aboutsummaryrefslogtreecommitdiffstats
path: root/include/exec/memory.h
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /include/exec/memory.h
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'include/exec/memory.h')
-rw-r--r--include/exec/memory.h2986
1 files changed, 2986 insertions, 0 deletions
diff --git a/include/exec/memory.h b/include/exec/memory.h
new file mode 100644
index 000000000..20f1b2737
--- /dev/null
+++ b/include/exec/memory.h
@@ -0,0 +1,2986 @@
+/*
+ * Physical memory management API
+ *
+ * Copyright 2011 Red Hat, Inc. and/or its affiliates
+ *
+ * Authors:
+ * Avi Kivity <avi@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#ifndef MEMORY_H
+#define MEMORY_H
+
+#ifndef CONFIG_USER_ONLY
+
+#include "exec/cpu-common.h"
+#include "exec/hwaddr.h"
+#include "exec/memattrs.h"
+#include "exec/memop.h"
+#include "exec/ramlist.h"
+#include "qemu/bswap.h"
+#include "qemu/queue.h"
+#include "qemu/int128.h"
+#include "qemu/notify.h"
+#include "qom/object.h"
+#include "qemu/rcu.h"
+
+#define RAM_ADDR_INVALID (~(ram_addr_t)0)
+
+#define MAX_PHYS_ADDR_SPACE_BITS 62
+#define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
+
+#define TYPE_MEMORY_REGION "memory-region"
+DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
+ TYPE_MEMORY_REGION)
+
+#define TYPE_IOMMU_MEMORY_REGION "iommu-memory-region"
+typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
+DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
+ IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
+
+#define TYPE_RAM_DISCARD_MANAGER "qemu:ram-discard-manager"
+typedef struct RamDiscardManagerClass RamDiscardManagerClass;
+typedef struct RamDiscardManager RamDiscardManager;
+DECLARE_OBJ_CHECKERS(RamDiscardManager, RamDiscardManagerClass,
+ RAM_DISCARD_MANAGER, TYPE_RAM_DISCARD_MANAGER);
+
+#ifdef CONFIG_FUZZ
+void fuzz_dma_read_cb(size_t addr,
+ size_t len,
+ MemoryRegion *mr);
+#else
+static inline void fuzz_dma_read_cb(size_t addr,
+ size_t len,
+ MemoryRegion *mr)
+{
+ /* Do Nothing */
+}
+#endif
+
+/* Possible bits for global_dirty_log_{start|stop} */
+
+/* Dirty tracking enabled because migration is running */
+#define GLOBAL_DIRTY_MIGRATION (1U << 0)
+
+/* Dirty tracking enabled because measuring dirty rate */
+#define GLOBAL_DIRTY_DIRTY_RATE (1U << 1)
+
+#define GLOBAL_DIRTY_MASK (0x3)
+
+extern unsigned int global_dirty_tracking;
+
+typedef struct MemoryRegionOps MemoryRegionOps;
+
+struct ReservedRegion {
+ hwaddr low;
+ hwaddr high;
+ unsigned type;
+};
+
+/**
+ * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
+ *
+ * @mr: the region, or %NULL if empty
+ * @fv: the flat view of the address space the region is mapped in
+ * @offset_within_region: the beginning of the section, relative to @mr's start
+ * @size: the size of the section; will not exceed @mr's boundaries
+ * @offset_within_address_space: the address of the first byte of the section
+ * relative to the region's address space
+ * @readonly: writes to this section are ignored
+ * @nonvolatile: this section is non-volatile
+ */
+struct MemoryRegionSection {
+ Int128 size;
+ MemoryRegion *mr;
+ FlatView *fv;
+ hwaddr offset_within_region;
+ hwaddr offset_within_address_space;
+ bool readonly;
+ bool nonvolatile;
+};
+
+typedef struct IOMMUTLBEntry IOMMUTLBEntry;
+
+/* See address_space_translate: bit 0 is read, bit 1 is write. */
+typedef enum {
+ IOMMU_NONE = 0,
+ IOMMU_RO = 1,
+ IOMMU_WO = 2,
+ IOMMU_RW = 3,
+} IOMMUAccessFlags;
+
+#define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
+
+struct IOMMUTLBEntry {
+ AddressSpace *target_as;
+ hwaddr iova;
+ hwaddr translated_addr;
+ hwaddr addr_mask; /* 0xfff = 4k translation */
+ IOMMUAccessFlags perm;
+};
+
+/*
+ * Bitmap for different IOMMUNotifier capabilities. Each notifier can
+ * register with one or multiple IOMMU Notifier capability bit(s).
+ */
+typedef enum {
+ IOMMU_NOTIFIER_NONE = 0,
+ /* Notify cache invalidations */
+ IOMMU_NOTIFIER_UNMAP = 0x1,
+ /* Notify entry changes (newly created entries) */
+ IOMMU_NOTIFIER_MAP = 0x2,
+ /* Notify changes on device IOTLB entries */
+ IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
+} IOMMUNotifierFlag;
+
+#define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
+#define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
+#define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
+ IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
+
+struct IOMMUNotifier;
+typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
+ IOMMUTLBEntry *data);
+
+struct IOMMUNotifier {
+ IOMMUNotify notify;
+ IOMMUNotifierFlag notifier_flags;
+ /* Notify for address space range start <= addr <= end */
+ hwaddr start;
+ hwaddr end;
+ int iommu_idx;
+ QLIST_ENTRY(IOMMUNotifier) node;
+};
+typedef struct IOMMUNotifier IOMMUNotifier;
+
+typedef struct IOMMUTLBEvent {
+ IOMMUNotifierFlag type;
+ IOMMUTLBEntry entry;
+} IOMMUTLBEvent;
+
+/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
+#define RAM_PREALLOC (1 << 0)
+
+/* RAM is mmap-ed with MAP_SHARED */
+#define RAM_SHARED (1 << 1)
+
+/* Only a portion of RAM (used_length) is actually used, and migrated.
+ * Resizing RAM while migrating can result in the migration being canceled.
+ */
+#define RAM_RESIZEABLE (1 << 2)
+
+/* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
+ * zero the page and wake waiting processes.
+ * (Set during postcopy)
+ */
+#define RAM_UF_ZEROPAGE (1 << 3)
+
+/* RAM can be migrated */
+#define RAM_MIGRATABLE (1 << 4)
+
+/* RAM is a persistent kind memory */
+#define RAM_PMEM (1 << 5)
+
+
+/*
+ * UFFDIO_WRITEPROTECT is used on this RAMBlock to
+ * support 'write-tracking' migration type.
+ * Implies ram_state->ram_wt_enabled.
+ */
+#define RAM_UF_WRITEPROTECT (1 << 6)
+
+/*
+ * RAM is mmap-ed with MAP_NORESERVE. When set, reserving swap space (or huge
+ * pages if applicable) is skipped: will bail out if not supported. When not
+ * set, the OS will do the reservation, if supported for the memory type.
+ */
+#define RAM_NORESERVE (1 << 7)
+
+/* RAM that isn't accessible through normal means. */
+#define RAM_PROTECTED (1 << 8)
+
+static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
+ IOMMUNotifierFlag flags,
+ hwaddr start, hwaddr end,
+ int iommu_idx)
+{
+ n->notify = fn;
+ n->notifier_flags = flags;
+ n->start = start;
+ n->end = end;
+ n->iommu_idx = iommu_idx;
+}
+
+/*
+ * Memory region callbacks
+ */
+struct MemoryRegionOps {
+ /* Read from the memory region. @addr is relative to @mr; @size is
+ * in bytes. */
+ uint64_t (*read)(void *opaque,
+ hwaddr addr,
+ unsigned size);
+ /* Write to the memory region. @addr is relative to @mr; @size is
+ * in bytes. */
+ void (*write)(void *opaque,
+ hwaddr addr,
+ uint64_t data,
+ unsigned size);
+
+ MemTxResult (*read_with_attrs)(void *opaque,
+ hwaddr addr,
+ uint64_t *data,
+ unsigned size,
+ MemTxAttrs attrs);
+ MemTxResult (*write_with_attrs)(void *opaque,
+ hwaddr addr,
+ uint64_t data,
+ unsigned size,
+ MemTxAttrs attrs);
+
+ enum device_endian endianness;
+ /* Guest-visible constraints: */
+ struct {
+ /* If nonzero, specify bounds on access sizes beyond which a machine
+ * check is thrown.
+ */
+ unsigned min_access_size;
+ unsigned max_access_size;
+ /* If true, unaligned accesses are supported. Otherwise unaligned
+ * accesses throw machine checks.
+ */
+ bool unaligned;
+ /*
+ * If present, and returns #false, the transaction is not accepted
+ * by the device (and results in machine dependent behaviour such
+ * as a machine check exception).
+ */
+ bool (*accepts)(void *opaque, hwaddr addr,
+ unsigned size, bool is_write,
+ MemTxAttrs attrs);
+ } valid;
+ /* Internal implementation constraints: */
+ struct {
+ /* If nonzero, specifies the minimum size implemented. Smaller sizes
+ * will be rounded upwards and a partial result will be returned.
+ */
+ unsigned min_access_size;
+ /* If nonzero, specifies the maximum size implemented. Larger sizes
+ * will be done as a series of accesses with smaller sizes.
+ */
+ unsigned max_access_size;
+ /* If true, unaligned accesses are supported. Otherwise all accesses
+ * are converted to (possibly multiple) naturally aligned accesses.
+ */
+ bool unaligned;
+ } impl;
+};
+
+typedef struct MemoryRegionClass {
+ /* private */
+ ObjectClass parent_class;
+} MemoryRegionClass;
+
+
+enum IOMMUMemoryRegionAttr {
+ IOMMU_ATTR_SPAPR_TCE_FD
+};
+
+/*
+ * IOMMUMemoryRegionClass:
+ *
+ * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
+ * and provide an implementation of at least the @translate method here
+ * to handle requests to the memory region. Other methods are optional.
+ *
+ * The IOMMU implementation must use the IOMMU notifier infrastructure
+ * to report whenever mappings are changed, by calling
+ * memory_region_notify_iommu() (or, if necessary, by calling
+ * memory_region_notify_iommu_one() for each registered notifier).
+ *
+ * Conceptually an IOMMU provides a mapping from input address
+ * to an output TLB entry. If the IOMMU is aware of memory transaction
+ * attributes and the output TLB entry depends on the transaction
+ * attributes, we represent this using IOMMU indexes. Each index
+ * selects a particular translation table that the IOMMU has:
+ *
+ * @attrs_to_index returns the IOMMU index for a set of transaction attributes
+ *
+ * @translate takes an input address and an IOMMU index
+ *
+ * and the mapping returned can only depend on the input address and the
+ * IOMMU index.
+ *
+ * Most IOMMUs don't care about the transaction attributes and support
+ * only a single IOMMU index. A more complex IOMMU might have one index
+ * for secure transactions and one for non-secure transactions.
+ */
+struct IOMMUMemoryRegionClass {
+ /* private: */
+ MemoryRegionClass parent_class;
+
+ /* public: */
+ /**
+ * @translate:
+ *
+ * Return a TLB entry that contains a given address.
