diff options
author | 2023-10-10 14:33:42 +0000 | |
---|---|---|
committer | 2023-10-10 14:33:42 +0000 | |
commit | af1a266670d040d2f4083ff309d732d648afba2a (patch) | |
tree | 2fc46203448ddcc6f81546d379abfaeb323575e9 /roms/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c | |
parent | e02cda008591317b1625707ff8e115a4841aa889 (diff) |
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'roms/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c')
-rw-r--r-- | roms/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c | 436 |
1 files changed, 436 insertions, 0 deletions
diff --git a/roms/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c b/roms/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c new file mode 100644 index 000000000..4e1cf3a1e --- /dev/null +++ b/roms/u-boot/arch/arm/cpu/arm926ejs/mxs/clock.c @@ -0,0 +1,436 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Freescale i.MX23/i.MX28 clock setup code + * + * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> + * on behalf of DENX Software Engineering GmbH + * + * Based on code from LTIB: + * Copyright (C) 2010 Freescale Semiconductor, Inc. + */ + +#include <common.h> +#include <log.h> +#include <linux/errno.h> +#include <asm/io.h> +#include <asm/arch/clock.h> +#include <asm/arch/imx-regs.h> + +/* + * The PLL frequency is 480MHz and XTAL frequency is 24MHz + * iMX23: datasheet section 4.2 + * iMX28: datasheet section 10.2 + */ +#define PLL_FREQ_KHZ 480000 +#define PLL_FREQ_COEF 18 +#define XTAL_FREQ_KHZ 24000 + +#define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000) +#define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000) + +#if defined(CONFIG_MX23) +#define MXC_SSPCLK_MAX MXC_SSPCLK0 +#elif defined(CONFIG_MX28) +#define MXC_SSPCLK_MAX MXC_SSPCLK3 +#endif + +static uint32_t mxs_get_pclk(void) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + + uint32_t clkctrl, clkseq, div; + uint8_t clkfrac, frac; + + clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu); + + /* No support of fractional divider calculation */ + if (clkctrl & + (CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) { + return 0; + } + + clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); + + /* XTAL Path */ + if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) { + div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >> + CLKCTRL_CPU_DIV_XTAL_OFFSET; + return XTAL_FREQ_MHZ / div; + } + + /* REF Path */ + clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]); + frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; + div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK; + return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; +} + +static uint32_t mxs_get_hclk(void) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + + uint32_t div; + uint32_t clkctrl; + + clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus); + + /* No support of fractional divider calculation */ + if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN) + return 0; + + div = clkctrl & CLKCTRL_HBUS_DIV_MASK; + return mxs_get_pclk() / div; +} + +static uint32_t mxs_get_emiclk(void) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + + uint32_t clkctrl, clkseq, div; + uint8_t clkfrac, frac; + + clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); + clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi); + + /* XTAL Path */ + if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) { + div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >> + CLKCTRL_EMI_DIV_XTAL_OFFSET; + return XTAL_FREQ_MHZ / div; + } + + /* REF Path */ + clkfrac = readb(&clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_EMI]); + frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; + div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK; + return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; +} + +static uint32_t mxs_get_gpmiclk(void) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; +#if