aboutsummaryrefslogtreecommitdiffstats
path: root/target/riscv/cpu_helper.c
diff options
context:
space:
mode:
authorTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
committerTimos Ampelikiotis <t.ampelikiotis@virtualopensystems.com>2023-10-10 11:40:56 +0000
commite02cda008591317b1625707ff8e115a4841aa889 (patch)
treeaee302e3cf8b59ec2d32ec481be3d1afddfc8968 /target/riscv/cpu_helper.c
parentcc668e6b7e0ffd8c9d130513d12053cf5eda1d3b (diff)
Introduce Virtio-loopback epsilon release:
Epsilon release introduces a new compatibility layer which make virtio-loopback design to work with QEMU and rust-vmm vhost-user backend without require any changes. Signed-off-by: Timos Ampelikiotis <t.ampelikiotis@virtualopensystems.com> Change-Id: I52e57563e08a7d0bdc002f8e928ee61ba0c53dd9
Diffstat (limited to 'target/riscv/cpu_helper.c')
-rw-r--r--target/riscv/cpu_helper.c1138
1 files changed, 1138 insertions, 0 deletions
diff --git a/target/riscv/cpu_helper.c b/target/riscv/cpu_helper.c
new file mode 100644
index 000000000..9eeed38c7
--- /dev/null
+++ b/target/riscv/cpu_helper.c
@@ -0,0 +1,1138 @@
+/*
+ * RISC-V CPU helpers for qemu.
+ *
+ * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
+ * Copyright (c) 2017-2018 SiFive, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2 or later, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qemu/main-loop.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "tcg/tcg-op.h"
+#include "trace.h"
+#include "semihosting/common-semi.h"
+
+int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
+{
+#ifdef CONFIG_USER_ONLY
+ return 0;
+#else
+ return env->priv;
+#endif
+}
+
+static RISCVMXL cpu_get_xl(CPURISCVState *env)
+{
+#if defined(TARGET_RISCV32)
+ return MXL_RV32;
+#elif defined(CONFIG_USER_ONLY)
+ return MXL_RV64;
+#else
+ RISCVMXL xl = riscv_cpu_mxl(env);
+
+ /*
+ * When emulating a 32-bit-only cpu, use RV32.
+ * When emulating a 64-bit cpu, and MXL has been reduced to RV32,
+ * MSTATUSH doesn't have UXL/SXL, therefore XLEN cannot be widened
+ * back to RV64 for lower privs.
+ */
+ if (xl != MXL_RV32) {
+ switch (env->priv) {
+ case PRV_M:
+ break;
+ case PRV_U:
+ xl = get_field(env->mstatus, MSTATUS64_UXL);
+ break;
+ default: /* PRV_S | PRV_H */
+ xl = get_field(env->mstatus, MSTATUS64_SXL);
+ break;
+ }
+ }
+ return xl;
+#endif
+}
+
+void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
+ target_ulong *cs_base, uint32_t *pflags)
+{
+ uint32_t flags = 0;
+
+ *pc = env->pc;
+ *cs_base = 0;
+
+ if (riscv_has_ext(env, RVV)) {
+ uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
+ bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl);
+ flags = FIELD_DP32(flags, TB_FLAGS, VILL,
+ FIELD_EX64(env->vtype, VTYPE, VILL));
+ flags = FIELD_DP32(flags, TB_FLAGS, SEW,
+ FIELD_EX64(env->vtype, VTYPE, VSEW));
+ flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
+ FIELD_EX64(env->vtype, VTYPE, VLMUL));
+ flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
+ } else {
+ flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
+ }
+
+#ifdef CONFIG_USER_ONLY
+ flags |= TB_FLAGS_MSTATUS_FS;
+#else
+ flags |= cpu_mmu_index(env, 0);
+ if (riscv_cpu_fp_enabled(env)) {
+ flags |= env->mstatus & MSTATUS_FS;
+ }
+
+ if (riscv_has_ext(env, RVH)) {
+ if (env->priv == PRV_M ||
+ (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
+ (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
+ get_field(env->hstatus, HSTATUS_HU))) {
+ flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
+ }
+
+ flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
+ get_field(env->mstatus_hs, MSTATUS_FS));
+ }
+ if (riscv_has_ext(env, RVJ)) {
+ int priv = flags & TB_FLAGS_PRIV_MMU_MASK;
+ bool pm_enabled = false;
+ switch (priv) {
+ case PRV_U:
+ pm_enabled = env->mmte & U_PM_ENABLE;
+ break;
+ case PRV_S:
+ pm_enabled = env->mmte & S_PM_ENABLE;
+ break;
+ case PRV_M:
+ pm_enabled = env->mmte & M_PM_ENABLE;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ flags = FIELD_DP32(flags, TB_FLAGS, PM_ENABLED, pm_enabled);
+ }
+#endif
+
