/contrib/plugins/hotblocks.c new file mode 100644 index 000000000..062200a7a --- /dev/null +++ b/contrib/plugins/hotblocks.c @@ -0,0 +1,155 @@ +/* + * Copyright (C) 2019, Alex Bennée <alex.bennee@linaro.org> + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ +#include <inttypes.h> +#include <assert.h> +#include <stdlib.h> +#include <inttypes.h> +#include <string.h> +#include <unistd.h> +#include <stdio.h> +#include <glib.h> + +#include <qemu-plugin.h> + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +static bool do_inline; + +/* Plugins need to take care of their own locking */ +static GMutex lock; +static GHashTable *hotblocks; +static guint64 limit = 20; + +/* + * Counting Structure + * + * The internals of the TCG are not exposed to plugins so we can only + * get the starting PC for each block. We cheat this slightly by + * xor'ing the number of instructions to the hash to help + * differentiate. + */ +typedef struct { + uint64_t start_addr; + uint64_t exec_count; + int trans_count; + unsigned long insns; +} ExecCount; + +static gint cmp_exec_count(gconstpointer a, gconstpointer b) +{ + ExecCount *ea = (ExecCount *) a; + ExecCount *eb = (ExecCount *) b; + return ea->exec_count > eb->exec_count ? -1 : 1; +} + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + g_autoptr(GString) report = g_string_new("collected "); + GList *counts, *it; + int i; + + g_mutex_lock(&lock); + g_string_append_printf(report, "%d entries in the hash table\n", + g_hash_table_size(hotblocks)); + counts = g_hash_table_get_values(hotblocks); + it = g_list_sort(counts, cmp_exec_count); + + if (it) { + g_string_append_printf(report, "pc, tcount, icount, ecount\n"); + + for (i = 0; i < limit && it->next; i++, it = it->next) { + ExecCount *rec = (ExecCount *) it->data; + g_string_append_printf(report, "0x%016"PRIx64", %d, %ld, %"PRId64"\n", + rec->start_addr, rec->trans_count, + rec->insns, rec->exec_count); + } + + g_list_free(it); + g_mutex_unlock(&lock); + } + + qemu_plugin_outs(report->str); +} + +static void plugin_init(void) +{ + hotblocks = g_hash_table_new(NULL, g_direct_equal); +} + +static void vcpu_tb_exec(unsigned int cpu_index, void *udata) +{ + ExecCount *cnt; + uint64_t hash = (uint64_t) udata; + + g_mutex_lock(&lock); + cnt = (ExecCount *) g_hash_table_lookup(hotblocks, (gconstpointer) hash); + /* should always succeed */ + g_assert(cnt); + cnt->exec_count++; + g_mutex_unlock(&lock); +} + +/* + * When do_inline we ask the plugin to increment the counter for us. + * Otherwise a helper is inserted which calls the vcpu_tb_exec + * callback. + */ +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + ExecCount *cnt; + uint64_t pc = qemu_plugin_tb_vaddr(tb); + size_t insns = qemu_plugin_tb_n_insns(tb); + uint64_t hash = pc ^ insns; + + g_mutex_lock(&lock); + cnt = (ExecCount *) g_hash_table_lookup(hotblocks, (gconstpointer) hash); + if (cnt) { + cnt->trans_count++; + } else { + cnt = g_new0(ExecCount, 1); + cnt->start_addr = pc; + cnt->trans_count = 1; + cnt->insns = insns; + g_hash_table_insert(hotblocks, (gpointer) hash, (gpointer) cnt); + } + + g_mutex_unlock(&lock); + + if (do_inline) { + qemu_plugin_register_vcpu_tb_exec_inline(tb, QEMU_PLUGIN_INLINE_ADD_U64, + &cnt->exec_count, 1); + } else { + qemu_plugin_register_vcpu_tb_exec_cb(tb, vcpu_tb_exec, + QEMU_PLUGIN_CB_NO_REGS, + (void *)hash); + } +} + +QEMU_PLUGIN_EXPORT +int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, + int argc, char **argv) +{ + for (int i = 0; i < argc; i++) { + char *opt = argv[i]; + g_autofree char **tokens = g_strsplit(opt, "=", 2); + if (g_strcmp0(tokens[0], "inline") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_inline)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", opt); + return -1; + } + } else { + fprintf(stderr, "option parsing failed: %s\n", opt); + return -1; + } + } + + plugin_init(); + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + return 0; +} diff --git a/contrib/plugins/hotpages.c b/contrib/plugins/hotpages.c new file mode 100644 index 000000000..0d12910af --- /dev/null +++ b/contrib/plugins/hotpages.c @@ -0,0 +1,203 @@ +/* + * Copyright (C) 2019, Alex Bennée <alex.bennee@linaro.org> + * + * Hot Pages - show which pages saw the most memory accesses. + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#include <inttypes.h> +#include <assert.h> +#include <stdlib.h> +#include <inttypes.h> +#include <string.h> +#include <unistd.h> +#include <stdio.h> +#include <glib.h> + +#include <qemu-plugin.h> + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) + +static uint64_t page_size = 4096; +static uint64_t page_mask; +static int limit = 