aboutsummaryrefslogtreecommitdiffstats
path: root/capstone/arch/X86/X86DisassemblerDecoder.c
diff options
context:
space:
mode:
Diffstat (limited to 'capstone/arch/X86/X86DisassemblerDecoder.c')
-rw-r--r--capstone/arch/X86/X86DisassemblerDecoder.c2346
1 files changed, 2346 insertions, 0 deletions
diff --git a/capstone/arch/X86/X86DisassemblerDecoder.c b/capstone/arch/X86/X86DisassemblerDecoder.c
new file mode 100644
index 000000000..64674e64e
--- /dev/null
+++ b/capstone/arch/X86/X86DisassemblerDecoder.c
@@ -0,0 +1,2346 @@
+/*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
+ *
+ * The LLVM Compiler Infrastructure
+ *
+ * This file is distributed under the University of Illinois Open Source
+ * License. See LICENSE.TXT for details.
+ *
+ *===----------------------------------------------------------------------===*
+ *
+ * This file is part of the X86 Disassembler.
+ * It contains the implementation of the instruction decoder.
+ * Documentation for the disassembler can be found in X86Disassembler.h.
+ *
+ *===----------------------------------------------------------------------===*/
+
+/* Capstone Disassembly Engine */
+/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
+
+#ifdef CAPSTONE_HAS_X86
+
+#include <stdarg.h> /* for va_*() */
+#if defined(CAPSTONE_HAS_OSXKERNEL)
+#include <libkern/libkern.h>
+#else
+#include <stdlib.h> /* for exit() */
+#endif
+
+#include <string.h>
+
+#include "../../cs_priv.h"
+#include "../../utils.h"
+
+#include "X86DisassemblerDecoder.h"
+#include "X86Mapping.h"
+
+/// Specifies whether a ModR/M byte is needed and (if so) which
+/// instruction each possible value of the ModR/M byte corresponds to. Once
+/// this information is known, we have narrowed down to a single instruction.
+struct ModRMDecision {
+ uint8_t modrm_type;
+ uint16_t instructionIDs;
+};
+
+/// Specifies which set of ModR/M->instruction tables to look at
+/// given a particular opcode.
+struct OpcodeDecision {
+ struct ModRMDecision modRMDecisions[256];
+};
+
+/// Specifies which opcode->instruction tables to look at given
+/// a particular context (set of attributes). Since there are many possible
+/// contexts, the decoder first uses CONTEXTS_SYM to determine which context
+/// applies given a specific set of attributes. Hence there are only IC_max
+/// entries in this table, rather than 2^(ATTR_max).
+struct ContextDecision {
+ struct OpcodeDecision opcodeDecisions[IC_max];
+};
+
+#ifdef CAPSTONE_X86_REDUCE
+#include "X86GenDisassemblerTables_reduce.inc"
+#include "X86GenDisassemblerTables_reduce2.inc"
+#include "X86Lookup16_reduce.inc"
+#else
+#include "X86GenDisassemblerTables.inc"
+#include "X86GenDisassemblerTables2.inc"
+#include "X86Lookup16.inc"
+#endif
+
+/*
+ * contextForAttrs - Client for the instruction context table. Takes a set of
+ * attributes and returns the appropriate decode context.
+ *
+ * @param attrMask - Attributes, from the enumeration attributeBits.
+ * @return - The InstructionContext to use when looking up an
+ * an instruction with these attributes.
+ */
+static InstructionContext contextForAttrs(uint16_t attrMask)
+{
+ return CONTEXTS_SYM[attrMask];
+}
+
+/*
+ * modRMRequired - Reads the appropriate instruction table to determine whether
+ * the ModR/M byte is required to decode a particular instruction.
+ *
+ * @param type - The opcode type (i.e., how many bytes it has).
+ * @param insnContext - The context for the instruction, as returned by
+ * contextForAttrs.
+ * @param opcode - The last byte of the instruction's opcode, not counting
+ * ModR/M extensions and escapes.
+ * @return - true if the ModR/M byte is required, false otherwise.
+ */
+static int modRMRequired(OpcodeType type,
+ InstructionContext insnContext,
+ uint16_t opcode)
+{
+ const struct OpcodeDecision *decision = NULL;
+ const uint8_t *indextable = NULL;
+ unsigned int index;
+
+ switch (type) {
+ default: break;
+ case ONEBYTE:
+ decision = ONEBYTE_SYM;
+ indextable = index_x86DisassemblerOneByteOpcodes;
+ break;
+ case TWOBYTE:
+ decision = TWOBYTE_SYM;
+ indextable = index_x86DisassemblerTwoByteOpcodes;
+ break;
+ case THREEBYTE_38:
+ decision = THREEBYTE38_SYM;
+ indextable = index_x86DisassemblerThreeByte38Opcodes;
+ break;
+ case THREEBYTE_3A:
+ decision = THREEBYTE3A_SYM;
+ indextable = index_x86DisassemblerThreeByte3AOpcodes;
+ break;
+#ifndef CAPSTONE_X86_REDUCE
+ case XOP8_MAP:
+ decision = XOP8_MAP_SYM;
+ indextable = index_x86DisassemblerXOP8Opcodes;
+ break;
+ case XOP9_MAP:
+ decision = XOP9_MAP_SYM;
+ indextable = index_x86DisassemblerXOP9Opcodes;
+ break;
+ case XOPA_MAP:
+ decision = XOPA_MAP_SYM;
+ indextable = index_x86DisassemblerXOPAOpcodes;
+ break;
+ case THREEDNOW_MAP:
+ // 3DNow instructions always have ModRM byte
+ return true;
+#endif
+ }
+
+ // return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY;
+ index = indextable[insnContext];
+ if (index)
+ return decision[index - 1].modRMDecisions[opcode].modrm_type != MODRM_ONEENTRY;
+ else
+ return false;
+}
+
+/*
+ * decode - Reads the appropriate instruction table to obtain the unique ID of
+ * an instruction.
