aboutsummaryrefslogtreecommitdiffstats
path: root/migration/postcopy-ram.c
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /migration/postcopy-ram.c
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'migration/postcopy-ram.c')
-rw-r--r--migration/postcopy-ram.c1471
1 files changed, 1471 insertions, 0 deletions
diff --git a/migration/postcopy-ram.c b/migration/postcopy-ram.c
new file mode 100644
index 000000000..d18b5d05b
--- /dev/null
+++ b/migration/postcopy-ram.c
@@ -0,0 +1,1471 @@
+/*
+ * Postcopy migration for RAM
+ *
+ * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
+ *
+ * Authors:
+ * Dave Gilbert <dgilbert@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+/*
+ * Postcopy is a migration technique where the execution flips from the
+ * source to the destination before all the data has been copied.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/rcu.h"
+#include "exec/target_page.h"
+#include "migration.h"
+#include "qemu-file.h"
+#include "savevm.h"
+#include "postcopy-ram.h"
+#include "ram.h"
+#include "qapi/error.h"
+#include "qemu/notify.h"
+#include "qemu/rcu.h"
+#include "sysemu/sysemu.h"
+#include "qemu/error-report.h"
+#include "trace.h"
+#include "hw/boards.h"
+#include "exec/ramblock.h"
+
+/* Arbitrary limit on size of each discard command,
+ * keeps them around ~200 bytes
+ */
+#define MAX_DISCARDS_PER_COMMAND 12
+
+struct PostcopyDiscardState {
+ const char *ramblock_name;
+ uint16_t cur_entry;
+ /*
+ * Start and length of a discard range (bytes)
+ */
+ uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
+ uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
+ unsigned int nsentwords;
+ unsigned int nsentcmds;
+};
+
+static NotifierWithReturnList postcopy_notifier_list;
+
+void postcopy_infrastructure_init(void)
+{
+ notifier_with_return_list_init(&postcopy_notifier_list);
+}
+
+void postcopy_add_notifier(NotifierWithReturn *nn)
+{
+ notifier_with_return_list_add(&postcopy_notifier_list, nn);
+}
+
+void postcopy_remove_notifier(NotifierWithReturn *n)
+{
+ notifier_with_return_remove(n);
+}
+
+int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
+{
+ struct PostcopyNotifyData pnd;
+ pnd.reason = reason;
+ pnd.errp = errp;
+
+ return notifier_with_return_list_notify(&postcopy_notifier_list,
+ &pnd);
+}
+
+/* Postcopy needs to detect accesses to pages that haven't yet been copied
+ * across, and efficiently map new pages in, the techniques for doing this
+ * are target OS specific.
+ */
+#if defined(__linux__)
+
+#include <poll.h>
+#include <sys/ioctl.h>
+#include <sys/syscall.h>
+#include <asm/types.h> /* for __u64 */
+#endif
+
+#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
+#include <sys/eventfd.h>
+#include <linux/userfaultfd.h>
+
+typedef struct PostcopyBlocktimeContext {
+ /* time when page fault initiated per vCPU */
+ uint32_t *page_fault_vcpu_time;
+ /* page address per vCPU */
+ uintptr_t *vcpu_addr;
+ uint32_t total_blocktime;
+ /* blocktime per vCPU */
+ uint32_t *vcpu_blocktime;
+ /* point in time when last page fault was initiated */
+ uint32_t last_begin;
+ /* number of vCPU are suspended */
+ int smp_cpus_down;
+ uint64_t start_time;
+
+ /*
+ * Handler for exit event, necessary for
+ * releasing whole blocktime_ctx
+ */
+ Notifier exit_notifier;
+} PostcopyBlocktimeContext;
+
+static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
+{
+ g_free(ctx->page_fault_vcpu_time);
+ g_free(ctx->vcpu_addr);
+ g_free(ctx->vcpu_blocktime);
+ g_free(ctx);
+}
+
+static void migration_exit_cb(Notifier *n, void *data)
+{
+ PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
+ exit_notifier);
+ destroy_blocktime_context(ctx);
+}
+
+static struct PostcopyBlocktimeContext *blocktime_context_new(void)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+ unsigned int smp_cpus = ms->smp.cpus;
+ PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
+ ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
+ ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
+ ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
+
+ ctx->exit_notifier.notify = migration_exit_cb;
+ ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
+ qemu_add_exit_notifier(&ctx->exit_notifier);
+ return ctx;
+}
+
+static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+ uint32List *list = NULL;
+ int i;
+
+ for (i = ms->smp.cpus - 1; i >= 0; i--) {
+ QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
+ }
+
+ return list;
+}
+
+/*
+ * This function just populates MigrationInfo from postcopy's
+ * blocktime context. It will not populate MigrationInfo,
+ * unless postcopy-blocktime capability was set.
+ *
+ * @info: pointer to MigrationInfo to populate
+ */
+void fill_destination_postcopy_migration_info(MigrationInfo *info)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
+
+ if (!bc) {
+ return;
+ }
+
+ info->has_postcopy_blocktime = true;
+ info->postcopy_blocktime = bc->total_blocktime;
+ info->has_postcopy_vcpu_blocktime = true;
+ info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
+}
+
+static uint32_t get_postcopy_total_blocktime(void)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
+
+ if (!bc) {
+ return 0;
+ }
+
+ return bc->total_blocktime;
+}
+
+/**
+ * receive_ufd_features: check userfault fd features, to request only supported
+ * features in the future.