50; +static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; +static bool track_io; + +enum sort_type { + SORT_RW = 0, + SORT_R, + SORT_W, + SORT_A +}; + +static int sort_by = SORT_RW; + +typedef struct { + uint64_t page_address; + int cpu_read; + int cpu_write; + uint64_t reads; + uint64_t writes; +} PageCounters; + +static GMutex lock; +static GHashTable *pages; + +static gint cmp_access_count(gconstpointer a, gconstpointer b) +{ + PageCounters *ea = (PageCounters *) a; + PageCounters *eb = (PageCounters *) b; + int r; + switch (sort_by) { + case SORT_RW: + r = (ea->reads + ea->writes) > (eb->reads + eb->writes) ? -1 : 1; + break; + case SORT_R: + r = ea->reads > eb->reads ? -1 : 1; + break; + case SORT_W: + r = ea->writes > eb->writes ? -1 : 1; + break; + case SORT_A: + r = ea->page_address > eb->page_address ? -1 : 1; + break; + default: + g_assert_not_reached(); + } + return r; +} + + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + g_autoptr(GString) report = g_string_new("Addr, RCPUs, Reads, WCPUs, Writes\n"); + int i; + GList *counts; + + counts = g_hash_table_get_values(pages); + if (counts && g_list_next(counts)) { + GList *it; + + it = g_list_sort(counts, cmp_access_count); + + for (i = 0; i < limit && it->next; i++, it = it->next) { + PageCounters *rec = (PageCounters *) it->data; + g_string_append_printf(report, + "0x%016"PRIx64", 0x%04x, %"PRId64 + ", 0x%04x, %"PRId64"\n", + rec->page_address, + rec->cpu_read, rec->reads, + rec->cpu_write, rec->writes); + } + g_list_free(it); + } + + qemu_plugin_outs(report->str); +} + +static void plugin_init(void) +{ + page_mask = (page_size - 1); + pages = g_hash_table_new(NULL, g_direct_equal); +} + +static void vcpu_haddr(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo, + uint64_t vaddr, void *udata) +{ + struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(meminfo, vaddr); + uint64_t page; + PageCounters *count; + + /* We only get a hwaddr for system emulation */ + if (track_io) { + if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) { + page = vaddr; + } else { + return; + } + } else { + if (hwaddr && !qemu_plugin_hwaddr_is_io(hwaddr)) { + page = (uint64_t) qemu_plugin_hwaddr_phys_addr(hwaddr); + } else { + page = vaddr; + } + } + page &= ~page_mask; + + g_mutex_lock(&lock); + count = (PageCounters *) g_hash_table_lookup(pages, GUINT_TO_POINTER(page)); + + if (!count) { + count = g_new0(PageCounters, 1); + count->page_address = page; + g_hash_table_insert(pages, GUINT_TO_POINTER(page), (gpointer) count); + } + if (qemu_plugin_mem_is_store(meminfo)) { + count->writes++; + count->cpu_write |= (1 << cpu_index); + } else { + count->reads++; + count->cpu_read |= (1 << cpu_index); + } + + g_mutex_unlock(&lock); +} + +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + size_t n = qemu_plugin_tb_n_insns(tb); + size_t i; + + for (i = 0; i < n; i++) { + struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); + qemu_plugin_register_vcpu_mem_cb(insn, vcpu_haddr, + QEMU_PLUGIN_CB_NO_REGS, + rw, NULL); + } +} + +QEMU_PLUGIN_EXPORT +int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, + int argc, char **argv) +{ + int i; + + for (i = 0; i < argc; i++) { + char *opt = argv[i]; + g_autofree char **tokens = g_strsplit(opt, "=", -1); + + if (g_strcmp0(tokens[0], "sortby") == 0) { + if (g_strcmp0(tokens[1], "reads") == 0) { + sort_by = SORT_R; + } else if (g_strcmp0(tokens[1], "writes") == 0) { + sort_by = SORT_W; + } else if (g_strcmp0(tokens[1], "address") == 0) { + sort_by = SORT_A; + } else { + fprintf(stderr, "invalid value to sortby: %s\n", tokens[1]); + return -1; + } + } else if (g_strcmp0(tokens[0], "io") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &track_io)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", opt); + return -1; + } + } else if (g_strcmp0(tokens[0], "pagesize") == 0) { + page_size = g_ascii_strtoull(tokens[1], NULL, 10); + } else { + fprintf(stderr, "option parsing failed: %s\n", opt); + return -1; + } + } + + plugin_init(); + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + return 0; +} diff --git a/contrib/plugins/howvec.c b/contrib/plugins/howvec.c new file mode 100644 index 000000000..4a5ec3d93 --- /dev/null +++ b/contrib/plugins/howvec.c @@ -0,0 +1,372 @@ +/* + * Copyright (C) 2019, Alex Bennée <alex.bennee@linaro.org> + * + * How vectorised is this code? + * + * Attempt to measure the amount of vectorisation that has been done + * on some code by counting classes of instruction. + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ +#include <inttypes.h> +#include <assert.h> +#include <stdlib.h> +#include <inttypes.h> +#include <string.h> +#include <unistd.h> +#include <stdio.h> +#include <glib.h> + +#include <qemu-plugin.h> + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) + +typedef enum { + COUNT_CLASS, + COUNT_INDIVIDUAL, + COUNT_NONE +} CountType; + +static int limit = 50; +static bool do_inline; +static bool verbose; + +static GMutex lock; +static GHashTable *insns; + +typedef struct { + const char *class; + const char *opt; + uint32_t mask; + uint32_t pattern; + CountType what; + uint64_t count; +} InsnClassExecCount; + +typedef struct { + char *insn; + uint32_t opcode; + uint64_t count; + InsnClassExecCount *class; +} InsnExecCount; + +/* + * Matchers for classes of instructions, order is important. + * + * Your most precise match must be before looser matches. If no match + * is found in the table we can create an individual entry. + * + * 31..28 27..24 23..20 19..16 15..12 11..8 7..4 3..0 + */ +static InsnClassExecCount aarch64_insn_classes[] = { + /* "Reserved"" */ + { " UDEF", "udef", 0xffff0000, 0x00000000, COUNT_NONE}, + { " SVE", "sve", 0x1e000000, 0x04000000, COUNT_CLASS}, + { "Reserved", "res", 0x1e000000, 0x00000000, COUNT_CLASS}, + /* Data Processing Immediate */ + { " PCrel addr", "pcrel", 0x1f000000, 0x10000000, COUNT_CLASS}, + { " Add/Sub (imm,tags)", "asit", 0x1f800000, 0x11800000, COUNT_CLASS}, + { " Add/Sub (imm)", "asi", 0x1f000000, 0x11000000, COUNT_CLASS}, + { " Logical (imm)", "logi", 0x1f800000, 0x12000000, COUNT_CLASS}, + { " Move Wide (imm)", "movwi", 0x1f800000, 0x12800000, COUNT_CLASS}, + { " Bitfield", "bitf", 0x1f800000, 0x13000000, COUNT_CLASS}, + { " Extract", "extr", 0x1f800000, 0x13800000, COUNT_CLASS}, + { "Data Proc Imm", "dpri", 0x1c000000, 0x10000000, COUNT_CLASS}, + /* Branches */ + { " Cond Branch (imm)", "cndb", 0xfe000000, 0x54000000, COUNT_CLASS}, + { " Exception Gen", "excp", 0xff000000, 0xd4000000, COUNT_CLASS}, + { " NOP", "nop", 0xffffffff, 0xd503201f, COUNT_NONE}, + { " Hints", "hint", 0xfffff000, 0xd5032000, COUNT_CLASS}, + { " Barriers", "barr", 0xfffff000, 0xd5033000, COUNT_CLASS}, + { " PSTATE", "psta", 0xfff8f000, 0xd5004000, COUNT_CLASS}, + { " System Insn", "sins", 0xffd80000, 0xd5080000, COUNT_CLASS}, + { " System Reg", "sreg", 0xffd00000, 0xd5100000, COUNT_CLASS}, + { " Branch (reg)", "breg", 0xfe000000, 0xd6000000, COUNT_CLASS}, + { " Branch (imm)", "bimm", 0x7c000000, 0x14000000, COUNT_CLASS}, + { " Cmp & Branch", "cmpb", 0x7e000000, 0x34000000, COUNT_CLASS}, + { " Tst & Branch", "tstb", 0x7e000000, 0x36000000, COUNT_CLASS}, + { "Branches", "branch", 0x1c000000, 0x14000000, COUNT_CLASS}, + /* Loads and Stores */ + { " AdvSimd ldstmult", "advlsm", 0xbfbf0000, 0x0c000000, COUNT_CLASS}, + { " AdvSimd ldstmult++", "advlsmp", 0xbfb00000, 0x0c800000, COUNT_CLASS}, + { " AdvSimd ldst", "advlss", 0xbf9f0000, 0x0d000000, COUNT_CLASS}, + { " AdvSimd ldst++", "advlssp", 0xbf800000, 0x0d800000, COUNT_CLASS}, + { " ldst excl", "ldstx", 0x3f000000, 0x08000000, COUNT_CLASS}, + { " Prefetch", "prfm", 0xff000000, 0xd8000000, COUNT_CLASS}, + { " Load Reg (lit)", "ldlit", 0x1b000000, 0x18000000, COUNT_CLASS}, + { " ldst noalloc pair", "ldstnap", 0x3b800000, 0x28000000, COUNT_CLASS}, + { " ldst pair", "ldstp", 0x38000000, 0x28000000, COUNT_CLASS}, + { " ldst reg", "ldstr", 0x3b200000, 0x38000000, COUNT_CLASS}, + { " Atomic ldst", "atomic", 0x3b200c00, 0x38200000, COUNT_CLASS}, + { " ldst reg (reg off)", "ldstro", 0x3b200b00, 0x38200800, COUNT_CLASS}, + { " ldst reg (pac)", "ldstpa", 0x3b200200, 0x38200800, COUNT_CLASS}, + { " ldst reg (imm)", "ldsti", 0x3b000000, 0x39000000, COUNT_CLASS}, + { "Loads & Stores", "ldst", 0x0a000000, 0x08000000, COUNT_CLASS}, + /* Data Processing Register */ + { "Data Proc Reg", "dprr", 0x0e000000, 0x0a000000, COUNT_CLASS}, + /* Scalar FP */ + { "Scalar FP ", "fpsimd", 0x0e000000, 0x0e000000, COUNT_CLASS}, + /* Unclassified */ + { "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_CLASS}, +}; + +static InsnClassExecCount sparc32_insn_classes[] = { + { "Call", "call", 0xc0000000, 0x40000000, COUNT_CLASS}, + { "Branch ICond", "bcc", 0xc1c00000, 0x00800000, COUNT_CLASS}, + { "Branch Fcond", "fbcc", 0xc1c00000, 0x01800000, COUNT_CLASS}, + { "SetHi", "sethi", 0xc1c00000, 0x01000000, COUNT_CLASS}, + { "FPU ALU", "fpu", 0xc1f00000, 0x81a00000, COUNT_CLASS}, + { "ALU", "alu", 0xc0000000, 0x80000000, COUNT_CLASS}, + { "Load/Store", "ldst", 0xc0000000, 0xc0000000, COUNT_CLASS}, + /* Unclassified */ + { "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_INDIVIDUAL}, +}; + +static InsnClassExecCount sparc64_insn_classes[] = { + { "SetHi & Branches", "op0", 0xc0000000, 0x00000000, COUNT_CLASS}, + { "Call", "op1", 0xc0000000, 0x40000000, COUNT_CLASS}, + { "Arith/Logical/Move", "op2", 