+ *
+ * The IOMMUAccessFlags indicated via @flag are optional and may
+ * be specified as IOMMU_NONE to indicate that the caller needs
+ * the full translation information for both reads and writes. If
+ * the access flags are specified then the IOMMU implementation
+ * may use this as an optimization, to stop doing a page table
+ * walk as soon as it knows that the requested permissions are not
+ * allowed. If IOMMU_NONE is passed then the IOMMU must do the
+ * full page table walk and report the permissions in the returned
+ * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
+ * return different mappings for reads and writes.)
+ *
+ * The returned information remains valid while the caller is
+ * holding the big QEMU lock or is inside an RCU critical section;
+ * if the caller wishes to cache the mapping beyond that it must
+ * register an IOMMU notifier so it can invalidate its cached
+ * information when the IOMMU mapping changes.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ *
+ * @hwaddr: address to be translated within the memory region
+ *
+ * @flag: requested access permission
+ *
+ * @iommu_idx: IOMMU index for the translation
+ */
+ IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
+ IOMMUAccessFlags flag, int iommu_idx);
+ /**
+ * @get_min_page_size:
+ *
+ * Returns minimum supported page size in bytes.
+ *
+ * If this method is not provided then the minimum is assumed to
+ * be TARGET_PAGE_SIZE.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ */
+ uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
+ /**
+ * @notify_flag_changed:
+ *
+ * Called when IOMMU Notifier flag changes (ie when the set of
+ * events which IOMMU users are requesting notification for changes).
+ * Optional method -- need not be provided if the IOMMU does not
+ * need to know exactly which events must be notified.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ *
+ * @old_flags: events which previously needed to be notified
+ *
+ * @new_flags: events which now need to be notified
+ *
+ * Returns 0 on success, or a negative errno; in particular
+ * returns -EINVAL if the new flag bitmap is not supported by the
+ * IOMMU memory region. In case of failure, the error object
+ * must be created
+ */
+ int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
+ IOMMUNotifierFlag old_flags,
+ IOMMUNotifierFlag new_flags,
+ Error **errp);
+ /**
+ * @replay:
+ *
+ * Called to handle memory_region_iommu_replay().
+ *
+ * The default implementation of memory_region_iommu_replay() is to
+ * call the IOMMU translate method for every page in the address space
+ * with flag == IOMMU_NONE and then call the notifier if translate
+ * returns a valid mapping. If this method is implemented then it
+ * overrides the default behaviour, and must provide the full semantics
+ * of memory_region_iommu_replay(), by calling @notifier for every
+ * translation present in the IOMMU.
+ *
+ * Optional method -- an IOMMU only needs to provide this method
+ * if the default is inefficient or produces undesirable side effects.
+ *
+ * Note: this is not related to record-and-replay functionality.
+ */
+ void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
+
+ /**
+ * @get_attr:
+ *
+ * Get IOMMU misc attributes. This is an optional method that
+ * can be used to allow users of the IOMMU to get implementation-specific
+ * information. The IOMMU implements this method to handle calls
+ * by IOMMU users to memory_region_iommu_get_attr() by filling in
+ * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
+ * the IOMMU supports. If the method is unimplemented then
+ * memory_region_iommu_get_attr() will always return -EINVAL.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ *
+ * @attr: attribute being queried
+ *
+ * @data: memory to fill in with the attribute data
+ *
+ * Returns 0 on success, or a negative errno; in particular
+ * returns -EINVAL for unrecognized or unimplemented attribute types.
+ */
+ int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
+ void *data);
+
+ /**
+ * @attrs_to_index:
+ *
+ * Return the IOMMU index to use for a given set of transaction attributes.
+ *
+ * Optional method: if an IOMMU only supports a single IOMMU index then
+ * the default implementation of memory_region_iommu_attrs_to_index()
+ * will return 0.
+ *
+ * The indexes supported by an IOMMU must be contiguous, starting at 0.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ * @attrs: memory transaction attributes
+ */
+ int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
+
+ /**
+ * @num_indexes:
+ *
+ * Return the number of IOMMU indexes this IOMMU supports.
+ *
+ * Optional method: if this method is not provided, then
+ * memory_region_iommu_num_indexes() will return 1, indicating that
+ * only a single IOMMU index is supported.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ */
+ int (*num_indexes)(IOMMUMemoryRegion *iommu);
+
+ /**
+ * @iommu_set_page_size_mask:
+ *
+ * Restrict the page size mask that can be supported with a given IOMMU
+ * memory region. Used for example to propagate host physical IOMMU page
+ * size mask limitations to the virtual IOMMU.
+ *
+ * Optional method: if this method is not provided, then the default global
+ * page mask is used.
+ *
+ * @iommu: the IOMMUMemoryRegion
+ *
+ * @page_size_mask: a bitmask of supported page sizes. At least one bit,
+ * representing the smallest page size, must be set. Additional set bits
+ * represent supported block sizes. For example a host physical IOMMU that
+ * uses page tables with a page size of 4kB, and supports 2MB and 4GB
+ * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
+ * block sizes is specified with mask 0xfffffffffffff000.
+ *
+ * Returns 0 on success, or a negative error. In case of failure, the error
+ * object must be created.
+ */
+ int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
+ uint64_t page_size_mask,
+ Error **errp);
+};
+
+typedef struct RamDiscardListener RamDiscardListener;
+typedef int (*NotifyRamPopulate)(RamDiscardListener *rdl,
+ MemoryRegionSection *section);
+typedef void (*NotifyRamDiscard)(RamDiscardListener *rdl,
+ MemoryRegionSection *section);
+
+struct RamDiscardListener {
+ /*
+ * @notify_populate:
+ *
+ * Notification that previously discarded memory is about to get populated.
+ * Listeners are able to object. If any listener objects, already
+ * successfully notified listeners are notified about a discard again.
+ *
+ * @rdl: the #RamDiscardListener getting notified
+ * @section: the #MemoryRegionSection to get populated. The section
+ * is aligned within the memory region to the minimum granularity
+ * unless it would exceed the registered section.
+ *
+ * Returns 0 on success. If the notification is rejected by the listener,
+ * an error is returned.
+ */
+ NotifyRamPopulate notify_populate;
+
+ /*
+ * @notify_discard:
+ *
+ * Notification that previously populated memory was discarded successfully
+ * and listeners should drop all references to such memory and prevent
+ * new population (e.g., unmap).
+ *
+ * @rdl: the #RamDiscardListener getting notified
+ * @section: the #MemoryRegionSection to get populated. The section
+ * is aligned within the memory region to the minimum granularity
+ * unless it would exceed the registered section.
+ */
+ NotifyRamDiscard notify_discard;
+
+ /*
+ * @double_discard_supported:
+ *
+ * The listener suppors getting @notify_discard notifications that span
+ * already discarded parts.
+ */
+ bool double_discard_supported;
+
+ MemoryRegionSection *section;
+ QLIST_ENTRY(RamDiscardListener) next;
+};
+
+static inline void ram_discard_listener_init(RamDiscardListener *rdl,
+ NotifyRamPopulate populate_fn,
+ NotifyRamDiscard discard_fn,
+ bool double_discard_supported)
+{
+ rdl->notify_populate = populate_fn;
+ rdl->notify_discard = discard_fn;
+ rdl->double_discard_supported = double_discard_supported;
+}
+
+typedef int (*ReplayRamPopulate)(MemoryRegionSection *section, void *opaque);
+typedef void (*ReplayRamDiscard)(MemoryRegionSection *section, void *opaque);
+
+/*
+ * RamDiscardManagerClass:
+ *
+ * A #RamDiscardManager coordinates which parts of specific RAM #MemoryRegion
+ * regions are currently populated to be used/accessed by the VM, notifying
+ * after parts were discarded (freeing up memory) and before parts will be
+ * populated (consuming memory), to be used/acessed by the VM.
+ *
+ * A #RamDiscardManager can only be set for a RAM #MemoryRegion while the
+ * #MemoryRegion isn't mapped yet; it cannot change while the #MemoryRegion is
+ * mapped.
+ *
+ * The #RamDiscardManager is intended to be used by technologies that are
+ * incompatible with discarding of RAM (e.g., VFIO, which may pin all
+ * memory inside a #MemoryRegion), and require proper coordination to only
+ * map the currently populated parts, to hinder parts that are expected to
+ * remain discarded from silently getting populated and consuming memory.
+ * Technologies that support discarding of RAM don't have to bother and can
+ * simply map the whole #MemoryRegion.
+ *
+ * An example #RamDiscardManager is virtio-mem, which logically (un)plugs
+ * memory within an assigned RAM #MemoryRegion, coordinated with the VM.
+ * Logically unplugging memory consists of discarding RAM. The VM agreed to not
+ * access unplugged (discarded) memory - especially via DMA. virtio-mem will
+ * properly coordinate with listeners before memory is plugged (populated),
+ * and after memory is unplugged (discarded).
+ *
+ * Listeners are called in multiples of the minimum granularity (unless it
+ * would exceed the registered range) and changes are aligned to the minimum
+ * granularity within the #MemoryRegion. Listeners have to prepare for memory
+ * becomming discarded in a different granularity than it was populated and the
+ * other way around.
+ */
+struct RamDiscardManagerClass {
+ /* private */
+ InterfaceClass parent_class;
+
+ /* public */
+
+ /**
+ * @get_min_granularity:
+ *
+ * Get the minimum granularity in which listeners will get notified
+ * about changes within the #MemoryRegion via the #RamDiscardManager.
+ *
+ * @rdm: the #RamDiscardManager
+ * @mr: the #MemoryRegion
+ *
+ * Returns the minimum granularity.
+ */
+ uint64_t (*get_min_granularity)(const RamDiscardManager *rdm,
+ const MemoryRegion *mr);
+
+ /**
+ * @is_populated:
+ *
+ * Check whether the given #MemoryRegionSection is completely populated
+ * (i.e., no parts are currently discarded) via the #RamDiscardManager.
+ * There are no alignment requirements.
+ *
+ * @rdm: the #RamDiscardManager
+ * @section: the #MemoryRegionSection
+ *
+ * Returns whether the given range is completely populated.
+ */
+ bool (*is_populated)(const RamDiscardManager *rdm,
+ const MemoryRegionSection *section);
+
+ /**
+ * @replay_populated:
+ *
+ * Call the #ReplayRamPopulate callback for all populated parts within the
+ * #MemoryRegionSection via the #RamDiscardManager.
+ *
+ * In case any call fails, no further calls are made.
+ *
+ * @rdm: the #RamDiscardManager
+ * @section: the #MemoryRegionSection
+ * @replay_fn: the #ReplayRamPopulate callback
+ * @opaque: pointer to forward to the callback
+ *
+ * Returns 0 on success, or a negative error if any notification failed.
+ */
+ int (*replay_populated)(const RamDiscardManager *rdm,
+ MemoryRegionSection *section,
+ ReplayRamPopulate replay_fn, void *opaque);
+
+ /**
+ * @replay_discarded:
+ *
+ * Call the #ReplayRamDiscard callback for all discarded parts within the
+ * #MemoryRegionSection via the #RamDiscardManager.
+ *
+ * @rdm: the #RamDiscardManager
+ * @section: the #MemoryRegionSection
+ * @replay_fn: the #ReplayRamDiscard callback
+ * @opaque: pointer to forward to the callback
+ */
+ void (*replay_discarded)(const RamDiscardManager *rdm,
+ MemoryRegionSection *section,
+ ReplayRamDiscard replay_fn, void *opaque);
+
+ /**
+ * @register_listener:
+ *
+ * Register a #RamDiscardListener for the given #MemoryRegionSection and
+ * immediately notify the #RamDiscardListener about all populated parts
+ * within the #MemoryRegionSection via the #RamDiscardManager.