+ *
+ * Returns: true on success
+ *
+ * __NR_userfaultfd - should be checked before
+ * @features: out parameter will contain uffdio_api.features provided by kernel
+ * in case of success
+ */
+static bool receive_ufd_features(uint64_t *features)
+{
+ struct uffdio_api api_struct = {0};
+ int ufd;
+ bool ret = true;
+
+ /* if we are here __NR_userfaultfd should exists */
+ ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
+ if (ufd == -1) {
+ error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
+ strerror(errno));
+ return false;
+ }
+
+ /* ask features */
+ api_struct.api = UFFD_API;
+ api_struct.features = 0;
+ if (ioctl(ufd, UFFDIO_API, &api_struct)) {
+ error_report("%s: UFFDIO_API failed: %s", __func__,
+ strerror(errno));
+ ret = false;
+ goto release_ufd;
+ }
+
+ *features = api_struct.features;
+
+release_ufd:
+ close(ufd);
+ return ret;
+}
+
+/**
+ * request_ufd_features: this function should be called only once on a newly
+ * opened ufd, subsequent calls will lead to error.
+ *
+ * Returns: true on success
+ *
+ * @ufd: fd obtained from userfaultfd syscall
+ * @features: bit mask see UFFD_API_FEATURES
+ */
+static bool request_ufd_features(int ufd, uint64_t features)
+{
+ struct uffdio_api api_struct = {0};
+ uint64_t ioctl_mask;
+
+ api_struct.api = UFFD_API;
+ api_struct.features = features;
+ if (ioctl(ufd, UFFDIO_API, &api_struct)) {
+ error_report("%s failed: UFFDIO_API failed: %s", __func__,
+ strerror(errno));
+ return false;
+ }
+
+ ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
+ (__u64)1 << _UFFDIO_UNREGISTER;
+ if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
+ error_report("Missing userfault features: %" PRIx64,
+ (uint64_t)(~api_struct.ioctls & ioctl_mask));
+ return false;
+ }
+
+ return true;
+}
+
+static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
+{
+ uint64_t asked_features = 0;
+ static uint64_t supported_features;
+
+ /*
+ * it's not possible to
+ * request UFFD_API twice per one fd
+ * userfault fd features is persistent
+ */
+ if (!supported_features) {
+ if (!receive_ufd_features(&supported_features)) {
+ error_report("%s failed", __func__);
+ return false;
+ }
+ }
+
+#ifdef UFFD_FEATURE_THREAD_ID
+ if (migrate_postcopy_blocktime() && mis &&
+ UFFD_FEATURE_THREAD_ID & supported_features) {
+ /* kernel supports that feature */
+ /* don't create blocktime_context if it exists */
+ if (!mis->blocktime_ctx) {
+ mis->blocktime_ctx = blocktime_context_new();
+ }
+
+ asked_features |= UFFD_FEATURE_THREAD_ID;
+ }
+#endif
+
+ /*
+ * request features, even if asked_features is 0, due to
+ * kernel expects UFFD_API before UFFDIO_REGISTER, per
+ * userfault file descriptor
+ */
+ if (!request_ufd_features(ufd, asked_features)) {
+ error_report("%s failed: features %" PRIu64, __func__,
+ asked_features);
+ return false;
+ }
+
+ if (qemu_real_host_page_size != ram_pagesize_summary()) {
+ bool have_hp = false;
+ /* We've got a huge page */
+#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
+ have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
+#endif
+ if (!have_hp) {
+ error_report("Userfault on this host does not support huge pages");
+ return false;
+ }
+ }
+ return true;
+}
+
+/* Callback from postcopy_ram_supported_by_host block iterator.
+ */
+static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
+{
+ const char *block_name = qemu_ram_get_idstr(rb);
+ ram_addr_t length = qemu_ram_get_used_length(rb);
+ size_t pagesize = qemu_ram_pagesize(rb);
+
+ if (length % pagesize) {
+ error_report("Postcopy requires RAM blocks to be a page size multiple,"
+ " block %s is 0x" RAM_ADDR_FMT " bytes with a "
+ "page size of 0x%zx", block_name, length, pagesize);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Note: This has the side effect of munlock'ing all of RAM, that's
+ * normally fine since if the postcopy succeeds it gets turned back on at the
+ * end.
+ */
+bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
+{
+ long pagesize = qemu_real_host_page_size;
+ int ufd = -1;
+ bool ret = false; /* Error unless we change it */
+ void *testarea = NULL;
+ struct uffdio_register reg_struct;
+ struct uffdio_range range_struct;
+ uint64_t feature_mask;
+ Error *local_err = NULL;
+
+ if (qemu_target_page_size() > pagesize) {
+ error_report("Target page size bigger than host page size");
+ goto out;
+ }
+
+ ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
+ if (ufd == -1) {
+ error_report("%s: userfaultfd not available: %s", __func__,
+ strerror(errno));
+ goto out;
+ }
+
+ /* Give devices a chance to object */
+ if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
+ error_report_err(local_err);
+ goto out;
+ }
+
+ /* Version and features check */
+ if (!ufd_check_and_apply(ufd, mis)) {
+ goto out;
+ }
+
+ /* We don't support postcopy with shared RAM yet */
+ if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
+ goto out;
+ }
+
+ /*
+ * userfault and mlock don't go together; we'll put it back later if
+ * it was enabled.
