diff options
author | 2023-10-10 11:40:56 +0000 | |
---|---|---|
committer | 2023-10-10 11:40:56 +0000 | |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /include/fpu/softfloat.h | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'include/fpu/softfloat.h')
-rw-r--r-- | include/fpu/softfloat.h | 1324 |
1 files changed, 1324 insertions, 0 deletions
diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h new file mode 100644 index 000000000..a249991e6 --- /dev/null +++ b/include/fpu/softfloat.h @@ -0,0 +1,1324 @@ +/* + * QEMU float support + * + * The code in this source file is derived from release 2a of the SoftFloat + * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and + * some later contributions) are provided under that license, as detailed below. + * It has subsequently been modified by contributors to the QEMU Project, + * so some portions are provided under: + * the SoftFloat-2a license + * the BSD license + * GPL-v2-or-later + * + * Any future contributions to this file after December 1st 2014 will be + * taken to be licensed under the Softfloat-2a license unless specifically + * indicated otherwise. + */ + +/* +=============================================================================== +This C header file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2a. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/SoftFloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these four paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* BSD licensing: + * Copyright (c) 2006, Fabrice Bellard + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its contributors + * may be used to endorse or promote products derived from this software without + * specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF + * THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* Portions of this work are licensed under the terms of the GNU GPL, + * version 2 or later. See the COPYING file in the top-level directory. + */ + +#ifndef SOFTFLOAT_H +#define SOFTFLOAT_H + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE floating-point ordering relations +*----------------------------------------------------------------------------*/ + +typedef enum { + float_relation_less = -1, + float_relation_equal = 0, + float_relation_greater = 1, + float_relation_unordered = 2 +} FloatRelation; + +#include "fpu/softfloat-types.h" +#include "fpu/softfloat-helpers.h" + +/*---------------------------------------------------------------------------- +| Routine to raise any or all of the software IEC/IEEE floating-point +| exception flags. +*----------------------------------------------------------------------------*/ +static inline void float_raise(uint8_t flags, float_status *status) +{ + status->float_exception_flags |= flags; +} + +/*---------------------------------------------------------------------------- +| If `a' is denormal and we are in flush-to-zero mode then set the +| input-denormal exception and return zero. Otherwise just return the value. +*----------------------------------------------------------------------------*/ +float16 float16_squash_input_denormal(float16 a, float_status *status); +float32 float32_squash_input_denormal(float32 a, float_status *status); +float64 float64_squash_input_denormal(float64 a, float_status *status); +bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status); + +/*---------------------------------------------------------------------------- +| Options to indicate which negations to perform in float*_muladd() +| Using these differs from negating an input or output before calling +| the muladd function in that this means that a NaN doesn't have its +| sign bit inverted before it is propagated. +| We also support halving the result before rounding, as a special +| case to support the ARM fused-sqrt-step instruction FRSQRTS. +*----------------------------------------------------------------------------*/ +enum { + float_muladd_negate_c = 1, + float_muladd_negate_product = 2, + float_muladd_negate_result = 4, + float_muladd_halve_result = 8, +}; + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE integer-to-floating-point conversion routines. +*----------------------------------------------------------------------------*/ + +float16 int16_to_float16_scalbn(int16_t a, int, float_status *status); +float16 int32_to_float16_scalbn(int32_t a, int, float_status *status); +float16 int64_to_float16_scalbn(int64_t a, int, float_status *status); +float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status); +float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status); +float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status); + +float16 int8_to_float16(int8_t a, float_status *status); +float16 int16_to_float16(int16_t a, float_status *status); +float16 int32_to_float16(int32_t a, float_status *status); +float16 int64_to_float16(int64_t a, float_status *status); +float16 uint8_to_float16(uint8_t a, float_status *status); +float16 uint16_to_float16(uint16_t a, float_status *status); +float16 uint32_to_float16(uint32_t a, float_status *status); +float16 uint64_to_float16(uint64_t a, float_status *status); + +float32 int16_to_float32_scalbn(int16_t, int, float_status *status); +float32 int32_to_float32_scalbn(int32_t, int, float_status *status); +float32 int64_to_float32_scalbn(int64_t, int, float_status *status); +float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status); +float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status); +float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status); + +float32 int16_to_float32(int16_t, float_status *status); +float32 int32_to_float32(int32_t, float_status *status); +float32 int64_to_float32(int64_t, float_status *status); +float32 uint16_to_float32(uint16_t, float_status *status); +float32 uint32_to_float32(uint32_t, float_status *status); +float32 uint64_to_float32(uint64_t, float_status *status); + +float64 int16_to_float64_scalbn(int16_t, int, float_status *status); +float64 int32_to_float64_scalbn(int32_t, int, float_status *status); +float64 int64_to_float64_scalbn(int64_t, int, float_status *status); +float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status); +float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status); +float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status); + +float64 