diff options
author | 2023-10-10 14:33:42 +0000 | |
---|---|---|
committer | 2023-10-10 14:33:42 +0000 | |
commit | af1a266670d040d2f4083ff309d732d648afba2a (patch) | |
tree | 2fc46203448ddcc6f81546d379abfaeb323575e9 /roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/rand/rand_local.h | |
parent | e02cda008591317b1625707ff8e115a4841aa889 (diff) |
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/rand/rand_local.h')
-rw-r--r-- | roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/rand/rand_local.h | 299 |
1 files changed, 299 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/rand/rand_local.h b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/rand/rand_local.h new file mode 100644 index 000000000..1bc9bf7d2 --- /dev/null +++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/rand/rand_local.h @@ -0,0 +1,299 @@ +/* + * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#ifndef OSSL_CRYPTO_RAND_LOCAL_H +# define OSSL_CRYPTO_RAND_LOCAL_H + +# include <openssl/aes.h> +# include <openssl/evp.h> +# include <openssl/sha.h> +# include <openssl/hmac.h> +# include <openssl/ec.h> +# include <openssl/rand_drbg.h> +# include "internal/tsan_assist.h" + +# include "internal/numbers.h" + +/* How many times to read the TSC as a randomness source. */ +# define TSC_READ_COUNT 4 + +/* Maximum reseed intervals */ +# define MAX_RESEED_INTERVAL (1 << 24) +# define MAX_RESEED_TIME_INTERVAL (1 << 20) /* approx. 12 days */ + +/* Default reseed intervals */ +# define MASTER_RESEED_INTERVAL (1 << 8) +# define SLAVE_RESEED_INTERVAL (1 << 16) +# define MASTER_RESEED_TIME_INTERVAL (60*60) /* 1 hour */ +# define SLAVE_RESEED_TIME_INTERVAL (7*60) /* 7 minutes */ + + + +/* + * Maximum input size for the DRBG (entropy, nonce, personalization string) + * + * NIST SP800 90Ar1 allows a maximum of (1 << 35) bits i.e., (1 << 32) bytes. + * + * We lower it to 'only' INT32_MAX bytes, which is equivalent to 2 gigabytes. + */ +# define DRBG_MAX_LENGTH INT32_MAX + + +/* + * Maximum allocation size for RANDOM_POOL buffers + * + * The max_len value for the buffer provided to the rand_drbg_get_entropy() + * callback is currently 2^31 bytes (2 gigabytes), if a derivation function + * is used. Since this is much too large to be allocated, the rand_pool_new() + * function chooses more modest values as default pool length, bounded + * by RAND_POOL_MIN_LENGTH and RAND_POOL_MAX_LENGTH + * + * The choice of the RAND_POOL_FACTOR is large enough such that the + * RAND_POOL can store a random input which has a lousy entropy rate of + * 8/256 (= 0.03125) bits per byte. This input will be sent through the + * derivation function which 'compresses' the low quality input into a + * high quality output. + * + * The factor 1.5 below is the pessimistic estimate for the extra amount + * of entropy required when no get_nonce() callback is defined. + */ +# define RAND_POOL_FACTOR 256 +# define RAND_POOL_MAX_LENGTH (RAND_POOL_FACTOR * \ + 3 * (RAND_DRBG_STRENGTH / 16)) +/* + * = (RAND_POOL_FACTOR * \ + * 1.5 * (RAND_DRBG_STRENGTH / 8)) + */ + +/* + * Initial allocation minimum. + * + * There is a distinction between the secure and normal allocation minimums. + * Ideally, the secure allocation size should be a power of two. The normal + * allocation size doesn't have any such restriction. + * + * The secure value is based on 128 bits of secure material, which is 16 bytes. + * Typically, the DRBGs will set a minimum larger than this so optimal + * allocation ought to take place (for full quality seed material). + * + * The normal value has been chosen by noticing that the rand_drbg_get_nonce + * function is usually the largest of the built in allocation (twenty four + * bytes and then appending another sixteen bytes). This means the buffer ends + * with 40 bytes. The value of forty eight is comfortably above this which + * allows some slack in the platform specific values used. + */ +# define RAND_POOL_MIN_ALLOCATION(secure) ((secure) ? 16 : 48) + +/* DRBG status values */ +typedef enum drbg_status_e { + DRBG_UNINITIALISED, + DRBG_READY, + DRBG_ERROR +} DRBG_STATUS; + + +/* instantiate */ +typedef int (*RAND_DRBG_instantiate_fn)(RAND_DRBG *ctx, + const unsigned char *ent, + size_t entlen, + const unsigned char *nonce, + size_t noncelen, + const unsigned char *pers, + size_t perslen); +/* reseed */ +typedef int (*RAND_DRBG_reseed_fn)(RAND_DRBG *ctx, + const unsigned char *ent, + size_t entlen, + const unsigned char *adin, + size_t adinlen); +/* generate output */ +typedef int (*RAND_DRBG_generate_fn)(RAND_DRBG *ctx, + unsigned char *out, + size_t outlen, + const unsigned char *adin, + size_t adinlen); +/* uninstantiate */ +typedef int (*RAND_DRBG_uninstantiate_fn)(RAND_DRBG *ctx); + + +/* + * The DRBG methods + */ + +typedef struct rand_drbg_method_st { + RAND_DRBG_instantiate_fn instantiate; + RAND_DRBG_reseed_fn reseed; + RAND_DRBG_generate_fn generate; + RAND_DRBG_uninstantiate_fn uninstantiate; +} RAND_DRBG_METHOD; + + +/* + * The state of a DRBG AES-CTR. + */ +typedef struct rand_drbg_ctr_st { + EVP_CIPHER_CTX *ctx; + EVP_CIPHER_CTX *ctx_df; + const EVP_CIPHER *cipher; + size_t keylen; + unsigned char K[32]; + unsigned char V[16]; + /* Temporary block storage used by ctr_df */ + unsigned char bltmp[16]; + size_t bltmp_pos; + unsigned