+ flags = FIELD_DP32(flags, TB_FLAGS, XL, cpu_get_xl(env));
+
+ *pflags = flags;
+}
+
+#ifndef CONFIG_USER_ONLY
+static int riscv_cpu_local_irq_pending(CPURISCVState *env)
+{
+ target_ulong virt_enabled = riscv_cpu_virt_enabled(env);
+
+ target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
+ target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
+
+ target_ulong pending = env->mip & env->mie;
+
+ target_ulong mie = env->priv < PRV_M ||
+ (env->priv == PRV_M && mstatus_mie);
+ target_ulong sie = env->priv < PRV_S ||
+ (env->priv == PRV_S && mstatus_sie);
+ target_ulong hsie = virt_enabled || sie;
+ target_ulong vsie = virt_enabled && sie;
+
+ target_ulong irqs =
+ (pending & ~env->mideleg & -mie) |
+ (pending & env->mideleg & ~env->hideleg & -hsie) |
+ (pending & env->mideleg & env->hideleg & -vsie);
+
+ if (irqs) {
+ return ctz64(irqs); /* since non-zero */
+ } else {
+ return RISCV_EXCP_NONE; /* indicates no pending interrupt */
+ }
+}
+
+bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
+{
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+ int interruptno = riscv_cpu_local_irq_pending(env);
+ if (interruptno >= 0) {
+ cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
+ riscv_cpu_do_interrupt(cs);
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Return true is floating point support is currently enabled */
+bool riscv_cpu_fp_enabled(CPURISCVState *env)
+{
+ if (env->mstatus & MSTATUS_FS) {
+ if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
+{
+ uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
+ MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
+ MSTATUS64_UXL;
+ bool current_virt = riscv_cpu_virt_enabled(env);
+
+ g_assert(riscv_has_ext(env, RVH));
+
+ if (current_virt) {
+ /* Current V=1 and we are about to change to V=0 */
+ env->vsstatus = env->mstatus & mstatus_mask;
+ env->mstatus &= ~mstatus_mask;
+ env->mstatus |= env->mstatus_hs;
+
+ env->vstvec = env->stvec;
+ env->stvec = env->stvec_hs;
+
+ env->vsscratch = env->sscratch;
+ env->sscratch = env->sscratch_hs;
+
+ env->vsepc = env->sepc;
+ env->sepc = env->sepc_hs;
+
+ env->vscause = env->scause;
+ env->scause = env->scause_hs;
+
+ env->vstval = env->stval;
+ env->stval = env->stval_hs;
+
+ env->vsatp = env->satp;
+ env->satp = env->satp_hs;
+ } else {
+ /* Current V=0 and we are about to change to V=1 */
+ env->mstatus_hs = env->mstatus & mstatus_mask;
+ env->mstatus &= ~mstatus_mask;
+ env->mstatus |= env->vsstatus;
+
+ env->stvec_hs = env->stvec;
+ env->stvec = env->vstvec;
+
+ env->sscratch_hs = env->sscratch;
+ env->sscratch = env->vsscratch;
+
+ env->sepc_hs = env->sepc;
+ env->sepc = env->vsepc;
+
+ env->scause_hs = env->scause;
+ env->scause = env->vscause;
+
+ env->stval_hs = env->stval;
+ env->stval = env->vstval;
+
+ env->satp_hs = env->satp;
+ env->satp = env->vsatp;
+ }
+}
+
+bool riscv_cpu_virt_enabled(CPURISCVState *env)
+{
+ if (!riscv_has_ext(env, RVH)) {
+ return false;
+ }
+
+ return get_field(env->virt, VIRT_ONOFF);
+}
+
+void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
+{
+ if (!riscv_has_ext(env, RVH)) {
+ return;
+ }
+
+ /* Flush the TLB on all virt mode changes. */
+ if (get_field(env->virt, VIRT_ONOFF) != enable) {
+ tlb_flush(env_cpu(env));
+ }
+
+ env->virt = set_field(env->virt, VIRT_ONOFF, enable);
+}
+
+bool riscv_cpu_two_stage_lookup(int mmu_idx)
+{
+ return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
+}
+
+int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
+{
+ CPURISCVState *env = &cpu->env;
+ if (env->miclaim & interrupts) {
+ return -1;
+ } else {
+ env->miclaim |= interrupts;
+ return 0;
+ }
+}
+
+uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
+{
+ CPURISCVState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+ uint32_t old = env->mip;
+ bool locked = false;
+
+ if (!qemu_mutex_iothread_locked()) {
+ locked = true;
+ qemu_mutex_lock_iothread();
+ }
+
+ env->mip = (env->mip & ~mask) | (value & mask);
+
+ if (env->mip) {
+ cpu_interrupt(cs, CPU_INTERRUPT_HARD);
+ } else {
+ cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
