diff options
author | 2023-10-10 14:33:42 +0000 | |
---|---|---|
committer | 2023-10-10 14:33:42 +0000 | |
commit | af1a266670d040d2f4083ff309d732d648afba2a (patch) | |
tree | 2fc46203448ddcc6f81546d379abfaeb323575e9 /roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc | |
parent | e02cda008591317b1625707ff8e115a4841aa889 (diff) |
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc')
-rw-r--r-- | roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc | 690 |
1 files changed, 690 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc new file mode 100644 index 000000000..3e5952f1f --- /dev/null +++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/boringssl/tool/speed.cc @@ -0,0 +1,690 @@ +/* Copyright (c) 2014, Google Inc. + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY + * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION + * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN + * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ + +#include <string> +#include <functional> +#include <memory> +#include <vector> + +#include <stdint.h> +#include <stdlib.h> +#include <string.h> + +#include <openssl/aead.h> +#include <openssl/bn.h> +#include <openssl/curve25519.h> +#include <openssl/digest.h> +#include <openssl/err.h> +#include <openssl/ec.h> +#include <openssl/ecdsa.h> +#include <openssl/ec_key.h> +#include <openssl/nid.h> +#include <openssl/rand.h> +#include <openssl/rsa.h> + +#if defined(OPENSSL_WINDOWS) +OPENSSL_MSVC_PRAGMA(warning(push, 3)) +#include <windows.h> +OPENSSL_MSVC_PRAGMA(warning(pop)) +#elif defined(OPENSSL_APPLE) +#include <sys/time.h> +#else +#include <time.h> +#endif + +#include "../crypto/internal.h" +#include "internal.h" + + +// TimeResults represents the results of benchmarking a function. +struct TimeResults { + // num_calls is the number of function calls done in the time period. + unsigned num_calls; + // us is the number of microseconds that elapsed in the time period. + unsigned us; + + void Print(const std::string &description) { + printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, + description.c_str(), us, + (static_cast<double>(num_calls) / us) * 1000000); + } + + void PrintWithBytes(const std::string &description, size_t bytes_per_call) { + printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", + num_calls, description.c_str(), us, + (static_cast<double>(num_calls) / us) * 1000000, + static_cast<double>(bytes_per_call * num_calls) / us); + } +}; + +#if defined(OPENSSL_WINDOWS) +static uint64_t time_now() { return GetTickCount64() * 1000; } +#elif defined(OPENSSL_APPLE) +static uint64_t time_now() { + struct timeval tv; + uint64_t ret; + + gettimeofday(&tv, NULL); + ret = tv.tv_sec; + ret *= 1000000; + ret += tv.tv_usec; + return ret; +} +#else +static uint64_t time_now() { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + + uint64_t ret = ts.tv_sec; + ret *= 1000000; + ret += ts.tv_nsec / 1000; + return ret; +} +#endif + +static uint64_t g_timeout_seconds = 1; + +static bool TimeFunction(TimeResults *results, std::function<bool()> func) { + // total_us is the total amount of time that we'll aim to measure a function + // for. + const uint64_t total_us = g_timeout_seconds * 1000000; + uint64_t start = time_now(), now, delta; + unsigned done = 0, iterations_between_time_checks; + + if (!func()) { + return false; + } + now = time_now(); + delta = now - start; + if (delta == 0) { + iterations_between_time_checks = 250; + } else { + // Aim for about 100ms between time checks. + iterations_between_time_checks = + static_cast<double>(100000) / static_cast<double>(delta); + if (iterations_between_time_checks > 1000) { + iterations_between_time_checks = 1000; + } else if (iterations_between_time_checks < 1) { + iterations_between_time_checks = 1; + } + } + + for (;;) { + for (unsigned i = 0; i < iterations_between_time_checks; i++) { + if (!func()) { + return false; + } + done++; + } + + now = time_now(); + if (now - start > total_us) { + break; + } + } + + results->us = now - start; + results->num_calls = done; + return true; +} + +static bool SpeedRSA(const std::string &key_name, RSA *key, + const std::string &selected) { + if (!selected.empty() && key_name.find(selected) == std::string::npos) { + return true; + } + + std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]); + const uint8_t fake_sha256_hash[32] = {0}; + unsigned sig_len; + + TimeResults results; + if (!TimeFunction(&results, + [key, &sig, &fake_sha256_hash, &sig_len]() -> bool { + /* Usually during RSA signing we're using a long-lived |RSA| that has + * already had all of its |BN_MONT_CTX|s constructed, so it makes + * sense to use |key| directly here. */ + return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), + sig.get(), &sig_len, key); + })) { + fprintf(stderr, "RSA_sign failed.