+ *
+ * In case any notification fails, no further notifications are triggered
+ * and an error is logged.
+ *
+ * @rdm: the #RamDiscardManager
+ * @rdl: the #RamDiscardListener
+ * @section: the #MemoryRegionSection
+ */
+ void (*register_listener)(RamDiscardManager *rdm,
+ RamDiscardListener *rdl,
+ MemoryRegionSection *section);
+
+ /**
+ * @unregister_listener:
+ *
+ * Unregister a previously registered #RamDiscardListener via the
+ * #RamDiscardManager after notifying the #RamDiscardListener about all
+ * populated parts becoming unpopulated within the registered
+ * #MemoryRegionSection.
+ *
+ * @rdm: the #RamDiscardManager
+ * @rdl: the #RamDiscardListener
+ */
+ void (*unregister_listener)(RamDiscardManager *rdm,
+ RamDiscardListener *rdl);
+};
+
+uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
+ const MemoryRegion *mr);
+
+bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
+ const MemoryRegionSection *section);
+
+int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
+ MemoryRegionSection *section,
+ ReplayRamPopulate replay_fn,
+ void *opaque);
+
+void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
+ MemoryRegionSection *section,
+ ReplayRamDiscard replay_fn,
+ void *opaque);
+
+void ram_discard_manager_register_listener(RamDiscardManager *rdm,
+ RamDiscardListener *rdl,
+ MemoryRegionSection *section);
+
+void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
+ RamDiscardListener *rdl);
+
+typedef struct CoalescedMemoryRange CoalescedMemoryRange;
+typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
+
+/** MemoryRegion:
+ *
+ * A struct representing a memory region.
+ */
+struct MemoryRegion {
+ Object parent_obj;
+
+ /* private: */
+
+ /* The following fields should fit in a cache line */
+ bool romd_mode;
+ bool ram;
+ bool subpage;
+ bool readonly; /* For RAM regions */
+ bool nonvolatile;
+ bool rom_device;
+ bool flush_coalesced_mmio;
+ uint8_t dirty_log_mask;
+ bool is_iommu;
+ RAMBlock *ram_block;
+ Object *owner;
+
+ const MemoryRegionOps *ops;
+ void *opaque;
+ MemoryRegion *container;
+ Int128 size;
+ hwaddr addr;
+ void (*destructor)(MemoryRegion *mr);
+ uint64_t align;
+ bool terminates;
+ bool ram_device;
+ bool enabled;
+ bool warning_printed; /* For reservations */
+ uint8_t vga_logging_count;
+ MemoryRegion *alias;
+ hwaddr alias_offset;
+ int32_t priority;
+ QTAILQ_HEAD(, MemoryRegion) subregions;
+ QTAILQ_ENTRY(MemoryRegion) subregions_link;
+ QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
+ const char *name;
+ unsigned ioeventfd_nb;
+ MemoryRegionIoeventfd *ioeventfds;
+ RamDiscardManager *rdm; /* Only for RAM */
+};
+
+struct IOMMUMemoryRegion {
+ MemoryRegion parent_obj;
+
+ QLIST_HEAD(, IOMMUNotifier) iommu_notify;
+ IOMMUNotifierFlag iommu_notify_flags;
+};
+
+#define IOMMU_NOTIFIER_FOREACH(n, mr) \
+ QLIST_FOREACH((n), &(mr)->iommu_notify, node)
+
+/**
+ * struct MemoryListener: callbacks structure for updates to the physical memory map
+ *
+ * Allows a component to adjust to changes in the guest-visible memory map.
+ * Use with memory_listener_register() and memory_listener_unregister().
+ */
+struct MemoryListener {
+ /**
+ * @begin:
+ *
+ * Called at the beginning of an address space update transaction.
+ * Followed by calls to #MemoryListener.region_add(),
+ * #MemoryListener.region_del(), #MemoryListener.region_nop(),
+ * #MemoryListener.log_start() and #MemoryListener.log_stop() in
+ * increasing address order.
+ *
+ * @listener: The #MemoryListener.
+ */
+ void (*begin)(MemoryListener *listener);
+
+ /**
+ * @commit:
+ *
+ * Called at the end of an address space update transaction,
+ * after the last call to #MemoryListener.region_add(),
+ * #MemoryListener.region_del() or #MemoryListener.region_nop(),
+ * #MemoryListener.log_start() and #MemoryListener.log_stop().
+ *
+ * @listener: The #MemoryListener.
+ */
+ void (*commit)(MemoryListener *listener);
+
+ /**
+ * @region_add:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that is new in this address space
+ * space since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The new #MemoryRegionSection.
+ */
+ void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
+
+ /**
+ * @region_del:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that has disappeared in the address
+ * space since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The old #MemoryRegionSection.
+ */
+ void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
+
+ /**
+ * @region_nop:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that is in the same place in the address
+ * space as in the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The #MemoryRegionSection.
+ */
+ void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
+
+ /**
+ * @log_start:
+ *
+ * Called during an address space update transaction, after
+ * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
+ * #MemoryListener.region_nop(), if dirty memory logging clients have
+ * become active since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The #MemoryRegionSection.
+ * @old: A bitmap of dirty memory logging clients that were active in
+ * the previous transaction.
+ * @new: A bitmap of dirty memory logging clients that are active in
+ * the current transaction.
+ */
+ void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
+ int old, int new);
+
+ /**
+ * @log_stop:
+ *
+ * Called during an address space update transaction, after
+ * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
+ * #MemoryListener.region_nop() and possibly after
+ * #MemoryListener.log_start(), if dirty memory logging clients have
+ * become inactive since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The #MemoryRegionSection.
+ * @old: A bitmap of dirty memory logging clients that were active in
+ * the previous transaction.
+ * @new: A bitmap of dirty memory logging clients that are active in
+ * the current transaction.
+ */
+ void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
+ int old, int new);
+
+ /**
+ * @log_sync:
+ *
+ * Called by memory_region_snapshot_and_clear_dirty() and
+ * memory_global_dirty_log_sync(), before accessing QEMU's "official"
+ * copy of the dirty memory bitmap for a #MemoryRegionSection.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The #MemoryRegionSection.
+ */
+ void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
+
+ /**
+ * @log_sync_global:
+ *
+ * This is the global version of @log_sync when the listener does
+ * not have a way to synchronize the log with finer granularity.
+ * When the listener registers with @log_sync_global defined, then
+ * its @log_sync must be NULL. Vice versa.
+ *
+ * @listener: The #MemoryListener.
+ */
+ void (*log_sync_global)(MemoryListener *listener);
+
+ /**
+ * @log_clear:
+ *
+ * Called before reading the dirty memory bitmap for a
+ * #MemoryRegionSection.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The #MemoryRegionSection.
+ */
+ void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
+
+ /**
+ * @log_global_start:
+ *
+ * Called by memory_global_dirty_log_start(), which
+ * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
+ * the address space. #MemoryListener.log_global_start() is also
+ * called when a #MemoryListener is added, if global dirty logging is
+ * active at that time.
+ *
+ * @listener: The #MemoryListener.
+ */
+ void (*log_global_start)(MemoryListener *listener);
+
+ /**
+ * @log_global_stop:
+ *
+ * Called by memory_global_dirty_log_stop(), which
+ * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
+ * the address space.
+ *
+ * @listener: The #MemoryListener.
+ */
+ void (*log_global_stop)(MemoryListener *listener);
+
+ /**
+ * @log_global_after_sync:
+ *
+ * Called after reading the dirty memory bitmap
+ * for any #MemoryRegionSection.
+ *
+ * @listener: The #MemoryListener.
+ */
+ void (*log_global_after_sync)(MemoryListener *listener);
+
+ /**
+ * @eventfd_add:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that has had a new ioeventfd
+ * registration since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The new #MemoryRegionSection.
+ * @match_data: The @match_data parameter for the new ioeventfd.
+ * @data: The @data parameter for the new ioeventfd.
+ * @e: The #EventNotifier parameter for the new ioeventfd.
+ */
+ void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
+ bool match_data, uint64_t data, EventNotifier *e);
+
+ /**
+ * @eventfd_del:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that has dropped an ioeventfd
+ * registration since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The new #MemoryRegionSection.
+ * @match_data: The @match_data parameter for the dropped ioeventfd.
+ * @data: The @data parameter for the dropped ioeventfd.
+ * @e: The #EventNotifier parameter for the dropped ioeventfd.
+ */
+ void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
+ bool match_data, uint64_t data, EventNotifier *e);
+
+ /**
+ * @coalesced_io_add:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that has had a new coalesced
+ * MMIO range registration since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The new #MemoryRegionSection.
+ * @addr: The starting address for the coalesced MMIO range.
+ * @len: The length of the coalesced MMIO range.
+ */
+ void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
+ hwaddr addr, hwaddr len);
+
+ /**
+ * @coalesced_io_del:
+ *
+ * Called during an address space update transaction,
+ * for a section of the address space that has dropped a coalesced
+ * MMIO range since the last transaction.
+ *
+ * @listener: The #MemoryListener.
+ * @section: The new #MemoryRegionSection.
+ * @addr: The starting address for the coalesced MMIO range.
+ * @len: The length of the coalesced MMIO range.
+ */
+ void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
+ hwaddr addr, hwaddr len);
+ /**
+ * @priority:
+ *
+ * Govern the order in which memory listeners are invoked. Lower priorities
+ * are invoked earlier for "add" or "start" callbacks, and later for "delete"
+ * or "stop" callbacks.
+ */
+ unsigned priority;
+
+ /**
+ * @name:
+ *
+ * Name of the listener. It can be used in contexts where we'd like to
+ * identify one memory listener with the rest.
+ */
+ const char *name;
+
+ /* private: */
+ AddressSpace *address_space;
+ QTAILQ_ENTRY(MemoryListener) link;
+ QTAILQ_ENTRY(MemoryListener) link_as;
+};
+
+/**
+ * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
+ */
+struct AddressSpace {
+ /* private: */
+ struct rcu_head rcu;
+ char *name;
+ MemoryRegion *root;
+
+ /* Accessed via RCU. */
+ struct FlatView *current_map;
+
+ int ioeventfd_nb;
+ struct MemoryRegionIoeventfd *ioeventfds;
+ QTAILQ_HEAD(, MemoryListener) listeners;
+ QTAILQ_ENTRY(AddressSpace) address_spaces_link;
+};
+
+typedef struct AddressSpaceDispatch AddressSpaceDispatch;
+typedef struct FlatRange FlatRange;
+
+/* Flattened global view of current active memory hierarchy. Kept in sorted
+ * order.
+ */
+struct FlatView {
+ struct rcu_head rcu;
+ unsigned ref;
+ FlatRange *ranges;
+ unsigned nr;
+ unsigned nr_allocated;
+ struct AddressSpaceDispatch *dispatch;
+ MemoryRegion *root;
+};
+
+static inline FlatView *address_space_to_flatview(AddressSpace *as)
+{
+ return qatomic_rcu_read(&as->current_map);
+}
+
+/**
+ * typedef flatview_cb: callback for flatview_for_each_range()
+ *
+ * @start: start address of the range within the FlatView
+ * @len: length of the range in bytes
+ * @mr: MemoryRegion covering this range
+ * @offset_in_region: offset of the first byte of the range within @mr
+ * @opaque: data pointer passed to flatview_for_each_range()
+ *
+ * Returns: true to stop the iteration, false to keep going.
