diff options
author | 2023-10-10 11:40:56 +0000 | |
---|---|---|
committer | 2023-10-10 11:40:56 +0000 | |
commit | e02cda008591317b1625707ff8e115a4841aa889 (patch) | |
tree | aee302e3cf8b59ec2d32ec481be3d1afddfc8968 /target/ppc/mem_helper.c | |
parent | cc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff) |
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback
design to work with QEMU and rust-vmm vhost-user backend without require any
changes.
Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>
Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'target/ppc/mem_helper.c')
-rw-r--r-- | target/ppc/mem_helper.c | 622 |
1 files changed, 622 insertions, 0 deletions
diff --git a/target/ppc/mem_helper.c b/target/ppc/mem_helper.c new file mode 100644 index 000000000..39945d9ea --- /dev/null +++ b/target/ppc/mem_helper.c @@ -0,0 +1,622 @@ +/* + * PowerPC memory access emulation helpers for QEMU. + * + * Copyright (c) 2003-2007 Jocelyn Mayer + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "qemu/host-utils.h" +#include "qemu/main-loop.h" +#include "exec/helper-proto.h" +#include "helper_regs.h" +#include "exec/cpu_ldst.h" +#include "internal.h" +#include "qemu/atomic128.h" + +/* #define DEBUG_OP */ + +static inline bool needs_byteswap(const CPUPPCState *env) +{ +#if defined(TARGET_WORDS_BIGENDIAN) + return msr_le; +#else + return !msr_le; +#endif +} + +/*****************************************************************************/ +/* Memory load and stores */ + +static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, + target_long arg) +{ +#if defined(TARGET_PPC64) + if (!msr_is_64bit(env, env->msr)) { + return (uint32_t)(addr + arg); + } else +#endif + { + return addr + arg; + } +} + +static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb, + MMUAccessType access_type, int mmu_idx, + uintptr_t raddr) +{ + void *host1, *host2; + uint32_t nb_pg1, nb_pg2; + + nb_pg1 = -(addr | TARGET_PAGE_MASK); + if (likely(nb <= nb_pg1)) { + /* The entire operation is on a single page. */ + return probe_access(env, addr, nb, access_type, mmu_idx, raddr); + } + + /* The operation spans two pages. */ + nb_pg2 = nb - nb_pg1; + host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr); + addr = addr_add(env, addr, nb_pg1); + host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr); + + /* If the two host pages are contiguous, optimize. */ + if (host2 == host1 + nb_pg1) { + return host1; + } + return NULL; +} + +void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) +{ + uintptr_t raddr = GETPC(); + int mmu_idx = cpu_mmu_index(env, false); + void *host = probe_contiguous(env, addr, (32 - reg) * 4, + MMU_DATA_LOAD, mmu_idx, raddr); + + if (likely(host)) { + /* Fast path -- the entire operation is in RAM at host. */ + for (; reg < 32; reg++) { + env->gpr[reg] = (uint32_t)ldl_be_p(host); + host += 4; + } + } else { + /* Slow path -- at least some of the operation requires i/o. */ + for (; reg < 32; reg++) { + env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); + addr = addr_add(env, addr, 4); + } + } +} + +void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) +{ + uintptr_t raddr = GETPC(); + int mmu_idx = cpu_mmu_index(env, false); + void *host = probe_contiguous(env, addr, (32 - reg) * 4, + MMU_DATA_STORE, mmu_idx, raddr); + + if (likely(host)) { + /* Fast path -- the entire operation is in RAM at host. */ + for (; reg < 32; reg++) { + stl_be_p(host, env->gpr[reg]); + host += 4; + } + } else { + /* Slow path -- at least some of the operation requires i/o. */ + for (; reg < 32; reg++) { + cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); + addr = addr_add(env, addr, 4); + } + } +} + +static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, + uint32_t reg, uintptr_t raddr) +{ + int mmu_idx; + void *host; + uint32_t val; + + if (unlikely(nb == 0)) { + return; + } + + mmu_idx = cpu_mmu_index(env, false); + host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr); + + if (likely(host)) { + /* Fast path -- the entire