int16_to_float64(int16_t, float_status *status); +float64 int32_to_float64(int32_t, float_status *status); +float64 int64_to_float64(int64_t, float_status *status); +float64 uint16_to_float64(uint16_t, float_status *status); +float64 uint32_to_float64(uint32_t, float_status *status); +float64 uint64_to_float64(uint64_t, float_status *status); + +floatx80 int32_to_floatx80(int32_t, float_status *status); +floatx80 int64_to_floatx80(int64_t, float_status *status); + +float128 int32_to_float128(int32_t, float_status *status); +float128 int64_to_float128(int64_t, float_status *status); +float128 uint64_to_float128(uint64_t, float_status *status); + +/*---------------------------------------------------------------------------- +| Software half-precision conversion routines. +*----------------------------------------------------------------------------*/ + +float16 float32_to_float16(float32, bool ieee, float_status *status); +float32 float16_to_float32(float16, bool ieee, float_status *status); +float16 float64_to_float16(float64 a, bool ieee, float_status *status); +float64 float16_to_float64(float16 a, bool ieee, float_status *status); + +int8_t float16_to_int8_scalbn(float16, FloatRoundMode, int, + float_status *status); +int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *); +int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *); +int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *); + +int8_t float16_to_int8(float16, float_status *status); +int16_t float16_to_int16(float16, float_status *status); +int32_t float16_to_int32(float16, float_status *status); +int64_t float16_to_int64(float16, float_status *status); + +int16_t float16_to_int16_round_to_zero(float16, float_status *status); +int32_t float16_to_int32_round_to_zero(float16, float_status *status); +int64_t float16_to_int64_round_to_zero(float16, float_status *status); + +uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode, + int, float_status *status); +uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode, + int, float_status *status); +uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode, + int, float_status *status); +uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode, + int, float_status *status); + +uint8_t float16_to_uint8(float16 a, float_status *status); +uint16_t float16_to_uint16(float16 a, float_status *status); +uint32_t float16_to_uint32(float16 a, float_status *status); +uint64_t float16_to_uint64(float16 a, float_status *status); + +uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status); +uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status); +uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status); + +/*---------------------------------------------------------------------------- +| Software half-precision operations. +*----------------------------------------------------------------------------*/ + +float16 float16_round_to_int(float16, float_status *status); +float16 float16_add(float16, float16, float_status *status); +float16 float16_sub(float16, float16, float_status *status); +float16 float16_mul(float16, float16, float_status *status); +float16 float16_muladd(float16, float16, float16, int, float_status *status); +float16 float16_div(float16, float16, float_status *status); +float16 float16_scalbn(float16, int, float_status *status); +float16 float16_min(float16, float16, float_status *status); +float16 float16_max(float16, float16, float_status *status); +float16 float16_minnum(float16, float16, float_status *status); +float16 float16_maxnum(float16, float16, float_status *status); +float16 float16_minnummag(float16, float16, float_status *status); +float16 float16_maxnummag(float16, float16, float_status *status); +float16 float16_minimum_number(float16, float16, float_status *status); +float16 float16_maximum_number(float16, float16, float_status *status); +float16 float16_sqrt(float16, float_status *status); +FloatRelation float16_compare(float16, float16, float_status *status); +FloatRelation float16_compare_quiet(float16, float16, float_status *status); + +bool float16_is_quiet_nan(float16, float_status *status); +bool float16_is_signaling_nan(float16, float_status *status); +float16 float16_silence_nan(float16, float_status *status); + +static inline bool float16_is_any_nan(float16 a) +{ + return ((float16_val(a) & ~0x8000) > 0x7c00); +} + +static inline bool float16_is_neg(float16 a) +{ + return float16_val(a) >> 15; +} + +static inline bool float16_is_infinity(float16 a) +{ + return (float16_val(a) & 0x7fff) == 0x7c00; +} + +static inline bool float16_is_zero(float16 a) +{ + return (float16_val(a) & 0x7fff) == 0; +} + +static inline bool float16_is_zero_or_denormal(float16 a) +{ + return (float16_val(a) & 0x7c00) == 0; +} + +static inline bool float16_is_normal(float16 a) +{ + return (((float16_val(a) >> 10) + 1) & 0x1f) >= 2; +} + +static inline float16 float16_abs(float16 a) +{ + /* Note that abs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return make_float16(float16_val(a) & 0x7fff); +} + +static inline float16 float16_chs(float16 a) +{ + /* Note that chs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return make_float16(float16_val(a) ^ 0x8000); +} + +static inline float16 float16_set_sign(float16 a, int sign) +{ + return make_float16((float16_val(a) & 0x7fff) | (sign << 15)); +} + +static inline bool float16_eq(float16 a, float16 b, float_status *s) +{ + return float16_compare(a, b, s) == float_relation_equal; +} + +static inline bool float16_le(float16 a, float16 b, float_status *s) +{ + return float16_compare(a, b, s) <= float_relation_equal; +} + +static inline bool float16_lt(float16 a, float16 b, float_status *s) +{ + return float16_compare(a, b, s) < float_relation_equal; +} + +static inline bool float16_unordered(float16 a, float16 b, float_status *s) +{ + return float16_compare(a, b, s) == float_relation_unordered; +} + +static inline bool float16_eq_quiet(float16 a, float16 b, float_status *s) +{ + return float16_compare_quiet(a, b, s) == float_relation_equal; +} + +static inline bool float16_le_quiet(float16 a, float16 b, float_status *s) +{ + return