+ */
+typedef bool (*flatview_cb)(Int128 start,
+ Int128 len,
+ const MemoryRegion *mr,
+ hwaddr offset_in_region,
+ void *opaque);
+
+/**
+ * flatview_for_each_range: Iterate through a FlatView
+ * @fv: the FlatView to iterate through
+ * @cb: function to call for each range
+ * @opaque: opaque data pointer to pass to @cb
+ *
+ * A FlatView is made up of a list of non-overlapping ranges, each of
+ * which is a slice of a MemoryRegion. This function iterates through
+ * each range in @fv, calling @cb. The callback function can terminate
+ * iteration early by returning 'true'.
+ */
+void flatview_for_each_range(FlatView *fv, flatview_cb cb, void *opaque);
+
+static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
+ MemoryRegionSection *b)
+{
+ return a->mr == b->mr &&
+ a->fv == b->fv &&
+ a->offset_within_region == b->offset_within_region &&
+ a->offset_within_address_space == b->offset_within_address_space &&
+ int128_eq(a->size, b->size) &&
+ a->readonly == b->readonly &&
+ a->nonvolatile == b->nonvolatile;
+}
+
+/**
+ * memory_region_section_new_copy: Copy a memory region section
+ *
+ * Allocate memory for a new copy, copy the memory region section, and
+ * properly take a reference on all relevant members.
+ *
+ * @s: the #MemoryRegionSection to copy
+ */
+MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s);
+
+/**
+ * memory_region_section_new_copy: Free a copied memory region section
+ *
+ * Free a copy of a memory section created via memory_region_section_new_copy().
+ * properly dropping references on all relevant members.
+ *
+ * @s: the #MemoryRegionSection to copy
+ */
+void memory_region_section_free_copy(MemoryRegionSection *s);
+
+/**
+ * memory_region_init: Initialize a memory region
+ *
+ * The region typically acts as a container for other memory regions. Use
+ * memory_region_add_subregion() to add subregions.
+ *
+ * @mr: the #MemoryRegion to be initialized
+ * @owner: the object that tracks the region's reference count
+ * @name: used for debugging; not visible to the user or ABI
+ * @size: size of the region; any subregions beyond this size will be clipped
+ */
+void memory_region_init(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size);
+
+/**
+ * memory_region_ref: Add 1 to a memory region's reference count
+ *
+ * Whenever memory regions are accessed outside the BQL, they need to be
+ * preserved against hot-unplug. MemoryRegions actually do not have their
+ * own reference count; they piggyback on a QOM object, their "owner".
+ * This function adds a reference to the owner.
+ *
+ * All MemoryRegions must have an owner if they can disappear, even if the
+ * device they belong to operates exclusively under the BQL. This is because
+ * the region could be returned at any time by memory_region_find, and this
+ * is usually under guest control.
+ *
+ * @mr: the #MemoryRegion
+ */
+void memory_region_ref(MemoryRegion *mr);
+
+/**
+ * memory_region_unref: Remove 1 to a memory region's reference count
+ *
+ * Whenever memory regions are accessed outside the BQL, they need to be
+ * preserved against hot-unplug. MemoryRegions actually do not have their
+ * own reference count; they piggyback on a QOM object, their "owner".
+ * This function removes a reference to the owner and possibly destroys it.
+ *
+ * @mr: the #MemoryRegion
+ */
+void memory_region_unref(MemoryRegion *mr);
+
+/**
+ * memory_region_init_io: Initialize an I/O memory region.
+ *
+ * Accesses into the region will cause the callbacks in @ops to be called.
+ * if @size is nonzero, subregions will be clipped to @size.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @ops: a structure containing read and write callbacks to be used when
+ * I/O is performed on the region.
+ * @opaque: passed to the read and write callbacks of the @ops structure.
+ * @name: used for debugging; not visible to the user or ABI
+ * @size: size of the region.
+ */
+void memory_region_init_io(MemoryRegion *mr,
+ Object *owner,
+ const MemoryRegionOps *ops,
+ void *opaque,
+ const char *name,
+ uint64_t size);
+
+/**
+ * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
+ * into the region will modify memory
+ * directly.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @errp: pointer to Error*, to store an error if it happens.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ */
+void memory_region_init_ram_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp);
+
+/**
+ * memory_region_init_ram_flags_nomigrate: Initialize RAM memory region.
+ * Accesses into the region will
+ * modify memory directly.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_NORESERVE.
+ * @errp: pointer to Error*, to store an error if it happens.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ */
+void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ uint32_t ram_flags,
+ Error **errp);
+
+/**
+ * memory_region_init_resizeable_ram: Initialize memory region with resizeable
+ * RAM. Accesses into the region will
+ * modify memory directly. Only an initial
+ * portion of this RAM is actually used.
+ * Changing the size while migrating
+ * can result in the migration being
+ * canceled.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: used size of the region.
+ * @max_size: max size of the region.
+ * @resized: callback to notify owner about used size change.
+ * @errp: pointer to Error*, to store an error if it happens.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ */
+void memory_region_init_resizeable_ram(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ uint64_t max_size,
+ void (*resized)(const char*,
+ uint64_t length,
+ void *host),
+ Error **errp);
+#ifdef CONFIG_POSIX
+
+/**
+ * memory_region_init_ram_from_file: Initialize RAM memory region with a
+ * mmap-ed backend.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @align: alignment of the region base address; if 0, the default alignment
+ * (getpagesize()) will be used.
+ * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
+ * RAM_NORESERVE,
+ * @path: the path in which to allocate the RAM.
+ * @readonly: true to open @path for reading, false for read/write.
+ * @errp: pointer to Error*, to store an error if it happens.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ */
+void memory_region_init_ram_from_file(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ uint64_t align,
+ uint32_t ram_flags,
+ const char *path,
+ bool readonly,
+ Error **errp);
+
+/**
+ * memory_region_init_ram_from_fd: Initialize RAM memory region with a
+ * mmap-ed backend.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: the name of the region.
+ * @size: size of the region.
+ * @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
+ * RAM_NORESERVE, RAM_PROTECTED.
+ * @fd: the fd to mmap.
+ * @offset: offset within the file referenced by fd
+ * @errp: pointer to Error*, to store an error if it happens.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ */
+void memory_region_init_ram_from_fd(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ uint32_t ram_flags,
+ int fd,
+ ram_addr_t offset,
+ Error **errp);
+#endif
+
+/**
+ * memory_region_init_ram_ptr: Initialize RAM memory region from a
+ * user-provided pointer. Accesses into the
+ * region will modify memory directly.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @ptr: memory to be mapped; must contain at least @size bytes.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ */
+void memory_region_init_ram_ptr(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ void *ptr);
+
+/**
+ * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
+ * a user-provided pointer.
+ *
+ * A RAM device represents a mapping to a physical device, such as to a PCI
+ * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
+ * into the VM address space and access to the region will modify memory
+ * directly. However, the memory region should not be included in a memory
+ * dump (device may not be enabled/mapped at the time of the dump), and
+ * operations incompatible with manipulating MMIO should be avoided. Replaces
+ * skip_dump flag.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: the name of the region.
+ * @size: size of the region.
+ * @ptr: memory to be mapped; must contain at least @size bytes.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM memory region to be migrated; that is the responsibility of the caller.
+ * (For RAM device memory regions, migrating the contents rarely makes sense.)
+ */
+void memory_region_init_ram_device_ptr(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ void *ptr);
+
+/**
+ * memory_region_init_alias: Initialize a memory region that aliases all or a
+ * part of another memory region.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: used for debugging; not visible to the user or ABI
+ * @orig: the region to be referenced; @mr will be equivalent to
+ * @orig between @offset and @offset + @size - 1.
+ * @offset: start of the section in @orig to be referenced.
+ * @size: size of the region.
+ */
+void memory_region_init_alias(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ MemoryRegion *orig,
+ hwaddr offset,
+ uint64_t size);
+
+/**
+ * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
+ *
+ * This has the same effect as calling memory_region_init_ram_nomigrate()
+ * and then marking the resulting region read-only with
+ * memory_region_set_readonly().
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM side of the memory region to be migrated; that is the responsibility
+ * of the caller.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+void memory_region_init_rom_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp);
+
+/**
+ * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
+ * Writes are handled via callbacks.
+ *
+ * Note that this function does not do anything to cause the data in the
+ * RAM side of the memory region to be migrated; that is the responsibility
+ * of the caller.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @ops: callbacks for write access handling (must not be NULL).
+ * @opaque: passed to the read and write callbacks of the @ops structure.
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const MemoryRegionOps *ops,
+ void *opaque,
+ const char *name,
+ uint64_t size,
+ Error **errp);
+
+/**
+ * memory_region_init_iommu: Initialize a memory region of a custom type
+ * that translates addresses
+ *
+ * An IOMMU region translates addresses and forwards accesses to a target
+ * memory region.
+ *
+ * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
+ * @_iommu_mr should be a pointer to enough memory for an instance of
+ * that subclass, @instance_size is the size of that subclass, and
+ * @mrtypename is its name. This function will initialize @_iommu_mr as an
+ * instance of the subclass, and its methods will then be called to handle
+ * accesses to the memory region. See the documentation of
+ * #IOMMUMemoryRegionClass for further details.
+ *
+ * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
+ * @instance_size: the IOMMUMemoryRegion subclass instance size
+ * @mrtypename: the type name of the #IOMMUMemoryRegion
+ * @owner: the object that tracks the region's reference count
+ * @name: used for debugging; not visible to the user or ABI
+ * @size: size of the region.
+ */
+void memory_region_init_iommu(void *_iommu_mr,
+ size_t instance_size,
+ const char *mrtypename,
+ Object *owner,
+ const char *name,
+ uint64_t size);
+
+/**
+ * memory_region_init_ram - Initialize RAM memory region. Accesses into the
+ * region will modify memory directly.
+ *
+ * @mr: the #MemoryRegion to be initialized
+ * @owner: the object that tracks the region's reference count (must be
+ * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
+ * @name: name of the memory region
+ * @size: size of the region in bytes
+ * @errp: pointer to Error*, to store an error if it happens.
+ *
+ * This function allocates RAM for a board model or device, and
+ * arranges for it to be migrated (by calling vmstate_register_ram()
+ * if @owner is a DeviceState, or vmstate_register_ram_global() if
+ * @owner is NULL).
+ *
+ * TODO: Currently we restrict @owner to being either NULL (for
+ * global RAM regions with no owner) or devices, so that we can
+ * give the RAM block a unique name for migration purposes.
+ * We should lift this restriction and allow arbitrary Objects.
+ * If you pass a non-NULL non-device @owner then we will assert.
+ */
+void memory_region_init_ram(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp);
+
+/**
+ * memory_region_init_rom: Initialize a ROM memory region.
+ *
+ * This has the same effect as calling memory_region_init_ram()
+ * and then marking the resulting region read-only with
+ * memory_region_set_readonly(). This includes arranging for the
+ * contents to be migrated.
+ *
+ * TODO: Currently we restrict @owner to being either NULL (for
+ * global RAM regions with no owner) or devices, so that we can
+ * give the RAM block a unique name for migration purposes.