0xc0000000, 0x80000000, COUNT_CLASS}, + { "Arith/Logical/Move", "op3", 0xc0000000, 0xc0000000, COUNT_CLASS}, + /* Unclassified */ + { "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_INDIVIDUAL}, +}; + +/* Default matcher for currently unclassified architectures */ +static InsnClassExecCount default_insn_classes[] = { + { "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_INDIVIDUAL}, +}; + +typedef struct { + const char *qemu_target; + InsnClassExecCount *table; + int table_sz; +} ClassSelector; + +static ClassSelector class_tables[] = { + { "aarch64", aarch64_insn_classes, ARRAY_SIZE(aarch64_insn_classes) }, + { "sparc", sparc32_insn_classes, ARRAY_SIZE(sparc32_insn_classes) }, + { "sparc64", sparc64_insn_classes, ARRAY_SIZE(sparc64_insn_classes) }, + { NULL, default_insn_classes, ARRAY_SIZE(default_insn_classes) }, +}; + +static InsnClassExecCount *class_table; +static int class_table_sz; + +static gint cmp_exec_count(gconstpointer a, gconstpointer b) +{ + InsnExecCount *ea = (InsnExecCount *) a; + InsnExecCount *eb = (InsnExecCount *) b; + return ea->count > eb->count ? -1 : 1; +} + +static void free_record(gpointer data) +{ + InsnExecCount *rec = (InsnExecCount *) data; + g_free(rec->insn); + g_free(rec); +} + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + g_autoptr(GString) report = g_string_new("Instruction Classes:\n"); + int i; + GList *counts; + InsnClassExecCount *class = NULL; + + for (i = 0; i < class_table_sz; i++) { + class = &class_table[i]; + switch (class->what) { + case COUNT_CLASS: + if (class->count || verbose) { + g_string_append_printf(report, "Class: %-24s\t(%ld hits)\n", + class->class, + class->count); + } + break; + case COUNT_INDIVIDUAL: + g_string_append_printf(report, "Class: %-24s\tcounted individually\n", + class->class); + break; + case COUNT_NONE: + g_string_append_printf(report, "Class: %-24s\tnot counted\n", + class->class); + break; + default: + break; + } + } + + counts = g_hash_table_get_values(insns); + if (counts && g_list_next(counts)) { + g_string_append_printf(report, "Individual Instructions:\n"); + counts = g_list_sort(counts, cmp_exec_count); + + for (i = 0; i < limit && g_list_next(counts); + i++, counts = g_list_next(counts)) { + InsnExecCount *rec = (InsnExecCount *) counts->data; + g_string_append_printf(report, + "Instr: %-24s\t(%ld hits)\t(op=0x%08x/%s)\n", + rec->insn, + rec->count, + rec->opcode, + rec->class ? + rec->class->class : "un-categorised"); + } + g_list_free(counts); + } + + g_hash_table_destroy(insns); + + qemu_plugin_outs(report->str); +} + +static void plugin_init(void) +{ + insns = g_hash_table_new_full(NULL, g_direct_equal, NULL, &free_record); +} + +static void vcpu_insn_exec_before(unsigned int cpu_index, void *udata) +{ + uint64_t *count = (uint64_t *) udata; + (*count)++; +} + +static uint64_t *find_counter(struct qemu_plugin_insn *insn) +{ + int i; + uint64_t *cnt = NULL; + uint32_t opcode; + InsnClassExecCount *class = NULL; + + /* + * We only match the first 32 bits of the instruction which is + * fine for most RISCs but a bit limiting for CISC architectures. + * They would probably benefit from a more tailored plugin. + * However we can fall back to individual instruction counting. + */ + opcode = *((uint32_t *)qemu_plugin_insn_data(insn)); + + for (i = 0; !cnt && i < class_table_sz; i++) { + class = &class_table[i]; + uint32_t masked_bits = opcode & class->mask; + if (masked_bits == class->pattern) { + break; + } + } + + g_assert(class); + + switch (class->what) { + case COUNT_NONE: + return NULL; + case COUNT_CLASS: + return &class->count; + case COUNT_INDIVIDUAL: + { + InsnExecCount *icount; + + g_mutex_lock(&lock); + icount = (InsnExecCount *) g_hash_table_lookup(insns, + GUINT_TO_POINTER(opcode)); + + if (!icount) { + icount = g_new0(InsnExecCount, 1); + icount->opcode = opcode; + icount->insn = qemu_plugin_insn_disas(insn); + icount->class = class; + + g_hash_table_insert(insns, GUINT_TO_POINTER(opcode), + (gpointer) icount); + } + g_mutex_unlock(&lock); + + return &icount->count; + } + default: + g_assert_not_reached(); + } + + return NULL; +} + +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + size_t n = qemu_plugin_tb_n_insns(tb); + size_t i; + + for (i = 0; i < n; i++) { + uint64_t *cnt; + struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); + cnt = find_counter(insn); + + if (cnt) { + if (do_inline) { + qemu_plugin_register_vcpu_insn_exec_inline( + insn, QEMU_PLUGIN_INLINE_ADD_U64, cnt, 1); + } else { + qemu_plugin_register_vcpu_insn_exec_cb( + insn, vcpu_insn_exec_before, QEMU_PLUGIN_CB_NO_REGS, cnt); + } + } + } +} + +QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, + const