float16_compare_quiet(a, b, s) <= float_relation_equal; +} + +static inline bool float16_lt_quiet(float16 a, float16 b, float_status *s) +{ + return float16_compare_quiet(a, b, s) < float_relation_equal; +} + +static inline bool float16_unordered_quiet(float16 a, float16 b, + float_status *s) +{ + return float16_compare_quiet(a, b, s) == float_relation_unordered; +} + +#define float16_zero make_float16(0) +#define float16_half make_float16(0x3800) +#define float16_one make_float16(0x3c00) +#define float16_one_point_five make_float16(0x3e00) +#define float16_two make_float16(0x4000) +#define float16_three make_float16(0x4200) +#define float16_infinity make_float16(0x7c00) + +/*---------------------------------------------------------------------------- +| Software bfloat16 conversion routines. +*----------------------------------------------------------------------------*/ + +bfloat16 bfloat16_round_to_int(bfloat16, float_status *status); +bfloat16 float32_to_bfloat16(float32, float_status *status); +float32 bfloat16_to_float32(bfloat16, float_status *status); +bfloat16 float64_to_bfloat16(float64 a, float_status *status); +float64 bfloat16_to_float64(bfloat16 a, float_status *status); + +int16_t bfloat16_to_int16_scalbn(bfloat16, FloatRoundMode, + int, float_status *status); +int32_t bfloat16_to_int32_scalbn(bfloat16, FloatRoundMode, + int, float_status *status); +int64_t bfloat16_to_int64_scalbn(bfloat16, FloatRoundMode, + int, float_status *status); + +int16_t bfloat16_to_int16(bfloat16, float_status *status); +int32_t bfloat16_to_int32(bfloat16, float_status *status); +int64_t bfloat16_to_int64(bfloat16, float_status *status); + +int16_t bfloat16_to_int16_round_to_zero(bfloat16, float_status *status); +int32_t bfloat16_to_int32_round_to_zero(bfloat16, float_status *status); +int64_t bfloat16_to_int64_round_to_zero(bfloat16, float_status *status); + +uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode, + int, float_status *status); +uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode, + int, float_status *status); +uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode, + int, float_status *status); + +uint16_t bfloat16_to_uint16(bfloat16 a, float_status *status); +uint32_t bfloat16_to_uint32(bfloat16 a, float_status *status); +uint64_t bfloat16_to_uint64(bfloat16 a, float_status *status); + +uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *status); +uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *status); +uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *status); + +bfloat16 int16_to_bfloat16_scalbn(int16_t a, int, float_status *status); +bfloat16 int32_to_bfloat16_scalbn(int32_t a, int, float_status *status); +bfloat16 int64_to_bfloat16_scalbn(int64_t a, int, float_status *status); +bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int, float_status *status); +bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int, float_status *status); +bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int, float_status *status); + +bfloat16 int16_to_bfloat16(int16_t a, float_status *status); +bfloat16 int32_to_bfloat16(int32_t a, float_status *status); +bfloat16 int64_to_bfloat16(int64_t a, float_status *status); +bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status); +bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status); +bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status); + +/*---------------------------------------------------------------------------- +| Software bfloat16 operations. +*----------------------------------------------------------------------------*/ + +bfloat16 bfloat16_add(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_sub(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_mul(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_div(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_muladd(bfloat16, bfloat16, bfloat16, int, + float_status *status); +float16 bfloat16_scalbn(bfloat16, int, float_status *status); +bfloat16 bfloat16_min(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_max(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_minnum(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_maxnum(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_minnummag(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_maxnummag(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_minimum_number(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_maximum_number(bfloat16, bfloat16, float_status *status); +bfloat16 bfloat16_sqrt(bfloat16, float_status *status); +FloatRelation bfloat16_compare(bfloat16, bfloat16, float_status *status); +FloatRelation bfloat16_compare_quiet(bfloat16, bfloat16, float_status *status); + +bool bfloat16_is_quiet_nan(bfloat16, float_status *status); +bool bfloat16_is_signaling_nan(bfloat16, float_status *status); +bfloat16 bfloat16_silence_nan(bfloat16, float_status *status); +bfloat16 bfloat16_default_nan(float_status *status); + +static inline bool bfloat16_is_any_nan(bfloat16 a) +{ + return ((a & ~0x8000) > 0x7F80); +} + +static inline bool bfloat16_is_neg(bfloat16 a) +{ + return a >> 15; +} + +static inline bool bfloat16_is_infinity(bfloat16 a) +{ + return (a & 0x7fff) == 0x7F80; +} + +static inline bool bfloat16_is_zero(bfloat16 a) +{ + return (a & 0x7fff) == 0; +} + +static inline bool bfloat16_is_zero_or_denormal(bfloat16 a) +{ + return (a & 0x7F80) == 0; +} + +static inline bool bfloat16_is_normal(bfloat16 a) +{ + return (((a >> 7) + 1) & 0xff) >= 2; +} + +static inline bfloat16 bfloat16_abs(bfloat16 a) +{ + /* Note that abs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return a & 0x7fff; +} + +static inline bfloat16 bfloat16_chs(bfloat16 a) +{ + /* Note that chs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return a ^ 0x8000; +} + +static inline bfloat16 bfloat16_set_sign(bfloat16 a, int sign) +{ + return (a & 0x7fff) | (sign << 15); +} + +static inline bool bfloat16_eq(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare(a, b, s) == float_relation_equal; +} + +static inline bool bfloat16_le(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare(a, b, s) <= float_relation_equal; +} + +static inline bool bfloat16_lt(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare(a, b, s) < float_relation_equal; +} + +static