+ */
+ if (munlockall()) {
+ error_report("%s: munlockall: %s", __func__, strerror(errno));
+ goto out;
+ }
+
+ /*
+ * We need to check that the ops we need are supported on anon memory
+ * To do that we need to register a chunk and see the flags that
+ * are returned.
+ */
+ testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_ANONYMOUS, -1, 0);
+ if (testarea == MAP_FAILED) {
+ error_report("%s: Failed to map test area: %s", __func__,
+ strerror(errno));
+ goto out;
+ }
+ g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
+
+ reg_struct.range.start = (uintptr_t)testarea;
+ reg_struct.range.len = pagesize;
+ reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
+
+ if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
+ error_report("%s userfault register: %s", __func__, strerror(errno));
+ goto out;
+ }
+
+ range_struct.start = (uintptr_t)testarea;
+ range_struct.len = pagesize;
+ if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
+ error_report("%s userfault unregister: %s", __func__, strerror(errno));
+ goto out;
+ }
+
+ feature_mask = (__u64)1 << _UFFDIO_WAKE |
+ (__u64)1 << _UFFDIO_COPY |
+ (__u64)1 << _UFFDIO_ZEROPAGE;
+ if ((reg_struct.ioctls & feature_mask) != feature_mask) {
+ error_report("Missing userfault map features: %" PRIx64,
+ (uint64_t)(~reg_struct.ioctls & feature_mask));
+ goto out;
+ }
+
+ /* Success! */
+ ret = true;
+out:
+ if (testarea) {
+ munmap(testarea, pagesize);
+ }
+ if (ufd != -1) {
+ close(ufd);
+ }
+ return ret;
+}
+
+/*
+ * Setup an area of RAM so that it *can* be used for postcopy later; this
+ * must be done right at the start prior to pre-copy.
+ * opaque should be the MIS.
+ */
+static int init_range(RAMBlock *rb, void *opaque)
+{
+ const char *block_name = qemu_ram_get_idstr(rb);
+ void *host_addr = qemu_ram_get_host_addr(rb);
+ ram_addr_t offset = qemu_ram_get_offset(rb);
+ ram_addr_t length = qemu_ram_get_used_length(rb);
+ trace_postcopy_init_range(block_name, host_addr, offset, length);
+
+ /*
+ * Save the used_length before running the guest. In case we have to
+ * resize RAM blocks when syncing RAM block sizes from the source during
+ * precopy, we'll update it manually via the ram block notifier.
+ */
+ rb->postcopy_length = length;
+
+ /*
+ * We need the whole of RAM to be truly empty for postcopy, so things
+ * like ROMs and any data tables built during init must be zero'd
+ * - we're going to get the copy from the source anyway.
+ * (Precopy will just overwrite this data, so doesn't need the discard)
+ */
+ if (ram_discard_range(block_name, 0, length)) {
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * At the end of migration, undo the effects of init_range
+ * opaque should be the MIS.
+ */
+static int cleanup_range(RAMBlock *rb, void *opaque)
+{
+ const char *block_name = qemu_ram_get_idstr(rb);
+ void *host_addr = qemu_ram_get_host_addr(rb);
+ ram_addr_t offset = qemu_ram_get_offset(rb);
+ ram_addr_t length = rb->postcopy_length;
+ MigrationIncomingState *mis = opaque;
+ struct uffdio_range range_struct;
+ trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
+
+ /*
+ * We turned off hugepage for the precopy stage with postcopy enabled
+ * we can turn it back on now.
+ */
+ qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
+
+ /*
+ * We can also turn off userfault now since we should have all the
+ * pages. It can be useful to leave it on to debug postcopy
+ * if you're not sure it's always getting every page.
+ */
+ range_struct.start = (uintptr_t)host_addr;
+ range_struct.len = length;
+
+ if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
+ error_report("%s: userfault unregister %s", __func__, strerror(errno));
+
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Initialise postcopy-ram, setting the RAM to a state where we can go into
+ * postcopy later; must be called prior to any precopy.
+ * called from arch_init's similarly named ram_postcopy_incoming_init
+ */
+int postcopy_ram_incoming_init(MigrationIncomingState *mis)
+{
+ if (foreach_not_ignored_block(init_range, NULL)) {
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * At the end of a migration where postcopy_ram_incoming_init was called.
+ */
+int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
+{
+ trace_postcopy_ram_incoming_cleanup_entry();
+
+ if (mis->have_fault_thread) {
+ Error *local_err = NULL;
+
+ /* Let the fault thread quit */
+ qatomic_set(&mis->fault_thread_quit, 1);
+ postcopy_fault_thread_notify(mis);
+ trace_postcopy_ram_incoming_cleanup_join();
+ qemu_thread_join(&mis->fault_thread);
+
+ if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
+ error_report_err(local_err);
+ return -1;
+ }
+
+ if (foreach_not_ignored_block(cleanup_range, mis)) {
+ return -1;
+ }
+
+ trace_postcopy_ram_incoming_cleanup_closeuf();
+ close(mis->userfault_fd);
+ close(mis->userfault_event_fd);
+ mis->have_fault_thread = false;
+ }
+
+ if (enable_mlock) {
+ if (os_mlock() < 0) {
+ error_report("mlock: %s", strerror(errno));
+ /*
+ * It doesn't feel right to fail at this point, we have a valid
+ * VM state.