+ *
+ * @param type - See modRMRequired().
+ * @param insnContext - See modRMRequired().
+ * @param opcode - See modRMRequired().
+ * @param modRM - The ModR/M byte if required, or any value if not.
+ * @return - The UID of the instruction, or 0 on failure.
+ */
+static InstrUID decode(OpcodeType type,
+ InstructionContext insnContext,
+ uint8_t opcode,
+ uint8_t modRM)
+{
+ const struct ModRMDecision *dec = NULL;
+ unsigned int index;
+ static const struct OpcodeDecision emptyDecision = { 0 };
+
+ switch (type) {
+ default: break; // never reach
+ case ONEBYTE:
+ // dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerOneByteOpcodes[insnContext];
+ if (index)
+ dec = &ONEBYTE_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+ case TWOBYTE:
+ //dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerTwoByteOpcodes[insnContext];
+ if (index)
+ dec = &TWOBYTE_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+ case THREEBYTE_38:
+ // dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerThreeByte38Opcodes[insnContext];
+ if (index)
+ dec = &THREEBYTE38_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+ case THREEBYTE_3A:
+ //dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerThreeByte3AOpcodes[insnContext];
+ if (index)
+ dec = &THREEBYTE3A_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+#ifndef CAPSTONE_X86_REDUCE
+ case XOP8_MAP:
+ // dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerXOP8Opcodes[insnContext];
+ if (index)
+ dec = &XOP8_MAP_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+ case XOP9_MAP:
+ // dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerXOP9Opcodes[insnContext];
+ if (index)
+ dec = &XOP9_MAP_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+ case XOPA_MAP:
+ // dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86DisassemblerXOPAOpcodes[insnContext];
+ if (index)
+ dec = &XOPA_MAP_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+ case THREEDNOW_MAP:
+ // dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
+ index = index_x86Disassembler3DNowOpcodes[insnContext];
+ if (index)
+ dec = &THREEDNOW_MAP_SYM[index - 1].modRMDecisions[opcode];
+ else
+ dec = &emptyDecision.modRMDecisions[opcode];
+ break;
+#endif
+ }
+
+ switch (dec->modrm_type) {
+ default:
+ // debug("Corrupt table! Unknown modrm_type");
+ return 0;
+ case MODRM_ONEENTRY:
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITRM:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs + 1];
+ return modRMTable[dec->instructionIDs];
+ case MODRM_SPLITREG:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3) + 8];
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
+ case MODRM_SPLITMISC:
+ if (modFromModRM(modRM) == 0x3)
+ return modRMTable[dec->instructionIDs+(modRM & 0x3f) + 8];
+ return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
+ case MODRM_FULL:
+ return modRMTable[dec->instructionIDs+modRM];
+ }
+}
+
+/*
+ * specifierForUID - Given a UID, returns the name and operand specification for
+ * that instruction.
+ *
+ * @param uid - The unique ID for the instruction. This should be returned by
+ * decode(); specifierForUID will not check bounds.
+ * @return - A pointer to the specification for that instruction.
+ */
+static const struct InstructionSpecifier *specifierForUID(InstrUID uid)
+{
+ return &INSTRUCTIONS_SYM[uid];
+}
+
+/*
+ * consumeByte - Uses the reader function provided by the user to consume one
+ * byte from the instruction's memory and advance the cursor.
+ *
+ * @param insn - The instruction with the reader function to use. The cursor
+ * for this instruction is advanced.
+ * @param byte - A pointer to a pre-allocated memory buffer to be populated
+ * with the data read.
+ * @return - 0 if the read was successful; nonzero otherwise.
+ */
+static int consumeByte(struct InternalInstruction* insn, uint8_t* byte)
+{
+ int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
+
+ if (!ret)
+ ++(insn->readerCursor);
+
+ return ret;
+}
+
+/*
+ * lookAtByte - Like consumeByte, but does not advance the cursor.
+ *
+ * @param insn - See consumeByte().
+ * @param byte - See consumeByte().
+ * @return - See consumeByte().
