aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc
diff options
context:
space:
mode:
authorAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
committerAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
commitaf1a266670d040d2f4083ff309d732d648afba2a (patch)
tree2fc46203448ddcc6f81546d379abfaeb323575e9 /roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc
parente02cda008591317b1625707ff8e115a4841aa889 (diff)
Add submodule dependency filesHEADmaster
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc')
-rw-r--r--roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc690
1 files changed, 690 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc
new file mode 100644
index 000000000..3e5952f1f
--- /dev/null
+++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc
@@ -0,0 +1,690 @@
+/* Copyright (c) 2014, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+#include <string>
+#include <functional>
+#include <memory>
+#include <vector>
+
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include <openssl/aead.h>
+#include <openssl/bn.h>
+#include <openssl/curve25519.h>
+#include <openssl/digest.h>
+#include <openssl/err.h>
+#include <openssl/ec.h>
+#include <openssl/ecdsa.h>
+#include <openssl/ec_key.h>
+#include <openssl/nid.h>
+#include <openssl/rand.h>
+#include <openssl/rsa.h>
+
+#if defined(OPENSSL_WINDOWS)
+OPENSSL_MSVC_PRAGMA(warning(push, 3))
+#include <windows.h>
+OPENSSL_MSVC_PRAGMA(warning(pop))
+#elif defined(OPENSSL_APPLE)
+#include <sys/time.h>
+#else
+#include <time.h>
+#endif
+
+#include "../crypto/internal.h"
+#include "internal.h"
+
+
+// TimeResults represents the results of benchmarking a function.
+struct TimeResults {
+ // num_calls is the number of function calls done in the time period.
+ unsigned num_calls;
+ // us is the number of microseconds that elapsed in the time period.
+ unsigned us;
+
+ void Print(const std::string &description) {
+ printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
+ description.c_str(), us,
+ (static_cast<double>(num_calls) / us) * 1000000);
+ }
+
+ void PrintWithBytes(const std::string &description, size_t bytes_per_call) {
+ printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
+ num_calls, description.c_str(), us,
+ (static_cast<double>(num_calls) / us) * 1000000,
+ static_cast<double>(bytes_per_call * num_calls) / us);
+ }
+};
+
+#if defined(OPENSSL_WINDOWS)
+static uint64_t time_now() { return GetTickCount64() * 1000; }
+#elif defined(OPENSSL_APPLE)
+static uint64_t time_now() {
+ struct timeval tv;
+ uint64_t ret;
+
+ gettimeofday(&tv, NULL);
+ ret = tv.tv_sec;
+ ret *= 1000000;
+ ret += tv.tv_usec;
+ return ret;
+}
+#else
+static uint64_t time_now() {
+ struct timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+
+ uint64_t ret = ts.tv_sec;
+ ret *= 1000000;
+ ret += ts.tv_nsec / 1000;
+ return ret;
+}
+#endif
+
+static uint64_t g_timeout_seconds = 1;
+
+static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
+ // total_us is the total amount of time that we'll aim to measure a function
+ // for.
+ const uint64_t total_us = g_timeout_seconds * 1000000;
+ uint64_t start = time_now(), now, delta;
+ unsigned done = 0, iterations_between_time_checks;
+
+ if (!func()) {
+ return false;
+ }
+ now = time_now();
+ delta = now - start;
+ if (delta == 0) {
+ iterations_between_time_checks = 250;
+ } else {
+ // Aim for about 100ms between time checks.