+ }
+
+ if (locked) {
+ qemu_mutex_unlock_iothread();
+ }
+
+ return old;
+}
+
+void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
+ uint32_t arg)
+{
+ env->rdtime_fn = fn;
+ env->rdtime_fn_arg = arg;
+}
+
+void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
+{
+ if (newpriv > PRV_M) {
+ g_assert_not_reached();
+ }
+ if (newpriv == PRV_H) {
+ newpriv = PRV_U;
+ }
+ /* tlb_flush is unnecessary as mode is contained in mmu_idx */
+ env->priv = newpriv;
+
+ /*
+ * Clear the load reservation - otherwise a reservation placed in one
+ * context/process can be used by another, resulting in an SC succeeding
+ * incorrectly. Version 2.2 of the ISA specification explicitly requires
+ * this behaviour, while later revisions say that the kernel "should" use
+ * an SC instruction to force the yielding of a load reservation on a
+ * preemptive context switch. As a result, do both.
+ */
+ env->load_res = -1;
+}
+
+/*
+ * get_physical_address_pmp - check PMP permission for this physical address
+ *
+ * Match the PMP region and check permission for this physical address and it's
+ * TLB page. Returns 0 if the permission checking was successful
+ *
+ * @env: CPURISCVState
+ * @prot: The returned protection attributes
+ * @tlb_size: TLB page size containing addr. It could be modified after PMP
+ * permission checking. NULL if not set TLB page for addr.
+ * @addr: The physical address to be checked permission
+ * @access_type: The type of MMU access
+ * @mode: Indicates current privilege level.
+ */
+static int get_physical_address_pmp(CPURISCVState *env, int *prot,
+ target_ulong *tlb_size, hwaddr addr,
+ int size, MMUAccessType access_type,
+ int mode)
+{
+ pmp_priv_t pmp_priv;
+ target_ulong tlb_size_pmp = 0;
+
+ if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
+ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ return TRANSLATE_SUCCESS;
+ }
+
+ if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
+ mode)) {
+ *prot = 0;
+ return TRANSLATE_PMP_FAIL;
+ }
+
+ *prot = pmp_priv_to_page_prot(pmp_priv);
+ if (tlb_size != NULL) {
+ if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
+ *tlb_size = tlb_size_pmp;
+ }
+ }
+
+ return TRANSLATE_SUCCESS;
+}
+
+/* get_physical_address - get the physical address for this virtual address
+ *
+ * Do a page table walk to obtain the physical address corresponding to a
+ * virtual address. Returns 0 if the translation was successful
+ *
+ * Adapted from Spike's mmu_t::translate and mmu_t::walk
+ *
+ * @env: CPURISCVState
+ * @physical: This will be set to the calculated physical address
+ * @prot: The returned protection attributes
+ * @addr: The virtual address to be translated
+ * @fault_pte_addr: If not NULL, this will be set to fault pte address
+ * when a error occurs on pte address translation.
+ * This will already be shifted to match htval.
+ * @access_type: The type of MMU access
+ * @mmu_idx: Indicates current privilege level
+ * @first_stage: Are we in first stage translation?
+ * Second stage is used for hypervisor guest translation
+ * @two_stage: Are we going to perform two stage translation
+ * @is_debug: Is this access from a debugger or the monitor?
+ */
+static int get_physical_address(CPURISCVState *env, hwaddr *physical,
+ int *prot, target_ulong addr,
+ target_ulong *fault_pte_addr,
+ int access_type, int mmu_idx,
+ bool first_stage, bool two_stage,
+ bool is_debug)
+{
+ /* NOTE: the env->pc value visible here will not be
+ * correct, but the value visible to the exception handler
+ * (riscv_cpu_do_interrupt) is correct */
+ MemTxResult res;
+ MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
+ int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
+ bool use_background = false;
+
+ /*
+ * Check if we should use the background registers for the two
+ * stage translation. We don't need to check if we actually need
+ * two stage translation as that happened before this function
+ * was called. Background registers will be used if the guest has
+ * forced a two stage translation to be on (in HS or M mode).