inline bool bfloat16_unordered(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare(a, b, s) == float_relation_unordered; +} + +static inline bool bfloat16_eq_quiet(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare_quiet(a, b, s) == float_relation_equal; +} + +static inline bool bfloat16_le_quiet(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare_quiet(a, b, s) <= float_relation_equal; +} + +static inline bool bfloat16_lt_quiet(bfloat16 a, bfloat16 b, float_status *s) +{ + return bfloat16_compare_quiet(a, b, s) < float_relation_equal; +} + +static inline bool bfloat16_unordered_quiet(bfloat16 a, bfloat16 b, + float_status *s) +{ + return bfloat16_compare_quiet(a, b, s) == float_relation_unordered; +} + +#define bfloat16_zero 0 +#define bfloat16_half 0x3f00 +#define bfloat16_one 0x3f80 +#define bfloat16_one_point_five 0x3fc0 +#define bfloat16_two 0x4000 +#define bfloat16_three 0x4040 +#define bfloat16_infinity 0x7f80 + +/*---------------------------------------------------------------------------- +| The pattern for a default generated half-precision NaN. +*----------------------------------------------------------------------------*/ +float16 float16_default_nan(float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE single-precision conversion routines. +*----------------------------------------------------------------------------*/ + +int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *); +int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *); +int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *); + +int16_t float32_to_int16(float32, float_status *status); +int32_t float32_to_int32(float32, float_status *status); +int64_t float32_to_int64(float32, float_status *status); + +int16_t float32_to_int16_round_to_zero(float32, float_status *status); +int32_t float32_to_int32_round_to_zero(float32, float_status *status); +int64_t float32_to_int64_round_to_zero(float32, float_status *status); + +uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *); +uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *); +uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *); + +uint16_t float32_to_uint16(float32, float_status *status); +uint32_t float32_to_uint32(float32, float_status *status); +uint64_t float32_to_uint64(float32, float_status *status); + +uint16_t float32_to_uint16_round_to_zero(float32, float_status *status); +uint32_t float32_to_uint32_round_to_zero(float32, float_status *status); +uint64_t float32_to_uint64_round_to_zero(float32, float_status *status); + +float64 float32_to_float64(float32, float_status *status); +floatx80 float32_to_floatx80(float32, float_status *status); +float128 float32_to_float128(float32, float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE single-precision operations. +*----------------------------------------------------------------------------*/ +float32 float32_round_to_int(float32, float_status *status); +float32 float32_add(float32, float32, float_status *status); +float32 float32_sub(float32, float32, float_status *status); +float32 float32_mul(float32, float32, float_status *status); +float32 float32_div(float32, float32, float_status *status); +float32 float32_rem(float32, float32, float_status *status); +float32 float32_muladd(float32, float32, float32, int, float_status *status); +float32 float32_sqrt(float32, float_status *status); +float32 float32_exp2(float32, float_status *status); +float32 float32_log2(float32, float_status *status); +FloatRelation float32_compare(float32, float32, float_status *status); +FloatRelation float32_compare_quiet(float32, float32, float_status *status); +float32 float32_min(float32, float32, float_status *status); +float32 float32_max(float32, float32, float_status *status); +float32 float32_minnum(float32, float32, float_status *status); +float32 float32_maxnum(float32, float32, float_status *status); +float32 float32_minnummag(float32, float32, float_status *status); +float32 float32_maxnummag(float32, float32, float_status *status); +float32 float32_minimum_number(float32, float32, float_status *status); +float32 float32_maximum_number(float32, float32, float_status *status); +bool float32_is_quiet_nan(float32, float_status *status); +bool float32_is_signaling_nan(float32, float_status *status); +float32 float32_silence_nan(float32, float_status *status); +float32 float32_scalbn(float32, int, float_status *status); + +static inline float32 float32_abs(float32 a) +{ + /* Note that abs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return make_float32(float32_val(a) & 0x7fffffff); +} + +static inline float32 float32_chs(float32 a) +{ + /* Note that chs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return make_float32(float32_val(a) ^ 0x80000000); +} + +static inline bool float32_is_infinity(float32 a) +{ + return (float32_val(a) & 0x7fffffff) == 0x7f800000; +} + +static inline bool float32_is_neg(float32 a) +{ + return float32_val(a) >> 31; +} + +static inline bool float32_is_zero(float32 a) +{ + return (float32_val(a) & 0x7fffffff) == 0; +} + +static inline bool float32_is_any_nan(float32 a) +{ + return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); +} + +static inline bool float32_is_zero_or_denormal(float32 a) +{ + return (float32_val(a) & 0x7f800000) == 0; +} + +static inline bool float32_is_normal(float32 a) +{ + return (((float32_val(a) >> 23) + 1) & 0xff) >= 2; +} + +static inline bool float32_is_denormal(float32 a) +{ + return float32_is_zero_or_denormal(a) && !float32_is_zero(a); +} + +static inline bool float32_is_zero_or_normal(float32 a) +{ + return float32_is_normal(a) || float32_is_zero(a); +} + +static inline float32 float32_set_sign(float32 a, int sign) +{ + return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); +} + +static inline bool float32_eq(float32 a, float32 b, float_status *s) +{ + return float32_compare(a, b, s) == float_relation_equal; +} + +static inline bool float32_le(float32 a, float32 b, float_status *s) +{ + return float32_compare(a, b, s) <= float_relation_equal; +} + +static inline bool float32_lt(float32 a, float32 b, float_status *s) +{ + return float32_compare(a, b, s) < float_relation_equal; +} + +static inline bool