+ */
+ }
+ }
+
+ if (mis->postcopy_tmp_page) {
+ munmap(mis->postcopy_tmp_page, mis->largest_page_size);
+ mis->postcopy_tmp_page = NULL;
+ }
+ if (mis->postcopy_tmp_zero_page) {
+ munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
+ mis->postcopy_tmp_zero_page = NULL;
+ }
+ trace_postcopy_ram_incoming_cleanup_blocktime(
+ get_postcopy_total_blocktime());
+
+ trace_postcopy_ram_incoming_cleanup_exit();
+ return 0;
+}
+
+/*
+ * Disable huge pages on an area
+ */
+static int nhp_range(RAMBlock *rb, void *opaque)
+{
+ const char *block_name = qemu_ram_get_idstr(rb);
+ void *host_addr = qemu_ram_get_host_addr(rb);
+ ram_addr_t offset = qemu_ram_get_offset(rb);
+ ram_addr_t length = rb->postcopy_length;
+ trace_postcopy_nhp_range(block_name, host_addr, offset, length);
+
+ /*
+ * Before we do discards we need to ensure those discards really
+ * do delete areas of the page, even if THP thinks a hugepage would
+ * be a good idea, so force hugepages off.
+ */
+ qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
+
+ return 0;
+}
+
+/*
+ * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
+ * however leaving it until after precopy means that most of the precopy
+ * data is still THPd
+ */
+int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
+{
+ if (foreach_not_ignored_block(nhp_range, mis)) {
+ return -1;
+ }
+
+ postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
+
+ return 0;
+}
+
+/*
+ * Mark the given area of RAM as requiring notification to unwritten areas
+ * Used as a callback on foreach_not_ignored_block.
+ * host_addr: Base of area to mark
+ * offset: Offset in the whole ram arena
+ * length: Length of the section
+ * opaque: MigrationIncomingState pointer
+ * Returns 0 on success
+ */
+static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
+{
+ MigrationIncomingState *mis = opaque;
+ struct uffdio_register reg_struct;
+
+ reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
+ reg_struct.range.len = rb->postcopy_length;
+ reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
+
+ /* Now tell our userfault_fd that it's responsible for this area */
+ if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
+ error_report("%s userfault register: %s", __func__, strerror(errno));
+ return -1;
+ }
+ if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
+ error_report("%s userfault: Region doesn't support COPY", __func__);
+ return -1;
+ }
+ if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
+ qemu_ram_set_uf_zeroable(rb);
+ }
+
+ return 0;
+}
+
+int postcopy_wake_shared(struct PostCopyFD *pcfd,
+ uint64_t client_addr,
+ RAMBlock *rb)
+{
+ size_t pagesize = qemu_ram_pagesize(rb);
+ struct uffdio_range range;
+ int ret;
+ trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
+ range.start = ROUND_DOWN(client_addr, pagesize);
+ range.len = pagesize;
+ ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
+ if (ret) {
+ error_report("%s: Failed to wake: %zx in %s (%s)",
+ __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
+ strerror(errno));
+ }
+ return ret;
+}
+
+static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
+ ram_addr_t start, uint64_t haddr)
+{
+ void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
+
+ /*
+ * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
+ * access, place a zeropage, which will also set the relevant bits in the
+ * recv_bitmap accordingly, so we won't try placing a zeropage twice.
+ *
+ * Checking a single bit is sufficient to handle pagesize > TPS as either
+ * all relevant bits are set or not.
+ */
+ assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
+ if (ramblock_page_is_discarded(rb, start)) {
+ bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
+
+ return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
+ }
+
+ return migrate_send_rp_req_pages(mis, rb, start, haddr);
+}
+
+/*
+ * Callback from shared fault handlers to ask for a page,
+ * the page must be specified by a RAMBlock and an offset in that rb
+ * Note: Only for use by shared fault handlers (in fault thread)
+ */
+int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
+ uint64_t client_addr, uint64_t rb_offset)
+{
+ uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
+ MigrationIncomingState *mis = migration_incoming_get_current();
+
+ trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
+ rb_offset);
+ if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
+ trace_postcopy_request_shared_page_present(pcfd->idstr,
+ qemu_ram_get_idstr(rb), rb_offset);
+ return postcopy_wake_shared(pcfd, client_addr, rb);
+ }
+ postcopy_request_page(mis, rb, aligned_rbo, client_addr);
+ return 0;
+}
+
+static int get_mem_fault_cpu_index(uint32_t pid)
+{
+ CPUState *cpu_iter;
+
+ CPU_FOREACH(cpu_iter) {
+ if (cpu_iter->thread_id == pid) {
+ trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
+ return cpu_iter->cpu_index;
+ }
+ }
+ trace_get_mem_fault_cpu_index(-1, pid);
+ return -1;
+}
+
+static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
+{
+ int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
+ dc->start_time;
+ return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
+}
+
+/*
+ * This function is being called when pagefault occurs. It
+ * tracks down vCPU blocking time.