+ */
+ if (!riscv_cpu_virt_enabled(env) && two_stage) {
+ use_background = true;
+ }
+
+ /* MPRV does not affect the virtual-machine load/store
+ instructions, HLV, HLVX, and HSV. */
+ if (riscv_cpu_two_stage_lookup(mmu_idx)) {
+ mode = get_field(env->hstatus, HSTATUS_SPVP);
+ } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
+ if (get_field(env->mstatus, MSTATUS_MPRV)) {
+ mode = get_field(env->mstatus, MSTATUS_MPP);
+ }
+ }
+
+ if (first_stage == false) {
+ /* We are in stage 2 translation, this is similar to stage 1. */
+ /* Stage 2 is always taken as U-mode */
+ mode = PRV_U;
+ }
+
+ if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
+ *physical = addr;
+ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ return TRANSLATE_SUCCESS;
+ }
+
+ *prot = 0;
+
+ hwaddr base;
+ int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
+
+ if (first_stage == true) {
+ mxr = get_field(env->mstatus, MSTATUS_MXR);
+ } else {
+ mxr = get_field(env->vsstatus, MSTATUS_MXR);
+ }
+
+ if (first_stage == true) {
+ if (use_background) {
+ if (riscv_cpu_mxl(env) == MXL_RV32) {
+ base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
+ vm = get_field(env->vsatp, SATP32_MODE);
+ } else {
+ base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
+ vm = get_field(env->vsatp, SATP64_MODE);
+ }
+ } else {
+ if (riscv_cpu_mxl(env) == MXL_RV32) {
+ base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
+ vm = get_field(env->satp, SATP32_MODE);
+ } else {
+ base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
+ vm = get_field(env->satp, SATP64_MODE);
+ }
+ }
+ widened = 0;
+ } else {
+ if (riscv_cpu_mxl(env) == MXL_RV32) {
+ base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
+ vm = get_field(env->hgatp, SATP32_MODE);
+ } else {
+ base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
+ vm = get_field(env->hgatp, SATP64_MODE);
+ }
+ widened = 2;
+ }
+ /* status.SUM will be ignored if execute on background */
+ sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
+ switch (vm) {
+ case VM_1_10_SV32:
+ levels = 2; ptidxbits = 10; ptesize = 4; break;
+ case VM_1_10_SV39:
+ levels = 3; ptidxbits = 9; ptesize = 8; break;
+ case VM_1_10_SV48:
+ levels = 4; ptidxbits = 9; ptesize = 8; break;
+ case VM_1_10_SV57:
+ levels = 5; ptidxbits = 9; ptesize = 8; break;
+ case VM_1_10_MBARE:
+ *physical = addr;
+ *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+ return TRANSLATE_SUCCESS;
+ default:
+ g_assert_not_reached();
+ }
+
+ CPUState *cs = env_cpu(env);
+ int va_bits = PGSHIFT + levels * ptidxbits + widened;
+ target_ulong mask, masked_msbs;
+
+ if (TARGET_LONG_BITS > (va_bits - 1)) {
+ mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
+ } else {
+ mask = 0;
+ }
+ masked_msbs = (addr >> (va_bits - 1)) & mask;
+
+ if (masked_msbs != 0 && masked_msbs != mask) {
+ return TRANSLATE_FAIL;
+ }
+
+ int ptshift = (levels - 1) * ptidxbits;
+ int i;
+
+#if !TCG_OVERSIZED_GUEST
+restart:
+#endif
+ for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
+ target_ulong idx;
+ if (i == 0) {
+ idx = (addr >> (PGSHIFT + ptshift)) &
+ ((1 << (ptidxbits + widened)) - 1);
+ } else {
+ idx = (addr >> (PGSHIFT + ptshift)) &
+ ((1 << ptidxbits) - 1);
+ }
+
+ /* check that physical address of PTE is legal */
+ hwaddr pte_addr;
+
+ if (two_stage && first_stage) {
+ int vbase_prot;
+ hwaddr vbase;
+
+ /* Do the second stage translation on the base PTE address. */
+ int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
+ base, NULL, MMU_DATA_LOAD,
+ mmu_idx, false, true,
+ is_debug);
+
+ if (vbase_ret != TRANSLATE_SUCCESS) {
+ if (fault_pte_addr) {
+ *fault_pte_addr = (base + idx * ptesize) >> 2;
+ }
+ return TRANSLATE_G_STAGE_FAIL;
+ }
+
+ pte_addr = vbase + idx * ptesize;
+ } else {
+ pte_addr = base + idx * ptesize;
+ }
+
+ int pmp_prot;
+ int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
+ sizeof(target_ulong),
+ MMU_DATA_LOAD, PRV_S);
+ if (pmp_ret != TRANSLATE_SUCCESS) {
+ return TRANSLATE_PMP_FAIL;
+ }
+
+ target_ulong pte;
+ if (riscv_cpu_mxl(env) == MXL_RV32) {
+ pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
+ } else {
+ pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