float32_unordered(float32 a, float32 b, float_status *s) +{ + return float32_compare(a, b, s) == float_relation_unordered; +} + +static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s) +{ + return float32_compare_quiet(a, b, s) == float_relation_equal; +} + +static inline bool float32_le_quiet(float32 a, float32 b, float_status *s) +{ + return float32_compare_quiet(a, b, s) <= float_relation_equal; +} + +static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s) +{ + return float32_compare_quiet(a, b, s) < float_relation_equal; +} + +static inline bool float32_unordered_quiet(float32 a, float32 b, + float_status *s) +{ + return float32_compare_quiet(a, b, s) == float_relation_unordered; +} + +#define float32_zero make_float32(0) +#define float32_half make_float32(0x3f000000) +#define float32_one make_float32(0x3f800000) +#define float32_one_point_five make_float32(0x3fc00000) +#define float32_two make_float32(0x40000000) +#define float32_three make_float32(0x40400000) +#define float32_infinity make_float32(0x7f800000) + +/*---------------------------------------------------------------------------- +| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +| single-precision floating-point value, returning the result. After being +| shifted into the proper positions, the three fields are simply added +| together to form the result. This means that any integer portion of `zSig' +| will be added into the exponent. Since a properly normalized significand +| will have an integer portion equal to 1, the `zExp' input should be 1 less +| than the desired result exponent whenever `zSig' is a complete, normalized +| significand. +*----------------------------------------------------------------------------*/ + +static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig) +{ + return make_float32( + (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig); +} + +/*---------------------------------------------------------------------------- +| The pattern for a default generated single-precision NaN. +*----------------------------------------------------------------------------*/ +float32 float32_default_nan(float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE double-precision conversion routines. +*----------------------------------------------------------------------------*/ + +int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *); +int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *); +int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *); + +int16_t float64_to_int16(float64, float_status *status); +int32_t float64_to_int32(float64, float_status *status); +int64_t float64_to_int64(float64, float_status *status); + +int16_t float64_to_int16_round_to_zero(float64, float_status *status); +int32_t float64_to_int32_round_to_zero(float64, float_status *status); +int64_t float64_to_int64_round_to_zero(float64, float_status *status); + +uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *); +uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *); +uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *); + +uint16_t float64_to_uint16(float64, float_status *status); +uint32_t float64_to_uint32(float64, float_status *status); +uint64_t float64_to_uint64(float64, float_status *status); + +uint16_t float64_to_uint16_round_to_zero(float64, float_status *status); +uint32_t float64_to_uint32_round_to_zero(float64, float_status *status); +uint64_t float64_to_uint64_round_to_zero(float64, float_status *status); + +float32 float64_to_float32(float64, float_status *status); +floatx80 float64_to_floatx80(float64, float_status *status); +float128 float64_to_float128(float64, float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE double-precision operations. +*----------------------------------------------------------------------------*/ +float64 float64_round_to_int(float64, float_status *status); +float64 float64_add(float64, float64, float_status *status); +float64 float64_sub(float64, float64, float_status *status); +float64 float64_mul(float64, float64, float_status *status); +float64 float64_div(float64, float64, float_status *status); +float64 float64_rem(float64, float64, float_status *status); +float64 float64_muladd(float64, float64, float64, int, float_status *status); +float64 float64_sqrt(float64, float_status *status); +float64 float64_log2(float64, float_status *status); +FloatRelation float64_compare(float64, float64, float_status *status); +FloatRelation float64_compare_quiet(float64, float64, float_status *status); +float64 float64_min(float64, float64, float_status *status); +float64 float64_max(float64, float64, float_status *status); +float64 float64_minnum(float64, float64, float_status *status); +float64 float64_maxnum(float64, float64, float_status *status); +float64 float64_minnummag(float64, float64, float_status *status); +float64 float64_maxnummag(float64, float64, float_status *status); +float64 float64_minimum_number(float64, float64, float_status *status); +float64 float64_maximum_number(float64, float64, float_status *status); +bool float64_is_quiet_nan(float64 a, float_status *status); +bool float64_is_signaling_nan(float64, float_status *status); +float64 float64_silence_nan(float64, float_status *status); +float64 float64_scalbn(float64, int, float_status *status); + +static inline float64 float64_abs(float64 a) +{ + /* Note that abs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return make_float64(float64_val(a) & 0x7fffffffffffffffLL); +} + +static inline float64 float64_chs(float64 a) +{ + /* Note that chs does *not* handle NaN specially, nor does + * it flush denormal inputs to zero. + */ + return make_float64(float64_val(a) ^ 0x8000000000000000LL); +} + +static inline bool float64_is_infinity(float64 a) +{ + return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; +} + +static inline bool float64_is_neg(float64 a) +{ + return float64_val(a) >> 63; +} + +static inline bool float64_is_zero(float64 a) +{ + return (float64_val(a) & 0x7fffffffffffffffLL) == 0; +} + +static inline bool float64_is_any_nan(float64 a) +{ + return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); +} + +static inline bool float64_is_zero_or_denormal(float64 a) +{ + return (float64_val(a) & 0x7ff0000000000000LL) == 