+ * We should lift this restriction and allow arbitrary Objects.
+ * If you pass a non-NULL non-device @owner then we will assert.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+void memory_region_init_rom(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp);
+
+/**
+ * memory_region_init_rom_device: Initialize a ROM memory region.
+ * Writes are handled via callbacks.
+ *
+ * This function initializes a memory region backed by RAM for reads
+ * and callbacks for writes, and arranges for the RAM backing to
+ * be migrated (by calling vmstate_register_ram()
+ * if @owner is a DeviceState, or vmstate_register_ram_global() if
+ * @owner is NULL).
+ *
+ * TODO: Currently we restrict @owner to being either NULL (for
+ * global RAM regions with no owner) or devices, so that we can
+ * give the RAM block a unique name for migration purposes.
+ * We should lift this restriction and allow arbitrary Objects.
+ * If you pass a non-NULL non-device @owner then we will assert.
+ *
+ * @mr: the #MemoryRegion to be initialized.
+ * @owner: the object that tracks the region's reference count
+ * @ops: callbacks for write access handling (must not be NULL).
+ * @opaque: passed to the read and write callbacks of the @ops structure.
+ * @name: Region name, becomes part of RAMBlock name used in migration stream
+ * must be unique within any device
+ * @size: size of the region.
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+void memory_region_init_rom_device(MemoryRegion *mr,
+ Object *owner,
+ const MemoryRegionOps *ops,
+ void *opaque,
+ const char *name,
+ uint64_t size,
+ Error **errp);
+
+
+/**
+ * memory_region_owner: get a memory region's owner.
+ *
+ * @mr: the memory region being queried.
+ */
+Object *memory_region_owner(MemoryRegion *mr);
+
+/**
+ * memory_region_size: get a memory region's size.
+ *
+ * @mr: the memory region being queried.
+ */
+uint64_t memory_region_size(MemoryRegion *mr);
+
+/**
+ * memory_region_is_ram: check whether a memory region is random access
+ *
+ * Returns %true if a memory region is random access.
+ *
+ * @mr: the memory region being queried
+ */
+static inline bool memory_region_is_ram(MemoryRegion *mr)
+{
+ return mr->ram;
+}
+
+/**
+ * memory_region_is_ram_device: check whether a memory region is a ram device
+ *
+ * Returns %true if a memory region is a device backed ram region
+ *
+ * @mr: the memory region being queried
+ */
+bool memory_region_is_ram_device(MemoryRegion *mr);
+
+/**
+ * memory_region_is_romd: check whether a memory region is in ROMD mode
+ *
+ * Returns %true if a memory region is a ROM device and currently set to allow
+ * direct reads.
+ *
+ * @mr: the memory region being queried
+ */
+static inline bool memory_region_is_romd(MemoryRegion *mr)
+{
+ return mr->rom_device && mr->romd_mode;
+}
+
+/**
+ * memory_region_is_protected: check whether a memory region is protected
+ *
+ * Returns %true if a memory region is protected RAM and cannot be accessed
+ * via standard mechanisms, e.g. DMA.
+ *
+ * @mr: the memory region being queried
+ */
+bool memory_region_is_protected(MemoryRegion *mr);
+
+/**
+ * memory_region_get_iommu: check whether a memory region is an iommu
+ *
+ * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
+ * otherwise NULL.
+ *
+ * @mr: the memory region being queried
+ */
+static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
+{
+ if (mr->alias) {
+ return memory_region_get_iommu(mr->alias);
+ }
+ if (mr->is_iommu) {
+ return (IOMMUMemoryRegion *) mr;
+ }
+ return NULL;
+}
+
+/**
+ * memory_region_get_iommu_class_nocheck: returns iommu memory region class
+ * if an iommu or NULL if not
+ *
+ * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
+ * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
+ *
+ * @iommu_mr: the memory region being queried
+ */
+static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
+ IOMMUMemoryRegion *iommu_mr)
+{
+ return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
+}
+
+#define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
+
+/**
+ * memory_region_iommu_get_min_page_size: get minimum supported page size
+ * for an iommu
+ *
+ * Returns minimum supported page size for an iommu.
+ *
+ * @iommu_mr: the memory region being queried
+ */
+uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
+
+/**
+ * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
+ *
+ * Note: for any IOMMU implementation, an in-place mapping change
+ * should be notified with an UNMAP followed by a MAP.
+ *
+ * @iommu_mr: the memory region that was changed
+ * @iommu_idx: the IOMMU index for the translation table which has changed
+ * @event: TLB event with the new entry in the IOMMU translation table.
+ * The entry replaces all old entries for the same virtual I/O address
+ * range.
+ */
+void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
+ int iommu_idx,
+ IOMMUTLBEvent event);
+
+/**
+ * memory_region_notify_iommu_one: notify a change in an IOMMU translation
+ * entry to a single notifier
+ *
+ * This works just like memory_region_notify_iommu(), but it only
+ * notifies a specific notifier, not all of them.
+ *
+ * @notifier: the notifier to be notified
+ * @event: TLB event with the new entry in the IOMMU translation table.
+ * The entry replaces all old entries for the same virtual I/O address
+ * range.
+ */
+void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
+ IOMMUTLBEvent *event);
+
+/**
+ * memory_region_register_iommu_notifier: register a notifier for changes to
+ * IOMMU translation entries.
+ *
+ * Returns 0 on success, or a negative errno otherwise. In particular,
+ * -EINVAL indicates that at least one of the attributes of the notifier
+ * is not supported (flag/range) by the IOMMU memory region. In case of error
+ * the error object must be created.
+ *
+ * @mr: the memory region to observe
+ * @n: the IOMMUNotifier to be added; the notify callback receives a
+ * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
+ * ceases to be valid on exit from the notifier.
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+int memory_region_register_iommu_notifier(MemoryRegion *mr,
+ IOMMUNotifier *n, Error **errp);
+
+/**
+ * memory_region_iommu_replay: replay existing IOMMU translations to
+ * a notifier with the minimum page granularity returned by
+ * mr->iommu_ops->get_page_size().
+ *
+ * Note: this is not related to record-and-replay functionality.
+ *
+ * @iommu_mr: the memory region to observe
+ * @n: the notifier to which to replay iommu mappings
+ */
+void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
+
+/**
+ * memory_region_unregister_iommu_notifier: unregister a notifier for
+ * changes to IOMMU translation entries.
+ *
+ * @mr: the memory region which was observed and for which notity_stopped()
+ * needs to be called
+ * @n: the notifier to be removed.
+ */
+void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
+ IOMMUNotifier *n);
+
+/**
+ * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
+ * defined on the IOMMU.
+ *
+ * Returns 0 on success, or a negative errno otherwise. In particular,
+ * -EINVAL indicates that the IOMMU does not support the requested
+ * attribute.
+ *
+ * @iommu_mr: the memory region
+ * @attr: the requested attribute
+ * @data: a pointer to the requested attribute data
+ */
+int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
+ enum IOMMUMemoryRegionAttr attr,
+ void *data);
+
+/**
+ * memory_region_iommu_attrs_to_index: return the IOMMU index to
+ * use for translations with the given memory transaction attributes.
+ *
+ * @iommu_mr: the memory region
+ * @attrs: the memory transaction attributes
+ */
+int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
+ MemTxAttrs attrs);
+
+/**
+ * memory_region_iommu_num_indexes: return the total number of IOMMU
+ * indexes that this IOMMU supports.
+ *
+ * @iommu_mr: the memory region
+ */
+int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
+
+/**
+ * memory_region_iommu_set_page_size_mask: set the supported page
+ * sizes for a given IOMMU memory region
+ *
+ * @iommu_mr: IOMMU memory region
+ * @page_size_mask: supported page size mask
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
+ uint64_t page_size_mask,
+ Error **errp);
+
+/**
+ * memory_region_name: get a memory region's name
+ *
+ * Returns the string that was used to initialize the memory region.
+ *
+ * @mr: the memory region being queried
+ */
+const char *memory_region_name(const MemoryRegion *mr);
+
+/**
+ * memory_region_is_logging: return whether a memory region is logging writes
+ *
+ * Returns %true if the memory region is logging writes for the given client
+ *
+ * @mr: the memory region being queried
+ * @client: the client being queried
+ */
+bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
+
+/**
+ * memory_region_get_dirty_log_mask: return the clients for which a
+ * memory region is logging writes.
+ *
+ * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
+ * are the bit indices.
+ *
+ * @mr: the memory region being queried
+ */
+uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
+
+/**
+ * memory_region_is_rom: check whether a memory region is ROM
+ *
+ * Returns %true if a memory region is read-only memory.
+ *
+ * @mr: the memory region being queried
+ */
+static inline bool memory_region_is_rom(MemoryRegion *mr)
+{
+ return mr->ram && mr->readonly;
+}
+
+/**
+ * memory_region_is_nonvolatile: check whether a memory region is non-volatile
+ *
+ * Returns %true is a memory region is non-volatile memory.
+ *
+ * @mr: the memory region being queried
+ */
+static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
+{
+ return mr->nonvolatile;
+}
+
+/**
+ * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
+ *
+ * Returns a file descriptor backing a file-based RAM memory region,
+ * or -1 if the region is not a file-based RAM memory region.
+ *
+ * @mr: the RAM or alias memory region being queried.
+ */
+int memory_region_get_fd(MemoryRegion *mr);
+
+/**
+ * memory_region_from_host: Convert a pointer into a RAM memory region
+ * and an offset within it.
+ *
+ * Given a host pointer inside a RAM memory region (created with
+ * memory_region_init_ram() or memory_region_init_ram_ptr()), return
+ * the MemoryRegion and the offset within it.
+ *
+ * Use with care; by the time this function returns, the returned pointer is
+ * not protected by RCU anymore. If the caller is not within an RCU critical
+ * section and does not hold the iothread lock, it must have other means of
+ * protecting the pointer, such as a reference to the region that includes
+ * the incoming ram_addr_t.
+ *
+ * @ptr: the host pointer to be converted
+ * @offset: the offset within memory region
+ */
+MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
+
+/**
+ * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
+ *
+ * Returns a host pointer to a RAM memory region (created with
+ * memory_region_init_ram() or memory_region_init_ram_ptr()).
+ *
+ * Use with care; by the time this function returns, the returned pointer is
+ * not protected by RCU anymore. If the caller is not within an RCU critical
+ * section and does not hold the iothread lock, it must have other means of
+ * protecting the pointer, such as a reference to the region that includes
+ * the incoming ram_addr_t.
+ *
+ * @mr: the memory region being queried.
+ */
+void *memory_region_get_ram_ptr(MemoryRegion *mr);
+
+/* memory_region_ram_resize: Resize a RAM region.
+ *
+ * Resizing RAM while migrating can result in the migration being canceled.
+ * Care has to be taken if the guest might have already detected the memory.
+ *
+ * @mr: a memory region created with @memory_region_init_resizeable_ram.
+ * @newsize: the new size the region
+ * @errp: pointer to Error*, to store an error if it happens.
+ */
+void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
+ Error **errp);
+
+/**
+ * memory_region_msync: Synchronize selected address range of
+ * a memory mapped region
+ *
+ * @mr: the memory region to be msync
+ * @addr: the initial address of the range to be sync
+ * @size: the size of the range to be sync
+ */
+void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
+
+/**
+ * memory_region_writeback: Trigger cache writeback for
+ * selected address range
+ *
+ * @mr: the memory region to be updated
+ * @addr: the initial address of the range to be written back
+ * @size: the size of the range to be written back
+ */
+void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
+
+/**
+ * memory_region_set_log: Turn dirty logging on or off for a region.