+ }
+
+ if (res != MEMTX_OK) {
+ return TRANSLATE_FAIL;
+ }
+
+ hwaddr ppn = pte >> PTE_PPN_SHIFT;
+
+ if (!(pte & PTE_V)) {
+ /* Invalid PTE */
+ return TRANSLATE_FAIL;
+ } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
+ /* Inner PTE, continue walking */
+ base = ppn << PGSHIFT;
+ } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
+ /* Reserved leaf PTE flags: PTE_W */
+ return TRANSLATE_FAIL;
+ } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
+ /* Reserved leaf PTE flags: PTE_W + PTE_X */
+ return TRANSLATE_FAIL;
+ } else if ((pte & PTE_U) && ((mode != PRV_U) &&
+ (!sum || access_type == MMU_INST_FETCH))) {
+ /* User PTE flags when not U mode and mstatus.SUM is not set,
+ or the access type is an instruction fetch */
+ return TRANSLATE_FAIL;
+ } else if (!(pte & PTE_U) && (mode != PRV_S)) {
+ /* Supervisor PTE flags when not S mode */
+ return TRANSLATE_FAIL;
+ } else if (ppn & ((1ULL << ptshift) - 1)) {
+ /* Misaligned PPN */
+ return TRANSLATE_FAIL;
+ } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
+ ((pte & PTE_X) && mxr))) {
+ /* Read access check failed */
+ return TRANSLATE_FAIL;
+ } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
+ /* Write access check failed */
+ return TRANSLATE_FAIL;
+ } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
+ /* Fetch access check failed */
+ return TRANSLATE_FAIL;
+ } else {
+ /* if necessary, set accessed and dirty bits. */
+ target_ulong updated_pte = pte | PTE_A |
+ (access_type == MMU_DATA_STORE ? PTE_D : 0);
+
+ /* Page table updates need to be atomic with MTTCG enabled */
+ if (updated_pte != pte) {
+ /*
+ * - if accessed or dirty bits need updating, and the PTE is
+ * in RAM, then we do so atomically with a compare and swap.
+ * - if the PTE is in IO space or ROM, then it can't be updated
+ * and we return TRANSLATE_FAIL.
+ * - if the PTE changed by the time we went to update it, then
+ * it is no longer valid and we must re-walk the page table.
+ */
+ MemoryRegion *mr;
+ hwaddr l = sizeof(target_ulong), addr1;
+ mr = address_space_translate(cs->as, pte_addr,
+ &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
+ if (memory_region_is_ram(mr)) {
+ target_ulong *pte_pa =
+ qemu_map_ram_ptr(mr->ram_block, addr1);
+#if TCG_OVERSIZED_GUEST
+ /* MTTCG is not enabled on oversized TCG guests so
+ * page table updates do not need to be atomic */
+ *pte_pa = pte = updated_pte;
+#else
+ target_ulong old_pte =
+ qatomic_cmpxchg(pte_pa, pte, updated_pte);
+ if (old_pte != pte) {
+ goto restart;
+ } else {
+ pte = updated_pte;
+ }
+#endif
+ } else {
+ /* misconfigured PTE in ROM (AD bits are not preset) or
+ * PTE is in IO space and can't be updated atomically */
+ return TRANSLATE_FAIL;
+ }
+ }
+
+ /* for superpage mappings, make a fake leaf PTE for the TLB's
+ benefit. */
+ target_ulong vpn = addr >> PGSHIFT;
+ *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
+ (addr & ~TARGET_PAGE_MASK);
+
+ /* set permissions on the TLB entry */
+ if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
+ *prot |= PAGE_READ;
+ }
+ if ((pte & PTE_X)) {
+ *prot |= PAGE_EXEC;
+ }
+ /* add write permission on stores or if the page is already dirty,
+ so that we TLB miss on later writes to update the dirty bit */
+ if ((pte & PTE_W) &&
+ (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
+ *prot |= PAGE_WRITE;
+ }
+ return TRANSLATE_SUCCESS;
+ }
+ }
+ return TRANSLATE_FAIL;
+}
+
+static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
+ MMUAccessType access_type, bool pmp_violation,
+ bool first_stage, bool two_stage)
+{
+ CPUState *cs = env_cpu(env);
+ int page_fault_exceptions, vm;
+ uint64_t stap_mode;
+
+ if (riscv_cpu_mxl(env) == MXL_RV32) {
+ stap_mode = SATP32_MODE;
+ } else {
+ stap_mode = SATP64_MODE;
+ }
+
+ if (first_stage) {
+ vm = get_field(env->satp, stap_mode);
+ } else {
+ vm = get_field(env->hgatp, stap_mode);
+ }
+
+ page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
+
+ switch (access_type) {
+ case MMU_INST_FETCH:
+ if (riscv_cpu_virt_enabled(env) && !first_stage) {
+ cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
+ } else {
+ cs->exception_index = page_fault_exceptions ?
+ RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
+ }
+ break;
+ case MMU_DATA_LOAD:
+ if (two_stage && !first_stage) {
+ cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
+ } else {
+ cs->exception_index = page_fault_exceptions ?
+ RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
+ }
+ break;
+ case MMU_DATA_STORE:
+ if (two_stage && !first_stage) {
+ cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
+ } else {
+ cs->exception_index = page_fault_exceptions ?
+ RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ env->badaddr = address;
+ env->two_stage_lookup = two_stage;
+}
+
+hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
+{
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+ hwaddr phys_addr;
+ int prot;
+ int mmu_idx = cpu_mmu_index(&cpu->env, false);
+
+ if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
+ true, riscv_cpu_virt_enabled(env), true)) {
+ return -1;
+ }
+
+ if (riscv_cpu_virt_enabled(env)) {
+ if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
+ 0, mmu_idx, false, true, true)) {
+ return -1;
+ }
+ }
+
+ return phys_addr & TARGET_PAGE_MASK;
+}
+
+void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
+ vaddr addr, unsigned size,
+ MMUAccessType access_type,
+ int mmu_idx, MemTxAttrs attrs,
+ MemTxResult response, uintptr_t retaddr)
+{
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+
+ if (access_type == MMU_DATA_STORE) {
+ cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
+ } else if (access_type == MMU_DATA_LOAD) {
+ cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
+ } else {
+ cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
+ }
+
+ env->badaddr = addr;
+ env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
+ riscv_cpu_two_stage_lookup(mmu_idx);
+ riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
+}
+
+void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
+ MMUAccessType access_type, int mmu_idx,
+ uintptr_t retaddr)
+{
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+ switch (access_type) {
+ case MMU_INST_FETCH:
+ cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
+ break;
+ case MMU_DATA_LOAD:
+ cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
+ break;
+ case MMU_DATA_STORE:
+ cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ env->badaddr = addr;
+ env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
+ riscv_cpu_two_stage_lookup(mmu_idx);
+ riscv_raise_exception(env, cs->exception_index, retaddr);
+}
+
+bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
+ MMUAccessType access_type, int mmu_idx,
+ bool probe, uintptr_t retaddr)
+{
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+ vaddr im_address;
+ hwaddr pa = 0;
+ int prot, prot2, prot_pmp;
+ bool pmp_violation = false;
+ bool first_stage_error = true;
+ bool two_stage_lookup = false;
+ int ret = TRANSLATE_FAIL;
+ int mode = mmu_idx;
+ /* default TLB page size */
+ target_ulong tlb_size = TARGET_PAGE_SIZE;
+
+ env->guest_phys_fault_addr = 0;
+
+ qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
+ __func__, address, access_type, mmu_idx);
+
+ /* MPRV does not affect the virtual-machine load/store
+ instructions, HLV, HLVX, and HSV. */
+ if (riscv_cpu_two_stage_lookup(mmu_idx)) {
+ mode = get_field(env->hstatus, HSTATUS_SPVP);
+ } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
+ get_field(env->mstatus, MSTATUS_MPRV)) {
+ mode = get_field(env->mstatus, MSTATUS_MPP);
+ if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
+ two_stage_lookup = true;
+ }
+ }
+
+ if (riscv_cpu_virt_enabled(env) ||
+ ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
+ access_type != MMU_INST_FETCH)) {
+ /* Two stage lookup */
+ ret = get_physical_address(env, &pa, &prot, address,
+ &env->guest_phys_fault_addr, access_type,
+ mmu_idx, true, true, false);
+
+ /*
+ * A G-stage exception may be triggered during two state lookup.
+ * And the env->guest_phys_fault_addr has already been set in
+ * get_physical_address().