qemu_info_t *info, + int argc, char **argv) +{ + int i; + + /* Select a class table appropriate to the guest architecture */ + for (i = 0; i < ARRAY_SIZE(class_tables); i++) { + ClassSelector *entry = &class_tables[i]; + if (!entry->qemu_target || + strcmp(entry->qemu_target, info->target_name) == 0) { + class_table = entry->table; + class_table_sz = entry->table_sz; + break; + } + } + + for (i = 0; i < argc; i++) { + char *p = argv[i]; + g_autofree char **tokens = g_strsplit(p, "=", -1); + if (g_strcmp0(tokens[0], "inline") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_inline)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", p); + return -1; + } + } else if (g_strcmp0(tokens[0], "verbose") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &verbose)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", p); + return -1; + } + } else if (g_strcmp0(tokens[0], "count") == 0) { + char *value = tokens[1]; + int j; + CountType type = COUNT_INDIVIDUAL; + if (*value == '!') { + type = COUNT_NONE; + value++; + } + for (j = 0; j < class_table_sz; j++) { + if (strcmp(value, class_table[j].opt) == 0) { + class_table[j].what = type; + break; + } + } + } else { + fprintf(stderr, "option parsing failed: %s\n", p); + return -1; + } + } + + plugin_init(); + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + return 0; +} diff --git a/contrib/plugins/hwprofile.c b/contrib/plugins/hwprofile.c new file mode 100644 index 000000000..691d4edb0 --- /dev/null +++ b/contrib/plugins/hwprofile.c @@ -0,0 +1,320 @@ +/* + * Copyright (C) 2020, Alex Bennée <alex.bennee@linaro.org> + * + * HW Profile - breakdown access patterns for IO to devices + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ + +#include <inttypes.h> +#include <assert.h> +#include <stdlib.h> +#include <inttypes.h> +#include <string.h> +#include <unistd.h> +#include <stdio.h> +#include <glib.h> + +#include <qemu-plugin.h> + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) + +typedef struct { + uint64_t cpu_read; + uint64_t cpu_write; + uint64_t reads; + uint64_t writes; +} IOCounts; + +typedef struct { + uint64_t off_or_pc; + IOCounts counts; +} IOLocationCounts; + +typedef struct { + const char *name; + uint64_t base; + IOCounts totals; + GHashTable *detail; +} DeviceCounts; + +static GMutex lock; +static GHashTable *devices; + +/* track the access pattern to a piece of HW */ +static bool pattern; +/* track the source address of access to HW */ +static bool source; +/* track only matched regions of HW */ +static bool check_match; +static gchar **matches; + +static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; + +static inline bool track_reads(void) +{ + return rw == QEMU_PLUGIN_MEM_RW || rw == QEMU_PLUGIN_MEM_R; +} + +static inline bool track_writes(void) +{ + return rw == QEMU_PLUGIN_MEM_RW || rw == QEMU_PLUGIN_MEM_W; +} + +static void plugin_init(void) +{ + devices = g_hash_table_new(NULL, NULL); +} + +static gint sort_cmp(gconstpointer a, gconstpointer b) +{ + DeviceCounts *ea = (DeviceCounts *) a; + DeviceCounts *eb = (DeviceCounts *) b; + return ea->totals.reads + ea->totals.writes > + eb->totals.reads + eb->totals.writes ? -1 : 1; +} + +static gint sort_loc(gconstpointer a, gconstpointer b) +{ + IOLocationCounts *ea = (IOLocationCounts *) a; + IOLocationCounts *eb = (IOLocationCounts *) b; + return ea->off_or_pc > eb->off_or_pc; +} + +static void fmt_iocount_record(GString *s, IOCounts *rec) +{ + if (track_reads()) { + g_string_append_printf(s, ", %"PRIx64", %"PRId64, + rec->cpu_read, rec->reads); + } + if (track_writes()) { + g_string_append_printf(s, ", %"PRIx64", %"PRId64, + rec->cpu_write, rec->writes); + } +} + +static void fmt_dev_record(GString *s, DeviceCounts *rec) +{ + g_string_append_printf(s, "%s, 0x%"PRIx64, + rec->name, rec->base); + fmt_iocount_record(s, &rec->totals); + g_string_append_c(s, '\n'); +} + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + g_autoptr(GString) report = g_string_new(""); + GList *counts; + + if (!