+ *
+ * Turns dirty logging on or off for a specified client (display, migration).
+ * Only meaningful for RAM regions.
+ *
+ * @mr: the memory region being updated.
+ * @log: whether dirty logging is to be enabled or disabled.
+ * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
+ */
+void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
+
+/**
+ * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
+ *
+ * Marks a range of bytes as dirty, after it has been dirtied outside
+ * guest code.
+ *
+ * @mr: the memory region being dirtied.
+ * @addr: the address (relative to the start of the region) being dirtied.
+ * @size: size of the range being dirtied.
+ */
+void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
+ hwaddr size);
+
+/**
+ * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
+ *
+ * This function is called when the caller wants to clear the remote
+ * dirty bitmap of a memory range within the memory region. This can
+ * be used by e.g. KVM to manually clear dirty log when
+ * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
+ * kernel.
+ *
+ * @mr: the memory region to clear the dirty log upon
+ * @start: start address offset within the memory region
+ * @len: length of the memory region to clear dirty bitmap
+ */
+void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
+ hwaddr len);
+
+/**
+ * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
+ * bitmap and clear it.
+ *
+ * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
+ * returns the snapshot. The snapshot can then be used to query dirty
+ * status, using memory_region_snapshot_get_dirty. Snapshotting allows
+ * querying the same page multiple times, which is especially useful for
+ * display updates where the scanlines often are not page aligned.
+ *
+ * The dirty bitmap region which gets copyed into the snapshot (and
+ * cleared afterwards) can be larger than requested. The boundaries
+ * are rounded up/down so complete bitmap longs (covering 64 pages on
+ * 64bit hosts) can be copied over into the bitmap snapshot. Which
+ * isn't a problem for display updates as the extra pages are outside
+ * the visible area, and in case the visible area changes a full
+ * display redraw is due anyway. Should other use cases for this
+ * function emerge we might have to revisit this implementation
+ * detail.
+ *
+ * Use g_free to release DirtyBitmapSnapshot.
+ *
+ * @mr: the memory region being queried.
+ * @addr: the address (relative to the start of the region) being queried.
+ * @size: the size of the range being queried.
+ * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
+ */
+DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
+ hwaddr addr,
+ hwaddr size,
+ unsigned client);
+
+/**
+ * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
+ * in the specified dirty bitmap snapshot.
+ *
+ * @mr: the memory region being queried.
+ * @snap: the dirty bitmap snapshot
+ * @addr: the address (relative to the start of the region) being queried.
+ * @size: the size of the range being queried.
+ */
+bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
+ DirtyBitmapSnapshot *snap,
+ hwaddr addr, hwaddr size);
+
+/**
+ * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
+ * client.
+ *
+ * Marks a range of pages as no longer dirty.
+ *
+ * @mr: the region being updated.
+ * @addr: the start of the subrange being cleaned.
+ * @size: the size of the subrange being cleaned.
+ * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
+ * %DIRTY_MEMORY_VGA.
+ */
+void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
+ hwaddr size, unsigned client);
+
+/**
+ * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
+ * TBs (for self-modifying code).
+ *
+ * The MemoryRegionOps->write() callback of a ROM device must use this function
+ * to mark byte ranges that have been modified internally, such as by directly
+ * accessing the memory returned by memory_region_get_ram_ptr().
+ *
+ * This function marks the range dirty and invalidates TBs so that TCG can
+ * detect self-modifying code.
+ *
+ * @mr: the region being flushed.
+ * @addr: the start, relative to the start of the region, of the range being
+ * flushed.
+ * @size: the size, in bytes, of the range being flushed.
+ */
+void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
+
+/**
+ * memory_region_set_readonly: Turn a memory region read-only (or read-write)
+ *
+ * Allows a memory region to be marked as read-only (turning it into a ROM).
+ * only useful on RAM regions.
+ *
+ * @mr: the region being updated.
+ * @readonly: whether rhe region is to be ROM or RAM.
+ */
+void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
+
+/**
+ * memory_region_set_nonvolatile: Turn a memory region non-volatile
+ *
+ * Allows a memory region to be marked as non-volatile.
+ * only useful on RAM regions.
+ *
+ * @mr: the region being updated.
+ * @nonvolatile: whether rhe region is to be non-volatile.
+ */
+void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
+
+/**
+ * memory_region_rom_device_set_romd: enable/disable ROMD mode
+ *
+ * Allows a ROM device (initialized with memory_region_init_rom_device() to
+ * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
+ * device is mapped to guest memory and satisfies read access directly.
+ * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
+ * Writes are always handled by the #MemoryRegion.write function.
+ *
+ * @mr: the memory region to be updated
+ * @romd_mode: %true to put the region into ROMD mode
+ */
+void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
+
+/**
+ * memory_region_set_coalescing: Enable memory coalescing for the region.
+ *
+ * Enabled writes to a region to be queued for later processing. MMIO ->write
+ * callbacks may be delayed until a non-coalesced MMIO is issued.
+ * Only useful for IO regions. Roughly similar to write-combining hardware.
+ *
+ * @mr: the memory region to be write coalesced
+ */
+void memory_region_set_coalescing(MemoryRegion *mr);
+
+/**
+ * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
+ * a region.
+ *
+ * Like memory_region_set_coalescing(), but works on a sub-range of a region.
+ * Multiple calls can be issued coalesced disjoint ranges.
+ *
+ * @mr: the memory region to be updated.
+ * @offset: the start of the range within the region to be coalesced.
+ * @size: the size of the subrange to be coalesced.
+ */
+void memory_region_add_coalescing(MemoryRegion *mr,
+ hwaddr offset,
+ uint64_t size);
+
+/**
+ * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
+ *
+ * Disables any coalescing caused by memory_region_set_coalescing() or
+ * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
+ * hardware.
+ *
+ * @mr: the memory region to be updated.
+ */
+void memory_region_clear_coalescing(MemoryRegion *mr);
+
+/**
+ * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
+ * accesses.
+ *
+ * Ensure that pending coalesced MMIO request are flushed before the memory
+ * region is accessed. This property is automatically enabled for all regions
+ * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
+ *
+ * @mr: the memory region to be updated.
+ */
+void memory_region_set_flush_coalesced(MemoryRegion *mr);
+
+/**
+ * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
+ * accesses.
+ *
+ * Clear the automatic coalesced MMIO flushing enabled via
+ * memory_region_set_flush_coalesced. Note that this service has no effect on
+ * memory regions that have MMIO coalescing enabled for themselves. For them,
+ * automatic flushing will stop once coalescing is disabled.
+ *
+ * @mr: the memory region to be updated.
+ */
+void memory_region_clear_flush_coalesced(MemoryRegion *mr);
+
+/**
+ * memory_region_add_eventfd: Request an eventfd to be triggered when a word
+ * is written to a location.
+ *
+ * Marks a word in an IO region (initialized with memory_region_init_io())
+ * as a trigger for an eventfd event. The I/O callback will not be called.
+ * The caller must be prepared to handle failure (that is, take the required
+ * action if the callback _is_ called).
+ *
+ * @mr: the memory region being updated.
+ * @addr: the address within @mr that is to be monitored
+ * @size: the size of the access to trigger the eventfd
+ * @match_data: whether to match against @data, instead of just @addr
+ * @data: the data to match against the guest write
+ * @e: event notifier to be triggered when @addr, @size, and @data all match.
+ **/
+void memory_region_add_eventfd(MemoryRegion *mr,
+ hwaddr addr,
+ unsigned size,
+ bool match_data,
+ uint64_t data,
+ EventNotifier *e);
+
+/**
+ * memory_region_del_eventfd: Cancel an eventfd.
+ *
+ * Cancels an eventfd trigger requested by a previous
+ * memory_region_add_eventfd() call.
+ *
+ * @mr: the memory region being updated.
+ * @addr: the address within @mr that is to be monitored
+ * @size: the size of the access to trigger the eventfd
+ * @match_data: whether to match against @data, instead of just @addr
+ * @data: the data to match against the guest write
+ * @e: event notifier to be triggered when @addr, @size, and @data all match.
+ */
+void memory_region_del_eventfd(MemoryRegion *mr,
+ hwaddr addr,
+ unsigned size,
+ bool match_data,
+ uint64_t data,
+ EventNotifier *e);
+
+/**
+ * memory_region_add_subregion: Add a subregion to a container.
+ *
+ * Adds a subregion at @offset. The subregion may not overlap with other
+ * subregions (except for those explicitly marked as overlapping). A region
+ * may only be added once as a subregion (unless removed with
+ * memory_region_del_subregion()); use memory_region_init_alias() if you
+ * want a region to be a subregion in multiple locations.
+ *
+ * @mr: the region to contain the new subregion; must be a container
+ * initialized with memory_region_init().
+ * @offset: the offset relative to @mr where @subregion is added.
+ * @subregion: the subregion to be added.
+ */
+void memory_region_add_subregion(MemoryRegion *mr,
+ hwaddr offset,
+ MemoryRegion *subregion);
+/**
+ * memory_region_add_subregion_overlap: Add a subregion to a container
+ * with overlap.
+ *
+ * Adds a subregion at @offset. The subregion may overlap with other
+ * subregions. Conflicts are resolved by having a higher @priority hide a
+ * lower @priority. Subregions without priority are taken as @priority 0.
+ * A region may only be added once as a subregion (unless removed with
+ * memory_region_del_subregion()); use memory_region_init_alias() if you
+ * want a region to be a subregion in multiple locations.
+ *
+ * @mr: the region to contain the new subregion; must be a container
+ * initialized with memory_region_init().
+ * @offset: the offset relative to @mr where @subregion is added.
+ * @subregion: the subregion to be added.
+ * @priority: used for resolving overlaps; highest priority wins.
+ */
+void memory_region_add_subregion_overlap(MemoryRegion *mr,
+ hwaddr offset,
+ MemoryRegion *subregion,
+ int priority);
+
+/**
+ * memory_region_get_ram_addr: Get the ram address associated with a memory
+ * region
+ *
+ * @mr: the region to be queried
+ */
+ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
+
+uint64_t memory_region_get_alignment(const MemoryRegion *mr);
+/**
+ * memory_region_del_subregion: Remove a subregion.
+ *
+ * Removes a subregion from its container.
+ *
+ * @mr: the container to be updated.
+ * @subregion: the region being removed; must be a current subregion of @mr.
+ */
+void memory_region_del_subregion(MemoryRegion *mr,
+ MemoryRegion *subregion);
+
+/*
+ * memory_region_set_enabled: dynamically enable or disable a region
+ *
+ * Enables or disables a memory region. A disabled memory region
+ * ignores all accesses to itself and its subregions. It does not
+ * obscure sibling subregions with lower priority - it simply behaves as
+ * if it was removed from the hierarchy.
+ *
+ * Regions default to being enabled.
+ *
+ * @mr: the region to be updated
+ * @enabled: whether to enable or disable the region
+ */
+void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
+
+/*
+ * memory_region_set_address: dynamically update the address of a region
+ *
+ * Dynamically updates the address of a region, relative to its container.