+ */
+ if (ret == TRANSLATE_G_STAGE_FAIL) {
+ first_stage_error = false;
+ access_type = MMU_DATA_LOAD;
+ }
+
+ qemu_log_mask(CPU_LOG_MMU,
+ "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
+ TARGET_FMT_plx " prot %d\n",
+ __func__, address, ret, pa, prot);
+
+ if (ret == TRANSLATE_SUCCESS) {
+ /* Second stage lookup */
+ im_address = pa;
+
+ ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
+ access_type, mmu_idx, false, true,
+ false);
+
+ qemu_log_mask(CPU_LOG_MMU,
+ "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
+ TARGET_FMT_plx " prot %d\n",
+ __func__, im_address, ret, pa, prot2);
+
+ prot &= prot2;
+
+ if (ret == TRANSLATE_SUCCESS) {
+ ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
+ size, access_type, mode);
+
+ qemu_log_mask(CPU_LOG_MMU,
+ "%s PMP address=" TARGET_FMT_plx " ret %d prot"
+ " %d tlb_size " TARGET_FMT_lu "\n",
+ __func__, pa, ret, prot_pmp, tlb_size);
+
+ prot &= prot_pmp;
+ }
+
+ if (ret != TRANSLATE_SUCCESS) {
+ /*
+ * Guest physical address translation failed, this is a HS
+ * level exception
+ */
+ first_stage_error = false;
+ env->guest_phys_fault_addr = (im_address |
+ (address &
+ (TARGET_PAGE_SIZE - 1))) >> 2;
+ }
+ }
+ } else {
+ /* Single stage lookup */
+ ret = get_physical_address(env, &pa, &prot, address, NULL,
+ access_type, mmu_idx, true, false, false);
+
+ qemu_log_mask(CPU_LOG_MMU,
+ "%s address=%" VADDR_PRIx " ret %d physical "
+ TARGET_FMT_plx " prot %d\n",
+ __func__, address, ret, pa, prot);
+
+ if (ret == TRANSLATE_SUCCESS) {
+ ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
+ size, access_type, mode);
+
+ qemu_log_mask(CPU_LOG_MMU,
+ "%s PMP address=" TARGET_FMT_plx " ret %d prot"
+ " %d tlb_size " TARGET_FMT_lu "\n",
+ __func__, pa, ret, prot_pmp, tlb_size);
+
+ prot &= prot_pmp;
+ }
+ }
+
+ if (ret == TRANSLATE_PMP_FAIL) {
+ pmp_violation = true;
+ }
+
+ if (ret == TRANSLATE_SUCCESS) {
+ tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
+ prot, mmu_idx, tlb_size);
+ return true;
+ } else if (probe) {
+ return false;
+ } else {
+ raise_mmu_exception(env, address, access_type, pmp_violation,
+ first_stage_error,
+ riscv_cpu_virt_enabled(env) ||
+ riscv_cpu_two_stage_lookup(mmu_idx));
+ riscv_raise_exception(env, cs->exception_index, retaddr);
+ }
+
+ return true;
+}
+#endif /* !CONFIG_USER_ONLY */
+
+/*
+ * Handle Traps
+ *
+ * Adapted from Spike's processor_t::take_trap.
+ *
+ */
+void riscv_cpu_do_interrupt(CPUState *cs)
+{
+#if !defined(CONFIG_USER_ONLY)
+
+ RISCVCPU *cpu = RISCV_CPU(cs);
+ CPURISCVState *env = &cpu->env;
+ uint64_t s;
+
+ /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
+ * so we mask off the MSB and separate into trap type and cause.
