diff options
author | 2023-10-10 11:40:56 +0000 | |
---|---|---|
committer | 2023-10-10 11:40:56 +0000 | |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /linux-user/signal.c | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'linux-user/signal.c')
-rw-r--r-- | linux-user/signal.c | 1205 |
1 files changed, 1205 insertions, 0 deletions
diff --git a/linux-user/signal.c b/linux-user/signal.c new file mode 100644 index 000000000..6d5e5b698 --- /dev/null +++ b/linux-user/signal.c @@ -0,0 +1,1205 @@ +/* + * Emulation of Linux signals + * + * Copyright (c) 2003 Fabrice Bellard + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" +#include "qemu/bitops.h" +#include "exec/gdbstub.h" +#include "hw/core/tcg-cpu-ops.h" + +#include <sys/ucontext.h> +#include <sys/resource.h> + +#include "qemu.h" +#include "user-internals.h" +#include "strace.h" +#include "loader.h" +#include "trace.h" +#include "signal-common.h" +#include "host-signal.h" +#include "safe-syscall.h" + +static struct target_sigaction sigact_table[TARGET_NSIG]; + +static void host_signal_handler(int host_signum, siginfo_t *info, + void *puc); + +/* Fallback addresses into sigtramp page. */ +abi_ulong default_sigreturn; +abi_ulong default_rt_sigreturn; + +/* + * System includes define _NSIG as SIGRTMAX + 1, + * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX + * and the first signal is SIGHUP defined as 1 + * Signal number 0 is reserved for use as kill(pid, 0), to test whether + * a process exists without sending it a signal. + */ +#ifdef __SIGRTMAX +QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); +#endif +static uint8_t host_to_target_signal_table[_NSIG] = { + [SIGHUP] = TARGET_SIGHUP, + [SIGINT] = TARGET_SIGINT, + [SIGQUIT] = TARGET_SIGQUIT, + [SIGILL] = TARGET_SIGILL, + [SIGTRAP] = TARGET_SIGTRAP, + [SIGABRT] = TARGET_SIGABRT, +/* [SIGIOT] = TARGET_SIGIOT,*/ + [SIGBUS] = TARGET_SIGBUS, + [SIGFPE] = TARGET_SIGFPE, + [SIGKILL] = TARGET_SIGKILL, + [SIGUSR1] = TARGET_SIGUSR1, + [SIGSEGV] = TARGET_SIGSEGV, + [SIGUSR2] = TARGET_SIGUSR2, + [SIGPIPE] = TARGET_SIGPIPE, + [SIGALRM] = TARGET_SIGALRM, + [SIGTERM] = TARGET_SIGTERM, +#ifdef SIGSTKFLT + [SIGSTKFLT] = TARGET_SIGSTKFLT, +#endif + [SIGCHLD] = TARGET_SIGCHLD, + [SIGCONT] = TARGET_SIGCONT, + [SIGSTOP] = TARGET_SIGSTOP, + [SIGTSTP] = TARGET_SIGTSTP, + [SIGTTIN] = TARGET_SIGTTIN, + [SIGTTOU] = TARGET_SIGTTOU, + [SIGURG] = TARGET_SIGURG, + [SIGXCPU] = TARGET_SIGXCPU, + [SIGXFSZ] = TARGET_SIGXFSZ, + [SIGVTALRM] = TARGET_SIGVTALRM, + [SIGPROF] = TARGET_SIGPROF, + [SIGWINCH] = TARGET_SIGWINCH, + [SIGIO] = TARGET_SIGIO, + [SIGPWR] = TARGET_SIGPWR, + [SIGSYS] = TARGET_SIGSYS, + /* next signals stay the same */ +}; + +static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; + +/* valid sig is between 1 and _NSIG - 1 */ +int host_to_target_signal(int sig) +{ + if (sig < 1 || sig >= _NSIG) { + return sig; + } + return host_to_target_signal_table[sig]; +} + +/* valid sig is between 1 and TARGET_NSIG */ +int target_to_host_signal(int sig) +{ + if (sig < 1 || sig > TARGET_NSIG) { + return sig; + } + return target_to_host_signal_table[sig]; +} + +static inline void target_sigaddset(target_sigset_t *set, int signum) +{ + signum--; + abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); + set->sig[signum / TARGET_NSIG_BPW] |= mask; +} + +static inline int target_sigismember(const target_sigset_t *set, int signum) +{ + signum--; + abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); + return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); +} + +void host_to_target_sigset_internal(target_sigset_t *d, + const sigset_t *s) +{ + int host_sig, target_sig; + target_sigemptyset(d); + for (host_sig = 1; host_sig < _NSIG; host_sig++) { + target_sig = host_to_target_signal(host_sig); + if (target_sig < 1 || target_sig > TARGET_NSIG) { + continue; + } + if (sigismember(s, host_sig)) { + target_sigaddset(d, target_sig); + } + } +} + +void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) +{ + target_sigset_t d1; + int i; + + host_to_target_sigset_internal(&d1, s); + for(i = 0;i < TARGET_NSIG_WORDS; i++) + d->sig[i] = tswapal(d1.sig[i]); +} + +void target_to_host_sigset_internal(sigset_t *d, + const target_sigset_t *s) +{ + int