\n"); + ERR_print_errors_fp(stderr); + return false; + } + results.Print(key_name + " signing"); + + if (!TimeFunction(&results, + [key, &fake_sha256_hash, &sig, sig_len]() -> bool { + /* Usually during RSA verification we have to parse an RSA key from a + * certificate or similar, in which case we'd need to construct a new + * RSA key, with a new |BN_MONT_CTX| for the public modulus. If we were + * to use |key| directly instead, then these costs wouldn't be + * accounted for. */ + bssl::UniquePtr<RSA> verify_key(RSA_new()); + if (!verify_key) { + return false; + } + verify_key->n = BN_dup(key->n); + verify_key->e = BN_dup(key->e); + if (!verify_key->n || + !verify_key->e) { + return false; + } + return RSA_verify(NID_sha256, fake_sha256_hash, + sizeof(fake_sha256_hash), sig.get(), sig_len, key); + })) { + fprintf(stderr, "RSA_verify failed.\n"); + ERR_print_errors_fp(stderr); + return false; + } + results.Print(key_name + " verify"); + + return true; +} + +static uint8_t *align(uint8_t *in, unsigned alignment) { + return reinterpret_cast<uint8_t *>( + (reinterpret_cast<uintptr_t>(in) + alignment) & + ~static_cast<size_t>(alignment - 1)); +} + +static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name, + size_t chunk_len, size_t ad_len, + evp_aead_direction_t direction) { + static const unsigned kAlignment = 16; + + bssl::ScopedEVP_AEAD_CTX ctx; + const size_t key_len = EVP_AEAD_key_length(aead); + const size_t nonce_len = EVP_AEAD_nonce_length(aead); + const size_t overhead_len = EVP_AEAD_max_overhead(aead); + + std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); + OPENSSL_memset(key.get(), 0, key_len); + std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); + OPENSSL_memset(nonce.get(), 0, nonce_len); + std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]); + std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]); + std::unique_ptr<uint8_t[]> in2_storage(new uint8_t[chunk_len + kAlignment]); + std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]); + OPENSSL_memset(ad.get(), 0, ad_len); + + uint8_t *const in = align(in_storage.get(), kAlignment); + OPENSSL_memset(in, 0, chunk_len); + uint8_t *const out = align(out_storage.get(), kAlignment); + OPENSSL_memset(out, 0, chunk_len + overhead_len); + uint8_t *const in2 = align(in2_storage.get(), kAlignment); + + if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, + EVP_AEAD_DEFAULT_TAG_LENGTH, + evp_aead_seal)) { + fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); + ERR_print_errors_fp(stderr); + return false; + } + + TimeResults results; + if (direction == evp_aead_seal) { + if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in, + out, &ctx, &nonce, &ad]() -> bool { + size_t out_len; + return EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, + chunk_len + overhead_len, nonce.get(), + nonce_len, in, chunk_len, ad.get(), ad_len); + })) { + fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); + ERR_print_errors_fp(stderr); + return false; + } + } else { + size_t out_len; + EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len, + nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len); + + if (!TimeFunction(&results, [chunk_len, nonce_len, ad_len, in2, out, &ctx, + &nonce, &ad, out_len]() -> bool { + size_t in2_len; + return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, chunk_len, + nonce.get(), nonce_len, out, out_len, + ad.get(), ad_len); + })) { + fprintf(stderr, "EVP_AEAD_CTX_open failed.\n"); + ERR_print_errors_fp(stderr); + return false; + } + } + + results.PrintWithBytes( + name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len); + return true; +} + +static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, + size_t ad_len, const std::string &selected) { + if (!selected.empty() && name.find(selected) == std::string::npos) { + return true; + } + + return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len, + evp_aead_seal) && + SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len, + evp_aead_seal) && + SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len, + evp_aead_seal); +} + +#if !defined(OPENSSL_SMALL) +static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name, + size_t ad_len, const std::string &selected) { + if (!selected.empty() && name.find(selected) == std::string::npos) { + return true; + } + + return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len, + evp_aead_open) && + SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len, + evp_aead_open) && + SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len, + evp_aead_open); +} +#endif /* !SMALL */ + +static bool SpeedHashChunk(const EVP_MD *md, const std::string &name, + size_t chunk_len) { + EVP_MD_CTX *ctx = EVP_MD_CTX_create(); + uint8_t scratch[8192]; + + if (chunk_len > sizeof(scratch)) { + return false; + } + + TimeResults results; + if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool { + uint8_t digest[EVP_MAX_MD_SIZE]; + unsigned int md_len; + + return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) && + EVP_DigestUpdate(ctx, scratch, chunk_len) && + EVP_DigestFinal_ex(ctx, digest, &md_len); + })) { + fprintf(stderr, "EVP_DigestInit_ex failed.