defined(CONFIG_MX23) + uint8_t *reg = + &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_CPU]; +#elif defined(CONFIG_MX28) + uint8_t *reg = + &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_GPMI]; +#endif + uint32_t clkctrl, clkseq, div; + uint8_t clkfrac, frac; + + clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); + clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi); + + /* XTAL Path */ + if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) { + div = clkctrl & CLKCTRL_GPMI_DIV_MASK; + return XTAL_FREQ_MHZ / div; + } + + /* REF Path */ + clkfrac = readb(reg); + frac = clkfrac & CLKCTRL_FRAC_FRAC_MASK; + div = clkctrl & CLKCTRL_GPMI_DIV_MASK; + return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; +} + +/* + * Set IO clock frequency, in kHz + */ +void mxs_set_ioclk(enum mxs_ioclock io, uint32_t freq) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + uint32_t div; + int io_reg; + + if (freq == 0) + return; + + if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1)) + return; + + div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq; + + if (div < 18) + div = 18; + + if (div > 35) + div = 35; + + io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */ + writeb(CLKCTRL_FRAC_CLKGATE, + &clkctrl_regs->hw_clkctrl_frac0_set[io_reg]); + writeb(CLKCTRL_FRAC_CLKGATE | (div & CLKCTRL_FRAC_FRAC_MASK), + &clkctrl_regs->hw_clkctrl_frac0[io_reg]); + writeb(CLKCTRL_FRAC_CLKGATE, + &clkctrl_regs->hw_clkctrl_frac0_clr[io_reg]); +} + +/* + * Get IO clock, returns IO clock in kHz + */ +static uint32_t mxs_get_ioclk(enum mxs_ioclock io) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + uint8_t ret; + int io_reg; + + if ((io < MXC_IOCLK0) || (io > MXC_IOCLK1)) + return 0; + + io_reg = CLKCTRL_FRAC0_IO0 - io; /* Register order is reversed */ + + ret = readb(&clkctrl_regs->hw_clkctrl_frac0[io_reg]) & + CLKCTRL_FRAC_FRAC_MASK; + + return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret; +} + +/* + * Configure SSP clock frequency, in kHz + */ +void mxs_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + uint32_t clk, clkreg; + + if (ssp > MXC_SSPCLK_MAX) + return; + + clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + + (ssp * sizeof(struct mxs_register_32)); + + clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE); + while (readl(clkreg) & CLKCTRL_SSP_CLKGATE) + ; + + if (xtal) + clk = XTAL_FREQ_KHZ; + else + clk = mxs_get_ioclk(ssp >> 1); + + if (freq > clk) + return; + + /* Calculate the divider and cap it if necessary */ + clk /= freq; + if (clk > CLKCTRL_SSP_DIV_MASK) + clk = CLKCTRL_SSP_DIV_MASK; + + clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk); + while (readl(clkreg) & CLKCTRL_SSP_BUSY) + ; + + if (xtal) + writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, + &clkctrl_regs->hw_clkctrl_clkseq_set); + else + writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, + &clkctrl_regs->hw_clkctrl_clkseq_clr); +} + +/* + * Return SSP frequency, in kHz + */ +static uint32_t mxs_get_sspclk(enum mxs_sspclock ssp) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + uint32_t clkreg; + uint32_t clk, tmp; + + if (ssp > MXC_SSPCLK_MAX) + return 0; + + tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq); + if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp)) + return XTAL_FREQ_KHZ; + + clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + + (ssp * sizeof(struct mxs_register_32)); + + tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK; + + if (tmp == 0) + return 0; + + clk = mxs_get_ioclk(ssp >> 1); + + return clk / tmp; +} + +/* + * Set SSP/MMC bus frequency, in kHz) + */ +void mxs_set_ssp_busclock(unsigned int bus, uint32_t freq) +{ + struct mxs_ssp_regs *ssp_regs; + const enum mxs_sspclock clk = mxs_ssp_clock_by_bus(bus); + const uint32_t sspclk = mxs_get_sspclk(clk); + uint32_t reg; + uint32_t divide, rate, tgtclk; + + ssp_regs = mxs_ssp_regs_by_bus(bus); + + /* + * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), + * CLOCK_DIVIDE