+ */
+static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte)
+{
+ return insn->reader(insn->readerArg, byte, insn->readerCursor);
+}
+
+static void unconsumeByte(struct InternalInstruction* insn)
+{
+ insn->readerCursor--;
+}
+
+#define CONSUME_FUNC(name, type) \
+ static int name(struct InternalInstruction* insn, type* ptr) { \
+ type combined = 0; \
+ unsigned offset; \
+ for (offset = 0; offset < sizeof(type); ++offset) { \
+ uint8_t byte; \
+ int ret = insn->reader(insn->readerArg, \
+ &byte, \
+ insn->readerCursor + offset); \
+ if (ret) \
+ return ret; \
+ combined = combined | ((uint64_t)byte << (offset * 8)); \
+ } \
+ *ptr = combined; \
+ insn->readerCursor += sizeof(type); \
+ return 0; \
+ }
+
+/*
+ * consume* - Use the reader function provided by the user to consume data
+ * values of various sizes from the instruction's memory and advance the
+ * cursor appropriately. These readers perform endian conversion.
+ *
+ * @param insn - See consumeByte().
+ * @param ptr - A pointer to a pre-allocated memory of appropriate size to
+ * be populated with the data read.
+ * @return - See consumeByte().
+ */
+CONSUME_FUNC(consumeInt8, int8_t)
+CONSUME_FUNC(consumeInt16, int16_t)
+CONSUME_FUNC(consumeInt32, int32_t)
+CONSUME_FUNC(consumeUInt16, uint16_t)
+CONSUME_FUNC(consumeUInt32, uint32_t)
+CONSUME_FUNC(consumeUInt64, uint64_t)
+
+static bool isREX(struct InternalInstruction *insn, uint8_t prefix)
+{
+ if (insn->mode == MODE_64BIT)
+ return prefix >= 0x40 && prefix <= 0x4f;
+
+ return false;
+}
+
+/*
+ * setPrefixPresent - Marks that a particular prefix is present as mandatory
+ *
+ * @param insn - The instruction to be marked as having the prefix.
+ * @param prefix - The prefix that is present.
+ */
+static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix)
+{
+ uint8_t nextByte;
+
+ switch (prefix) {
+ case 0xf0: // LOCK
+ insn->hasLockPrefix = true;
+ insn->repeatPrefix = 0;
+ break;
+
+ case 0xf2: // REPNE/REPNZ
+ case 0xf3: // REP or REPE/REPZ
+ if (lookAtByte(insn, &nextByte))
+ break;
+ // TODO:
+ // 1. There could be several 0x66
+ // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
+ // it's not mandatory prefix
+ // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
+ // 0x0f exactly after it to be mandatory prefix
+ if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
+ // The last of 0xf2 /0xf3 is mandatory prefix
+ insn->mandatoryPrefix = prefix;
+
+ insn->repeatPrefix = prefix;
+ insn->hasLockPrefix = false;
+ break;
+
+ case 0x66:
+ if (lookAtByte(insn, &nextByte))
+ break;
+ // 0x66 can't overwrite existing mandatory prefix and should be ignored
+ if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
+ insn->mandatoryPrefix = prefix;
+ break;
+ }
+}
+
+/*
+ * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
+ * instruction as having them. Also sets the instruction's default operand,
+ * address, and other relevant data sizes to report operands correctly.
+ *
+ * @param insn - The instruction whose prefixes are to be read.
+ * @return - 0 if the instruction could be read until the end of the prefix
+ * bytes, and no prefixes conflicted; nonzero otherwise.
+ */
+static int readPrefixes(struct InternalInstruction* insn)
+{
+ bool isPrefix = true;
+ uint8_t byte = 0;
+ uint8_t nextByte;
+
+ while (isPrefix) {
+ if (insn->mode == MODE_64BIT) {
+ // eliminate consecutive redundant REX bytes in front
+ if (consumeByte(insn, &byte))
+ return -1;
+
+ if ((byte & 0xf0) == 0x40) {
+ while(true) {
+ if (lookAtByte(insn, &byte)) // out of input code
+ return -1;
+ if ((byte & 0xf0) == 0x40) {
+ // another REX prefix, but we only remember the last one
+ if (consumeByte(insn, &byte))
+ return -1;
+ } else
+ break;
+ }
+
+ // recover the last REX byte if next byte is not a legacy prefix
+ switch (byte) {
+ case 0xf2: /* REPNE/REPNZ */
+ case 0xf3: /* REP or REPE/REPZ */
+ case 0xf0: /* LOCK */
+ case 0x2e: /* CS segment override -OR- Branch not taken */
+ case 0x36: /* SS segment override -OR- Branch taken */
+ case 0x3e: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ case 0x66: /* Operand-size override */
+ case 0x67: /* Address-size override */
+ break;
+ default: /* Not a prefix byte */
+ unconsumeByte(insn);
+ break;
+ }
+ } else {
+ unconsumeByte(insn);
+ }
+ }
+
+ /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
+ if (consumeByte(insn, &byte))
+ return -1;
+
+ if (insn->readerCursor - 1 == insn->startLocation
+ && (byte == 0xf2 || byte == 0xf3)) {
+ // prefix requires next byte
+ if (lookAtByte(insn, &nextByte))
+ return -1;
+
+ /*
+ * If the byte is 0xf2 or 0xf3, and any of the following conditions are
+ * met:
+ * - it is followed by a LOCK (0xf0) prefix
+ * - it is followed by an xchg instruction
+ * then it should be disassembled as a xacquire/xrelease not repne/rep.