+ *
+ * @addr: faulted host virtual address
+ * @ptid: faulted process thread id
+ * @rb: ramblock appropriate to addr
+ */
+static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
+ RAMBlock *rb)
+{
+ int cpu, already_received;
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
+ uint32_t low_time_offset;
+
+ if (!dc || ptid == 0) {
+ return;
+ }
+ cpu = get_mem_fault_cpu_index(ptid);
+ if (cpu < 0) {
+ return;
+ }
+
+ low_time_offset = get_low_time_offset(dc);
+ if (dc->vcpu_addr[cpu] == 0) {
+ qatomic_inc(&dc->smp_cpus_down);
+ }
+
+ qatomic_xchg(&dc->last_begin, low_time_offset);
+ qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
+ qatomic_xchg(&dc->vcpu_addr[cpu], addr);
+
+ /*
+ * check it here, not at the beginning of the function,
+ * due to, check could occur early than bitmap_set in
+ * qemu_ufd_copy_ioctl
+ */
+ already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
+ if (already_received) {
+ qatomic_xchg(&dc->vcpu_addr[cpu], 0);
+ qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
+ qatomic_dec(&dc->smp_cpus_down);
+ }
+ trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
+ cpu, already_received);
+}
+
+/*
+ * This function just provide calculated blocktime per cpu and trace it.
+ * Total blocktime is calculated in mark_postcopy_blocktime_end.
+ *
+ *
+ * Assume we have 3 CPU
+ *
+ * S1 E1 S1 E1
+ * -----***********------------xxx***************------------------------> CPU1
+ *
+ * S2 E2
+ * ------------****************xxx---------------------------------------> CPU2
+ *
+ * S3 E3
+ * ------------------------****xxx********-------------------------------> CPU3
+ *
+ * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
+ * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
+ * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
+ * it's a part of total blocktime.
+ * S1 - here is last_begin
+ * Legend of the picture is following:
+ * * - means blocktime per vCPU
+ * x - means overlapped blocktime (total blocktime)
+ *
+ * @addr: host virtual address
+ */
+static void mark_postcopy_blocktime_end(uintptr_t addr)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
+ MachineState *ms = MACHINE(qdev_get_machine());
+ unsigned int smp_cpus = ms->smp.cpus;
+ int i, affected_cpu = 0;
+ bool vcpu_total_blocktime = false;
+ uint32_t read_vcpu_time, low_time_offset;
+
+ if (!dc) {
+ return;
+ }
+
+ low_time_offset = get_low_time_offset(dc);
+ /* lookup cpu, to clear it,
+ * that algorithm looks straightforward, but it's not
+ * optimal, more optimal algorithm is keeping tree or hash
+ * where key is address value is a list of */
+ for (i = 0; i < smp_cpus; i++) {
+ uint32_t vcpu_blocktime = 0;
+
+ read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
+ if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
+ read_vcpu_time == 0) {
+ continue;
+ }
+ qatomic_xchg(&dc->vcpu_addr[i], 0);
+ vcpu_blocktime = low_time_offset - read_vcpu_time;
+ affected_cpu += 1;
+ /* we need to know is that mark_postcopy_end was due to
+ * faulted page, another possible case it's prefetched
+ * page and in that case we shouldn't be here */
+ if (!vcpu_total_blocktime &&
+ qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
+ vcpu_total_blocktime = true;
+ }
+ /* continue cycle, due to one page could affect several vCPUs */
+ dc->vcpu_blocktime[i] += vcpu_blocktime;
+ }
+
+ qatomic_sub(&dc->smp_cpus_down, affected_cpu);
+ if (vcpu_total_blocktime) {
+ dc->total_blocktime += low_time_offset - qatomic_fetch_add(
+ &dc->last_begin, 0);
+ }
+ trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
+ affected_cpu);
+}
+
+static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
+{
+ trace_postcopy_pause_fault_thread();
+
+ qemu_sem_wait(&mis->postcopy_pause_sem_fault);
+
+ trace_postcopy_pause_fault_thread_continued();
+
+ return true;
+}
+
+/*
+ * Handle faults detected by the USERFAULT markings
+ */
+static void *postcopy_ram_fault_thread(void *opaque)
+{
+ MigrationIncomingState *mis = opaque;
+ struct uffd_msg msg;
+ int ret;
+ size_t index;
+ RAMBlock *rb = NULL;
+
+ trace_postcopy_ram_fault_thread_entry();
+ rcu_register_thread();
+ mis->last_rb = NULL; /* last RAMBlock we sent part of */
+ qemu_sem_post(&mis->fault_thread_sem);
+
+ struct pollfd *pfd;
+ size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
+
+ pfd = g_new0(struct pollfd, pfd_len);
+
+ pfd[0].fd = mis->userfault_fd;
+ pfd[0].events = POLLIN;
+ pfd[1].fd = mis->userfault_event_fd;
+ pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
+ trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
+ for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
+ struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
+ struct PostCopyFD, index);
+ pfd[2 + index].fd = pcfd->fd;
+ pfd[2 + index].events = POLLIN;
+ trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
+ pcfd->fd);
+ }
+
+ while (true) {
+ ram_addr_t rb_offset;
+ int poll_result;
+
+ /*
+ * We're mainly waiting for the kernel to give us a faulting HVA,
+ * however we can be told to quit via userfault_quit_fd which is
+ * an eventfd
+ */
+
+ poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
+ if (poll_result == -1) {
+ error_report("%s: userfault poll: %s", __func__, strerror(errno));
+ break;
+ }
+
+ if (!mis->to_src_file) {
+ /*
+ * Possibly someone tells us that the return path is
+ * broken already using the event. We should hold until
+ * the channel is rebuilt.