host_sig, target_sig; + sigemptyset(d); + for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { + host_sig = target_to_host_signal(target_sig); + if (host_sig < 1 || host_sig >= _NSIG) { + continue; + } + if (target_sigismember(s, target_sig)) { + sigaddset(d, host_sig); + } + } +} + +void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) +{ + target_sigset_t s1; + int i; + + for(i = 0;i < TARGET_NSIG_WORDS; i++) + s1.sig[i] = tswapal(s->sig[i]); + target_to_host_sigset_internal(d, &s1); +} + +void host_to_target_old_sigset(abi_ulong *old_sigset, + const sigset_t *sigset) +{ + target_sigset_t d; + host_to_target_sigset(&d, sigset); + *old_sigset = d.sig[0]; +} + +void target_to_host_old_sigset(sigset_t *sigset, + const abi_ulong *old_sigset) +{ + target_sigset_t d; + int i; + + d.sig[0] = *old_sigset; + for(i = 1;i < TARGET_NSIG_WORDS; i++) + d.sig[i] = 0; + target_to_host_sigset(sigset, &d); +} + +int block_signals(void) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + sigset_t set; + + /* It's OK to block everything including SIGSEGV, because we won't + * run any further guest code before unblocking signals in + * process_pending_signals(). + */ + sigfillset(&set); + sigprocmask(SIG_SETMASK, &set, 0); + + return qatomic_xchg(&ts->signal_pending, 1); +} + +/* Wrapper for sigprocmask function + * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset + * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if + * a signal was already pending and the syscall must be restarted, or + * 0 on success. + * If set is NULL, this is guaranteed not to fail. + */ +int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + + if (oldset) { + *oldset = ts->signal_mask; + } + + if (set) { + int i; + + if (block_signals()) { + return -TARGET_ERESTARTSYS; + } + + switch (how) { + case SIG_BLOCK: + sigorset(&ts->signal_mask, &ts->signal_mask, set); + break; + case SIG_UNBLOCK: + for (i = 1; i <= NSIG; ++i) { + if (sigismember(set, i)) { + sigdelset(&ts->signal_mask, i); + } + } + break; + case SIG_SETMASK: + ts->signal_mask = *set; + break; + default: + g_assert_not_reached(); + } + + /* Silently ignore attempts to change blocking status of KILL or STOP */ + sigdelset(&ts->signal_mask, SIGKILL); + sigdelset(&ts->signal_mask, SIGSTOP); + } + return 0; +} + +#if !defined(TARGET_NIOS2) +/* Just set the guest's signal mask to the specified value; the + * caller is assumed to have called block_signals() already. + */ +void set_sigmask(const sigset_t *set) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + + ts->signal_mask = *set; +} +#endif + +/* sigaltstack management */ + +int on_sig_stack(unsigned long sp) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + + return (sp - ts->sigaltstack_used.ss_sp + < ts->sigaltstack_used.ss_size); +} + +int sas_ss_flags(unsigned long sp) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + + return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE + : on_sig_stack(sp) ? SS_ONSTACK : 0); +} + +abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) +{ + /* + * This is the X/Open sanctioned signal stack switching. + */ + TaskState *ts = (TaskState *)thread_cpu->opaque; + + if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { + return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; + } + return sp; +} + +void target_save_altstack(target_stack_t *uss, CPUArchState *env) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + + __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); + __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); + __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); +} + +abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + size_t minstacksize = TARGET_MINSIGSTKSZ; + target_stack_t ss; + +#if defined(TARGET_PPC64) + /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ + struct image_info *image = ts->info; + if (get_ppc64_abi(image) > 1) { + minstacksize = 4096; + } +#endif + + __get_user(ss.ss_sp, &uss->ss_sp); + __get_user(ss.ss_size, &uss->ss_size); + __get_user(ss.ss_flags, &uss->ss_flags); + + if (on_sig_stack(get_sp_from_cpustate(env))) { + return -TARGET_EPERM; + } + + switch (ss.ss_flags) { + default: + return -TARGET_EINVAL; + + case TARGET_SS_DISABLE: + ss.ss_size = 0; + ss.ss_sp = 0; + break; + + case