+ */
+ if (((nextByte == 0xf0) ||
+ ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
+ insn->xAcquireRelease = byte;
+ }
+
+ /*
+ * Also if the byte is 0xf3, and the following condition is met:
+ * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
+ * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
+ * then it should be disassembled as an xrelease not rep.
+ */
+ if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
+ nextByte == 0xc6 || nextByte == 0xc7)) {
+ insn->xAcquireRelease = byte;
+ }
+
+ if (isREX(insn, nextByte)) {
+ uint8_t nnextByte;
+
+ // Go to REX prefix after the current one
+ if (consumeByte(insn, &nnextByte))
+ return -1;
+
+ // We should be able to read next byte after REX prefix
+ if (lookAtByte(insn, &nnextByte))
+ return -1;
+
+ unconsumeByte(insn);
+ }
+ }
+
+ switch (byte) {
+ case 0xf0: /* LOCK */
+ case 0xf2: /* REPNE/REPNZ */
+ case 0xf3: /* REP or REPE/REPZ */
+ // only accept the last prefix
+ setPrefixPresent(insn, byte);
+ insn->prefix0 = byte;
+ break;
+
+ case 0x2e: /* CS segment override -OR- Branch not taken */
+ case 0x36: /* SS segment override -OR- Branch taken */
+ case 0x3e: /* DS segment override */
+ case 0x26: /* ES segment override */
+ case 0x64: /* FS segment override */
+ case 0x65: /* GS segment override */
+ switch (byte) {
+ case 0x2e:
+ insn->segmentOverride = SEG_OVERRIDE_CS;
+ insn->prefix1 = byte;
+ break;
+ case 0x36:
+ insn->segmentOverride = SEG_OVERRIDE_SS;
+ insn->prefix1 = byte;
+ break;
+ case 0x3e:
+ insn->segmentOverride = SEG_OVERRIDE_DS;
+ insn->prefix1 = byte;
+ break;
+ case 0x26:
+ insn->segmentOverride = SEG_OVERRIDE_ES;
+ insn->prefix1 = byte;
+ break;
+ case 0x64:
+ insn->segmentOverride = SEG_OVERRIDE_FS;
+ insn->prefix1 = byte;
+ break;
+ case 0x65:
+ insn->segmentOverride = SEG_OVERRIDE_GS;
+ insn->prefix1 = byte;
+ break;
+ default:
+ // debug("Unhandled override");
+ return -1;
+ }
+ setPrefixPresent(insn, byte);
+ break;
+
+ case 0x66: /* Operand-size override */
+ insn->hasOpSize = true;
+ setPrefixPresent(insn, byte);
+ insn->prefix2 = byte;
+ break;
+
+ case 0x67: /* Address-size override */
+ insn->hasAdSize = true;
+ setPrefixPresent(insn, byte);
+ insn->prefix3 = byte;
+ break;
+ default: /* Not a prefix byte */
+ isPrefix = false;
+ break;
+ }
+ }
+
+ insn->vectorExtensionType = TYPE_NO_VEX_XOP;
+
+ if (byte == 0x62) {
+ uint8_t byte1, byte2;
+
+ if (consumeByte(insn, &byte1)) {
+ // dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
+ return -1;
+ }
+
+ if (lookAtByte(insn, &byte2)) {
+ // dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
+ unconsumeByte(insn); /* unconsume byte1 */
+ unconsumeByte(insn); /* unconsume byte */
+ } else {
+ if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
+ ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
+ insn->vectorExtensionType = TYPE_EVEX;
+ } else {
+ unconsumeByte(insn); /* unconsume byte1 */
+ unconsumeByte(insn); /* unconsume byte */
+ }
+ }
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ insn->vectorExtensionPrefix[0] = byte;
+ insn->vectorExtensionPrefix[1] = byte1;
+ if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
+ // dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
+ return -1;
+ }
+
+ if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
+ // dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
+ return -1;
+ }
+
+ /* We simulate the REX prefix for simplicity's sake */
+ if (insn->mode == MODE_64BIT) {
+ insn->rexPrefix = 0x40
+ | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
+ }
+
+ // dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
+ // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ // insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
+ }
+ } else if (byte == 0xc4) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ // dbgprintf(insn, "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
+ insn->vectorExtensionType = TYPE_VEX_3B;
+ else
+ unconsumeByte(insn);
+
+ if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+ consumeByte(insn, &insn->vectorExtensionPrefix[2]);
+
+ /* We simulate the REX prefix for simplicity's sake */
+ if (insn->mode == MODE_64BIT)
+ insn->rexPrefix = 0x40
+ | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
+
+ // dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
+ // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ // insn->vectorExtensionPrefix[2]);
+ }
+ } else if (byte == 0xc5) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ // dbgprintf(insn, "Couldn't read second byte of VEX");
+ return -1;
+ }
+
+ if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
+ insn->vectorExtensionType = TYPE_VEX_2B;
+ else
+ unconsumeByte(insn);
+
+ if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+
+ if (insn->mode == MODE_64BIT)
+ insn->rexPrefix = 0x40
+ | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
+
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ insn->hasOpSize = true;
+ break;
+ }
+
+ // dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
+ // insn->vectorExtensionPrefix[0],
+ // insn->vectorExtensionPrefix[1]);
+ }
+ } else if (byte == 0x8f) {
+ uint8_t byte1;
+
+ if (lookAtByte(insn, &byte1)) {
+ // dbgprintf(insn, "Couldn't read second byte of XOP");
+ return -1;
+ }
+
+ if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */
+ insn->vectorExtensionType = TYPE_XOP;
+ else
+ unconsumeByte(insn);
+
+ if (insn->vectorExtensionType == TYPE_XOP) {
+ insn->vectorExtensionPrefix[0] = byte;
+ consumeByte(insn, &insn->vectorExtensionPrefix[1]);
+ consumeByte(insn, &insn->vectorExtensionPrefix[2]);
+
+ /* We simulate the REX prefix for simplicity's sake */
+ if (insn->mode == MODE_64BIT)
+ insn->rexPrefix = 0x40
+ | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
+ | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
+ | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
+ | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
+
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
+ default:
+ break;
+ case VEX_PREFIX_66:
+ insn->hasOpSize = true;
+ break;
+ }
+
+ // dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
+ // insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
+ // insn->vectorExtensionPrefix[2]);
+ }
+ } else if (isREX(insn, byte)) {
+ if (lookAtByte(insn, &nextByte))
+ return -1;
+
+ insn->rexPrefix = byte;
+ // dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
+ } else
+ unconsumeByte(insn);
+
+ if (insn->mode == MODE_16BIT) {
+ insn->registerSize = (insn->hasOpSize ? 4 : 2);
+ insn->addressSize = (insn->hasAdSize ? 4 : 2);
+ insn->displacementSize = (insn->hasAdSize ? 4 : 2);
+ insn->immediateSize = (insn->hasOpSize ? 4 : 2);
+ insn->immSize = (insn->hasOpSize ? 4 : 2);
+ } else if (insn->mode == MODE_32BIT) {
+ insn->registerSize = (insn->hasOpSize ? 2 : 4);
+ insn->addressSize = (insn->hasAdSize ? 2 : 4);
+ insn->displacementSize = (insn->hasAdSize ? 2 : 4);
+ insn->immediateSize = (insn->hasOpSize ? 2 : 4);
+ insn->immSize = (insn->hasOpSize ? 2 : 4);
+ } else if (insn->mode == MODE_64BIT) {
+ if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
+ insn->registerSize = 8;
+ insn->addressSize = (insn->hasAdSize ? 4 : 8);
+ insn->displacementSize = 4;
+ insn->immediateSize = 4;
+ insn->immSize = 4;
+ } else {
+ insn->registerSize = (insn->hasOpSize ? 2 : 4);
+ insn->addressSize = (insn->hasAdSize ? 4 : 8);
+ insn->displacementSize = (insn->hasOpSize ? 2 : 4);
+ insn->immediateSize = (insn->hasOpSize ? 2 : 4);
+ insn->immSize = (insn->hasOpSize ? 4 : 8);
+ }
+ }
+
+ return 0;
+}
+
+static int readModRM(struct InternalInstruction* insn);
+
+/*
+ * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
+ * extended or escape opcodes).
+ *
+ * @param insn - The instruction whose opcode is to be read.
+ * @return - 0 if the opcode could be read successfully; nonzero otherwise.
+ */
+static int readOpcode(struct InternalInstruction* insn)
+{
+ uint8_t current;
+
+ // dbgprintf(insn, "readOpcode()");
+
+ insn->opcodeType = ONEBYTE;
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
+ default:
+ // dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
+ // mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case VEX_LOB_0F:
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F38:
+ insn->opcodeType = THREEBYTE_38;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F3A:
+ insn->opcodeType = THREEBYTE_3A;
+ return consumeByte(insn, &insn->opcode);
+ }
+ } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
+ // mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case VEX_LOB_0F:
+ //insn->twoByteEscape = 0x0f;
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F38:
+ //insn->twoByteEscape = 0x0f;
+ insn->opcodeType = THREEBYTE_38;
+ return consumeByte(insn, &insn->opcode);
+ case VEX_LOB_0F3A:
+ //insn->twoByteEscape = 0x0f;
+ insn->opcodeType = THREEBYTE_3A;
+ return consumeByte(insn, &insn->opcode);
+ }
+ } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ //insn->twoByteEscape = 0x0f;
+ insn->opcodeType = TWOBYTE;
+ return consumeByte(insn, &insn->opcode);
+ } else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
+ default:
+ // dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
+ // mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
+ return -1;
+ case XOP_MAP_SELECT_8:
+ insn->opcodeType = XOP8_MAP;
+ return consumeByte(insn, &insn->opcode);
+ case XOP_MAP_SELECT_9:
+ insn->opcodeType = XOP9_MAP;
+ return consumeByte(insn, &insn->opcode);
+ case XOP_MAP_SELECT_A:
+ insn->opcodeType = XOPA_MAP;
+ return consumeByte(insn, &insn->opcode);
+ }
+ }
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ // save this first byte for MOVcr, MOVdr, MOVrc, MOVrd
+ insn->firstByte = current;
+
+ if (current == 0x0f) {
+ // dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
+ insn->twoByteEscape = current;
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ if (current == 0x38) {
+ // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEBYTE_38;
+ } else if (current == 0x3a) {
+ // dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEBYTE_3A;
+ } else if (current == 0x0f) {
+ // dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current);
+ // Consume operands before the opcode to comply with the 3DNow encoding
+ if (readModRM(insn))
+ return -1;
+
+ if (consumeByte(insn, &current))
+ return -1;
+
+ insn->opcodeType = THREEDNOW_MAP;
+ } else {
+ // dbgprintf(insn, "Didn't find a three-byte escape prefix");
+ insn->opcodeType = TWOBYTE;
+ }
+ } else if (insn->mandatoryPrefix)
+ // The opcode with mandatory prefix must start with opcode escape.