+ */
+ if (postcopy_pause_fault_thread(mis)) {
+ /* Continue to read the userfaultfd */
+ } else {
+ error_report("%s: paused but don't allow to continue",
+ __func__);
+ break;
+ }
+ }
+
+ if (pfd[1].revents) {
+ uint64_t tmp64 = 0;
+
+ /* Consume the signal */
+ if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
+ /* Nothing obviously nicer than posting this error. */
+ error_report("%s: read() failed", __func__);
+ }
+
+ if (qatomic_read(&mis->fault_thread_quit)) {
+ trace_postcopy_ram_fault_thread_quit();
+ break;
+ }
+ }
+
+ if (pfd[0].revents) {
+ poll_result--;
+ ret = read(mis->userfault_fd, &msg, sizeof(msg));
+ if (ret != sizeof(msg)) {
+ if (errno == EAGAIN) {
+ /*
+ * if a wake up happens on the other thread just after
+ * the poll, there is nothing to read.
+ */
+ continue;
+ }
+ if (ret < 0) {
+ error_report("%s: Failed to read full userfault "
+ "message: %s",
+ __func__, strerror(errno));
+ break;
+ } else {
+ error_report("%s: Read %d bytes from userfaultfd "
+ "expected %zd",
+ __func__, ret, sizeof(msg));
+ break; /* Lost alignment, don't know what we'd read next */
+ }
+ }
+ if (msg.event != UFFD_EVENT_PAGEFAULT) {
+ error_report("%s: Read unexpected event %ud from userfaultfd",
+ __func__, msg.event);
+ continue; /* It's not a page fault, shouldn't happen */
+ }
+
+ rb = qemu_ram_block_from_host(
+ (void *)(uintptr_t)msg.arg.pagefault.address,
+ true, &rb_offset);
+ if (!rb) {
+ error_report("postcopy_ram_fault_thread: Fault outside guest: %"
+ PRIx64, (uint64_t)msg.arg.pagefault.address);
+ break;
+ }
+
+ rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
+ trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
+ qemu_ram_get_idstr(rb),
+ rb_offset,
+ msg.arg.pagefault.feat.ptid);
+ mark_postcopy_blocktime_begin(
+ (uintptr_t)(msg.arg.pagefault.address),
+ msg.arg.pagefault.feat.ptid, rb);
+
+retry:
+ /*
+ * Send the request to the source - we want to request one
+ * of our host page sizes (which is >= TPS)
+ */
+ ret = postcopy_request_page(mis, rb, rb_offset,
+ msg.arg.pagefault.address);
+ if (ret) {
+ /* May be network failure, try to wait for recovery */
+ if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
+ /* We got reconnected somehow, try to continue */
+ goto retry;
+ } else {
+ /* This is a unavoidable fault */
+ error_report("%s: postcopy_request_page() get %d",
+ __func__, ret);
+ break;
+ }
+ }
+ }
+
+ /* Now handle any requests from external processes on shared memory */
+ /* TODO: May need to handle devices deregistering during postcopy */
+ for (index = 2; index < pfd_len && poll_result; index++) {
+ if (pfd[index].revents) {
+ struct PostCopyFD *pcfd =
+ &g_array_index(mis->postcopy_remote_fds,
+ struct PostCopyFD, index - 2);
+
+ poll_result--;
+ if (pfd[index].revents & POLLERR) {
+ error_report("%s: POLLERR on poll %zd fd=%d",
+ __func__, index, pcfd->fd);
+ pfd[index].events = 0;
+ continue;
+ }
+
+ ret = read(pcfd->fd, &msg, sizeof(msg));
+ if (ret != sizeof(msg)) {
+ if (errno == EAGAIN) {
+ /*
+ * if a wake up happens on the other thread just after
+ * the poll, there is nothing to read.