TARGET_SS_ONSTACK: + case 0: + if (ss.ss_size < minstacksize) { + return -TARGET_ENOMEM; + } + break; + } + + ts->sigaltstack_used.ss_sp = ss.ss_sp; + ts->sigaltstack_used.ss_size = ss.ss_size; + return 0; +} + +/* siginfo conversion */ + +static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, + const siginfo_t *info) +{ + int sig = host_to_target_signal(info->si_signo); + int si_code = info->si_code; + int si_type; + tinfo->si_signo = sig; + tinfo->si_errno = 0; + tinfo->si_code = info->si_code; + + /* This memset serves two purposes: + * (1) ensure we don't leak random junk to the guest later + * (2) placate false positives from gcc about fields + * being used uninitialized if it chooses to inline both this + * function and tswap_siginfo() into host_to_target_siginfo(). + */ + memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); + + /* This is awkward, because we have to use a combination of + * the si_code and si_signo to figure out which of the union's + * members are valid. (Within the host kernel it is always possible + * to tell, but the kernel carefully avoids giving userspace the + * high 16 bits of si_code, so we don't have the information to + * do this the easy way...) We therefore make our best guess, + * bearing in mind that a guest can spoof most of the si_codes + * via rt_sigqueueinfo() if it likes. + * + * Once we have made our guess, we record it in the top 16 bits of + * the si_code, so that tswap_siginfo() later can use it. + * tswap_siginfo() will strip these top bits out before writing + * si_code to the guest (sign-extending the lower bits). + */ + + switch (si_code) { + case SI_USER: + case SI_TKILL: + case SI_KERNEL: + /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. + * These are the only unspoofable si_code values. + */ + tinfo->_sifields._kill._pid = info->si_pid; + tinfo->_sifields._kill._uid = info->si_uid; + si_type = QEMU_SI_KILL; + break; + default: + /* Everything else is spoofable. Make best guess based on signal */ + switch (sig) { + case TARGET_SIGCHLD: + tinfo->_sifields._sigchld._pid = info->si_pid; + tinfo->_sifields._sigchld._uid = info->si_uid; + tinfo->_sifields._sigchld._status = info->si_status; + tinfo->_sifields._sigchld._utime = info->si_utime; + tinfo->_sifields._sigchld._stime = info->si_stime; + si_type = QEMU_SI_CHLD; + break; + case TARGET_SIGIO: + tinfo->_sifields._sigpoll._band = info->si_band; + tinfo->_sifields._sigpoll._fd = info->si_fd; + si_type = QEMU_SI_POLL; + break; + default: + /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ + tinfo->_sifields._rt._pid = info->si_pid; + tinfo->_sifields._rt._uid = info->si_uid; + /* XXX: potential problem if 64 bit */ + tinfo->_sifields._rt._sigval.sival_ptr + = (abi_ulong)(unsigned long)info->si_value.sival_ptr; + si_type = QEMU_SI_RT; + break; + } + break; + } + + tinfo->si_code = deposit32(si_code, 16, 16, si_type); +} + +void tswap_siginfo(target_siginfo_t *tinfo, + const target_siginfo_t *info) +{ + int si_type = extract32(info->si_code, 16, 16); + int si_code = sextract32(info->si_code, 0, 16); + + __put_user(info->si_signo, &tinfo->si_signo); + __put_user(info->si_errno, &tinfo->si_errno); + __put_user(si_code, &tinfo->si_code); + + /* We can use our internal marker of which fields in the structure + * are valid, rather than duplicating the guesswork of + * host_to_target_siginfo_noswap() here. + */ + switch (si_type) { + case QEMU_SI_KILL: + __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); + __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); + break; + case QEMU_SI_TIMER: + __put_user(info->_sifields._timer._timer1, + &tinfo->_sifields._timer._timer1); + __put_user(info->_sifields._timer._timer2, + &tinfo->_sifields._timer._timer2); + break; + case QEMU_SI_POLL: + __put_user(info->_sifields._sigpoll._band, + &tinfo->_sifields._sigpoll._band); + __put_user(info->_sifields._sigpoll._fd, + &tinfo->_sifields._sigpoll._fd); + break; + case QEMU_SI_FAULT: + __put_user(info->_sifields._sigfault._addr, + &tinfo->_sifields._sigfault._addr); + break; + case QEMU_SI_CHLD: + __put_user(info->_sifields._sigchld._pid, + &tinfo->_sifields._sigchld._pid); + __put_user(info->_sifields._sigchld._uid, + &tinfo->_sifields._sigchld._uid); + __put_user(info->_sifields._sigchld._status, + &tinfo->_sifields._sigchld._status); + __put_user(info->_sifields._sigchld._utime, + &tinfo->_sifields._sigchld._utime); + __put_user(info->_sifields._sigchld._stime, + &tinfo->_sifields._sigchld._stime); + break; + case QEMU_SI_RT: + __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); + __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); + __put_user(info->_sifields._rt._sigval.sival_ptr, + &tinfo->_sifields._rt._sigval.sival_ptr); + break; + default: + g_assert_not_reached(); + } +} + +void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) +{ + target_siginfo_t tgt_tmp; + host_to_target_siginfo_noswap(&tgt_tmp, info); + tswap_siginfo(tinfo, &tgt_tmp); +} + +/* XXX: we support only POSIX RT signals are used. */ +/* XXX: find a solution for 64 bit (additional malloced data is needed) */ +void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) +{ + /* This conversion is used only for the rt_sigqueueinfo syscall, + * and so we know that the _rt fields are the valid ones. + */ + abi_ulong sival_ptr; + + __get_user(info->si_signo, &tinfo->si_signo); + __get_user(info->si_errno, &tinfo->si_errno); + __get_user(info->si_code, &tinfo->si_code); + __get_user(info->si_pid, &tinfo->_sifields._rt._pid); + __get_user(info->si_uid, &tinfo->_sifields._rt._uid); + __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); + info->si_value.sival_ptr = (void *)(long)sival_ptr; +} + +static int fatal_signal (int sig) +{ + switch (sig) { + case TARGET_SIGCHLD: + case TARGET_SIGURG: + case TARGET_SIGWINCH: + /* Ignored by default. */ + return 0; + case TARGET_SIGCONT: + case TARGET_SIGSTOP: + case TARGET_SIGTSTP: + case TARGET_SIGTTIN: + case TARGET_SIGTTOU: + /* Job control signals. */ + return 0; + default: + return 1; + } +} + +/* returns 1 if given signal should dump core if not handled */ +static int core_dump_signal(int sig) +{ + switch (sig) { + case TARGET_SIGABRT: + case TARGET_SIGFPE: + case TARGET_SIGILL: + case TARGET_SIGQUIT: + case TARGET_SIGSEGV: + case TARGET_SIGTRAP: + case TARGET_SIGBUS: + return (1); + default: + return (0); + } +} + +static void signal_table_init(void) +{ + int host_sig, target_sig, count; + + /* + * Signals are supported starting from TARGET_SIGRTMIN and going up + * until we run out of host realtime signals. + * glibc at least uses only the lower 2 rt signals and probably + * nobody's using the upper ones. + * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) + * To fix this properly we need to do manual signal delivery multiplexed + * over a single host signal. + * Attempts for configure "missing" signals via sigaction will be + * silently ignored. + */ + for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { + target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; + if (target_sig <= TARGET_NSIG) { + host_to_target_signal_table[host_sig] = target_sig; + } + } + + /* generate signal conversion tables */ + for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { + target_to_host_signal_table[target_sig] = _NSIG; /* poison */ + } + for (host_sig = 1; host_sig < _NSIG; host_sig++) { + if (host_to_target_signal_table[host_sig] == 0) { + host_to_target_signal_table[host_sig] = host_sig; + } + target_sig = host_to_target_signal_table[host_sig]; + if (target_sig <= TARGET_NSIG) { + target_to_host_signal_table[target_sig] = host_sig; + } + } + + if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { + for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { + if (target_to_host_signal_table[target_sig] == _NSIG) { + count++; + } + } + trace_signal_table_init(count); + } +} + +void signal_init(void) +{ + TaskState *ts = (TaskState *)thread_cpu->opaque; + struct sigaction act; + struct sigaction oact; + int i; + int host_sig; + + /* initialize signal conversion tables */ + signal_table_init(); + + /* Set the signal mask from the host mask. */ + sigprocmask(0, 0, &ts->signal_mask); + + sigfillset(&act.sa_mask); + act.sa_flags = SA_SIGINFO; + act.sa_sigaction = host_signal_handler; + for(i = 1; i <= TARGET_NSIG; i++) { +#ifdef CONFIG_GPROF + if (i == TARGET_SIGPROF) { + continue; + } +#endif + host_sig = target_to_host_signal(i); + sigaction(host_sig, NULL, &oact); + if (oact.sa_sigaction == (void *)SIG_IGN) { + sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; + } else if (oact.sa_sigaction == (void *)SIG_DFL) { + sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; + } + /* If there's already a handler installed then something has + gone horribly wrong, so don't even try to handle that case. */ + /* Install some handlers for our own use. We need at least + SIGSEGV and SIGBUS, to detect exceptions. We can not just + trap all signals because it affects syscall interrupt + behavior. But do trap all default-fatal signals. */ + if (fatal_signal (i)) + sigaction(host_sig, &act, NULL); + } +} + +/* Force a synchronously taken signal. The kernel force_sig() function + * also forces the signal to "not blocked, not ignored", but for QEMU + * that work is done in process_pending_signals(). + */ +void force_sig(int sig) +{ + CPUState *cpu = thread_cpu; + CPUArchState *env = cpu->env_ptr; + target_siginfo_t info = {}; + + info.si_signo = sig; + info.si_errno = 0; + info.si_code = TARGET_SI_KERNEL; + info._sifields._kill._pid = 0; + info._sifields._kill._uid = 0; + queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); +} + +/* + * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the + * 'force' part is handled in process_pending_signals(). + */ +void force_sig_fault(int sig, int code, abi_ulong addr) +{ + CPUState *cpu = thread_cpu; + CPUArchState *env = cpu->env_ptr; + target_siginfo_t info = {}; + + info.si_signo = sig; + info.si_errno = 0; + info.si_code = code; + info._sifields._sigfault._addr = addr; + queue_signal(env, sig, QEMU_SI_FAULT, &info); +} + +/* Force a SIGSEGV if we couldn't write to memory trying to set + * up the signal frame. oldsig is the signal we were trying to handle + * at the point of failure. + */ +#if !defined(TARGET_RISCV) +void force_sigsegv(int oldsig) +{ + if (oldsig == SIGSEGV) { + /* Make sure we don't try to deliver the signal again; this will + * end up with handle_pending_signal() calling dump_core_and_abort(). + */ + sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; + } + force_sig(TARGET_SIGSEGV); +} +#endif + +void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, + MMUAccessType access_type, bool maperr, uintptr_t ra) +{ + const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; + + if (tcg_ops->record_sigsegv) { + tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); + } + + force_sig_fault(TARGET_SIGSEGV, + maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, + addr); + cpu->exception_index = EXCP_INTERRUPT; + cpu_loop_exit_restore(cpu, ra); +} + +void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, + MMUAccessType access_type, uintptr_t ra) +{ + const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; + + if (tcg_ops->record_sigbus) { + tcg_ops->record_sigbus(cpu, addr, access_type, ra); + } + + force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); + cpu->exception_index = EXCP_INTERRUPT; + cpu_loop_exit_restore(cpu, ra); +} + +/* abort execution with signal */ +static void QEMU_NORETURN dump_core_and_abort(int target_sig) +{ + CPUState *cpu = thread_cpu; + CPUArchState *env = cpu->env_ptr; + TaskState *ts = (TaskState *)cpu->opaque; + int host_sig, core_dumped = 0; + struct sigaction act; + + host_sig = target_to_host_signal(target_sig); + trace_user_force_sig(env, target_sig, host_sig); + gdb_signalled(env, target_sig); + + /* dump core if supported by target binary format */ + if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { + stop_all_tasks(); + core_dumped = + ((*ts->bprm->core_dump)(target_sig, env) == 0); + } + if (core_dumped) { + /* we already dumped the core of target process, we don't want + * a coredump of qemu itself */ + struct rlimit nodump; + getrlimit(RLIMIT_CORE, &nodump); + nodump.rlim_cur=0; + setrlimit(RLIMIT_CORE, &nodump); + (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", + target_sig, strsignal(host_sig), "core dumped" ); + } + + /* The proper exit code for dying from an uncaught signal is + * -<signal>. The kernel doesn't allow exit() or _exit() to pass + * a negative value. To get the proper exit code we need to + * actually die from an uncaught signal. Here the default signal + * handler is installed, we send ourself a signal and we wait for + * it to arrive. */ + sigfillset(&act.sa_mask); + act.sa_handler = SIG_DFL; + act.sa_flags = 0; + sigaction(host_sig, &act, NULL); + + /* For some reason raise(host_sig) doesn't send the signal when + * statically linked on x86-64. */ + kill(getpid(), host_sig); + + /* Make sure the signal isn't masked (just reuse the mask inside + of act) */ + sigdelset(&act.sa_mask, host_sig); + sigsuspend(&act.sa_mask); + + /* unreachable */ + abort(); +} + +/* queue a signal so that it will be send to the virtual CPU as soon + as possible */ +int queue_signal(CPUArchState *env, int sig, int si_type, + target_siginfo_t *info) +{ + CPUState *cpu = env_cpu(env); + TaskState *ts = cpu->opaque; + + trace_user_queue_signal(env, sig); + + info->si_code = deposit32(info->si_code, 16, 16, si_type); + + ts->sync_signal.info = *info; + ts->sync_signal.pending = sig; + /* signal that a new signal is pending */ + qatomic_set(&ts->signal_pending, 1); + return 1; /* indicates that the signal was queued */ +} + + +/* Adjust the signal context to rewind out of safe-syscall if we're in it */ +static inline void rewind_if_in_safe_syscall(void *puc) +{ +#ifdef HAVE_SAFE_SYSCALL + ucontext_t *uc = (ucontext_t *)puc; + uintptr_t pcreg = host_signal_pc(uc); + + if (pcreg > (uintptr_t)safe_syscall_start + && pcreg < (uintptr_t)safe_syscall_end) { + host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); + } +#endif +} + +static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) +{ + CPUArchState *env = thread_cpu->env_ptr; + CPUState *cpu = env_cpu(env); + TaskState *ts = cpu->opaque; + target_siginfo_t tinfo; + ucontext_t *uc = puc; + struct emulated_sigtable *k; + int guest_sig; + uintptr_t pc = 0; + bool sync_sig = false; + + /* + * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special + * handling wrt signal blocking and unwinding. + */ + if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { + MMUAccessType access_type; + uintptr_t host_addr; + abi_ptr guest_addr; + bool is_write; + + host_addr = (uintptr_t)info->si_addr; + + /* + * Convert forcefully to guest address space: addresses outside + * reserved_va are still valid to report via SEGV_MAPERR. + */ + guest_addr = h2g_nocheck(host_addr); + + pc = host_signal_pc(uc); + is_write = host_signal_write(info, uc); + access_type = adjust_signal_pc(&pc, is_write); + + if (host_sig == SIGSEGV) { + bool maperr = true; + + if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { + /* If this was a write to a TB protected page, restart. */ + if (is_write && + handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, + pc, guest_addr)) { + return; + } + + /* + * With reserved_va, the whole address space is PROT_NONE, + * which means that we may get ACCERR when we want MAPERR. + */ + if (page_get_flags(guest_addr) & PAGE_VALID) { + maperr = false; + } else { + info->si_code = SEGV_MAPERR; + } + } + + sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); + cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); + } else { + sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); + if (info->si_code == BUS_ADRALN) { + cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); + } + } + + sync_sig = true; + } + + /* get target signal number */ + guest_sig = host_to_target_signal(host_sig); + if (guest_sig < 1 || guest_sig > TARGET_NSIG) { + return; + } + trace_user_host_signal(env, host_sig, guest_sig); + + host_to_target_siginfo_noswap(&tinfo, info); + k = &ts->sigtab[guest_sig - 1]; + k->info = tinfo; + k->pending = guest_sig; + ts->signal_pending = 1; + + /* + * For synchronous signals, unwind the cpu state to the faulting + * insn and then exit back to the main loop so that the signal + * is delivered immediately. + */ + if (sync_sig) { + cpu->exception_index = EXCP_INTERRUPT; + cpu_loop_exit_restore(cpu, pc); + } + + rewind_if_in_safe_syscall(puc); + + /* + * Block host signals until target signal handler entered. We + * can't block SIGSEGV or SIGBUS while we're executing guest + * code in case the guest code provokes one in the window between + * now and it getting out to the main loop. Signals will be + * unblocked again in process_pending_signals(). + * + * WARNING: we cannot use sigfillset() here because the uc_sigmask + * field is a kernel