char KX[48]; +} RAND_DRBG_CTR; + + +/* + * The 'random pool' acts as a dumb container for collecting random + * input from various entropy sources. The pool has no knowledge about + * whether its randomness is fed into a legacy RAND_METHOD via RAND_add() + * or into a new style RAND_DRBG. It is the callers duty to 1) initialize the + * random pool, 2) pass it to the polling callbacks, 3) seed the RNG, and + * 4) cleanup the random pool again. + * + * The random pool contains no locking mechanism because its scope and + * lifetime is intended to be restricted to a single stack frame. + */ +struct rand_pool_st { + unsigned char *buffer; /* points to the beginning of the random pool */ + size_t len; /* current number of random bytes contained in the pool */ + + int attached; /* true pool was attached to existing buffer */ + int secure; /* 1: allocated on the secure heap, 0: otherwise */ + + size_t min_len; /* minimum number of random bytes requested */ + size_t max_len; /* maximum number of random bytes (allocated buffer size) */ + size_t alloc_len; /* current number of bytes allocated */ + size_t entropy; /* current entropy count in bits */ + size_t entropy_requested; /* requested entropy count in bits */ +}; + +/* + * The state of all types of DRBGs, even though we only have CTR mode + * right now. + */ +struct rand_drbg_st { + CRYPTO_RWLOCK *lock; + RAND_DRBG *parent; + int secure; /* 1: allocated on the secure heap, 0: otherwise */ + int type; /* the nid of the underlying algorithm */ + /* + * Stores the return value of openssl_get_fork_id() as of when we last + * reseeded. The DRBG reseeds automatically whenever drbg->fork_id != + * openssl_get_fork_id(). Used to provide fork-safety and reseed this + * DRBG in the child process. + */ + int fork_id; + unsigned short flags; /* various external flags */ + + /* + * The random_data is used by RAND_add()/drbg_add() to attach random + * data to the global drbg, such that the rand_drbg_get_entropy() callback + * can pull it during instantiation and reseeding. This is necessary to + * reconcile the different philosophies of the RAND and the RAND_DRBG + * with respect to how randomness is added to the RNG during reseeding + * (see PR #4328). + */ + struct rand_pool_st *seed_pool; + + /* + * Auxiliary pool for additional data. + */ + struct rand_pool_st *adin_pool; + + /* + * The following parameters are setup by the per-type "init" function. + * + * Currently the only type is CTR_DRBG, its init function is drbg_ctr_init(). + * + * The parameters are closely related to the ones described in + * section '10.2.1 CTR_DRBG' of [NIST SP 800-90Ar1], with one + * crucial difference: In the NIST standard, all counts are given + * in bits, whereas in OpenSSL entropy counts are given in bits + * and buffer lengths are given in bytes. + * + * Since this difference has lead to some confusion in the past, + * (see [GitHub Issue #2443], formerly [rt.openssl.org #4055]) + * the 'len' suffix has been added to all buffer sizes for + * clarification. + */ + + int strength; + size_t max_request; + size_t min_entropylen, max_entropylen; + size_t min_noncelen, max_noncelen; + size_t max_perslen, max_adinlen; + + /* Counts the number of generate requests since the last reseed. */ + unsigned int reseed_gen_counter; + /* + * Maximum number of generate requests until a reseed is required. + * This value is ignored if it is zero. + */ + unsigned int reseed_interval; + /* Stores the time when the last reseeding occurred */ + time_t reseed_time; + /* + * Specifies the maximum time interval (in seconds) between reseeds. + * This value is ignored if it is zero. + */ + time_t reseed_time_interval; + /* + * Counts the number of reseeds since instantiation. + * This value is ignored if it is zero. + * + * This counter is used only for seed propagation from the <master> DRBG + * to its two children, the <public> and <private> DRBG. This feature is + * very special and its sole purpose is to ensure that any randomness which + * is added by RAND_add() or RAND_seed() will have an immediate effect on + * the output of RAND_bytes() resp. RAND_priv_bytes(). + */ + TSAN_QUALIFIER unsigned int reseed_prop_counter; + unsigned int reseed_next_counter; + + size_t seedlen; + DRBG_STATUS state; + + /* Application data, mainly used in the KATs. */ + CRYPTO_EX_DATA ex_data; + + /* Implementation specific data (currently only one implementation) */ + union { + RAND_DRBG_CTR ctr; + } data; + + /* Implementation specific methods */ + RAND_DRBG_METHOD *meth; + + /* Callback functions. See comments in rand_lib.c */ + RAND_DRBG_get_entropy_fn get_entropy; + RAND_DRBG_cleanup_entropy_fn cleanup_entropy; + RAND_DRBG_get_nonce_fn get_nonce; + RAND_DRBG_cleanup_nonce_fn cleanup_nonce; +}; + +/* The global RAND method, and the global buffer and DRBG instance. */ +extern RAND_METHOD rand_meth; + +/* DRBG helpers */ +int rand_drbg_restart(RAND_DRBG *drbg, + const unsigned char *buffer, size_t len, size_t entropy); +size_t rand_drbg_seedlen(RAND_DRBG *drbg); +/* locking api */ +int rand_drbg_lock(RAND_DRBG *drbg); +int rand_drbg_unlock(RAND_DRBG *drbg); +int rand_drbg_enable_locking(RAND_DRBG *drbg); + + +/* initializes the AES-CTR DRBG implementation */ +int drbg_ctr_init(RAND_DRBG *drbg); + +#endif |