+ */
+ continue;
+ }
+ if (ret < 0) {
+ error_report("%s: Failed to read full userfault "
+ "message: %s (shared) revents=%d",
+ __func__, strerror(errno),
+ pfd[index].revents);
+ /*TODO: Could just disable this sharer */
+ break;
+ } else {
+ error_report("%s: Read %d bytes from userfaultfd "
+ "expected %zd (shared)",
+ __func__, ret, sizeof(msg));
+ /*TODO: Could just disable this sharer */
+ break; /*Lost alignment,don't know what we'd read next*/
+ }
+ }
+ if (msg.event != UFFD_EVENT_PAGEFAULT) {
+ error_report("%s: Read unexpected event %ud "
+ "from userfaultfd (shared)",
+ __func__, msg.event);
+ continue; /* It's not a page fault, shouldn't happen */
+ }
+ /* Call the device handler registered with us */
+ ret = pcfd->handler(pcfd, &msg);
+ if (ret) {
+ error_report("%s: Failed to resolve shared fault on %zd/%s",
+ __func__, index, pcfd->idstr);
+ /* TODO: Fail? Disable this sharer? */
+ }
+ }
+ }
+ }
+ rcu_unregister_thread();
+ trace_postcopy_ram_fault_thread_exit();
+ g_free(pfd);
+ return NULL;
+}
+
+int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
+{
+ /* Open the fd for the kernel to give us userfaults */
+ mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
+ if (mis->userfault_fd == -1) {
+ error_report("%s: Failed to open userfault fd: %s", __func__,
+ strerror(errno));
+ return -1;
+ }
+
+ /*
+ * Although the host check already tested the API, we need to
+ * do the check again as an ABI handshake on the new fd.
+ */
+ if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
+ return -1;
+ }
+
+ /* Now an eventfd we use to tell the fault-thread to quit */
+ mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
+ if (mis->userfault_event_fd == -1) {
+ error_report("%s: Opening userfault_event_fd: %s", __func__,
+ strerror(errno));
+ close(mis->userfault_fd);
+ return -1;
+ }
+
+ qemu_sem_init(&mis->fault_thread_sem, 0);
+ qemu_thread_create(&mis->fault_thread, "postcopy/fault",
+ postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
+ qemu_sem_wait(&mis->fault_thread_sem);
+ qemu_sem_destroy(&mis->fault_thread_sem);
+ mis->have_fault_thread = true;
+
+ /* Mark so that we get notified of accesses to unwritten areas */
+ if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
+ error_report("ram_block_enable_notify failed");
+ return -1;
+ }
+
+ mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
+ PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_ANONYMOUS, -1, 0);
+ if (mis->postcopy_tmp_page == MAP_FAILED) {
+ mis->postcopy_tmp_page = NULL;
+ error_report("%s: Failed to map postcopy_tmp_page %s",
+ __func__, strerror(errno));
+ return -1;
+ }
+
+ /*
+ * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
+ */
+ mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS,
+ -1, 0);
+ if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
+ int e = errno;
+ mis->postcopy_tmp_zero_page = NULL;
+ error_report("%s: Failed to map large zero page %s",
+ __func__, strerror(e));
+ return -e;
+ }
+ memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
+
+ trace_postcopy_ram_enable_notify();
+
+ return 0;
+}
+
+static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
+ void *from_addr, uint64_t pagesize, RAMBlock *rb)
+{
+ int userfault_fd = mis->userfault_fd;
+ int ret;
+
+ if (from_addr) {
+ struct uffdio_copy copy_struct;
+ copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
+ copy_struct.src = (uint64_t)(uintptr_t)from_addr;
+ copy_struct.len = pagesize;
+ copy_struct.mode = 0;
+ ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
+ } else {
+ struct uffdio_zeropage zero_struct;
+ zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
+ zero_struct.range.len = pagesize;
+ zero_struct.mode = 0;
+ ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
+ }
+ if (!ret) {
+ qemu_mutex_lock(&mis->page_request_mutex);
+ ramblock_recv_bitmap_set_range(rb, host_addr,
+ pagesize / qemu_target_page_size());
+ /*
+ * If this page resolves a page fault for a previous recorded faulted
+ * address, take a special note to maintain the requested page list.
+ */
+ if (g_tree_lookup(mis->page_requested, host_addr)) {
+ g_tree_remove(mis->page_requested, host_addr);
+ mis->page_requested_count--;
+ trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
+ }
+ qemu_mutex_unlock(&mis->page_request_mutex);
+ mark_postcopy_blocktime_end((uintptr_t)host_addr);
+ }
+ return ret;
+}
+
+int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
+{
+ int i;
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ GArray *pcrfds = mis->postcopy_remote_fds;
+
+ for (i = 0; i < pcrfds->len; i++) {
+ struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
+ int ret = cur->waker(cur, rb, offset);
+ if (ret) {
+ return ret;
+ }
+ }
+ return 0;
+}
+
+/*
+ * Place a host page (from) at (host) atomically
+ * returns 0 on success
+ */
+int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
+ RAMBlock *rb)
+{
+ size_t pagesize = qemu_ram_pagesize(rb);
+
+ /* copy also acks to the kernel waking the stalled thread up
+ * TODO: We can inhibit that ack and only do it if it was requested
+ * which would be slightly cheaper, but we'd have to be careful
+ * of the order of updating our page state.