sigset_t, which is much smaller than the + * libc sigset_t which sigfillset() operates on. Using sigfillset() + * would write 0xff bytes off the end of the structure and trash + * data on the struct. + * We can't use sizeof(uc->uc_sigmask) either, because the libc + * headers define the struct field with the wrong (too large) type. + */ + memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE); + sigdelset(&uc->uc_sigmask, SIGSEGV); + sigdelset(&uc->uc_sigmask, SIGBUS); + + /* interrupt the virtual CPU as soon as possible */ + cpu_exit(thread_cpu); +} + +/* do_sigaltstack() returns target values and errnos. */ +/* compare linux/kernel/signal.c:do_sigaltstack() */ +abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, + CPUArchState *env) +{ + target_stack_t oss, *uoss = NULL; + abi_long ret = -TARGET_EFAULT; + + if (uoss_addr) { + /* Verify writability now, but do not alter user memory yet. */ + if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { + goto out; + } + target_save_altstack(&oss, env); + } + + if (uss_addr) { + target_stack_t *uss; + + if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { + goto out; + } + ret = target_restore_altstack(uss, env); + if (ret) { + goto out; + } + } + + if (uoss_addr) { + memcpy(uoss, &oss, sizeof(oss)); + unlock_user_struct(uoss, uoss_addr, 1); + uoss = NULL; + } + ret = 0; + + out: + if (uoss) { + unlock_user_struct(uoss, uoss_addr, 0); + } + return ret; +} + +/* do_sigaction() return target values and host errnos */ +int do_sigaction(int sig, const struct target_sigaction *act, + struct target_sigaction *oact, abi_ulong ka_restorer) +{ + struct target_sigaction *k; + struct sigaction act1; + int host_sig; + int ret = 0; + + trace_signal_do_sigaction_guest(sig, TARGET_NSIG); + + if (sig < 1 || sig > TARGET_NSIG) { + return -TARGET_EINVAL; + } + + if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { + return -TARGET_EINVAL; + } + + if (block_signals()) { + return -TARGET_ERESTARTSYS; + } + + k = &sigact_table[sig - 1]; + if (oact) { + __put_user(k->_sa_handler, &oact->_sa_handler); + __put_user(k->sa_flags, &oact->sa_flags); +#ifdef TARGET_ARCH_HAS_SA_RESTORER + __put_user(k->sa_restorer, &oact->sa_restorer); +#endif + /* Not swapped. */ + oact->sa_mask = k->sa_mask; + } + if (act) { + /* FIXME: This is not threadsafe. */ + __get_user(k->_sa_handler, &act->_sa_handler); + __get_user(k->sa_flags, &act->sa_flags); +#ifdef TARGET_ARCH_HAS_SA_RESTORER + __get_user(k->sa_restorer, &act->sa_restorer); +#endif +#ifdef TARGET_ARCH_HAS_KA_RESTORER + k->ka_restorer = ka_restorer; +#endif + /* To be swapped in target_to_host_sigset. */ + k->sa_mask = act->sa_mask; + + /* we update the host linux signal state */ + host_sig = target_to_host_signal(sig); + trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); + if (host_sig > SIGRTMAX) { + /* we don't have enough host signals to map all target signals */ + qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", + sig); + /* + * we don't return an error here because some programs try to + * register an handler for all possible rt signals even if they + * don't need it. + * An error here can abort them whereas there can be no problem + * to not have the signal available later. + * This is the case for golang, + * See https://github.com/golang/go/issues/33746 + * So we silently ignore the error. + */ + return 0; + } + if (host_sig != SIGSEGV && host_sig != SIGBUS) { + sigfillset(&act1.sa_mask); + act1.sa_flags = SA_SIGINFO; + if (k->sa_flags & TARGET_SA_RESTART) + act1.sa_flags |= SA_RESTART; + /* NOTE: it is important to update the host kernel signal + ignore state to avoid getting unexpected interrupted + syscalls */ + if (k->_sa_handler == TARGET_SIG_IGN) { + act1.sa_sigaction = (void *)SIG_IGN; + } else if (k->_sa_handler == TARGET_SIG_DFL) { + if (fatal_signal (sig)) + act1.sa_sigaction = host_signal_handler; + else + act1.sa_sigaction = (void *)SIG_DFL; + } else { + act1.sa_sigaction = host_signal_handler; + } + ret = sigaction(host_sig, &act1, NULL); + } + } + return ret; +} + +static void handle_pending_signal(CPUArchState *cpu_env, int sig, + struct emulated_sigtable *k) +{ + CPUState *cpu = env_cpu(cpu_env); + abi_ulong handler; + sigset_t set; + target_sigset_t