+ iterations_between_time_checks =
+ static_cast<double>(100000) / static_cast<double>(delta);
+ if (iterations_between_time_checks > 1000) {
+ iterations_between_time_checks = 1000;
+ } else if (iterations_between_time_checks < 1) {
+ iterations_between_time_checks = 1;
+ }
+ }
+
+ for (;;) {
+ for (unsigned i = 0; i < iterations_between_time_checks; i++) {
+ if (!func()) {
+ return false;
+ }
+ done++;
+ }
+
+ now = time_now();
+ if (now - start > total_us) {
+ break;
+ }
+ }
+
+ results->us = now - start;
+ results->num_calls = done;
+ return true;
+}
+
+static bool SpeedRSA(const std::string &key_name, RSA *key,
+ const std::string &selected) {
+ if (!selected.empty() && key_name.find(selected) == std::string::npos) {
+ return true;
+ }
+
+ std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]);
+ const uint8_t fake_sha256_hash[32] = {0};
+ unsigned sig_len;
+
+ TimeResults results;
+ if (!TimeFunction(&results,
+ [key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
+ /* Usually during RSA signing we're using a long-lived |RSA| that has
+ * already had all of its |BN_MONT_CTX|s constructed, so it makes
+ * sense to use |key| directly here. */
+ return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
+ sig.get(), &sig_len, key);
+ })) {
+ fprintf(stderr, "RSA_sign failed.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+ results.Print(key_name + " signing");
+
+ if (!TimeFunction(&results,
+ [key, &fake_sha256_hash, &sig, sig_len]() -> bool {
+ /* Usually during RSA verification we have to parse an RSA key from a
+ * certificate or similar, in which case we'd need to construct a new
+ * RSA key, with a new |BN_MONT_CTX| for the public modulus. If we were
+ * to use |key| directly instead, then these costs wouldn't be
+ * accounted for. */
+ bssl::UniquePtr<RSA> verify_key(RSA_new());
+ if (!verify_key) {
+ return false;
+ }
+ verify_key->n = BN_dup(key->n);
+ verify_key->e = BN_dup(key->e);
+ if (!verify_key->n ||
+ !verify_key->e) {
+ return false;
+ }
+ return RSA_verify(NID_sha256, fake_sha256_hash,
+ sizeof(fake_sha256_hash), sig.get(), sig_len, key);
+ })) {
+ fprintf(stderr, "RSA_verify failed.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+ results.Print(key_name + " verify");
+
+ return true;
+}
+
+static uint8_t *align(uint8_t *in, unsigned alignment) {
+ return reinterpret_cast<uint8_t *>(
+ (reinterpret_cast<uintptr_t>(in) + alignment) &
+ ~static_cast<size_t>(alignment - 1));
+}
+
+static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name,
+ size_t chunk_len, size_t ad_len,
+ evp_aead_direction_t direction) {
+ static const unsigned kAlignment = 16;
+
+ bssl::ScopedEVP_AEAD_CTX ctx;
+ const size_t key_len = EVP_AEAD_key_length(aead);
+ const size_t nonce_len = EVP_AEAD_nonce_length(aead);
+ const size_t overhead_len = EVP_AEAD_max_overhead(aead);
+
+ std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
+ OPENSSL_memset(key.get(), 0, key_len);
+ std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
+ OPENSSL_memset(nonce.get(), 0, nonce_len);
+ std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
+ std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]);
+ std::unique_ptr<uint8_t[]> in2_storage(new uint8_t[chunk_len + kAlignment]);
+ std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
+ OPENSSL_memset(ad.get(), 0, ad_len);
+
+ uint8_t *const in = align(in_storage.get(), kAlignment);
+ OPENSSL_memset(in, 0, chunk_len);
+ uint8_t *const out = align(out_storage.get(), kAlignment);
+ OPENSSL_memset(out, 0, chunk_len + overhead_len);
+ uint8_t *const in2 = align(in2_storage.get(), kAlignment);
+
+ if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
+ EVP_AEAD_DEFAULT_TAG_LENGTH,
+ evp_aead_seal)) {
+ fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+
+ TimeResults results;
+ if (direction == evp_aead_seal) {
+ if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in,
+ out, &ctx, &nonce, &ad]() -> bool {
+ size_t out_len;
+ return EVP_AEAD_CTX_seal(ctx.get(), out, &out_len,
+ chunk_len + overhead_len, nonce.get(),