(pattern || source)) { + g_string_printf(report, "Device, Address"); + if (track_reads()) { + g_string_append_printf(report, ", RCPUs, Reads"); + } + if (track_writes()) { + g_string_append_printf(report, ", WCPUs, Writes"); + } + g_string_append_c(report, '\n'); + } + + counts = g_hash_table_get_values(devices); + if (counts && g_list_next(counts)) { + GList *it; + + it = g_list_sort(counts, sort_cmp); + + while (it) { + DeviceCounts *rec = (DeviceCounts *) it->data; + if (rec->detail) { + GList *accesses = g_hash_table_get_values(rec->detail); + GList *io_it = g_list_sort(accesses, sort_loc); + const char *prefix = pattern ? "off" : "pc"; + g_string_append_printf(report, "%s @ 0x%"PRIx64"\n", + rec->name, rec->base); + while (io_it) { + IOLocationCounts *loc = (IOLocationCounts *) io_it->data; + g_string_append_printf(report, " %s:%08"PRIx64, + prefix, loc->off_or_pc); + fmt_iocount_record(report, &loc->counts); + g_string_append_c(report, '\n'); + io_it = io_it->next; + } + } else { + fmt_dev_record(report, rec); + } + it = it->next; + }; + g_list_free(it); + } + + qemu_plugin_outs(report->str); +} + +static DeviceCounts *new_count(const char *name, uint64_t base) +{ + DeviceCounts *count = g_new0(DeviceCounts, 1); + count->name = name; + count->base = base; + if (pattern || source) { + count->detail = g_hash_table_new(NULL, NULL); + } + g_hash_table_insert(devices, (gpointer) name, count); + return count; +} + +static IOLocationCounts *new_location(GHashTable *table, uint64_t off_or_pc) +{ + IOLocationCounts *loc = g_new0(IOLocationCounts, 1); + loc->off_or_pc = off_or_pc; + g_hash_table_insert(table, (gpointer) off_or_pc, loc); + return loc; +} + +static void hwprofile_match_hit(DeviceCounts *rec, uint64_t off) +{ + g_autoptr(GString) report = g_string_new("hwprofile: match @ offset"); + g_string_append_printf(report, "%"PRIx64", previous hits\n", off); + fmt_dev_record(report, rec); + qemu_plugin_outs(report->str); +} + +static void inc_count(IOCounts *count, bool is_write, unsigned int cpu_index) +{ + if (is_write) { + count->writes++; + count->cpu_write |= (1 << cpu_index); + } else { + count->reads++; + count->cpu_read |= (1 << cpu_index); + } +} + +static void vcpu_haddr(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo, + uint64_t vaddr, void *udata) +{ + struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(meminfo, vaddr); + + if (!hwaddr || !qemu_plugin_hwaddr_is_io(hwaddr)) { + return; + } else { + const char *name = qemu_plugin_hwaddr_device_name(hwaddr); + uint64_t off = qemu_plugin_hwaddr_phys_addr(hwaddr); + bool is_write = qemu_plugin_mem_is_store(meminfo); + DeviceCounts *counts; + + g_mutex_lock(&lock); + counts = (DeviceCounts *) g_hash_table_lookup(devices, name); + + if (!counts) { + uint64_t base = vaddr - off; + counts = new_count(name, base); + } + + if (check_match) { + if (g_strv_contains((const char * const *)matches, counts->name)) { + hwprofile_match_hit(counts, off); + inc_count(&counts->totals, is_write, cpu_index); + } + } else { + inc_count(&counts->totals, is_write, cpu_index); + } + + /* either track offsets or source of access */ + if (source) { + off = (uint64_t) udata; + } + + if (pattern || source) { + IOLocationCounts *io_count = g_hash_table_lookup(counts->detail, + (gpointer) off); + if (!io_count) { + io_count = new_location(counts->detail, off); + } + inc_count(&io_count->counts, is_write, cpu_index); + } + + g_mutex_unlock(&lock); + } +} + +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + size_t n = qemu_plugin_tb_n_insns(tb); + size_t i; + + for (i = 0; i < n; i++) { + struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); + gpointer udata = (gpointer) (source ? qemu_plugin_insn_vaddr(insn) : 0); + qemu_plugin_register_vcpu_mem_cb(insn, vcpu_haddr, + QEMU_PLUGIN_CB_NO_REGS, + rw, udata); + } +} + +QEMU_PLUGIN_EXPORT +int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info, + int argc, char **argv) +{ + int i; + g_autoptr(GString) matches_raw = g_string_new(""); + + for (i = 0; i < argc; i++) { + char *opt = argv[i]; + g_autofree char **tokens = g_strsplit(opt, "=", 2); + + if (g_strcmp0(tokens[0], "track") == 0) { + if (g_strcmp0(tokens[1], "read") == 0) { + rw = QEMU_PLUGIN_MEM_R; + } else if (g_strcmp0(tokens[1], "write") == 0) { + rw = QEMU_PLUGIN_MEM_W; + } else { + fprintf(stderr, "invalid value for track: %s\n", tokens[1]); + return -1; + } + } else if (g_strcmp0(tokens[0], "pattern") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &pattern)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", opt); + return -1; + } + } else if (g_strcmp0(tokens[0], "source") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &source)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", opt); + return -1; + } + } else if (g_strcmp0(tokens[0], "match") == 0) { + check_match = true; + g_string_append_printf(matches_raw, "%s,", tokens[1]); + } else { + fprintf(stderr, "option parsing failed: %s\n", opt); + return -1; + } + } + if (check_match) { + matches = g_strsplit(matches_raw->str, ",", -1); + } + + if (source && pattern) { + fprintf(stderr, "can only currently track either source or pattern.