target_old_set; + struct target_sigaction *sa; + TaskState *ts = cpu->opaque; + + trace_user_handle_signal(cpu_env, sig); + /* dequeue signal */ + k->pending = 0; + + sig = gdb_handlesig(cpu, sig); + if (!sig) { + sa = NULL; + handler = TARGET_SIG_IGN; + } else { + sa = &sigact_table[sig - 1]; + handler = sa->_sa_handler; + } + + if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { + print_taken_signal(sig, &k->info); + } + + if (handler == TARGET_SIG_DFL) { + /* default handler : ignore some signal. The other are job control or fatal */ + if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { + kill(getpid(),SIGSTOP); + } else if (sig != TARGET_SIGCHLD && + sig != TARGET_SIGURG && + sig != TARGET_SIGWINCH && + sig != TARGET_SIGCONT) { + dump_core_and_abort(sig); + } + } else if (handler == TARGET_SIG_IGN) { + /* ignore sig */ + } else if (handler == TARGET_SIG_ERR) { + dump_core_and_abort(sig); + } else { + /* compute the blocked signals during the handler execution */ + sigset_t *blocked_set; + + target_to_host_sigset(&set, &sa->sa_mask); + /* SA_NODEFER indicates that the current signal should not be + blocked during the handler */ + if (!(sa->sa_flags & TARGET_SA_NODEFER)) + sigaddset(&set, target_to_host_signal(sig)); + + /* save the previous blocked signal state to restore it at the + end of the signal execution (see do_sigreturn) */ + host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); + + /* block signals in the handler */ + blocked_set = ts->in_sigsuspend ? + &ts->sigsuspend_mask : &ts->signal_mask; + sigorset(&ts->signal_mask, blocked_set, &set); + ts->in_sigsuspend = 0; + + /* if the CPU is in VM86 mode, we restore the 32 bit values */ +#if defined(TARGET_I386) && !defined(TARGET_X86_64) + { + CPUX86State *env = cpu_env; + if (env->eflags & VM_MASK) + save_v86_state(env); + } +#endif + /* prepare the stack frame of the virtual CPU */ +#if defined(TARGET_ARCH_HAS_SETUP_FRAME) + if (sa->sa_flags & TARGET_SA_SIGINFO) { + setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); + } else { + setup_frame(sig, sa, &target_old_set, cpu_env); + } +#else + /* These targets do not have traditional signals. */ + setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); +#endif + if (sa->sa_flags & TARGET_SA_RESETHAND) { + sa->_sa_handler = TARGET_SIG_DFL; + } + } +} + +void process_pending_signals(CPUArchState *cpu_env) +{ + CPUState *cpu = env_cpu(cpu_env); + int sig; + TaskState *ts = cpu->opaque; + sigset_t set; + sigset_t *blocked_set; + + while (qatomic_read(&ts->signal_pending)) { + /* FIXME: This is not threadsafe. */ + sigfillset(&set); + sigprocmask(SIG_SETMASK, &set, 0); + + restart_scan: + sig = ts->sync_signal.pending; + if (sig) { + /* Synchronous signals are forced, + * see force_sig_info() and callers in Linux + * Note that not all of our queue_signal() calls in QEMU correspond + * to force_sig_info() calls in Linux (some are send_sig_info()). + * However it seems like a kernel bug to me to allow the process + * to block a synchronous signal since it could then just end up + * looping round and round indefinitely. + */ + if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) + || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { + sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); + sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; + } + + handle_pending_signal(cpu_env, sig, &ts->sync_signal); + } + + for (sig = 1; sig <= TARGET_NSIG; sig++) { + blocked_set = ts->in_sigsuspend ? + &ts->sigsuspend_mask : &ts->signal_mask; + + if (ts->sigtab[sig - 1].pending && + (!sigismember(blocked_set, + target_to_host_signal_table[sig]))) { + handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); + /* Restart scan from the beginning, as handle_pending_signal + * might have resulted in a new synchronous signal (eg SIGSEGV). + */ + goto restart_scan; + } + } + + /* if no signal is pending, unblock signals and recheck (the act + * of unblocking might cause us to take another host signal which + * will set signal_pending again). + */ + qatomic_set(&ts->signal_pending, 0); + ts->in_sigsuspend = 0; + set = ts->signal_mask; + sigdelset(&set, SIGSEGV); + sigdelset(&set, SIGBUS); + sigprocmask(SIG_SETMASK, &set, 0); + } + ts->in_sigsuspend = 0; +} |