operation is in RAM at host. */ + for (; nb > 3; nb -= 4) { + env->gpr[reg] = (uint32_t)ldl_be_p(host); + reg = (reg + 1) % 32; + host += 4; + } + switch (nb) { + default: + return; + case 1: + val = ldub_p(host) << 24; + break; + case 2: + val = lduw_be_p(host) << 16; + break; + case 3: + val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8); + break; + } + } else { + /* Slow path -- at least some of the operation requires i/o. */ + for (; nb > 3; nb -= 4) { + env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); + reg = (reg + 1) % 32; + addr = addr_add(env, addr, 4); + } + switch (nb) { + default: + return; + case 1: + val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24; + break; + case 2: + val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; + break; + case 3: + val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; + addr = addr_add(env, addr, 2); + val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8; + break; + } + } + env->gpr[reg] = val; +} + +void helper_lsw(CPUPPCState *env, target_ulong addr, + uint32_t nb, uint32_t reg) +{ + do_lsw(env, addr, nb, reg, GETPC()); +} + +/* + * PPC32 specification says we must generate an exception if rA is in + * the range of registers to be loaded. In an other hand, IBM says + * this is valid, but rA won't be loaded. For now, I'll follow the + * spec... + */ +void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, + uint32_t ra, uint32_t rb) +{ + if (likely(xer_bc != 0)) { + int num_used_regs = DIV_ROUND_UP(xer_bc, 4); + if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || + lsw_reg_in_range(reg, num_used_regs, rb))) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_INVAL | + POWERPC_EXCP_INVAL_LSWX, GETPC()); + } else { + do_lsw(env, addr, xer_bc, reg, GETPC()); + } + } +} + +void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, + uint32_t reg) +{ + uintptr_t raddr = GETPC(); + int mmu_idx; + void *host; + uint32_t val; + + if (unlikely(nb == 0)) { + return; + } + + mmu_idx = cpu_mmu_index(env, false); + host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr); + + if (likely(host)) { + /* Fast path -- the entire operation is in RAM at host. */ + for (; nb > 3; nb -= 4) { + stl_be_p(host, env->gpr[reg]); + reg = (reg + 1) % 32; + host += 4; + } + val = env->gpr[reg]; + switch (nb) { + case 1: + stb_p(host, val >> 24); + break; + case 2: + stw_be_p(host, val >> 16); + break; + case 3: + stw_be_p(host, val >> 16); + stb_p(host + 2, val >> 8); + break; + } + } else { + for (; nb > 3; nb -= 4) { + cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); + reg = (reg + 1) % 32; + addr = addr_add(env, addr, 4); + } + val = env->gpr[reg]; + switch (nb) { + case 1: + cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr); + break; + case 2: + cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); + break; + case 3: + cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); + addr = addr_add(env, addr, 2); + cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr); + break; + } + } +} + +static void dcbz_common(CPUPPCState *env, target_ulong addr, + uint32_t opcode, bool epid, uintptr_t retaddr) +{ + target_ulong mask, dcbz_size = env->dcache_line_size; + uint32_t i; + void *haddr; + int mmu_idx = epid ? PPC_TLB_EPID_STORE : cpu_mmu_index(env, false); + +#if defined(TARGET_PPC64) + /* Check for dcbz vs dcbzl on 970 */ + if (env->excp_model == POWERPC_EXCP_970 && + !