\n"); + return -1; + } + + if (!info->system_emulation) { + fprintf(stderr, "hwprofile: plugin only useful for system emulation\n"); + return -1; + } + + /* Just warn about overflow */ + if (info->system.smp_vcpus > 64 || + info->system.max_vcpus > 64) { + fprintf(stderr, "hwprofile: can only track up to 64 CPUs\n"); + } + + plugin_init(); + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + return 0; +} diff --git a/contrib/plugins/lockstep.c b/contrib/plugins/lockstep.c new file mode 100644 index 000000000..a41ffe83f --- /dev/null +++ b/contrib/plugins/lockstep.c @@ -0,0 +1,356 @@ +/* + * Lockstep Execution Plugin + * + * Allows you to execute two QEMU instances in lockstep and report + * when their execution diverges. This is mainly useful for developers + * who want to see where a change to TCG code generation has + * introduced a subtle and hard to find bug. + * + * Caveats: + * - single-threaded linux-user apps only with non-deterministic syscalls + * - no MTTCG enabled system emulation (icount may help) + * + * While icount makes things more deterministic it doesn't mean a + * particular run may execute the exact same sequence of blocks. An + * asynchronous event (for example X11 graphics update) may cause a + * block to end early and a new partial block to start. This means + * serial only test cases are a better bet. -d nochain may also help. + * + * This code is not thread safe! + * + * Copyright (c) 2020 Linaro Ltd + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include <glib.h> +#include <inttypes.h> +#include <unistd.h> +#include <sys/socket.h> +#include <sys/un.h> +#include <stdio.h> +#include <errno.h> + +#include <qemu-plugin.h> + +QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; + +/* saved so we can uninstall later */ +static qemu_plugin_id_t our_id; + +static unsigned long bb_count; +static unsigned long insn_count; + +/* Information about a translated block */ +typedef struct { + uint64_t pc; + uint64_t insns; +} BlockInfo; + +/* Information about an execution state in the log */ +typedef struct { + BlockInfo *block; + unsigned long insn_count; + unsigned long block_count; +} ExecInfo; + +/* The execution state we compare */ +typedef struct { + uint64_t pc; + unsigned long insn_count; +} ExecState; + +typedef struct { + GSList *log_pos; + int distance; +} DivergeState; + +/* list of translated block info */ +static GSList *blocks; + +/* execution log and points of divergence */ +static GSList *log, *divergence_log; + +static int socket_fd; +static char *path_to_unlink; + +static bool verbose; + +static void plugin_cleanup(qemu_plugin_id_t id) +{ + /* Free our block data */ + g_slist_free_full(blocks, &g_free); + g_slist_free_full(log, &g_free); + g_slist_free(divergence_log); + + close(socket_fd); + if (path_to_unlink) { + unlink(path_to_unlink); + } +} + +static void plugin_exit(qemu_plugin_id_t id, void *p) +{ + g_autoptr(GString) out = g_string_new("No divergence :-)\n"); + g_string_append_printf(out, "Executed %ld/%d blocks\n", + bb_count, g_slist_length(log)); + g_string_append_printf(out, "Executed ~%ld instructions\n", insn_count); + qemu_plugin_outs(out->str); + + plugin_cleanup(id); +} + +static void report_divergance(ExecState *us, ExecState *them) +{ + DivergeState divrec = { log, 0 }; + g_autoptr(GString) out = g_string_new(""); + bool diverged = false; + + /* + * If we have diverged before did we get back on track or are we + * totally loosing it? + */ + if (divergence_log) { + DivergeState *last = (DivergeState *) divergence_log->data; + GSList *entry; + + for (entry = log; g_slist_next(entry); entry = g_slist_next(entry)) { + if (entry == last->log_pos) { + break; + } + divrec.distance++; + } + + /* + * If the last two records are so close it is likely we will + * not recover synchronisation with the other end. + */ + if (divrec.distance == 1 && last->distance == 1) { + diverged = true; + } + } + divergence_log = g_slist_prepend(divergence_log, + g_memdup(&divrec, sizeof(divrec))); + + /* Output short log entry of going out of sync... */ + if (verbose || divrec.distance == 1 || diverged) { + g_string_printf(out, "@ 0x%016lx vs 0x%016lx (%d/%d since last)\n", + us->pc, them->pc, g_slist_length(divergence_log), + divrec.distance); + qemu_plugin_outs(out->str); + } + + if (diverged) { + int i; + GSList *entry; + + g_string_printf(out, "Δ insn_count @ 0x%016lx (%ld) vs 0x%016lx (%ld)\n", + us->pc, us->insn_count, them->pc, them->insn_count); + + for (entry = log, i = 0; + g_slist_next(entry) && i < 5; + entry = g_slist_next(entry), i++) { + ExecInfo *prev = (ExecInfo *) entry->data; + g_string_append_printf(out, + " previously @ 0x%016lx/%ld (%ld insns)\n", + prev->block->pc, prev->block->insns, + prev->insn_count); + } + qemu_plugin_outs(out->str); + qemu_plugin_outs("too