+ // If not it's legacy repeat prefix
+ insn->mandatoryPrefix = 0;
+
+ /*
+ * At this point we have consumed the full opcode.
+ * Anything we consume from here on must be unconsumed.
+ */
+
+ insn->opcode = current;
+
+ return 0;
+}
+
+// Hacky for FEMMS
+#define GET_INSTRINFO_ENUM
+#ifndef CAPSTONE_X86_REDUCE
+#include "X86GenInstrInfo.inc"
+#else
+#include "X86GenInstrInfo_reduce.inc"
+#endif
+
+/*
+ * getIDWithAttrMask - Determines the ID of an instruction, consuming
+ * the ModR/M byte as appropriate for extended and escape opcodes,
+ * and using a supplied attribute mask.
+ *
+ * @param instructionID - A pointer whose target is filled in with the ID of the
+ * instruction.
+ * @param insn - The instruction whose ID is to be determined.
+ * @param attrMask - The attribute mask to search.
+ * @return - 0 if the ModR/M could be read when needed or was not
+ * needed; nonzero otherwise.
+ */
+static int getIDWithAttrMask(uint16_t *instructionID,
+ struct InternalInstruction* insn,
+ uint16_t attrMask)
+{
+ bool hasModRMExtension;
+
+ InstructionContext instructionClass = contextForAttrs(attrMask);
+
+ hasModRMExtension = modRMRequired(insn->opcodeType,
+ instructionClass,
+ insn->opcode);
+
+ if (hasModRMExtension) {
+ if (readModRM(insn))
+ return -1;
+
+ *instructionID = decode(insn->opcodeType,
+ instructionClass,
+ insn->opcode,
+ insn->modRM);
+ } else {
+ *instructionID = decode(insn->opcodeType,
+ instructionClass,
+ insn->opcode,
+ 0);
+ }
+
+ return 0;
+}
+
+/*
+ * is16BitEquivalent - Determines whether two instruction names refer to
+ * equivalent instructions but one is 16-bit whereas the other is not.
+ *
+ * @param orig - The instruction ID that is not 16-bit
+ * @param equiv - The instruction ID that is 16-bit
+ */
+static bool is16BitEquivalent(unsigned orig, unsigned equiv)
+{
+ size_t i;
+ uint16_t idx;
+
+ if ((idx = x86_16_bit_eq_lookup[orig]) != 0) {
+ for (i = idx - 1; i < ARR_SIZE(x86_16_bit_eq_tbl) && x86_16_bit_eq_tbl[i].first == orig; i++) {
+ if (x86_16_bit_eq_tbl[i].second == equiv)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/*
+ * is64Bit - Determines whether this instruction is a 64-bit instruction.
+ *
+ * @param name - The instruction that is not 16-bit
+ */
+static bool is64Bit(uint16_t id)
+{
+ unsigned int i = find_insn(id);
+ if (i != -1) {
+ return insns[i].is64bit;
+ }
+
+ // not found??
+ return false;
+}
+
+/*
+ * getID - Determines the ID of an instruction, consuming the ModR/M byte as
+ * appropriate for extended and escape opcodes. Determines the attributes and
+ * context for the instruction before doing so.
+ *
+ * @param insn - The instruction whose ID is to be determined.
+ * @return - 0 if the ModR/M could be read when needed or was not needed;
+ * nonzero otherwise.
+ */
+static int getID(struct InternalInstruction *insn)
+{
+ uint16_t attrMask;
+ uint16_t instructionID;
+
+ attrMask = ATTR_NONE;
+
+ if (insn->mode == MODE_64BIT)
+ attrMask |= ATTR_64BIT;
+
+ if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
+ attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
+
+ if (insn->vectorExtensionType == TYPE_EVEX) {
+ switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXKZ;
+ if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXB;
+ if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXK;
+ if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL;
+ if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ attrMask |= ATTR_EVEXL2;
+ } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
+ switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
+ switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
+ attrMask |= ATTR_VEXL;
+ } else if (insn->vectorExtensionType == TYPE_XOP) {
+ switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
+ case VEX_PREFIX_66:
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case VEX_PREFIX_F3:
+ attrMask |= ATTR_XS;
+ break;
+ case VEX_PREFIX_F2:
+ attrMask |= ATTR_XD;
+ break;
+ }
+
+ if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
+ attrMask |= ATTR_VEXL;
+ } else {
+ return -1;
+ }
+ } else if (!insn->mandatoryPrefix) {
+ // If we don't have mandatory prefix we should use legacy prefixes here
+ if (insn->hasOpSize && (insn->mode != MODE_16BIT))
+ attrMask |= ATTR_OPSIZE;
+ if (insn->hasAdSize)
+ attrMask |= ATTR_ADSIZE;
+ if (insn->opcodeType == ONEBYTE) {
+ if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
+ // Special support for PAUSE
+ attrMask |= ATTR_XS;
+ } else {
+ if (insn->repeatPrefix == 0xf2)
+ attrMask |= ATTR_XD;
+ else if (insn->repeatPrefix == 0xf3)
+ attrMask |= ATTR_XS;
+ }
+ } else {
+ switch (insn->mandatoryPrefix) {
+ case 0xf2:
+ attrMask |= ATTR_XD;
+ break;
+ case 0xf3:
+ attrMask |= ATTR_XS;
+ break;
+ case 0x66:
+ if (insn->mode != MODE_16BIT)
+ attrMask |= ATTR_OPSIZE;
+ break;
+ case 0x67:
+ attrMask |= ATTR_ADSIZE;
+ break;
+ }
+
+ }
+
+ if (insn->rexPrefix & 0x08) {
+ attrMask |= ATTR_REXW;
+ attrMask &= ~ATTR_ADSIZE;
+ }
+
+ /*
+ * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
+ * of the AdSize prefix is inverted w.r.t. 32-bit mode.