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { + dcbz_size = 32; + } +#endif + + /* Align address */ + mask = ~(dcbz_size - 1); + addr &= mask; + + /* Check reservation */ + if ((env->reserve_addr & mask) == addr) { + env->reserve_addr = (target_ulong)-1ULL; + } + + /* Try fast path translate */ + haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr); + if (haddr) { + memset(haddr, 0, dcbz_size); + } else { + /* Slow path */ + for (i = 0; i < dcbz_size; i += 8) { + cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr); + } + } +} + +void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode) +{ + dcbz_common(env, addr, opcode, false, GETPC()); +} + +void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode) +{ + dcbz_common(env, addr, opcode, true, GETPC()); +} + +void helper_icbi(CPUPPCState *env, target_ulong addr) +{ + addr &= ~(env->dcache_line_size - 1); + /* + * Invalidate one cache line : + * PowerPC specification says this is to be treated like a load + * (not a fetch) by the MMU. To be sure it will be so, + * do the load "by hand". + */ + cpu_ldl_data_ra(env, addr, GETPC()); +} + +void helper_icbiep(CPUPPCState *env, target_ulong addr) +{ +#if !defined(CONFIG_USER_ONLY) + /* See comments above */ + addr &= ~(env->dcache_line_size - 1); + cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC()); +#endif +} + +/* XXX: to be tested */ +target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, + uint32_t ra, uint32_t rb) +{ + int i, c, d; + + d = 24; + for (i = 0; i < xer_bc; i++) { + c = cpu_ldub_data_ra(env, addr, GETPC()); + addr = addr_add(env, addr, 1); + /* ra (if not 0) and rb are never modified */ + if (likely(reg != rb && (ra == 0 || reg != ra))) { + env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); + } + if (unlikely(c == xer_cmp)) { + break; + } + if (likely(d != 0)) { + d -= 8; + } else { + d = 24; + reg++; + reg = reg & 0x1F; + } + } + return i; +} + +#ifdef TARGET_PPC64 +uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr, + uint32_t opidx) +{ + Int128 ret; + + /* We will have raised EXCP_ATOMIC from the translator. */ + assert(HAVE_ATOMIC128); + ret = cpu_atomic_ldo_le_mmu(env, addr, opidx, GETPC()); + env->retxh = int128_gethi(ret); + return int128_getlo(ret); +} + +uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr, + uint32_t opidx) +{ + Int128 ret; + + /* We will have raised EXCP_ATOMIC from the translator. */ + assert(HAVE_ATOMIC128); + ret = cpu_atomic_ldo_be_mmu(env, addr, opidx, GETPC()); + env->retxh = int128_gethi(ret); + return int128_getlo(ret); +} + +void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr, + uint64_t lo, uint64_t hi, uint32_t opidx) +{ + Int128 val; + + /* We will have raised EXCP_ATOMIC from the translator. */ + assert(HAVE_ATOMIC128); + val = int128_make128(lo, hi); + cpu_atomic_sto_le_mmu(env, addr, val, opidx, GETPC()); +} + +void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr, + uint64_t lo, uint64_t hi, uint32_t opidx) +{ + Int128 val; + + /* We will have raised EXCP_ATOMIC from the translator. */ + assert(HAVE_ATOMIC128); + val = int128_make128(lo, hi); + cpu_atomic_sto_be_mmu(env, addr, val, opidx, GETPC()); +} + +uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr, + uint64_t new_lo, uint64_t new_hi, + uint32_t opidx) +{ + bool success = false; + + /* We will have raised EXCP_ATOMIC from the translator. */ + assert(HAVE_CMPXCHG128); + + if (likely(addr == env->reserve_addr)) { + Int128 oldv, cmpv, newv; + + cmpv = int128_make128(env->reserve_val2, env->reserve_val); + newv = int128_make128(new_lo, new_hi); + oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, + opidx, GETPC()); + success = int128_eq(oldv, cmpv); + } + env->reserve_addr = -1; + return env->so + success * CRF_EQ_BIT; +} + +uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr, + uint64_t new_lo, uint64_t new_hi, + uint32_t opidx) +{ + bool success = false; + + /* We will have raised EXCP_ATOMIC from the translator. */ + assert(HAVE_CMPXCHG128); + + if (likely(addr == env->reserve_addr)) { + Int128 oldv, cmpv, newv; + + cmpv = int128_make128(env->reserve_val2, env->reserve_val); + newv = int128_make128(new_lo, new_hi); + oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, + opidx, GETPC()); + success = int128_eq(oldv, cmpv); + } + env->reserve_addr = -1; + return env->so + success * CRF_EQ_BIT; +} +#endif + +/*****************************************************************************/ +/* Altivec extension helpers */ +#if defined(HOST_WORDS_BIGENDIAN) +#define HI_IDX 0 +#define LO_IDX 1 +#else +#define HI_IDX 1 +#define LO_IDX 0 +#endif + +/* + * We