+ nonce_len, in, chunk_len, ad.get(), ad_len);
+ })) {
+ fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+ } else {
+ size_t out_len;
+ EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len,
+ nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len);
+
+ if (!TimeFunction(&results, [chunk_len, nonce_len, ad_len, in2, out, &ctx,
+ &nonce, &ad, out_len]() -> bool {
+ size_t in2_len;
+ return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, chunk_len,
+ nonce.get(), nonce_len, out, out_len,
+ ad.get(), ad_len);
+ })) {
+ fprintf(stderr, "EVP_AEAD_CTX_open failed.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+ }
+
+ results.PrintWithBytes(
+ name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len);
+ return true;
+}
+
+static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
+ size_t ad_len, const std::string &selected) {
+ if (!selected.empty() && name.find(selected) == std::string::npos) {
+ return true;
+ }
+
+ return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len,
+ evp_aead_seal) &&
+ SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len,
+ evp_aead_seal) &&
+ SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len,
+ evp_aead_seal);
+}
+
+#if !defined(OPENSSL_SMALL)
+static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name,
+ size_t ad_len, const std::string &selected) {
+ if (!selected.empty() && name.find(selected) == std::string::npos) {
+ return true;
+ }
+
+ return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len,
+ evp_aead_open) &&
+ SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len,
+ evp_aead_open) &&
+ SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len,
+ evp_aead_open);
+}
+#endif /* !SMALL */
+
+static bool SpeedHashChunk(const EVP_MD *md, const std::string &name,
+ size_t chunk_len) {
+ EVP_MD_CTX *ctx = EVP_MD_CTX_create();
+ uint8_t scratch[8192];
+
+ if (chunk_len > sizeof(scratch)) {
+ return false;
+ }
+
+ TimeResults results;
+ if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool {
+ uint8_t digest[EVP_MAX_MD_SIZE];
+ unsigned int md_len;
+
+ return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) &&
+ EVP_DigestUpdate(ctx, scratch, chunk_len) &&
+ EVP_DigestFinal_ex(ctx, digest, &md_len);
+ })) {
+ fprintf(stderr, "EVP_DigestInit_ex failed.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+
+ results.PrintWithBytes(name, chunk_len);
+
+ EVP_MD_CTX_destroy(ctx);
+
+ return true;
+}
+static bool SpeedHash(const EVP_MD *md, const std::string &name,
+ const std::string &selected) {
+ if (!selected.empty() && name.find(selected) == std::string::npos) {
+ return true;
+ }
+
+ return SpeedHashChunk(md, name + " (16 bytes)", 16) &&
+ SpeedHashChunk(md, name + " (256 bytes)", 256) &&
+ SpeedHashChunk(md, name + " (8192 bytes)", 8192);
+}
+
+static bool SpeedRandomChunk(const std::string &name, size_t chunk_len) {
+ uint8_t scratch[8192];
+
+ if (chunk_len > sizeof(scratch)) {
+ return false;
+ }
+
+ TimeResults results;
+ if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
+ RAND_bytes(scratch, chunk_len);
+ return true;
+ })) {
+ return false;
+ }
+
+ results.PrintWithBytes(name, chunk_len);
+ return true;
+}
+
+static bool SpeedRandom(const std::string &selected) {
+ if (!selected.empty() && selected != "RNG") {
+ return true;
+ }
+
+ return SpeedRandomChunk("RNG (16 bytes)", 16) &&
+ SpeedRandomChunk("RNG (256 bytes)", 256) &&
+ SpeedRandomChunk("RNG (8192 bytes)", 8192);
+}
+
+static bool SpeedECDHCurve(const std::string &name, int nid,
+ const std::string &selected) {
+ if (!selected.empty() && name.find(selected) == std::string::npos) {
+ return true;
+ }
+
+ TimeResults results;
+ if (!TimeFunction(&results, [nid]() -> bool {
+ bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
+ if (!key ||
+ !EC_KEY_generate_key(key.get())) {
+ return false;
+ }
+ const EC_GROUP *const group = EC_KEY_get0_group(key.get());
+ bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
+ bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
+
+ bssl::UniquePtr<BIGNUM> x(BN_new());
