aboutsummaryrefslogtreecommitdiffstats
path: root/target/hppa/mem_helper.c
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /target/hppa/mem_helper.c
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'target/hppa/mem_helper.c')
-rw-r--r--target/hppa/mem_helper.c380
1 files changed, 380 insertions, 0 deletions
diff --git a/target/hppa/mem_helper.c b/target/hppa/mem_helper.c
new file mode 100644
index 000000000..bf07445cd
--- /dev/null
+++ b/target/hppa/mem_helper.c
@@ -0,0 +1,380 @@
+/*
+ * HPPA memory access helper routines
+ *
+ * Copyright (c) 2017 Helge Deller
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+#include "hw/core/cpu.h"
+#include "trace.h"
+
+static hppa_tlb_entry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
+ hppa_tlb_entry *ent = &env->tlb[i];
+ if (ent->va_b <= addr && addr <= ent->va_e) {
+ trace_hppa_tlb_find_entry(env, ent + i, ent->entry_valid,
+ ent->va_b, ent->va_e, ent->pa);
+ return ent;
+ }
+ }
+ trace_hppa_tlb_find_entry_not_found(env, addr);
+ return NULL;
+}
+
+static void hppa_flush_tlb_ent(CPUHPPAState *env, hppa_tlb_entry *ent)
+{
+ CPUState *cs = env_cpu(env);
+ unsigned i, n = 1 << (2 * ent->page_size);
+ uint64_t addr = ent->va_b;
+
+ trace_hppa_tlb_flush_ent(env, ent, ent->va_b, ent->va_e, ent->pa);
+
+ for (i = 0; i < n; ++i, addr += TARGET_PAGE_SIZE) {
+ /* Do not flush MMU_PHYS_IDX. */
+ tlb_flush_page_by_mmuidx(cs, addr, 0xf);
+ }
+
+ memset(ent, 0, sizeof(*ent));
+ ent->va_b = -1;
+}
+
+static hppa_tlb_entry *hppa_alloc_tlb_ent(CPUHPPAState *env)
+{
+ hppa_tlb_entry *ent;
+ uint32_t i = env->tlb_last;
+
+ env->tlb_last = (i == ARRAY_SIZE(env->tlb) - 1 ? 0 : i + 1);
+ ent = &env->tlb[i];
+
+ hppa_flush_tlb_ent(env, ent);
+ return ent;
+}
+
+int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
+ int type, hwaddr *pphys, int *pprot)
+{
+ hwaddr phys;
+ int prot, r_prot, w_prot, x_prot;
+ hppa_tlb_entry *ent;
+ int ret = -1;
+
+ /* Virtual translation disabled. Direct map virtual to physical. */
+ if (mmu_idx == MMU_PHYS_IDX) {
+ phys = addr;
+ prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ goto egress;
+ }
+
+ /* Find a valid tlb entry that matches the virtual address. */
+ ent = hppa_find_tlb(env, addr);
+ if (ent == NULL || !ent->entry_valid) {
+ phys = 0;
+ prot = 0;
+ ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
+ goto egress;
+ }
+
+ /* We now know the physical address. */
+ phys = ent->pa + (addr & ~TARGET_PAGE_MASK);
+
+ /* Map TLB access_rights field to QEMU protection. */
+ r_prot = (mmu_idx <= ent->ar_pl1) * PAGE_READ;
+ w_prot = (mmu_idx <= ent->ar_pl2) * PAGE_WRITE;
+ x_prot = (ent->ar_pl2 <= mmu_idx && mmu_idx <= ent->ar_pl1) * PAGE_EXEC;
+ switch (ent->ar_type) {
+ case 0: /* read-only: data page */
+ prot = r_prot;
+ break;
+ case 1: /* read/write: dynamic data page */
+ prot = r_prot | w_prot;
+ break;
+ case 2: /* read/execute: normal code page */
+ prot = r_prot | x_prot;
+ break;
+ case 3: /* read/write/execute: dynamic code page */
+ prot = r_prot | w_prot | x_prot;
+ break;
+ default: /* execute: promote to privilege level type & 3 */
+ prot = x_prot;
+ break;
+ }
+
+ /* access_id == 0 means public page and no check is performed */
+ if ((env->psw & PSW_P) && ent->access_id) {
+ /* If bits [31:1] match, and bit 0 is set, suppress write. */
+ int match = ent->access_id * 2 + 1;
+
+ if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
+ match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
+ prot &= PAGE_READ | PAGE_EXEC;
+ if (type == PAGE_WRITE) {
+ ret = EXCP_DMPI;
+ goto egress;
+ }
+ }
+ }
+
+ /* No guest access type indicates a non-architectural access from
+ within QEMU. Bypass checks for access, D, B and T bits. */
+ if (type == 0) {
+ goto egress;
+ }
+
+ if (unlikely(!(prot & type))) {
+ /* The access isn't allowed -- Inst/Data Memory Protection Fault. */
+ ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
+ goto egress;
+ }
+
+ /* In reverse priority order, check for conditions which raise faults.