0; +} + +static inline bool float64_is_normal(float64 a) +{ + return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2; +} + +static inline bool float64_is_denormal(float64 a) +{ + return float64_is_zero_or_denormal(a) && !float64_is_zero(a); +} + +static inline bool float64_is_zero_or_normal(float64 a) +{ + return float64_is_normal(a) || float64_is_zero(a); +} + +static inline float64 float64_set_sign(float64 a, int sign) +{ + return make_float64((float64_val(a) & 0x7fffffffffffffffULL) + | ((int64_t)sign << 63)); +} + +static inline bool float64_eq(float64 a, float64 b, float_status *s) +{ + return float64_compare(a, b, s) == float_relation_equal; +} + +static inline bool float64_le(float64 a, float64 b, float_status *s) +{ + return float64_compare(a, b, s) <= float_relation_equal; +} + +static inline bool float64_lt(float64 a, float64 b, float_status *s) +{ + return float64_compare(a, b, s) < float_relation_equal; +} + +static inline bool float64_unordered(float64 a, float64 b, float_status *s) +{ + return float64_compare(a, b, s) == float_relation_unordered; +} + +static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s) +{ + return float64_compare_quiet(a, b, s) == float_relation_equal; +} + +static inline bool float64_le_quiet(float64 a, float64 b, float_status *s) +{ + return float64_compare_quiet(a, b, s) <= float_relation_equal; +} + +static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s) +{ + return float64_compare_quiet(a, b, s) < float_relation_equal; +} + +static inline bool float64_unordered_quiet(float64 a, float64 b, + float_status *s) +{ + return float64_compare_quiet(a, b, s) == float_relation_unordered; +} + +#define float64_zero make_float64(0) +#define float64_half make_float64(0x3fe0000000000000LL) +#define float64_one make_float64(0x3ff0000000000000LL) +#define float64_one_point_five make_float64(0x3FF8000000000000ULL) +#define float64_two make_float64(0x4000000000000000ULL) +#define float64_three make_float64(0x4008000000000000ULL) +#define float64_ln2 make_float64(0x3fe62e42fefa39efLL) +#define float64_infinity make_float64(0x7ff0000000000000LL) + +/*---------------------------------------------------------------------------- +| The pattern for a default generated double-precision NaN. +*----------------------------------------------------------------------------*/ +float64 float64_default_nan(float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE extended double-precision conversion routines. +*----------------------------------------------------------------------------*/ +int32_t floatx80_to_int32(floatx80, float_status *status); +int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status); +int64_t floatx80_to_int64(floatx80, float_status *status); +int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status); +float32 floatx80_to_float32(floatx80, float_status *status); +float64 floatx80_to_float64(floatx80, float_status *status); +float128 floatx80_to_float128(floatx80, float_status *status); + +/*---------------------------------------------------------------------------- +| The pattern for an extended double-precision inf. +*----------------------------------------------------------------------------*/ +extern const floatx80 floatx80_infinity; + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE extended double-precision operations. +*----------------------------------------------------------------------------*/ +floatx80 floatx80_round(floatx80 a, float_status *status); +floatx80 floatx80_round_to_int(floatx80, float_status *status); +floatx80 floatx80_add(floatx80, floatx80, float_status *status); +floatx80 floatx80_sub(floatx80, floatx80, float_status *status); +floatx80 floatx80_mul(floatx80, floatx80, float_status *status); +floatx80 floatx80_div(floatx80, floatx80, float_status *status); +floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *, + float_status *status); +floatx80 floatx80_mod(floatx80, floatx80, float_status *status); +floatx80 floatx80_rem(floatx80, floatx80, float_status *status); +floatx80 floatx80_sqrt(floatx80, float_status *status); +FloatRelation floatx80_compare(floatx80, floatx80, float_status *status); +FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status); +int floatx80_is_quiet_nan(floatx80, float_status *status); +int floatx80_is_signaling_nan(floatx80, float_status *status); +floatx80 floatx80_silence_nan(floatx80, float_status *status); +floatx80 floatx80_scalbn(floatx80, int, float_status *status); + +static inline floatx80 floatx80_abs(floatx80 a) +{ + a.high &= 0x7fff; + return a; +} + +static inline floatx80 floatx80_chs(floatx80 a) +{ + a.high ^= 0x8000; + return a; +} + +static inline bool floatx80_is_infinity(floatx80 a) +{ +#if defined(TARGET_M68K) + return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1); +#else + return (a.high & 0x7fff) == floatx80_infinity.high && + a.low == floatx80_infinity.low; +#endif +} + +static inline bool floatx80_is_neg(floatx80 a) +{ + return a.high >> 15; +} + +static inline bool floatx80_is_zero(floatx80 a) +{ + return (a.high & 0x7fff) == 0 && a.low == 0; +} + +static inline bool floatx80_is_zero_or_denormal(floatx80 a) +{ + return (a.high & 0x7fff) == 0; +} + +static inline bool floatx80_is_any_nan(floatx80 a) +{ + return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); +} + +static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare(a, b, s) == float_relation_equal; +} + +static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare(a, b, s) <= float_relation_equal; +} + +static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare(a, b, s) < float_relation_equal; +} + +static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare(a, b, s) == float_relation_unordered; +} + +static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare_quiet(a, b, s) == float_relation_equal; +} + +static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare_quiet(a, b, s) <= float_relation_equal; +} + +static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_compare_quiet(a, b, s) < float_relation_equal; +} + +static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b, + float_status *s) +{ + return