+ bssl::UniquePtr<BIGNUM> y(BN_new());
+
+ if (!point || !ctx || !x || !y ||
+ !EC_POINT_mul(group, point.get(), NULL,
+ EC_KEY_get0_public_key(key.get()),
+ EC_KEY_get0_private_key(key.get()), ctx.get()) ||
+ !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
+ y.get(), ctx.get())) {
+ return false;
+ }
+
+ return true;
+ })) {
+ return false;
+ }
+
+ results.Print(name);
+ return true;
+}
+
+static bool SpeedECDSACurve(const std::string &name, int nid,
+ const std::string &selected) {
+ if (!selected.empty() && name.find(selected) == std::string::npos) {
+ return true;
+ }
+
+ bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
+ if (!key ||
+ !EC_KEY_generate_key(key.get())) {
+ return false;
+ }
+
+ uint8_t signature[256];
+ if (ECDSA_size(key.get()) > sizeof(signature)) {
+ return false;
+ }
+ uint8_t digest[20];
+ OPENSSL_memset(digest, 42, sizeof(digest));
+ unsigned sig_len;
+
+ TimeResults results;
+ if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
+ return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
+ key.get()) == 1;
+ })) {
+ return false;
+ }
+
+ results.Print(name + " signing");
+
+ if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
+ return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
+ key.get()) == 1;
+ })) {
+ return false;
+ }
+
+ results.Print(name + " verify");
+
+ return true;
+}
+
+static bool SpeedECDH(const std::string &selected) {
+ return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
+ SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
+ SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
+ SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
+}
+
+static bool SpeedECDSA(const std::string &selected) {
+ return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
+ SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
+ SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
+ SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
+}
+
+static bool Speed25519(const std::string &selected) {
+ if (!selected.empty() && selected.find("25519") == std::string::npos) {
+ return true;
+ }
+
+ TimeResults results;
+
+ uint8_t public_key[32], private_key[64];
+
+ if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
+ ED25519_keypair(public_key, private_key);
+ return true;
+ })) {
+ return false;
+ }
+
+ results.Print("Ed25519 key generation");
+
+ static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
+ uint8_t signature[64];
+
+ if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
+ return ED25519_sign(signature, kMessage, sizeof(kMessage),
+ private_key) == 1;
+ })) {
+ return false;
+ }
+
+ results.Print("Ed25519 signing");
+
+ if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
+ return ED25519_verify(kMessage, sizeof(kMessage), signature,
+ public_key) == 1;
+ })) {
+ fprintf(stderr, "Ed25519 verify failed.\n");
+ return false;
+ }
+
+ results.Print("Ed25519 verify");
+
+ if (!TimeFunction(&results, []() -> bool {
+ uint8_t out[32], in[32];
+ OPENSSL_memset(in, 0, sizeof(in));
+ X25519_public_from_private(out, in);
+ return true;
+ })) {
+ fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
+ return false;
+ }
+
+ results.Print("Curve25519 base-point multiplication");
+
+ if (!TimeFunction(&results, []() -> bool {
+ uint8_t out[32], in1[32], in2[32];
+ OPENSSL_memset(in1, 0, sizeof(in1));
+ OPENSSL_memset(in2, 0, sizeof(in2));
+ in1[0] = 1;
+ in2[0] = 9;
+ return X25519(out, in1, in2) == 1;
+ })) {
+ fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
+ return false;
+ }
+
+ results.Print("Curve25519 arbitrary point multiplication");
+
+ return true;
+}
+
+static bool SpeedSPAKE2(const std::string &selected) {
+ if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
+ return true;
+ }
+
+ TimeResults results;
+
+ static const uint8_t kAliceName[] = {'A'};
+ static const uint8_t kBobName[] = {'B'};
+ static const uint8_t kPassword[] = "password";
+ bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice,
+ kAliceName, sizeof(kAliceName), kBobName,
+ sizeof(kBobName)));
+ uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