+ */
+ if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
+ int e = errno;
+ error_report("%s: %s copy host: %p from: %p (size: %zd)",
+ __func__, strerror(e), host, from, pagesize);
+
+ return -e;
+ }
+
+ trace_postcopy_place_page(host);
+ return postcopy_notify_shared_wake(rb,
+ qemu_ram_block_host_offset(rb, host));
+}
+
+/*
+ * Place a zero page at (host) atomically
+ * returns 0 on success
+ */
+int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
+ RAMBlock *rb)
+{
+ size_t pagesize = qemu_ram_pagesize(rb);
+ trace_postcopy_place_page_zero(host);
+
+ /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
+ * but it's not available for everything (e.g. hugetlbpages)
+ */
+ if (qemu_ram_is_uf_zeroable(rb)) {
+ if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
+ int e = errno;
+ error_report("%s: %s zero host: %p",
+ __func__, strerror(e), host);
+
+ return -e;
+ }
+ return postcopy_notify_shared_wake(rb,
+ qemu_ram_block_host_offset(rb,
+ host));
+ } else {
+ return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
+ }
+}
+
+#else
+/* No target OS support, stubs just fail */
+void fill_destination_postcopy_migration_info(MigrationInfo *info)
+{
+}
+
+bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
+{
+ error_report("%s: No OS support", __func__);
+ return false;
+}
+
+int postcopy_ram_incoming_init(MigrationIncomingState *mis)
+{
+ error_report("postcopy_ram_incoming_init: No OS support");
+ return -1;
+}
+
+int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
+{
+ assert(0);
+ return -1;
+}
+
+int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
+{
+ assert(0);
+ return -1;
+}
+
+int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
+ uint64_t client_addr, uint64_t rb_offset)
+{
+ assert(0);
+ return -1;
+}
+
+int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
+{
+ assert(0);
+ return -1;
+}
+
+int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
+ RAMBlock *rb)
+{
+ assert(0);
+ return -1;
+}
+
+int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
+ RAMBlock *rb)
+{
+ assert(0);
+ return -1;
+}
+
+int postcopy_wake_shared(struct PostCopyFD *pcfd,
+ uint64_t client_addr,
+ RAMBlock *rb)
+{
+ assert(0);
+ return -1;
+}
+#endif
+
+/* ------------------------------------------------------------------------- */
+
+void postcopy_fault_thread_notify(MigrationIncomingState *mis)
+{
+ uint64_t tmp64 = 1;
+
+ /*
+ * Wakeup the fault_thread. It's an eventfd that should currently
+ * be at 0, we're going to increment it to 1
+ */
+ if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
+ /* Not much we can do here, but may as well report it */
+ error_report("%s: incrementing failed: %s", __func__,
+ strerror(errno));
+ }
+}
+
+/**
+ * postcopy_discard_send_init: Called at the start of each RAMBlock before
+ * asking to discard individual ranges.
+ *
+ * @ms: The current migration state.
+ * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
+ * @name: RAMBlock that discards will operate on.
+ */
+static PostcopyDiscardState pds = {0};
+void postcopy_discard_send_init(MigrationState *ms, const char *name)
+{
+ pds.ramblock_name = name;
+ pds.cur_entry = 0;
+ pds.nsentwords = 0;
+ pds.nsentcmds = 0;
+}
+
+/**
+ * postcopy_discard_send_range: Called by the bitmap code for each chunk to
+ * discard. May send a discard message, may just leave it queued to
+ * be sent later.
+ *
+ * @ms: Current migration state.
+ * @start,@length: a range of pages in the migration bitmap in the
+ * RAM block passed to postcopy_discard_send_init() (length=1 is one page)
+ */
+void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
+ unsigned long length)
+{
+ size_t tp_size = qemu_target_page_size();
+ /* Convert to byte offsets within the RAM block */
+ pds.start_list[pds.cur_entry] = start * tp_size;
+ pds.length_list[pds.cur_entry] = length * tp_size;
+ trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
+ pds.cur_entry++;
+ pds.nsentwords++;
+
+ if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
+ /* Full set, ship it! */
+ qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
+ pds.ramblock_name,
+ pds.cur_entry,
+ pds.start_list,
+ pds.length_list);
+ pds.nsentcmds++;
+ pds.cur_entry = 0;
+ }
+}
+
+/**
+ * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
+ * bitmap code. Sends any outstanding discard messages, frees the PDS
+ *
+ * @ms: Current migration state.
+ */
+void postcopy_discard_send_finish(MigrationState *ms)
+{
+ /* Anything unsent? */
+ if (pds.cur_entry) {
+ qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
+ pds.ramblock_name,
+ pds.cur_entry,
+ pds.start_list,
+ pds.length_list);
+ pds.nsentcmds++;
+ }
+
+ trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
+ pds.nsentcmds);
+}
+
+/*
+ * Current state of incoming postcopy; note this is not part of
+ * MigrationIncomingState since it's state is used during cleanup
+ * at the end as MIS is being freed.
+ */
+static PostcopyState incoming_postcopy_state;
+
+PostcopyState postcopy_state_get(void)
+{
+ return qatomic_mb_read(&incoming_postcopy_state);
+}
+
+/* Set the state and return the old state */
+PostcopyState postcopy_state_set(PostcopyState new_state)
+{
+ return qatomic_xchg(&incoming_postcopy_state, new_state);
+}
+
+/* Register a handler for external shared memory postcopy
+ * called on the destination.
+ */
+void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+
+ mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
+ *pcfd);
+}
+
+/* Unregister a handler for external shared memory postcopy
+ */
+void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
+{
+ guint i;
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ GArray *pcrfds = mis->postcopy_remote_fds;
+
+ if (!pcrfds) {
+ /* migration has already finished and freed the array */
+ return;
+ }
+ for (i = 0; i < pcrfds->len; i++) {
+ struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
+ if (cur->fd == pcfd->fd) {
+ mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
+ return;
+ }
+ }
+}