floatx80_compare_quiet(a, b, s) == float_relation_unordered; +} + +/*---------------------------------------------------------------------------- +| Return whether the given value is an invalid floatx80 encoding. +| Invalid floatx80 encodings arise when the integer bit is not set, but +| the exponent is not zero. The only times the integer bit is permitted to +| be zero is in subnormal numbers and the value zero. +| This includes what the Intel software developer's manual calls pseudo-NaNs, +| pseudo-infinities and un-normal numbers. It does not include +| pseudo-denormals, which must still be correctly handled as inputs even +| if they are never generated as outputs. +*----------------------------------------------------------------------------*/ +static inline bool floatx80_invalid_encoding(floatx80 a) +{ +#if defined(TARGET_M68K) + /*------------------------------------------------------------------------- + | With m68k, the explicit integer bit can be zero in the case of: + | - zeros (exp == 0, mantissa == 0) + | - denormalized numbers (exp == 0, mantissa != 0) + | - unnormalized numbers (exp != 0, exp < 0x7FFF) + | - infinities (exp == 0x7FFF, mantissa == 0) + | - not-a-numbers (exp == 0x7FFF, mantissa != 0) + | + | For infinities and NaNs, the explicit integer bit can be either one or + | zero. + | + | The IEEE 754 standard does not define a zero integer bit. Such a number + | is an unnormalized number. Hardware does not directly support + | denormalized and unnormalized numbers, but implicitly supports them by + | trapping them as unimplemented data types, allowing efficient conversion + | in software. + | + | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL", + | "1.6 FLOATING-POINT DATA TYPES" + *------------------------------------------------------------------------*/ + return false; +#else + return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0; +#endif +} + +#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) +#define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL) +#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) +#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) +#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) +#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) + +/*---------------------------------------------------------------------------- +| Returns the fraction bits of the extended double-precision floating-point +| value `a'. +*----------------------------------------------------------------------------*/ + +static inline uint64_t extractFloatx80Frac(floatx80 a) +{ + return a.low; +} + +/*---------------------------------------------------------------------------- +| Returns the exponent bits of the extended double-precision floating-point +| value `a'. +*----------------------------------------------------------------------------*/ + +static inline int32_t extractFloatx80Exp(floatx80 a) +{ + return a.high & 0x7FFF; +} + +/*---------------------------------------------------------------------------- +| Returns the sign bit of the extended double-precision floating-point value +| `a'. +*----------------------------------------------------------------------------*/ + +static inline bool extractFloatx80Sign(floatx80 a) +{ + return a.high >> 15; +} + +/*---------------------------------------------------------------------------- +| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an +| extended double-precision floating-point value, returning the result. +*----------------------------------------------------------------------------*/ + +static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig) +{ + floatx80 z; + + z.low = zSig; + z.high = (((uint16_t)zSign) << 15) + zExp; + return z; +} + +/*---------------------------------------------------------------------------- +| Normalizes the subnormal extended double-precision floating-point value +| represented by the denormalized significand `aSig'. The normalized exponent +| and significand are stored at the locations pointed to by `zExpPtr' and +| `zSigPtr', respectively. +*----------------------------------------------------------------------------*/ + +void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, + uint64_t *zSigPtr); + +/*---------------------------------------------------------------------------- +| Takes two extended double-precision floating-point values `a' and `b', one +| of which is a NaN, and returns the appropriate NaN result. If either `a' or +| `b' is a signaling NaN, the invalid exception is raised. +*----------------------------------------------------------------------------*/ + +floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status); + +/*---------------------------------------------------------------------------- +| Takes an abstract floating-point value having sign `zSign', exponent `zExp', +| and extended significand formed by the concatenation of `zSig0' and `zSig1', +| and returns the proper extended double-precision floating-point value +| corresponding to the abstract input. Ordinarily, the abstract value is +| rounded and packed into the extended double-precision format, with the +| inexact exception raised if the abstract input cannot be represented +| exactly. However, if the abstract value is too large, the overflow and +| inexact exceptions are raised and an infinity or maximal finite value is +| returned. If the abstract value is too small, the input value is rounded to +| a subnormal number, and the underflow and inexact exceptions are raised if +| the abstract input cannot be represented exactly as a subnormal extended +| double-precision floating-point number. +| If `roundingPrecision' is 32 or 64, the result is rounded to the same +| number of bits as single or double precision, respectively. Otherwise, the +| result is rounded to the full precision of the extended double-precision +| format. +| The input significand must be normalized or smaller. If the input +| significand is not normalized, `zExp' must be 0; in that case, the result +| returned is a subnormal number, and it must not require rounding. The +| handling of underflow and overflow follows the IEC/IEEE Standard for Binary +| Floating-Point Arithmetic. +*----------------------------------------------------------------------------*/ + +floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign, + int32_t zExp, uint64_t zSig0, uint64_t zSig1, + float_status *status); + +/*---------------------------------------------------------------------------- +| Takes an abstract floating-point value having sign `zSign', exponent +| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', +| and returns the proper extended double-precision floating-point value +| corresponding to the abstract input. This routine is just like +| `roundAndPackFloatx80' except that the input significand does not have to be +| normalized. +*----------------------------------------------------------------------------*/ + +floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, + bool zSign, int32_t zExp, + uint64_t zSig0, uint64_t zSig1, + float_status *status); + +/*---------------------------------------------------------------------------- +| The pattern for a default generated extended double-precision NaN. +*----------------------------------------------------------------------------*/ +floatx80 floatx80_default_nan(float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE quadruple-precision conversion routines. +*----------------------------------------------------------------------------*/ +int32_t float128_to_int32(float128, float_status *status); +int32_t float128_to_int32_round_to_zero(float128, float_status *status); +int64_t float128_to_int64(float128, float_status *status); +int64_t float128_to_int64_round_to_zero(float128, float_status *status); +uint64_t float128_to_uint64(float128, float_status *status); +uint64_t float128_to_uint64_round_to_zero(float128, float_status *status); +uint32_t float128_to_uint32(float128, float_status *status); +uint32_t float128_to_uint32_round_to_zero(float128, float_status *status); +float32 float128_to_float32(float128, float_status *status); +float64 float128_to_float64(float128, float_status *status); +floatx80 float128_to_floatx80(float128, float_status *status); + +/*---------------------------------------------------------------------------- +| Software IEC/IEEE quadruple-precision operations. +*----------------------------------------------------------------------------*/ +float128 float128_round_to_int(float128, float_status *status); +float128 float128_add(float128, float128, float_status *status); +float128 float128_sub(float128, float128, float_status *status); +float128 float128_mul(float128, float128, float_status *status); +float128 float128_muladd(float128, float128, float128, int, + float_status *status); +float128 float128_div(float128, float128, float_status *status); +float128 float128_rem(float128, float128, float_status *status); +float128 float128_sqrt(float128, float_status *status); +FloatRelation float128_compare(float128, float128, float_status *status); +FloatRelation float128_compare_quiet(float128, float128, float_status *status); +float128 float128_min(float128, float128, float_status *status); +float128 float128_max(float128, float128, float_status *status); +float128 float128_minnum(float128, float128, float_status *status); +float128 float128_maxnum(float128, float128, float_status *status); +float128 float128_minnummag(float128, float128, float_status *status); +float128 float128_maxnummag(float128, float128, float_status *status); +float128 float128_minimum_number(float128, float128, float_status *status); +float128 float128_maximum_number(float128, float128, float_status *status); +bool float128_is_quiet_nan(float128, float_status *status); +bool float128_is_signaling_nan(float128, float_status *status); +float128 float128_silence_nan(float128, float_status *status); +float128 float128_scalbn(float128, int, float_status *status); + +static inline float128 float128_abs(float128 a) +{ + a.high &= 0x7fffffffffffffffLL; + return a; +} + +static inline float128 float128_chs(float128 a) +{ + a.high ^= 0x8000000000000000LL; + return a; +} + +static inline bool float128_is_infinity(float128 a) +{ + return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; +} + +static inline bool float128_is_neg(float128 a) +{ + return a.high >> 63; +} + +static inline bool float128_is_zero(float128 a) +{ + return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; +} + +static inline bool float128_is_zero_or_denormal(float128 a) +{ + return (a.high & 0x7fff000000000000LL) == 0; +} + +static inline bool float128_is_normal(float128 a) +{ + return (((a.high >> 48) + 1) & 0x7fff) >= 2; +} + +static inline bool float128_is_denormal(float128 a) +{ + return float128_is_zero_or_denormal(a) && !float128_is_zero(a); +} + +static inline bool float128_is_any_nan(float128 a) +{ + return ((a.high >> 48) & 0x7fff) == 0x7fff && + ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); +} + +static inline bool float128_eq(float128 a, float128 b, float_status *s) +{ + return float128_compare(a, b, s) == float_relation_equal; +} + +static inline bool float128_le(float128 a, float128 b, float_status *s) +{ + return float128_compare(a, b, s) <= float_relation_equal; +} + +static inline bool float128_lt(float128 a, float128 b, float_status *s) +{ + return float128_compare(a, b, s) < float_relation_equal; +} + +static inline bool float128_unordered(float128 a, float128 b, float_status *s) +{ + return float128_compare(a, b, s) == float_relation_unordered; +} + +static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s) +{ + return float128_compare_quiet(a, b, s) == float_relation_equal; +} + +static inline bool float128_le_quiet(float128 a, float128 b, float_status *s) +{ + return float128_compare_quiet(a, b, s) <= float_relation_equal; +} + +static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s) +{ + return float128_compare_quiet(a, b, s) < float_relation_equal; +} + +static inline bool float128_unordered_quiet(float128 a, float128 b, + float_status *s) +{ + return float128_compare_quiet(a, b, s) == float_relation_unordered; +} + +#define float128_zero make_float128(0, 0) + +/*---------------------------------------------------------------------------- +| The pattern for a default generated quadruple-precision NaN. +*----------------------------------------------------------------------------*/ +float128 float128_default_nan(float_status *status); + +#endif /* SOFTFLOAT_H */ |