+ size_t alice_msg_len;
+
+ if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
+ sizeof(alice_msg),
+ kPassword, sizeof(kPassword))) {
+ fprintf(stderr, "SPAKE2_generate_msg failed.\n");
+ return false;
+ }
+
+ if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool {
+ bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob,
+ kBobName, sizeof(kBobName), kAliceName,
+ sizeof(kAliceName)));
+ uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
+ size_t bob_msg_len, bob_key_len;
+ if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
+ sizeof(bob_msg), kPassword,
+ sizeof(kPassword)) ||
+ !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
+ sizeof(bob_key), alice_msg, alice_msg_len)) {
+ return false;
+ }
+
+ return true;
+ })) {
+ fprintf(stderr, "SPAKE2 failed.\n");
+ }
+
+ results.Print("SPAKE2 over Ed25519");
+
+ return true;
+}
+
+static const struct argument kArguments[] = {
+ {
+ "-filter", kOptionalArgument,
+ "A filter on the speed tests to run",
+ },
+ {
+ "-timeout", kOptionalArgument,
+ "The number of seconds to run each test for (default is 1)",
+ },
+ {
+ "", kOptionalArgument, "",
+ },
+};
+
+bool Speed(const std::vector<std::string> &args) {
+ std::map<std::string, std::string> args_map;
+ if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
+ PrintUsage(kArguments);
+ return false;
+ }
+
+ std::string selected;
+ if (args_map.count("-filter") != 0) {
+ selected = args_map["-filter"];
+ }
+
+ if (args_map.count("-timeout") != 0) {
+ g_timeout_seconds = atoi(args_map["-timeout"].c_str());
+ }
+
+ bssl::UniquePtr<RSA> key(
+ RSA_private_key_from_bytes(kDERRSAPrivate2048, kDERRSAPrivate2048Len));
+ if (key == nullptr) {
+ fprintf(stderr, "Failed to parse RSA key.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+
+ if (!SpeedRSA("RSA 2048", key.get(), selected)) {
+ return false;
+ }
+
+ key.reset(RSA_private_key_from_bytes(kDERRSAPrivate3Prime2048,
+ kDERRSAPrivate3Prime2048Len));
+ if (key == nullptr) {
+ fprintf(stderr, "Failed to parse RSA key.\n");
+ ERR_print_errors_fp(stderr);
+ return false;
+ }
+
+ if (!SpeedRSA("RSA 2048 (3 prime, e=3)", key.get(), selected)) {
+ return false;
+ }
+
+ key.reset(
+ RSA_private_key_from_bytes(kDERRSAPrivate4096, kDERRSAPrivate4096Len));
+ if (key == nullptr) {
+ fprintf(stderr, "Failed to parse 4096-bit RSA key.\n");
+ ERR_print_errors_fp(stderr);
+ return 1;
+ }
+
+ if (!SpeedRSA("RSA 4096", key.get(), selected)) {
+ return false;
+ }
+
+ key.reset();
+
+ // kTLSADLen is the number of bytes of additional data that TLS passes to
+ // AEADs.
+ static const size_t kTLSADLen = 13;
+ // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
+ // These are AEADs that weren't originally defined as AEADs, but which we use
+ // via the AEAD interface. In order for that to work, they have some TLS
+ // knowledge in them and construct a couple of the AD bytes internally.
+ static const size_t kLegacyADLen = kTLSADLen - 2;
+
+ if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
+ !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
+ !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
+ selected) ||
+ !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
+ kLegacyADLen, selected) ||
+ !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
+ kLegacyADLen, selected) ||
+ !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
+ kLegacyADLen, selected) ||
+#if !defined(OPENSSL_SMALL)
+ !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
+ selected) ||
+ !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
+ selected) ||
+ !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
+ selected) ||
+ !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
+ selected) ||
+#endif
+ !SpeedHash(EVP_sha1(), "SHA-1", selected) ||
+ !SpeedHash(EVP_sha256(), "SHA-256", selected) ||
+ !SpeedHash(EVP_sha512(), "SHA-512", selected) ||
+ !SpeedRandom(selected) ||
+ !SpeedECDH(selected) ||
+ !SpeedECDSA(selected) ||
+ !Speed25519(selected) ||
+ !SpeedSPAKE2(selected)) {
+ return false;
+ }
+
+ return true;
+}