+ */
+ if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
+ insn->opcode == 0xE3)
+ attrMask ^= ATTR_ADSIZE;
+
+ /*
+ * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
+ * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
+ */
+ if ((insn->mode == MODE_64BIT) && insn->hasOpSize) {
+ switch (insn->opcode) {
+ case 0xE8:
+ case 0xE9:
+ // Take care of psubsb and other mmx instructions.
+ if (insn->opcodeType == ONEBYTE) {
+ attrMask ^= ATTR_OPSIZE;
+ insn->immediateSize = 4;
+ insn->displacementSize = 4;
+ }
+ break;
+ case 0x82:
+ case 0x83:
+ case 0x84:
+ case 0x85:
+ case 0x86:
+ case 0x87:
+ case 0x88:
+ case 0x89:
+ case 0x8A:
+ case 0x8B:
+ case 0x8C:
+ case 0x8D:
+ case 0x8E:
+ case 0x8F:
+ // Take care of lea and three byte ops.
+ if (insn->opcodeType == TWOBYTE) {
+ attrMask ^= ATTR_OPSIZE;
+ insn->immediateSize = 4;
+ insn->displacementSize = 4;
+ }
+ break;
+ }
+ }
+
+ if (getIDWithAttrMask(&instructionID, insn, attrMask)) {
+ return -1;
+ }
+
+ /* The following clauses compensate for limitations of the tables. */
+ if (insn->mode != MODE_64BIT &&
+ insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
+ /*
+ * The tables can't distinquish between cases where the W-bit is used to
+ * select register size and cases where its a required part of the opcode.
+ */
+ if ((insn->vectorExtensionType == TYPE_EVEX &&
+ wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
+ (insn->vectorExtensionType == TYPE_VEX_3B &&
+ wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
+ (insn->vectorExtensionType == TYPE_XOP &&
+ wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
+ uint16_t instructionIDWithREXW;
+
+ if (getIDWithAttrMask(&instructionIDWithREXW,
+ insn, attrMask | ATTR_REXW)) {
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(instructionID);
+ return 0;
+ }
+
+ // If not a 64-bit instruction. Switch the opcode.
+ if (!is64Bit(instructionIDWithREXW)) {
+ insn->instructionID = instructionIDWithREXW;
+ insn->spec = specifierForUID(instructionIDWithREXW);
+
+ return 0;
+ }
+ }
+ }
+
+ /*
+ * Absolute moves, umonitor, and movdir64b need special handling.
+ * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
+ * inverted w.r.t.
+ * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
+ * any position.
+ */
+ if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
+ (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
+ (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
+ /* Make sure we observed the prefixes in any position. */
+ if (insn->hasAdSize)
+ attrMask |= ATTR_ADSIZE;
+
+ if (insn->hasOpSize)
+ attrMask |= ATTR_OPSIZE;
+
+ /* In 16-bit, invert the attributes. */
+ if (insn->mode == MODE_16BIT) {
+ attrMask ^= ATTR_ADSIZE;
+
+ /* The OpSize attribute is only valid with the absolute moves. */
+ if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
+ attrMask ^= ATTR_OPSIZE;
+ }
+
+ if (getIDWithAttrMask(&instructionID, insn, attrMask)) {
+ return -1;
+ }
+
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(instructionID);
+
+ return 0;
+ }
+
+ if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
+ !(attrMask & ATTR_OPSIZE)) {
+ /*
+ * The instruction tables make no distinction between instructions that
+ * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
+ * particular spot (i.e., many MMX operations). In general we're
+ * conservative, but in the specific case where OpSize is present but not
+ * in the right place we check if there's a 16-bit operation.