+ * May be used on regions are currently part of a memory hierarchy.
+ *
+ * @mr: the region to be updated
+ * @addr: new address, relative to container region
+ */
+void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
+
+/*
+ * memory_region_set_size: dynamically update the size of a region.
+ *
+ * Dynamically updates the size of a region.
+ *
+ * @mr: the region to be updated
+ * @size: used size of the region.
+ */
+void memory_region_set_size(MemoryRegion *mr, uint64_t size);
+
+/*
+ * memory_region_set_alias_offset: dynamically update a memory alias's offset
+ *
+ * Dynamically updates the offset into the target region that an alias points
+ * to, as if the fourth argument to memory_region_init_alias() has changed.
+ *
+ * @mr: the #MemoryRegion to be updated; should be an alias.
+ * @offset: the new offset into the target memory region
+ */
+void memory_region_set_alias_offset(MemoryRegion *mr,
+ hwaddr offset);
+
+/**
+ * memory_region_present: checks if an address relative to a @container
+ * translates into #MemoryRegion within @container
+ *
+ * Answer whether a #MemoryRegion within @container covers the address
+ * @addr.
+ *
+ * @container: a #MemoryRegion within which @addr is a relative address
+ * @addr: the area within @container to be searched
+ */
+bool memory_region_present(MemoryRegion *container, hwaddr addr);
+
+/**
+ * memory_region_is_mapped: returns true if #MemoryRegion is mapped
+ * into any address space.
+ *
+ * @mr: a #MemoryRegion which should be checked if it's mapped
+ */
+bool memory_region_is_mapped(MemoryRegion *mr);
+
+/**
+ * memory_region_get_ram_discard_manager: get the #RamDiscardManager for a
+ * #MemoryRegion
+ *
+ * The #RamDiscardManager cannot change while a memory region is mapped.
+ *
+ * @mr: the #MemoryRegion
+ */
+RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr);
+
+/**
+ * memory_region_has_ram_discard_manager: check whether a #MemoryRegion has a
+ * #RamDiscardManager assigned
+ *
+ * @mr: the #MemoryRegion
+ */
+static inline bool memory_region_has_ram_discard_manager(MemoryRegion *mr)
+{
+ return !!memory_region_get_ram_discard_manager(mr);
+}
+
+/**
+ * memory_region_set_ram_discard_manager: set the #RamDiscardManager for a
+ * #MemoryRegion
+ *
+ * This function must not be called for a mapped #MemoryRegion, a #MemoryRegion
+ * that does not cover RAM, or a #MemoryRegion that already has a
+ * #RamDiscardManager assigned.
+ *
+ * @mr: the #MemoryRegion
+ * @rdm: #RamDiscardManager to set
+ */
+void memory_region_set_ram_discard_manager(MemoryRegion *mr,
+ RamDiscardManager *rdm);
+
+/**
+ * memory_region_find: translate an address/size relative to a
+ * MemoryRegion into a #MemoryRegionSection.
+ *
+ * Locates the first #MemoryRegion within @mr that overlaps the range
+ * given by @addr and @size.
+ *
+ * Returns a #MemoryRegionSection that describes a contiguous overlap.
+ * It will have the following characteristics:
+ * - @size = 0 iff no overlap was found
+ * - @mr is non-%NULL iff an overlap was found
+ *
+ * Remember that in the return value the @offset_within_region is
+ * relative to the returned region (in the .@mr field), not to the
+ * @mr argument.
+ *
+ * Similarly, the .@offset_within_address_space is relative to the
+ * address space that contains both regions, the passed and the
+ * returned one. However, in the special case where the @mr argument
+ * has no container (and thus is the root of the address space), the
+ * following will hold:
+ * - @offset_within_address_space >= @addr
+ * - @offset_within_address_space + .@size <= @addr + @size
+ *
+ * @mr: a MemoryRegion within which @addr is a relative address
+ * @addr: start of the area within @as to be searched
+ * @size: size of the area to be searched
+ */
+MemoryRegionSection memory_region_find(MemoryRegion *mr,
+ hwaddr addr, uint64_t size);
+
+/**
+ * memory_global_dirty_log_sync: synchronize the dirty log for all memory
+ *
+ * Synchronizes the dirty page log for all address spaces.
+ */
+void memory_global_dirty_log_sync(void);
+
+/**
+ * memory_global_dirty_log_sync: synchronize the dirty log for all memory
+ *
+ * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
+ * This function must be called after the dirty log bitmap is cleared, and
+ * before dirty guest memory pages are read. If you are using
+ * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
+ * care of doing this.
+ */
+void memory_global_after_dirty_log_sync(void);
+
+/**
+ * memory_region_transaction_begin: Start a transaction.
+ *
+ * During a transaction, changes will be accumulated and made visible
+ * only when the transaction ends (is committed).
+ */
+void memory_region_transaction_begin(void);
+
+/**
+ * memory_region_transaction_commit: Commit a transaction and make changes
+ * visible to the guest.
+ */
+void memory_region_transaction_commit(void);
+
+/**
+ * memory_listener_register: register callbacks to be called when memory
+ * sections are mapped or unmapped into an address
+ * space
+ *
+ * @listener: an object containing the callbacks to be called
+ * @filter: if non-%NULL, only regions in this address space will be observed
+ */
+void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
+
+/**
+ * memory_listener_unregister: undo the effect of memory_listener_register()
+ *
+ * @listener: an object containing the callbacks to be removed
+ */
+void memory_listener_unregister(MemoryListener *listener);
+
+/**
+ * memory_global_dirty_log_start: begin dirty logging for all regions
+ *
+ * @flags: purpose of starting dirty log, migration or dirty rate
+ */
+void memory_global_dirty_log_start(unsigned int flags);
+
+/**
+ * memory_global_dirty_log_stop: end dirty logging for all regions
+ *
+ * @flags: purpose of stopping dirty log, migration or dirty rate
+ */
+void memory_global_dirty_log_stop(unsigned int flags);
+
+void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
+
+/**
+ * memory_region_dispatch_read: perform a read directly to the specified
+ * MemoryRegion.
+ *
+ * @mr: #MemoryRegion to access
+ * @addr: address within that region
+ * @pval: pointer to uint64_t which the data is written to
+ * @op: size, sign, and endianness of the memory operation
+ * @attrs: memory transaction attributes to use for the access
+ */
+MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *pval,
+ MemOp op,
+ MemTxAttrs attrs);
+/**
+ * memory_region_dispatch_write: perform a write directly to the specified
+ * MemoryRegion.
+ *
+ * @mr: #MemoryRegion to access
+ * @addr: address within that region
+ * @data: data to write
+ * @op: size, sign, and endianness of the memory operation
+ * @attrs: memory transaction attributes to use for the access
+ */
+MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t data,
+ MemOp op,
+ MemTxAttrs attrs);
+
+/**
+ * address_space_init: initializes an address space
+ *
+ * @as: an uninitialized #AddressSpace
+ * @root: a #MemoryRegion that routes addresses for the address space
+ * @name: an address space name. The name is only used for debugging
+ * output.
+ */
+void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
+
+/**
+ * address_space_destroy: destroy an address space
+ *
+ * Releases all resources associated with an address space. After an address space
+ * is destroyed, its root memory region (given by address_space_init()) may be destroyed
+ * as well.
+ *
+ * @as: address space to be destroyed
+ */
+void address_space_destroy(AddressSpace *as);
+
+/**
+ * address_space_remove_listeners: unregister all listeners of an address space
+ *
+ * Removes all callbacks previously registered with memory_listener_register()
+ * for @as.
+ *
+ * @as: an initialized #AddressSpace
+ */
+void address_space_remove_listeners(AddressSpace *as);
+
+/**
+ * address_space_rw: read from or write to an address space.
+ *
+ * Return a MemTxResult indicating whether the operation succeeded
+ * or failed (eg unassigned memory, device rejected the transaction,
+ * IOMMU fault).
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @attrs: memory transaction attributes
+ * @buf: buffer with the data transferred
+ * @len: the number of bytes to read or write
+ * @is_write: indicates the transfer direction
+ */
+MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs, void *buf,
+ hwaddr len, bool is_write);
+
+/**
+ * address_space_write: write to address space.
+ *
+ * Return a MemTxResult indicating whether the operation succeeded
+ * or failed (eg unassigned memory, device rejected the transaction,
+ * IOMMU fault).
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @attrs: memory transaction attributes
+ * @buf: buffer with the data transferred
+ * @len: the number of bytes to write
+ */
+MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs,
+ const void *buf, hwaddr len);
+
+/**
+ * address_space_write_rom: write to address space, including ROM.
+ *
+ * This function writes to the specified address space, but will
+ * write data to both ROM and RAM. This is used for non-guest
+ * writes like writes from the gdb debug stub or initial loading
+ * of ROM contents.
+ *
+ * Note that portions of the write which attempt to write data to
+ * a device will be silently ignored -- only real RAM and ROM will
+ * be written to.
+ *
+ * Return a MemTxResult indicating whether the operation succeeded
+ * or failed (eg unassigned memory, device rejected the transaction,
+ * IOMMU fault).
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @attrs: memory transaction attributes
+ * @buf: buffer with the data transferred
+ * @len: the number of bytes to write
+ */
+MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs,
+ const void *buf, hwaddr len);
+
+/* address_space_ld*: load from an address space
+ * address_space_st*: store to an address space
+ *
+ * These functions perform a load or store of the byte, word,
+ * longword or quad to the specified address within the AddressSpace.
+ * The _le suffixed functions treat the data as little endian;
+ * _be indicates big endian; no suffix indicates "same endianness
+ * as guest CPU".
+ *
+ * The "guest CPU endianness" accessors are deprecated for use outside
+ * target-* code; devices should be CPU-agnostic and use either the LE
+ * or the BE accessors.
+ *
+ * @as #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @val: data value, for stores
+ * @attrs: memory transaction attributes
+ * @result: location to write the success/failure of the transaction;
+ * if NULL, this information is discarded
+ */
+
+#define SUFFIX
+#define ARG1 as
+#define ARG1_DECL AddressSpace *as
+#include "exec/memory_ldst.h.inc"
+
+#define SUFFIX
+#define ARG1 as
+#define ARG1_DECL AddressSpace *as
+#include "exec/memory_ldst_phys.h.inc"
+
+struct MemoryRegionCache {
+ void *ptr;
+ hwaddr xlat;
+ hwaddr len;
+ FlatView *fv;
+ MemoryRegionSection mrs;
+ bool is_write;
+};
+
+#define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
+
+
+/* address_space_ld*_cached: load from a cached #MemoryRegion
+ * address_space_st*_cached: store into a cached #MemoryRegion
+ *
+ * These functions perform a load or store of the byte, word,
+ * longword or quad to the specified address. The address is
+ * a physical address in the AddressSpace, but it must lie within
+ * a #MemoryRegion that was mapped with address_space_cache_init.
+ *
+ * The _le suffixed functions treat the data as little endian;
+ * _be indicates big endian; no suffix indicates "same endianness
+ * as guest CPU".
+ *
+ * The "guest CPU endianness" accessors are deprecated for use outside
+ * target-* code; devices should be CPU-agnostic and use either the LE
+ * or the BE accessors.
