aboutsummaryrefslogtreecommitdiffstats
path: root/roms/u-boot/doc/imx/common/imx6.txt
diff options
context:
space:
mode:
authorAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
committerAngelos Mouzakitis <a.mouzakitis@virtualopensystems.com>2023-10-10 14:33:42 +0000
commitaf1a266670d040d2f4083ff309d732d648afba2a (patch)
tree2fc46203448ddcc6f81546d379abfaeb323575e9 /roms/u-boot/doc/imx/common/imx6.txt
parente02cda008591317b1625707ff8e115a4841aa889 (diff)
Add submodule dependency filesHEADmaster
Change-Id: Iaf8d18082d3991dec7c0ebbea540f092188eb4ec
Diffstat (limited to 'roms/u-boot/doc/imx/common/imx6.txt')
-rw-r--r--roms/u-boot/doc/imx/common/imx6.txt164
1 files changed, 164 insertions, 0 deletions
diff --git a/roms/u-boot/doc/imx/common/imx6.txt b/roms/u-boot/doc/imx/common/imx6.txt
new file mode 100644
index 000000000..0b5061128
--- /dev/null
+++ b/roms/u-boot/doc/imx/common/imx6.txt
@@ -0,0 +1,164 @@
+U-Boot for Freescale i.MX6
+
+This file contains information for the port of U-Boot to the Freescale i.MX6
+SoC.
+
+1. CONVENTIONS FOR FUSE ASSIGNMENTS
+-----------------------------------
+
+1.1 MAC Address: It is stored in fuse bank 4, with the 32 lsbs in word 2 and the
+ 16 msbs in word 3[15:0].
+ For i.MX6SX and i.MX6UL, they have two MAC addresses. The second MAC address
+ is stored in fuse bank 4, with the 16 lsb in word 3[31:16] and the 32 msbs in
+ word 4.
+
+Example:
+
+For reading the MAC address fuses on a MX6Q:
+
+- The MAC address is stored in two fuse addresses (the fuse addresses are
+described in the Fusemap Descriptions table from the mx6q Reference Manual):
+
+0x620[31:0] - MAC_ADDR[31:0]
+0x630[15:0] - MAC_ADDR[47:32]
+
+In order to use the fuse API, we need to pass the bank and word values, which
+are calculated as below:
+
+Fuse address for the lower MAC address: 0x620
+Base address for the fuses: 0x400
+
+(0x620 - 0x400)/0x10 = 0x22 = 34 decimal
+
+As the fuses are arranged in banks of 8 words:
+
+34 / 8 = 4 and the remainder is 2, so in this case:
+
+bank = 4
+word = 2
+
+And the U-Boot command would be:
+
+=> fuse read 4 2
+Reading bank 4:
+
+Word 0x00000002: 9f027772
+
+Doing the same for the upper MAC address:
+
+Fuse address for the upper MAC address: 0x630
+Base address for the fuses: 0x400
+
+(0x630 - 0x400)/0x10 = 0x23 = 35 decimal
+
+As the fuses are arranged in banks of 8 words:
+
+35 / 8 = 4 and the remainder is 3, so in this case:
+
+bank = 4
+word = 3
+
+And the U-Boot command would be:
+
+=> fuse read 4 3
+Reading bank 4:
+
+Word 0x00000003: 00000004
+
+,which matches the ethaddr value:
+=> echo ${ethaddr}
+00:04:9f:02:77:72
+
+Some other useful hints:
+
+- The 'bank' and 'word' numbers can be easily obtained from the mx6 Reference
+Manual. For the mx6quad case, please check the "46.5 OCOTP Memory Map/Register
+Definition" from the "i.MX 6Dual/6Quad Applications Processor Reference Manual,
+Rev. 1, 04/2013" document. For example, for the MAC fuses we have:
+
+Address:
+21B_C620 Value of OTP Bank4 Word2 (MAC Address)(OCOTP_MAC0)
+
+21B_C630 Value of OTP Bank4 Word3 (MAC Address)(OCOTP_MAC1)
+
+- The command '=> fuse read 4 2 2' reads the whole MAC addresses at once:
+
+=> fuse read 4 2 2
+Reading bank 4:
+
+Word 0x00000002: 9f027772 00000004
+
+NAND Boot on i.MX6 with SPL support
+--------------------------------------
+
+Writing/updating boot image in nand device is not straight forward in
+i.MX6 platform and it requires boot control block(BCB) to be configured.
+
+BCB contains two data structures, Firmware Configuration Block(FCB) and
+Discovered Bad Block Table(DBBT). FCB has nand timings, DBBT search area,
+and firmware. See IMX6DQRM Section 8.5.2.2
+for more information.
+
+We can't use 'nand write' command to write SPL/firmware image directly
+like other platforms does. So we need special setup to write BCB block
+as per IMX6QDL reference manual 'nandbcb update' command do that job.
+
+for nand boot, up on reset bootrom look for FCB structure in
+first block's if FCB found the nand timings are loaded for
+further reads. once FCB read done, DTTB will be loaded and
+finally firmware will be loaded which is boot image.
+
+cmd_nandbcb will create FCB these structures
+by taking mtd partition as an example.
+- initial code will erase entire partition
+- followed by FCB setup, like first 2 blocks for FCB/DBBT write,
+ and next block for FW1/SPL
+- write firmware at FW1 block and
+- finally write fcb/dttb in first 2 block.
+
+Typical NAND BCB layout:
+=======================
+
+ no.of blocks = partition size / erasesize
+ no.of fcb/dbbt blocks = 2
+ FW1 offset = no.of fcb/dbbt
+
+block 0 1 2
+ -------------------------------
+ |FCB/DBBT 0|FCB/DBBT 1| FW 1 |
+ --------------------------------
+
+On summary, nandbcb update will
+- erase the entire partition
+- create BCB by creating 2 FCB/BDDT block followed by
+ 1 FW blocks based on partition size and erasesize.
+- fill FCB/DBBT structures
+- write FW/SPL in FW1
+- write FCB/DBBT in first 2 blocks
+
+step-1: write SPL
+
+icorem6qdl> ext4load mmc 0:1 $loadaddr SPL
+39936 bytes read in 10 ms (3.8 MiB/s)
+
+icorem6qdl> nandbcb update $loadaddr spl $filesize
+device 0 offset 0x0, size 0x9c00
+Erasing at 0x1c0000 -- 100% complete.
+NAND fw write: 0x80000 offset, 0xb000 bytes written: OK
+
+step-2: write u-boot-dtb.img
+
+icorem6qdl> nand erase.part uboot
+
+NAND erase.part: device 0 offset 0x200000, size 0x200000
+Erasing at 0x3c0000 -- 100% complete.
+OK
+
+icorem6qdl> ext4load mmc 0:1 $loadaddr u-boot-dtb.img
+589094 bytes read in 37 ms (15.2 MiB/s)
+
+icorem6qdl> nand write ${loadaddr} uboot ${filesize}
+
+NAND write: device 0 offset 0x200000, size 0x8fd26
+ 589094 bytes written: OK
+icorem6qdl>