much divergence... giving up."); + qemu_plugin_uninstall(our_id, plugin_cleanup); + } +} + +static void vcpu_tb_exec(unsigned int cpu_index, void *udata) +{ + BlockInfo *bi = (BlockInfo *) udata; + ExecState us, them; + ssize_t bytes; + ExecInfo *exec; + + us.pc = bi->pc; + us.insn_count = insn_count; + + /* + * Write our current position to the other end. If we fail the + * other end has probably died and we should shut down gracefully. + */ + bytes = write(socket_fd, &us, sizeof(ExecState)); + if (bytes < sizeof(ExecState)) { + qemu_plugin_outs(bytes < 0 ? + "problem writing to socket" : + "wrote less than expected to socket"); + qemu_plugin_uninstall(our_id, plugin_cleanup); + return; + } + + /* + * Now read where our peer has reached. Again a failure probably + * indicates the other end died and we should close down cleanly. + */ + bytes = read(socket_fd, &them, sizeof(ExecState)); + if (bytes < sizeof(ExecState)) { + qemu_plugin_outs(bytes < 0 ? + "problem reading from socket" : + "read less than expected"); + qemu_plugin_uninstall(our_id, plugin_cleanup); + return; + } + + /* + * Compare and report if we have diverged. + */ + if (us.pc != them.pc) { + report_divergance(&us, &them); + } + + /* + * Assume this block will execute fully and record it + * in the execution log. + */ + insn_count += bi->insns; + bb_count++; + exec = g_new0(ExecInfo, 1); + exec->block = bi; + exec->insn_count = insn_count; + exec->block_count = bb_count; + log = g_slist_prepend(log, exec); +} + +static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) +{ + BlockInfo *bi = g_new0(BlockInfo, 1); + bi->pc = qemu_plugin_tb_vaddr(tb); + bi->insns = qemu_plugin_tb_n_insns(tb); + + /* save a reference so we can free later */ + blocks = g_slist_prepend(blocks, bi); + qemu_plugin_register_vcpu_tb_exec_cb(tb, vcpu_tb_exec, + QEMU_PLUGIN_CB_NO_REGS, (void *)bi); +} + + +/* + * Instead of encoding master/slave status into what is essentially + * two peers we shall just take the simple approach of checking for + * the existence of the pipe and assuming if it's not there we are the + * first process. + */ +static bool setup_socket(const char *path) +{ + struct sockaddr_un sockaddr; + int fd; + + fd = socket(AF_UNIX, SOCK_STREAM, 0); + if (fd < 0) { + perror("create socket"); + return false; + } + + sockaddr.sun_family = AF_UNIX; + g_strlcpy(sockaddr.sun_path, path, sizeof(sockaddr.sun_path) - 1); + if (bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) < 0) { + perror("bind socket"); + close(fd); + return false; + } + + /* remember to clean-up */ + path_to_unlink = g_strdup(path); + + if (listen(fd, 1) < 0) { + perror("listen socket"); + close(fd); + return false; + } + + socket_fd = accept(fd, NULL, NULL); + if (socket_fd < 0 && errno != EINTR) { + perror("accept socket"); + close(fd); + return false; + } + + qemu_plugin_outs("setup_socket::ready\n"); + + close(fd); + return true; +} + +static bool connect_socket(const char *path) +{ + int fd; + struct sockaddr_un sockaddr; + + fd = socket(AF_UNIX, SOCK_STREAM, 0); + if (fd < 0) { + perror("create socket"); + return false; + } + + sockaddr.sun_family = AF_UNIX; + g_strlcpy(sockaddr.sun_path, path, sizeof(sockaddr.sun_path) - 1); + + if (connect(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) < 0) { + perror("failed to connect"); + close(fd); + return false; + } + + qemu_plugin_outs("connect_socket::ready\n"); + + socket_fd = fd; + return true; +} + +static bool setup_unix_socket(const char *path) +{ + if (g_file_test(path, G_FILE_TEST_EXISTS)) { + return connect_socket(path); + } else { + return setup_socket(path); + } +} + + +QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, + const qemu_info_t *info, + int argc, char **argv) +{ + int i; + g_autofree char *sock_path = NULL; + + for (i = 0; i < argc; i++) { + char *p = argv[i]; + g_autofree char **tokens = g_strsplit(p, "=", 2); + + if (g_strcmp0(tokens[0], "verbose") == 0) { + if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &verbose)) { + fprintf(stderr, "boolean argument parsing failed: %s\n", p); + return -1; + } + } else if (g_strcmp0(tokens[0], "sockpath") == 0) { + sock_path = tokens[1]; + } else { + fprintf(stderr, "option parsing failed: %s\n", p); + return -1; + } + } + + if (sock_path == NULL) { + fprintf(stderr, "Need a socket path to talk to other instance.\n"); + return -1; + } + + if (!setup_unix_socket(sock_path)) { + fprintf(stderr, "Failed to setup socket for communications.\n"); + return -1; + } + + our_id = id; + + qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); + qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); + return 0; +} |