diff options
author | 2023-10-10 11:40:56 +0000 | |
---|---|---|
committer | 2023-10-10 11:40:56 +0000 | |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /docs/amd-memory-encryption.txt | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'docs/amd-memory-encryption.txt')
-rw-r--r-- | docs/amd-memory-encryption.txt | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/docs/amd-memory-encryption.txt b/docs/amd-memory-encryption.txt new file mode 100644 index 000000000..ffca382b5 --- /dev/null +++ b/docs/amd-memory-encryption.txt @@ -0,0 +1,148 @@ +Secure Encrypted Virtualization (SEV) is a feature found on AMD processors. + +SEV is an extension to the AMD-V architecture which supports running encrypted +virtual machines (VMs) under the control of KVM. Encrypted VMs have their pages +(code and data) secured such that only the guest itself has access to the +unencrypted version. Each encrypted VM is associated with a unique encryption +key; if its data is accessed by a different entity using a different key the +encrypted guests data will be incorrectly decrypted, leading to unintelligible +data. + +Key management for this feature is handled by a separate processor known as the +AMD secure processor (AMD-SP), which is present in AMD SOCs. Firmware running +inside the AMD-SP provides commands to support a common VM lifecycle. This +includes commands for launching, snapshotting, migrating and debugging the +encrypted guest. These SEV commands can be issued via KVM_MEMORY_ENCRYPT_OP +ioctls. + +Secure Encrypted Virtualization - Encrypted State (SEV-ES) builds on the SEV +support to additionally protect the guest register state. In order to allow a +hypervisor to perform functions on behalf of a guest, there is architectural +support for notifying a guest's operating system when certain types of VMEXITs +are about to occur. This allows the guest to selectively share information with +the hypervisor to satisfy the requested function. + +Launching +--------- +Boot images (such as bios) must be encrypted before a guest can be booted. The +MEMORY_ENCRYPT_OP ioctl provides commands to encrypt the images: LAUNCH_START, +LAUNCH_UPDATE_DATA, LAUNCH_MEASURE and LAUNCH_FINISH. These four commands +together generate a fresh memory encryption key for the VM, encrypt the boot +images and provide a measurement than can be used as an attestation of a +successful launch. + +For a SEV-ES guest, the LAUNCH_UPDATE_VMSA command is also used to encrypt the +guest register state, or VM save area (VMSA), for all of the guest vCPUs. + +LAUNCH_START is called first to create a cryptographic launch context within +the firmware. To create this context, guest owner must provide a guest policy, +its public Diffie-Hellman key (PDH) and session parameters. These inputs +should be treated as a binary blob and must be passed as-is to the SEV firmware. + +The guest policy is passed as plaintext. A hypervisor may choose to read it, +but should not modify it (any modification of the policy bits will result +in bad measurement). The guest policy is a 4-byte data structure containing +several flags that restricts what can be done on a running SEV guest. +See KM Spec section 3 and 6.2 for more details. + +The guest policy can be provided via the 'policy' property (see below) + +# ${QEMU} \ + sev-guest,id=sev0,policy=0x1...\ + +Setting the "SEV-ES required" policy bit (bit 2) will launch the guest as a +SEV-ES guest (see below) + +# ${QEMU} \ + sev-guest,id=sev0,policy=0x5...\ + +The guest owner provided DH certificate and session parameters will be used to +establish a cryptographic session with the guest owner to negotiate keys used +for the attestation. + +The DH certificate and session blob can be provided via the 'dh-cert-file' and +'session-file' properties (see below) + +# ${QEMU} \ + sev-guest,id=sev0,dh-cert-file=<file1>,session-file=<file2> + +LAUNCH_UPDATE_DATA encrypts the memory region using the cryptographic context +created via the LAUNCH_START command. If required, this command can be called +multiple times to encrypt different memory regions. The command also calculates +the measurement of the memory contents as it encrypts. + +LAUNCH_UPDATE_VMSA encrypts all the vCPU VMSAs for a SEV-ES guest using the +cryptographic context created via the LAUNCH_START command. The command also +calculates the measurement of the VMSAs as it encrypts them. + +LAUNCH_MEASURE can be used to retrieve the measurement of encrypted memory and, +for a SEV-ES guest, encrypted VMSAs. This measurement is a signature of the +memory contents and, for a SEV-ES guest, the VMSA contents, that can be sent +to the guest owner as an attestation that the memory and VMSAs were encrypted +correctly by the firmware. The guest owner may wait to provide the guest +confidential information until it can verify the attestation measurement. +Since the guest owner knows the initial contents of the guest at boot, the +attestation measurement can be verified by comparing it to what the guest owner +expects. + +LAUNCH_FINISH finalizes the guest launch and destroys the cryptographic +context. + +See SEV KM API Spec [1] 'Launching a guest' usage flow (Appendix A) for the +complete flow chart. + +To launch a SEV guest + +# ${QEMU} \ + -machine ...,confidential-guest-support=sev0 \ + -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=1 + +To launch a SEV-ES guest + +# ${QEMU} \ + -machine ...,confidential-guest-support=sev0 \ + -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=1,policy=0x5 + +An SEV-ES guest has some restrictions as compared to a SEV guest. Because the +guest register state is encrypted and cannot be updated by the VMM/hypervisor, +a SEV-ES guest: + - Does not support SMM - SMM support requires updating the guest register + state. + - Does not support reboot - a system reset requires updating the guest register + state. + - Requires in-kernel irqchip - the burden is placed on the hypervisor to + manage booting APs. + +Debugging +----------- +Since the memory contents of a SEV guest are encrypted, hypervisor access to +the guest memory will return cipher text. If the guest policy allows debugging, +then a hypervisor can use the DEBUG_DECRYPT and DEBUG_ENCRYPT commands to access +the guest memory region for debug purposes. This is not supported in QEMU yet. + +Snapshot/Restore +----------------- +TODO + +Live Migration +---------------- +TODO + +References +----------------- + +AMD Memory Encryption whitepaper: +https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf + +Secure Encrypted Virtualization Key Management: +[1] http://developer.amd.com/wordpress/media/2017/11/55766_SEV-KM-API_Specification.pdf + +KVM Forum slides: +http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf +https://www.linux-kvm.org/images/9/94/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf + +AMD64 Architecture Programmer's Manual: + http://support.amd.com/TechDocs/24593.pdf + SME is section 7.10 + SEV is section 15.34 + SEV-ES is section 15.35 |