+ */
+ bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
+ target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
+ target_ulong deleg = async ? env->mideleg : env->medeleg;
+ bool write_tval = false;
+ target_ulong tval = 0;
+ target_ulong htval = 0;
+ target_ulong mtval2 = 0;
+
+ if (cause == RISCV_EXCP_SEMIHOST) {
+ if (env->priv >= PRV_S) {
+ env->gpr[xA0] = do_common_semihosting(cs);
+ env->pc += 4;
+ return;
+ }
+ cause = RISCV_EXCP_BREAKPOINT;
+ }
+
+ if (!async) {
+ /* set tval to badaddr for traps with address information */
+ switch (cause) {
+ case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
+ case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
+ case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
+ case RISCV_EXCP_INST_ADDR_MIS:
+ case RISCV_EXCP_INST_ACCESS_FAULT:
+ case RISCV_EXCP_LOAD_ADDR_MIS:
+ case RISCV_EXCP_STORE_AMO_ADDR_MIS:
+ case RISCV_EXCP_LOAD_ACCESS_FAULT:
+ case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
+ case RISCV_EXCP_INST_PAGE_FAULT:
+ case RISCV_EXCP_LOAD_PAGE_FAULT:
+ case RISCV_EXCP_STORE_PAGE_FAULT:
+ write_tval = true;
+ tval = env->badaddr;
+ break;
+ default:
+ break;
+ }
+ /* ecall is dispatched as one cause so translate based on mode */
+ if (cause == RISCV_EXCP_U_ECALL) {
+ assert(env->priv <= 3);
+
+ if (env->priv == PRV_M) {
+ cause = RISCV_EXCP_M_ECALL;
+ } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
+ cause = RISCV_EXCP_VS_ECALL;
+ } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
+ cause = RISCV_EXCP_S_ECALL;
+ } else if (env->priv == PRV_U) {
+ cause = RISCV_EXCP_U_ECALL;
+ }
+ }
+ }
+
+ trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
+ riscv_cpu_get_trap_name(cause, async));
+
+ qemu_log_mask(CPU_LOG_INT,
+ "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
+ "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
+ __func__, env->mhartid, async, cause, env->pc, tval,
+ riscv_cpu_get_trap_name(cause, async));
+
+ if (env->priv <= PRV_S &&
+ cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
+ /* handle the trap in S-mode */
+ if (riscv_has_ext(env, RVH)) {
+ target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
+
+ if (env->two_stage_lookup && write_tval) {
+ /*
+ * If we are writing a guest virtual address to stval, set
+ * this to 1. If we are trapping to VS we will set this to 0
+ * later.
+ */
+ env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
+ } else {
+ /* For other HS-mode traps, we set this to 0. */
+ env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
+ }
+
+ if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
+ /* Trap to VS mode */
+ /*
+ * See if we need to adjust cause. Yes if its VS mode interrupt
+ * no if hypervisor has delegated one of hs mode's interrupt
+ */
+ if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
+ cause == IRQ_VS_EXT) {
+ cause = cause - 1;
+ }
+ env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
+ } else if (riscv_cpu_virt_enabled(env)) {
+ /* Trap into HS mode, from virt */
+ riscv_cpu_swap_hypervisor_regs(env);
+ env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
+ env->priv);
+ env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
+ riscv_cpu_virt_enabled(env));
+
+ htval = env->guest_phys_fault_addr;
+
+ riscv_cpu_set_virt_enabled(env, 0);
+ } else {
+ /* Trap into HS mode */
+ env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
+ htval = env->guest_phys_fault_addr;
+ }
+ }
+
+ s = env->mstatus;
+ s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
+ s = set_field(s, MSTATUS_SPP, env->priv);
+ s = set_field(s, MSTATUS_SIE, 0);
+ env->mstatus = s;
+ env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
+ env->sepc = env->pc;
+ env->stval = tval;
+ env->htval = htval;
+ env->pc = (env->stvec >> 2 << 2) +
+ ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
+ riscv_cpu_set_mode(env, PRV_S);
+ } else {
+ /* handle the trap in M-mode */
+ if (riscv_has_ext(env, RVH)) {
+ if (riscv_cpu_virt_enabled(env)) {
+ riscv_cpu_swap_hypervisor_regs(env);
+ }
+ env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
+ riscv_cpu_virt_enabled(env));
+ if (riscv_cpu_virt_enabled(env) && tval) {
+ env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
+ }
+
+ mtval2 = env->guest_phys_fault_addr;
+
+ /* Trapping to M mode, virt is disabled */
+ riscv_cpu_set_virt_enabled(env, 0);
+ }
+
+ s = env->mstatus;
+ s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
+ s = set_field(s, MSTATUS_MPP, env->priv);
+ s = set_field(s, MSTATUS_MIE, 0);
+ env->mstatus = s;
+ env->mcause = cause | ~(((target_ulong)-1) >> async);
+ env->mepc = env->pc;
+ env->mtval = tval;
+ env->mtval2 = mtval2;
+ env->pc = (env->mtvec >> 2 << 2) +
+ ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
+ riscv_cpu_set_mode(env, PRV_M);
+ }
+
+ /* NOTE: it is not necessary to yield load reservations here. It is only
+ * necessary for an SC from "another hart" to cause a load reservation
+ * to be yielded. Refer to the memory consistency model section of the
+ * RISC-V ISA Specification.
+ */
+
+ env->two_stage_lookup = false;
+#endif
+ cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
+}