has to be an even value from 2 to 254, and + * CLOCK_RATE could be any integer from 0 to 255. + */ + for (divide = 2; divide < 254; divide += 2) { + rate = sspclk / freq / divide; + if (rate <= 256) + break; + } + + tgtclk = sspclk / divide / rate; + while (tgtclk > freq) { + rate++; + tgtclk = sspclk / divide / rate; + } + if (rate > 256) + rate = 256; + + /* Always set timeout the maximum */ + reg = SSP_TIMING_TIMEOUT_MASK | + (divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) | + ((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET); + writel(reg, &ssp_regs->hw_ssp_timing); + + debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n", + bus, tgtclk, freq); +} + +void mxs_set_lcdclk(uint32_t __maybe_unused lcd_base, uint32_t freq) +{ + struct mxs_clkctrl_regs *clkctrl_regs = + (struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE; + uint32_t fp, x, k_rest, k_best, x_best, tk; + int32_t k_best_l = 999, k_best_t = 0, x_best_l = 0xff, x_best_t = 0xff; + + if (freq == 0) + return; + +#if defined(CONFIG_MX23) + writel(CLKCTRL_CLKSEQ_BYPASS_PIX, &clkctrl_regs->hw_clkctrl_clkseq_clr); +#elif defined(CONFIG_MX28) + writel(CLKCTRL_CLKSEQ_BYPASS_DIS_LCDIF, &clkctrl_regs->hw_clkctrl_clkseq_clr); +#endif + + /* + * / 18 \ 1 1 + * freq kHz = | 480000000 Hz * -- | * --- * ------ + * \ x / k 1000 + * + * 480000000 Hz 18 + * ------------ * -- + * freq kHz x + * k = ------------------- + * 1000 + */ + + fp = ((PLL_FREQ_KHZ * 1000) / freq) * 18; + + for (x = 18; x <= 35; x++) { + tk = fp / x; + if ((tk / 1000 == 0) || (tk / 1000 > 255)) + continue; + + k_rest = tk % 1000; + + if (k_rest < (k_best_l % 1000)) { + k_best_l = tk; + x_best_l = x; + } + + if (k_rest > (k_best_t % 1000)) { + k_best_t = tk; + x_best_t = x; + } + } + + if (1000 - (k_best_t % 1000) > (k_best_l % 1000)) { + k_best = k_best_l; + x_best = x_best_l; + } else { + k_best = k_best_t; + x_best = x_best_t; + } + + k_best /= 1000; + +#if defined(CONFIG_MX23) + writeb(CLKCTRL_FRAC_CLKGATE, + &clkctrl_regs->hw_clkctrl_frac0_set[CLKCTRL_FRAC0_PIX]); + writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK), + &clkctrl_regs->hw_clkctrl_frac0[CLKCTRL_FRAC0_PIX]); + writeb(CLKCTRL_FRAC_CLKGATE, + &clkctrl_regs->hw_clkctrl_frac0_clr[CLKCTRL_FRAC0_PIX]); + + writel(CLKCTRL_PIX_CLKGATE, + &clkctrl_regs->hw_clkctrl_pix_set); + clrsetbits_le32(&clkctrl_regs->hw_clkctrl_pix, + CLKCTRL_PIX_DIV_MASK | CLKCTRL_PIX_CLKGATE, + k_best << CLKCTRL_PIX_DIV_OFFSET); + + while (readl(&clkctrl_regs->hw_clkctrl_pix) & CLKCTRL_PIX_BUSY) + ; +#elif defined(CONFIG_MX28) + writeb(CLKCTRL_FRAC_CLKGATE, + &clkctrl_regs->hw_clkctrl_frac1_set[CLKCTRL_FRAC1_PIX]); + writeb(CLKCTRL_FRAC_CLKGATE | (x_best & CLKCTRL_FRAC_FRAC_MASK), + &clkctrl_regs->hw_clkctrl_frac1[CLKCTRL_FRAC1_PIX]); + writeb(CLKCTRL_FRAC_CLKGATE, + &clkctrl_regs->hw_clkctrl_frac1_clr[CLKCTRL_FRAC1_PIX]); + + writel(CLKCTRL_DIS_LCDIF_CLKGATE, + &clkctrl_regs->hw_clkctrl_lcdif_set); + clrsetbits_le32(&clkctrl_regs->hw_clkctrl_lcdif, + CLKCTRL_DIS_LCDIF_DIV_MASK | CLKCTRL_DIS_LCDIF_CLKGATE, + k_best << CLKCTRL_DIS_LCDIF_DIV_OFFSET); + + while (readl(&clkctrl_regs->hw_clkctrl_lcdif) & CLKCTRL_DIS_LCDIF_BUSY) + ; +#endif +} + +uint32_t mxc_get_clock(enum mxc_clock clk) +{ + switch (clk) { + case MXC_ARM_CLK: + return mxs_get_pclk() * 1000000; + case MXC_GPMI_CLK: + return mxs_get_gpmiclk() * 1000000; + case MXC_AHB_CLK: + case MXC_IPG_CLK: + return mxs_get_hclk() * 1000000; + case MXC_EMI_CLK: + return mxs_get_emiclk(); + case MXC_IO0_CLK: + return mxs_get_ioclk(MXC_IOCLK0); + case MXC_IO1_CLK: + return mxs_get_ioclk(MXC_IOCLK1); + case MXC_XTAL_CLK: + return XTAL_FREQ_KHZ * 1000; + case MXC_SSP0_CLK: + return mxs_get_sspclk(MXC_SSPCLK0); +#ifdef CONFIG_MX28 + case MXC_SSP1_CLK: + return mxs_get_sspclk(MXC_SSPCLK1); + case MXC_SSP2_CLK: + return mxs_get_sspclk(MXC_SSPCLK2); + case MXC_SSP3_CLK: + return mxs_get_sspclk(MXC_SSPCLK3); +#endif + } + + return 0; +} |