use msr_le to determine index ordering in a vector. However, + * byteswapping is not simply controlled by msr_le. We also need to + * take into account endianness of the target. This is done for the + * little-endian PPC64 user-mode target. + */ + +#define LVE(name, access, swap, element) \ + void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ + target_ulong addr) \ + { \ + size_t n_elems = ARRAY_SIZE(r->element); \ + int adjust = HI_IDX * (n_elems - 1); \ + int sh = sizeof(r->element[0]) >> 1; \ + int index = (addr & 0xf) >> sh; \ + if (msr_le) { \ + index = n_elems - index - 1; \ + } \ + \ + if (needs_byteswap(env)) { \ + r->element[LO_IDX ? index : (adjust - index)] = \ + swap(access(env, addr, GETPC())); \ + } else { \ + r->element[LO_IDX ? index : (adjust - index)] = \ + access(env, addr, GETPC()); \ + } \ + } +#define I(x) (x) +LVE(lvebx, cpu_ldub_data_ra, I, u8) +LVE(lvehx, cpu_lduw_data_ra, bswap16, u16) +LVE(lvewx, cpu_ldl_data_ra, bswap32, u32) +#undef I +#undef LVE + +#define STVE(name, access, swap, element) \ + void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ + target_ulong addr) \ + { \ + size_t n_elems = ARRAY_SIZE(r->element); \ + int adjust = HI_IDX * (n_elems - 1); \ + int sh = sizeof(r->element[0]) >> 1; \ + int index = (addr & 0xf) >> sh; \ + if (msr_le) { \ + index = n_elems - index - 1; \ + } \ + \ + if (needs_byteswap(env)) { \ + access(env, addr, swap(r->element[LO_IDX ? index : \ + (adjust - index)]), \ + GETPC()); \ + } else { \ + access(env, addr, r->element[LO_IDX ? index : \ + (adjust - index)], GETPC()); \ + } \ + } +#define I(x) (x) +STVE(stvebx, cpu_stb_data_ra, I, u8) +STVE(stvehx, cpu_stw_data_ra, bswap16, u16) +STVE(stvewx, cpu_stl_data_ra, bswap32, u32) +#undef I +#undef LVE + +#ifdef TARGET_PPC64 +#define GET_NB(rb) ((rb >> 56) & 0xFF) + +#define VSX_LXVL(name, lj) \ +void helper_##name(CPUPPCState *env, target_ulong addr, \ + ppc_vsr_t *xt, target_ulong rb) \ +{ \ + ppc_vsr_t t; \ + uint64_t nb = GET_NB(rb); \ + int i; \ + \ + t.s128 = int128_zero(); \ + if (nb) { \ + nb = (nb >= 16) ? 16 : nb; \ + if (msr_le && !lj) { \ + for (i = 16; i > 16 - nb; i--) { \ + t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ + addr = addr_add(env, addr, 1); \ + } \ + } else { \ + for (i = 0; i < nb; i++) { \ + t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ + addr = addr_add(env, addr, 1); \ + } \ + } \ + } \ + *xt = t; \ +} + +VSX_LXVL(lxvl, 0) +VSX_LXVL(lxvll, 1) +#undef VSX_LXVL + +#define VSX_STXVL(name, lj) \ +void helper_##name(CPUPPCState *env, target_ulong addr, \ + ppc_vsr_t *xt, target_ulong rb) \ +{ \ + target_ulong nb = GET_NB(rb); \ + int i; \ + \ + if (!nb) { \ + return; \ + } \ + \ + nb = (nb >= 16) ? 16 : nb; \ + if (msr_le && !lj) { \ + for (i = 16; i > 16 - nb; i--) { \ + cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ + addr = addr_add(env, addr, 1); \ + } \ + } else { \ + for (i = 0; i < nb; i++) { \ + cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ + addr = addr_add(env, addr, 1); \ + } \ + } \ +} + +VSX_STXVL(stxvl, 0) +VSX_STXVL(stxvll, 1) +#undef VSX_STXVL +#undef GET_NB +#endif /* TARGET_PPC64 */ + +#undef HI_IDX +#undef LO_IDX + +void helper_tbegin(CPUPPCState *env) +{ + /* + * As a degenerate implementation, always fail tbegin. The reason + * given is "Nesting overflow". The "persistent" bit is set, + * providing a hint to the error handler to not retry. The TFIAR + * captures the address of the failure, which is this tbegin + * instruction. Instruction execution will continue with the next + * instruction in memory, which is precisely what we want. + */ + + env->spr[SPR_TEXASR] = + (1ULL << TEXASR_FAILURE_PERSISTENT) | + (1ULL << TEXASR_NESTING_OVERFLOW) | + (msr_hv << TEXASR_PRIVILEGE_HV) | + (msr_pr << TEXASR_PRIVILEGE_PR) | + (1ULL << TEXASR_FAILURE_SUMMARY) | + (1ULL << TEXASR_TFIAR_EXACT); + env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr; + env->spr[SPR_TFHAR] = env->nip + 4; + env->crf[0] = 0xB; /* 0b1010 = transaction failure */ +} |