\n"); + ERR_print_errors_fp(stderr); + return false; + } + + results.PrintWithBytes(name, chunk_len); + + EVP_MD_CTX_destroy(ctx); + + return true; +} +static bool SpeedHash(const EVP_MD *md, const std::string &name, + const std::string &selected) { + if (!selected.empty() && name.find(selected) == std::string::npos) { + return true; + } + + return SpeedHashChunk(md, name + " (16 bytes)", 16) && + SpeedHashChunk(md, name + " (256 bytes)", 256) && + SpeedHashChunk(md, name + " (8192 bytes)", 8192); +} + +static bool SpeedRandomChunk(const std::string &name, size_t chunk_len) { + uint8_t scratch[8192]; + + if (chunk_len > sizeof(scratch)) { + return false; + } + + TimeResults results; + if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool { + RAND_bytes(scratch, chunk_len); + return true; + })) { + return false; + } + + results.PrintWithBytes(name, chunk_len); + return true; +} + +static bool SpeedRandom(const std::string &selected) { + if (!selected.empty() && selected != "RNG") { + return true; + } + + return SpeedRandomChunk("RNG (16 bytes)", 16) && + SpeedRandomChunk("RNG (256 bytes)", 256) && + SpeedRandomChunk("RNG (8192 bytes)", 8192); +} + +static bool SpeedECDHCurve(const std::string &name, int nid, + const std::string &selected) { + if (!selected.empty() && name.find(selected) == std::string::npos) { + return true; + } + + TimeResults results; + if (!TimeFunction(&results, [nid]() -> bool { + bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); + if (!key || + !EC_KEY_generate_key(key.get())) { + return false; + } + const EC_GROUP *const group = EC_KEY_get0_group(key.get()); + bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group)); + bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); + + bssl::UniquePtr<BIGNUM> x(BN_new()); + bssl::UniquePtr<BIGNUM> y(BN_new()); + + if (!point || !ctx || !x || !y || + !EC_POINT_mul(group, point.get(), NULL, + EC_KEY_get0_public_key(key.get()), + EC_KEY_get0_private_key(key.get()), ctx.get()) || + !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(), + y.get(), ctx.get())) { + return false; + } + + return true; + })) { + return false; + } + + results.Print(name); + return true; +} + +static bool SpeedECDSACurve(const std::string &name, int nid, + const std::string &selected) { + if (!selected.empty() && name.find(selected) == std::string::npos) { + return true; + } + + bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); + if (!key || + !EC_KEY_generate_key(key.get())) { + return false; + } + + uint8_t signature[256]; + if (ECDSA_size(key.get()) > sizeof(signature)) { + return false; + } + uint8_t digest[20]; + OPENSSL_memset(digest, 42, sizeof(digest)); + unsigned sig_len; + + TimeResults results; + if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool { + return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, + key.get()) == 1; + })) { + return false; + } + + results.Print(name + " signing"); + + if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool { + return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len, + key.get()) == 1; + })) { + return false; + } + + results.Print(name + " verify"); + + return true; +} + +static bool SpeedECDH(const std::string &selected) { + return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) && + SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) && + SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) && + SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected); +} + +static bool SpeedECDSA(const std::string &selected) { + return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) && + SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) && + SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) && + SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected); +} + +static bool Speed25519(const std::string &selected) { + if (!selected.empty() && selected.find("25519") == std::string::npos) { + return true; + } + + TimeResults results; + + uint8_t public_key[32], private_key[64]; + + if (!TimeFunction(&results, [&public_key, &private_key]() -> bool { + ED25519_keypair(public_key, private_key); + return true; + })) { + return false; + } + + results.Print("Ed25519 key generation"); + + static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5}; + uint8_t signature[64]; + + if (!TimeFunction(&results, [&private_key, &signature]() -> bool { + return ED25519_sign(signature, kMessage, sizeof(kMessage), + private_key) == 1; + })) { + return false; + } + + results.Print("Ed25519 signing"); + + if (!TimeFunction(&results, [&public_key, &signature]() -> bool { + return ED25519_verify(kMessage, sizeof(kMessage), signature, + public_key) == 1; + })) { + fprintf(stderr, "Ed25519 verify failed.\n"); + return false; + } + + results.Print("Ed25519 verify"); + + if (!TimeFunction(&results, []() -> bool { + uint8_t out[32], in[32]; + OPENSSL_memset(in, 0, sizeof(in)); + X25519_public_from_private(out, in); + return true; + })) { + fprintf(stderr, "Curve25519 base-point multiplication failed.