+ *
+ * @cache: previously initialized #MemoryRegionCache to be accessed
+ * @addr: address within the address space
+ * @val: data value, for stores
+ * @attrs: memory transaction attributes
+ * @result: location to write the success/failure of the transaction;
+ * if NULL, this information is discarded
+ */
+
+#define SUFFIX _cached_slow
+#define ARG1 cache
+#define ARG1_DECL MemoryRegionCache *cache
+#include "exec/memory_ldst.h.inc"
+
+/* Inline fast path for direct RAM access. */
+static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
+ hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
+{
+ assert(addr < cache->len);
+ if (likely(cache->ptr)) {
+ return ldub_p(cache->ptr + addr);
+ } else {
+ return address_space_ldub_cached_slow(cache, addr, attrs, result);
+ }
+}
+
+static inline void address_space_stb_cached(MemoryRegionCache *cache,
+ hwaddr addr, uint8_t val, MemTxAttrs attrs, MemTxResult *result)
+{
+ assert(addr < cache->len);
+ if (likely(cache->ptr)) {
+ stb_p(cache->ptr + addr, val);
+ } else {
+ address_space_stb_cached_slow(cache, addr, val, attrs, result);
+ }
+}
+
+#define ENDIANNESS _le
+#include "exec/memory_ldst_cached.h.inc"
+
+#define ENDIANNESS _be
+#include "exec/memory_ldst_cached.h.inc"
+
+#define SUFFIX _cached
+#define ARG1 cache
+#define ARG1_DECL MemoryRegionCache *cache
+#include "exec/memory_ldst_phys.h.inc"
+
+/* address_space_cache_init: prepare for repeated access to a physical
+ * memory region
+ *
+ * @cache: #MemoryRegionCache to be filled
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @len: length of buffer
+ * @is_write: indicates the transfer direction
+ *
+ * Will only work with RAM, and may map a subset of the requested range by
+ * returning a value that is less than @len. On failure, return a negative
+ * errno value.
+ *
+ * Because it only works with RAM, this function can be used for
+ * read-modify-write operations. In this case, is_write should be %true.
+ *
+ * Note that addresses passed to the address_space_*_cached functions
+ * are relative to @addr.
+ */
+int64_t address_space_cache_init(MemoryRegionCache *cache,
+ AddressSpace *as,
+ hwaddr addr,
+ hwaddr len,
+ bool is_write);
+
+/**
+ * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
+ *
+ * @cache: The #MemoryRegionCache to operate on.
+ * @addr: The first physical address that was written, relative to the
+ * address that was passed to @address_space_cache_init.
+ * @access_len: The number of bytes that were written starting at @addr.
+ */
+void address_space_cache_invalidate(MemoryRegionCache *cache,
+ hwaddr addr,
+ hwaddr access_len);
+
+/**
+ * address_space_cache_destroy: free a #MemoryRegionCache
+ *
+ * @cache: The #MemoryRegionCache whose memory should be released.
+ */
+void address_space_cache_destroy(MemoryRegionCache *cache);
+
+/* address_space_get_iotlb_entry: translate an address into an IOTLB
+ * entry. Should be called from an RCU critical section.
+ */
+IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
+ bool is_write, MemTxAttrs attrs);
+
+/* address_space_translate: translate an address range into an address space
+ * into a MemoryRegion and an address range into that section. Should be
+ * called from an RCU critical section, to avoid that the last reference
+ * to the returned region disappears after address_space_translate returns.
+ *
+ * @fv: #FlatView to be accessed
+ * @addr: address within that address space
+ * @xlat: pointer to address within the returned memory region section's
+ * #MemoryRegion.
+ * @len: pointer to length
+ * @is_write: indicates the transfer direction
+ * @attrs: memory attributes
+ */
+MemoryRegion *flatview_translate(FlatView *fv,
+ hwaddr addr, hwaddr *xlat,
+ hwaddr *len, bool is_write,
+ MemTxAttrs attrs);
+
+static inline MemoryRegion *address_space_translate(AddressSpace *as,
+ hwaddr addr, hwaddr *xlat,
+ hwaddr *len, bool is_write,
+ MemTxAttrs attrs)
+{
+ return flatview_translate(address_space_to_flatview(as),
+ addr, xlat, len, is_write, attrs);
+}
+
+/* address_space_access_valid: check for validity of accessing an address
+ * space range
+ *
+ * Check whether memory is assigned to the given address space range, and
+ * access is permitted by any IOMMU regions that are active for the address
+ * space.
+ *
+ * For now, addr and len should be aligned to a page size. This limitation
+ * will be lifted in the future.
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @len: length of the area to be checked
+ * @is_write: indicates the transfer direction
+ * @attrs: memory attributes
+ */
+bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
+ bool is_write, MemTxAttrs attrs);
+
+/* address_space_map: map a physical memory region into a host virtual address
+ *
+ * May map a subset of the requested range, given by and returned in @plen.
+ * May return %NULL and set *@plen to zero(0), if resources needed to perform
+ * the mapping are exhausted.
+ * Use only for reads OR writes - not for read-modify-write operations.
+ * Use cpu_register_map_client() to know when retrying the map operation is
+ * likely to succeed.
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @plen: pointer to length of buffer; updated on return
+ * @is_write: indicates the transfer direction
+ * @attrs: memory attributes
+ */
+void *address_space_map(AddressSpace *as, hwaddr addr,
+ hwaddr *plen, bool is_write, MemTxAttrs attrs);
+
+/* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
+ *
+ * Will also mark the memory as dirty if @is_write == %true. @access_len gives
+ * the amount of memory that was actually read or written by the caller.
+ *
+ * @as: #AddressSpace used
+ * @buffer: host pointer as returned by address_space_map()
+ * @len: buffer length as returned by address_space_map()
+ * @access_len: amount of data actually transferred
+ * @is_write: indicates the transfer direction
+ */
+void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
+ bool is_write, hwaddr access_len);
+
+
+/* Internal functions, part of the implementation of address_space_read. */
+MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs, void *buf, hwaddr len);
+MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
+ MemTxAttrs attrs, void *buf,
+ hwaddr len, hwaddr addr1, hwaddr l,
+ MemoryRegion *mr);
+void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
+
+/* Internal functions, part of the implementation of address_space_read_cached
+ * and address_space_write_cached. */
+MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
+ hwaddr addr, void *buf, hwaddr len);
+MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
+ hwaddr addr, const void *buf,
+ hwaddr len);
+
+static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
+{
+ if (is_write) {
+ return memory_region_is_ram(mr) && !mr->readonly &&
+ !mr->rom_device && !memory_region_is_ram_device(mr);
+ } else {
+ return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
+ memory_region_is_romd(mr);
+ }
+}
+
+/**
+ * address_space_read: read from an address space.
+ *
+ * Return a MemTxResult indicating whether the operation succeeded
+ * or failed (eg unassigned memory, device rejected the transaction,
+ * IOMMU fault). Called within RCU critical section.
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @attrs: memory transaction attributes
+ * @buf: buffer with the data transferred
+ * @len: length of the data transferred
+ */
+static inline __attribute__((__always_inline__))
+MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs, void *buf,
+ hwaddr len)
+{
+ MemTxResult result = MEMTX_OK;
+ hwaddr l, addr1;
+ void *ptr;
+ MemoryRegion *mr;
+ FlatView *fv;
+
+ if (__builtin_constant_p(len)) {
+ if (len) {
+ RCU_READ_LOCK_GUARD();
+ fv = address_space_to_flatview(as);
+ l = len;
+ mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
+ if (len == l && memory_access_is_direct(mr, false)) {
+ ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
+ memcpy(buf, ptr, len);
+ } else {
+ result = flatview_read_continue(fv, addr, attrs, buf, len,
+ addr1, l, mr);
+ }
+ }
+ } else {
+ result = address_space_read_full(as, addr, attrs, buf, len);
+ }
+ return result;
+}
+
+/**
+ * address_space_read_cached: read from a cached RAM region
+ *
+ * @cache: Cached region to be addressed
+ * @addr: address relative to the base of the RAM region
+ * @buf: buffer with the data transferred
+ * @len: length of the data transferred
+ */
+static inline MemTxResult
+address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
+ void *buf, hwaddr len)
+{
+ assert(addr < cache->len && len <= cache->len - addr);
+ fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr);
+ if (likely(cache->ptr)) {
+ memcpy(buf, cache->ptr + addr, len);
+ return MEMTX_OK;
+ } else {
+ return address_space_read_cached_slow(cache, addr, buf, len);
+ }
+}
+
+/**
+ * address_space_write_cached: write to a cached RAM region
+ *
+ * @cache: Cached region to be addressed
+ * @addr: address relative to the base of the RAM region
+ * @buf: buffer with the data transferred
+ * @len: length of the data transferred
+ */
+static inline MemTxResult
+address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
+ const void *buf, hwaddr len)
+{
+ assert(addr < cache->len && len <= cache->len - addr);
+ if (likely(cache->ptr)) {
+ memcpy(cache->ptr + addr, buf, len);
+ return MEMTX_OK;
+ } else {
+ return address_space_write_cached_slow(cache, addr, buf, len);
+ }
+}
+
+#ifdef NEED_CPU_H
+/* enum device_endian to MemOp. */
+static inline MemOp devend_memop(enum device_endian end)
+{
+ QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
+ DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
+
+#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
+ /* Swap if non-host endianness or native (target) endianness */
+ return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
+#else
+ const int non_host_endianness =
+ DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
+
+ /* In this case, native (target) endianness needs no swap. */
+ return (end == non_host_endianness) ? MO_BSWAP : 0;
+#endif
+}
+#endif
+
+/*
+ * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
+ * to manage the actual amount of memory consumed by the VM (then, the memory
+ * provided by RAM blocks might be bigger than the desired memory consumption).
+ * This *must* be set if:
+ * - Discarding parts of a RAM blocks does not result in the change being
+ * reflected in the VM and the pages getting freed.
+ * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
+ * discards blindly.
+ * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
+ * encrypted VMs).
+ * Technologies that only temporarily pin the current working set of a
+ * driver are fine, because we don't expect such pages to be discarded
+ * (esp. based on guest action like balloon inflation).
+ *
+ * This is *not* to be used to protect from concurrent discards (esp.,
+ * postcopy).
+ *
+ * Returns 0 if successful. Returns -EBUSY if a technology that relies on
+ * discards to work reliably is active.
+ */
+int ram_block_discard_disable(bool state);
+
+/*
+ * See ram_block_discard_disable(): only disable uncoordinated discards,
+ * keeping coordinated discards (via the RamDiscardManager) enabled.
+ */
+int ram_block_uncoordinated_discard_disable(bool state);
+
+/*
+ * Inhibit technologies that disable discarding of pages in RAM blocks.
+ *
+ * Returns 0 if successful. Returns -EBUSY if discards are already set to
+ * broken.
+ */
+int ram_block_discard_require(bool state);
+
+/*
+ * See ram_block_discard_require(): only inhibit technologies that disable
+ * uncoordinated discarding of pages in RAM blocks, allowing co-existance with
+ * technologies that only inhibit uncoordinated discards (via the
+ * RamDiscardManager).
+ */
+int ram_block_coordinated_discard_require(bool state);
+
+/*
+ * Test if any discarding of memory in ram blocks is disabled.
+ */
+bool ram_block_discard_is_disabled(void);
+
+/*
+ * Test if any discarding of memory in ram blocks is required to work reliably.
+ */
+bool ram_block_discard_is_required(void);
+
+#endif
+
+#endif