+ As we go, remove PROT bits that cover the condition we want to check.
+ In this way, the resulting PROT will force a re-check of the
+ architectural TLB entry for the next access. */
+ if (unlikely(!ent->d)) {
+ if (type & PAGE_WRITE) {
+ /* The D bit is not set -- TLB Dirty Bit Fault. */
+ ret = EXCP_TLB_DIRTY;
+ }
+ prot &= PAGE_READ | PAGE_EXEC;
+ }
+ if (unlikely(ent->b)) {
+ if (type & PAGE_WRITE) {
+ /* The B bit is set -- Data Memory Break Fault. */
+ ret = EXCP_DMB;
+ }
+ prot &= PAGE_READ | PAGE_EXEC;
+ }
+ if (unlikely(ent->t)) {
+ if (!(type & PAGE_EXEC)) {
+ /* The T bit is set -- Page Reference Fault. */
+ ret = EXCP_PAGE_REF;
+ }
+ prot &= PAGE_EXEC;
+ }
+
+ egress:
+ *pphys = phys;
+ *pprot = prot;
+ trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
+ return ret;
+}
+
+hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
+{
+ HPPACPU *cpu = HPPA_CPU(cs);
+ hwaddr phys;
+ int prot, excp;
+
+ /* If the (data) mmu is disabled, bypass translation. */
+ /* ??? We really ought to know if the code mmu is disabled too,
+ in order to get the correct debugging dumps. */
+ if (!(cpu->env.psw & PSW_D)) {
+ return addr;
+ }
+
+ excp = hppa_get_physical_address(&cpu->env, addr, MMU_KERNEL_IDX, 0,
+ &phys, &prot);
+
+ /* Since we're translating for debugging, the only error that is a
+ hard error is no translation at all. Otherwise, while a real cpu
+ access might not have permission, the debugger does. */
+ return excp == EXCP_DTLB_MISS ? -1 : phys;
+}
+
+bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
+ MMUAccessType type, int mmu_idx,
+ bool probe, uintptr_t retaddr)
+{
+ HPPACPU *cpu = HPPA_CPU(cs);
+ CPUHPPAState *env = &cpu->env;
+ int prot, excp, a_prot;
+ hwaddr phys;
+
+ switch (type) {
+ case MMU_INST_FETCH:
+ a_prot = PAGE_EXEC;
+ break;
+ case MMU_DATA_STORE:
+ a_prot = PAGE_WRITE;
+ break;
+ default:
+ a_prot = PAGE_READ;
+ break;
+ }
+
+ excp = hppa_get_physical_address(env, addr, mmu_idx,
+ a_prot, &phys, &prot);
+ if (unlikely(excp >= 0)) {
+ if (probe) {
+ return false;
+ }
+ trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
+ /* Failure. Raise the indicated exception. */
+ cs->exception_index = excp;
+ if (cpu->env.psw & PSW_Q) {
+ /* ??? Needs tweaking for hppa64. */
+ cpu->env.cr[CR_IOR] = addr;
+ cpu->env.cr[CR_ISR] = addr >> 32;
+ }
+ cpu_loop_exit_restore(cs, retaddr);
+ }
+
+ trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
+ phys & TARGET_PAGE_MASK, size, type, mmu_idx);
+ /* Success! Store the translation into the QEMU TLB. */
+ tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
+ prot, mmu_idx, TARGET_PAGE_SIZE);
+ return true;
+}
+
+/* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
+void HELPER(itlba)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
+{
+ hppa_tlb_entry *empty = NULL;
+ int i;
+
+ /* Zap any old entries covering ADDR; notice empty entries on the way. */
+ for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
+ hppa_tlb_entry *ent = &env->tlb[i];
+ if (ent->va_b <= addr && addr <= ent->va_e) {
+ if (ent->entry_valid) {
+ hppa_flush_tlb_ent(env, ent);
+ }
+ if (!empty) {
+ empty = ent;
+ }
+ }