\n"); + return false; + } + + results.Print("Curve25519 base-point multiplication"); + + if (!TimeFunction(&results, []() -> bool { + uint8_t out[32], in1[32], in2[32]; + OPENSSL_memset(in1, 0, sizeof(in1)); + OPENSSL_memset(in2, 0, sizeof(in2)); + in1[0] = 1; + in2[0] = 9; + return X25519(out, in1, in2) == 1; + })) { + fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n"); + return false; + } + + results.Print("Curve25519 arbitrary point multiplication"); + + return true; +} + +static bool SpeedSPAKE2(const std::string &selected) { + if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) { + return true; + } + + TimeResults results; + + static const uint8_t kAliceName[] = {'A'}; + static const uint8_t kBobName[] = {'B'}; + static const uint8_t kPassword[] = "password"; + bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice, + kAliceName, sizeof(kAliceName), kBobName, + sizeof(kBobName))); + uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE]; + size_t alice_msg_len; + + if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len, + sizeof(alice_msg), + kPassword, sizeof(kPassword))) { + fprintf(stderr, "SPAKE2_generate_msg failed.\n"); + return false; + } + + if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool { + bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob, + kBobName, sizeof(kBobName), kAliceName, + sizeof(kAliceName))); + uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64]; + size_t bob_msg_len, bob_key_len; + if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len, + sizeof(bob_msg), kPassword, + sizeof(kPassword)) || + !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len, + sizeof(bob_key), alice_msg, alice_msg_len)) { + return false; + } + + return true; + })) { + fprintf(stderr, "SPAKE2 failed.\n"); + } + + results.Print("SPAKE2 over Ed25519"); + + return true; +} + +static const struct argument kArguments[] = { + { + "-filter", kOptionalArgument, + "A filter on the speed tests to run", + }, + { + "-timeout", kOptionalArgument, + "The number of seconds to run each test for (default is 1)", + }, + { + "", kOptionalArgument, "", + }, +}; + +bool Speed(const std::vector<std::string> &args) { + std::map<std::string, std::string> args_map; + if (!ParseKeyValueArguments(&args_map, args, kArguments)) { + PrintUsage(kArguments); + return false; + } + + std::string selected; + if (args_map.count("-filter") != 0) { + selected = args_map["-filter"]; + } + + if (args_map.count("-timeout") != 0) { + g_timeout_seconds = atoi(args_map["-timeout"].c_str()); + } + + bssl::UniquePtr<RSA> key( + RSA_private_key_from_bytes(kDERRSAPrivate2048, kDERRSAPrivate2048Len)); + if (key == nullptr) { + fprintf(stderr, "Failed to parse RSA key.\n"); + ERR_print_errors_fp(stderr); + return false; + } + + if (!SpeedRSA("RSA 2048", key.get(), selected)) { + return false; + } + + key.reset(RSA_private_key_from_bytes(kDERRSAPrivate3Prime2048, + kDERRSAPrivate3Prime2048Len)); + if (key == nullptr) { + fprintf(stderr, "Failed to parse RSA key.\n"); + ERR_print_errors_fp(stderr); + return false; + } + + if (!SpeedRSA("RSA 2048 (3 prime, e=3)", key.get(), selected)) { + return false; + } + + key.reset( + RSA_private_key_from_bytes(kDERRSAPrivate4096, kDERRSAPrivate4096Len)); + if (key == nullptr) { + fprintf(stderr, "Failed to parse 4096-bit RSA key.\n"); + ERR_print_errors_fp(stderr); + return 1; + } + + if (!SpeedRSA("RSA 4096", key.get(), selected)) { + return false; + } + + key.reset(); + + // kTLSADLen is the number of bytes of additional data that TLS passes to + // AEADs. + static const size_t kTLSADLen = 13; + // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. + // These are AEADs that weren't originally defined as AEADs, but which we use + // via the AEAD interface. In order for that to work, they have some TLS + // knowledge in them and construct a couple of the AD bytes internally. + static const size_t kLegacyADLen = kTLSADLen - 2; + + if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) || + !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) || + !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen, + selected) || + !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1", + kLegacyADLen, selected) || + !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", + kLegacyADLen, selected) || + !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", + kLegacyADLen, selected) || +#if !defined(OPENSSL_SMALL) + !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, + selected) || + !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, + selected) || + !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, + selected) || + !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, + selected) || +#endif + !SpeedHash(EVP_sha1(), "SHA-1", selected) || + !SpeedHash(EVP_sha256(), "SHA-256", selected) || + !SpeedHash(EVP_sha512(), "SHA-512", selected) || + !SpeedRandom(selected) || + !SpeedECDH(selected) || + !SpeedECDSA(selected) || + !Speed25519(selected) || + !SpeedSPAKE2(selected)) { + return false; + } + + return true; +} |