+ }
+
+ /* If we didn't see an empty entry, evict one. */
+ if (empty == NULL) {
+ empty = hppa_alloc_tlb_ent(env);
+ }
+
+ /* Note that empty->entry_valid == 0 already. */
+ empty->va_b = addr & TARGET_PAGE_MASK;
+ empty->va_e = empty->va_b + TARGET_PAGE_SIZE - 1;
+ empty->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
+ trace_hppa_tlb_itlba(env, empty, empty->va_b, empty->va_e, empty->pa);
+}
+
+/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
+void HELPER(itlbp)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
+{
+ hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
+
+ if (unlikely(ent == NULL)) {
+ qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
+ return;
+ }
+
+ ent->access_id = extract32(reg, 1, 18);
+ ent->u = extract32(reg, 19, 1);
+ ent->ar_pl2 = extract32(reg, 20, 2);
+ ent->ar_pl1 = extract32(reg, 22, 2);
+ ent->ar_type = extract32(reg, 24, 3);
+ ent->b = extract32(reg, 27, 1);
+ ent->d = extract32(reg, 28, 1);
+ ent->t = extract32(reg, 29, 1);
+ ent->entry_valid = 1;
+ trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
+ ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
+}
+
+/* Purge (Insn/Data) TLB. This is explicitly page-based, and is
+ synchronous across all processors. */
+static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
+{
+ CPUHPPAState *env = cpu->env_ptr;
+ target_ulong addr = (target_ulong) data.target_ptr;
+ hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
+
+ if (ent && ent->entry_valid) {
+ hppa_flush_tlb_ent(env, ent);
+ }
+}
+
+void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
+{
+ CPUState *src = env_cpu(env);
+ CPUState *cpu;
+ trace_hppa_tlb_ptlb(env);
+ run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
+
+ CPU_FOREACH(cpu) {
+ if (cpu != src) {
+ async_run_on_cpu(cpu, ptlb_work, data);
+ }
+ }
+ async_safe_run_on_cpu(src, ptlb_work, data);
+}
+
+/* Purge (Insn/Data) TLB entry. This affects an implementation-defined
+ number of pages/entries (we choose all), and is local to the cpu. */
+void HELPER(ptlbe)(CPUHPPAState *env)
+{
+ trace_hppa_tlb_ptlbe(env);
+ memset(env->tlb, 0, sizeof(env->tlb));
+ tlb_flush_by_mmuidx(env_cpu(env), 0xf);
+}
+
+void cpu_hppa_change_prot_id(CPUHPPAState *env)
+{
+ if (env->psw & PSW_P) {
+ tlb_flush_by_mmuidx(env_cpu(env), 0xf);
+ }
+}
+
+void HELPER(change_prot_id)(CPUHPPAState *env)
+{
+ cpu_hppa_change_prot_id(env);
+}
+
+target_ureg HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
+{
+ hwaddr phys;
+ int prot, excp;
+
+ excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
+ &phys, &prot);
+ if (excp >= 0) {
+ if (env->psw & PSW_Q) {
+ /* ??? Needs tweaking for hppa64. */
+ env->cr[CR_IOR] = addr;
+ env->cr[CR_ISR] = addr >> 32;
+ }
+ if (excp == EXCP_DTLB_MISS) {
+ excp = EXCP_NA_DTLB_MISS;
+ }
+ trace_hppa_tlb_lpa_failed(env, addr);
+ hppa_dynamic_excp(env, excp, GETPC());
+ }
+ trace_hppa_tlb_lpa_success(env, addr, phys);
+ return phys;
+}
+
+/* Return the ar_type of the TLB at VADDR, or -1. */
+int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
+{
+ hppa_tlb_entry *ent = hppa_find_tlb(env, vaddr);
+ return ent ? ent->ar_type : -1;
+}