+ */
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithOpsize;
+
+ spec = specifierForUID(instructionID);
+
+ if (getIDWithAttrMask(&instructionIDWithOpsize,
+ insn,
+ attrMask | ATTR_OPSIZE)) {
+ /*
+ * ModRM required with OpSize but not present; give up and return version
+ * without OpSize set
+ */
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+
+ return 0;
+ }
+
+ if (is16BitEquivalent(instructionID, instructionIDWithOpsize) &&
+ (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
+ insn->instructionID = instructionIDWithOpsize;
+ insn->spec = specifierForUID(instructionIDWithOpsize);
+ } else {
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+ }
+
+ return 0;
+ }
+
+ if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
+ insn->rexPrefix & 0x01) {
+ /*
+ * NOOP shouldn't decode as NOOP if REX.b is set. Instead
+ * it should decode as XCHG %r8, %eax.
+ */
+ const struct InstructionSpecifier *spec;
+ uint16_t instructionIDWithNewOpcode;
+ const struct InstructionSpecifier *specWithNewOpcode;
+
+ spec = specifierForUID(instructionID);
+
+ /* Borrow opcode from one of the other XCHGar opcodes */
+ insn->opcode = 0x91;
+
+ if (getIDWithAttrMask(&instructionIDWithNewOpcode, insn, attrMask)) {
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionID;
+ insn->spec = spec;
+
+ return 0;
+ }
+
+ specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
+
+ /* Change back */
+ insn->opcode = 0x90;
+
+ insn->instructionID = instructionIDWithNewOpcode;
+ insn->spec = specWithNewOpcode;
+
+ return 0;
+ }
+
+ insn->instructionID = instructionID;
+ insn->spec = specifierForUID(insn->instructionID);
+
+ return 0;
+}
+
+/*
+ * readSIB - Consumes the SIB byte to determine addressing information for an
+ * instruction.
+ *
+ * @param insn - The instruction whose SIB byte is to be read.
+ * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
+ */
+static int readSIB(struct InternalInstruction* insn)
+{
+ SIBBase sibBaseBase = SIB_BASE_NONE;
+ uint8_t index, base;
+
+ // dbgprintf(insn, "readSIB()");
+
+ if (insn->consumedSIB)
+ return 0;
+
+ insn->consumedSIB = true;
+
+ switch (insn->addressSize) {
+ case 2:
+ // dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
+ return -1;
+ case 4:
+ insn->sibIndexBase = SIB_INDEX_EAX;
+ sibBaseBase = SIB_BASE_EAX;
+ break;
+ case 8:
+ insn->sibIndexBase = SIB_INDEX_RAX;
+ sibBaseBase = SIB_BASE_RAX;
+ break;
+ }
+
+ if (consumeByte(insn, &insn->sib))
+ return -1;
+
+ index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
+
+ if (index == 0x4) {
+ insn->sibIndex = SIB_INDEX_NONE;
+ } else {
+ insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
+ }
+
+ insn->sibScale = 1 << scaleFromSIB(insn->sib);
+
+ base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
+
+ switch (base) {
+ case 0x5:
+ case 0xd:
+ switch (modFromModRM(insn->modRM)) {
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = SIB_BASE_NONE;
+ break;
+ case 0x1:
+ insn->eaDisplacement = EA_DISP_8;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x2:
+ insn->eaDisplacement = EA_DISP_32;
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ case 0x3:
+ // debug("Cannot have Mod = 0b11 and a SIB byte");
+ return -1;
+ }
+ break;
+ default:
+ insn->sibBase = (SIBBase)(sibBaseBase + base);
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readDisplacement - Consumes the displacement of an instruction.
+ *
+ * @param insn - The instruction whose displacement is to be read.
+ * @return - 0 if the displacement byte was successfully read; nonzero
+ * otherwise.
+ */
+static int readDisplacement(struct InternalInstruction* insn)
+{
+ int8_t d8;
+ int16_t d16;
+ int32_t d32;
+
+ // dbgprintf(insn, "readDisplacement()");
+
+ if (insn->consumedDisplacement)
+ return 0;
+
+ insn->consumedDisplacement = true;
+ insn->displacementOffset = insn->readerCursor - insn->startLocation;
+
+ switch (insn->eaDisplacement) {
+ case EA_DISP_NONE:
+ insn->consumedDisplacement = false;
+ break;
+ case EA_DISP_8:
+ if (consumeInt8(insn, &d8))
+ return -1;
+ insn->displacement = d8;
+ break;
+ case EA_DISP_16:
+ if (consumeInt16(insn, &d16))
+ return -1;
+ insn->displacement = d16;
+ break;
+ case EA_DISP_32:
+ if (consumeInt32(insn, &d32))
+ return -1;
+ insn->displacement = d32;
+ break;
+ }
+
+
+ return 0;
+}
+
+/*
+ * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
+ * displacement) for an instruction and interprets it.
+ *
+ * @param insn - The instruction whose addressing information is to be read.
+ * @return - 0 if the information was successfully read; nonzero otherwise.
+ */
+static int readModRM(struct InternalInstruction* insn)
+{
+ uint8_t mod, rm, reg, evexrm;
+
+ // dbgprintf(insn, "readModRM()");
+
+ if (insn->consumedModRM)
+ return 0;
+
+ insn->modRMOffset = (uint8_t)(insn->readerCursor - insn->startLocation);
+
+ if (consumeByte(insn, &insn->modRM))
+ return -1;
+
+ insn->consumedModRM = true;
+
+ // save original ModRM for later reference
+ insn->orgModRM = insn->modRM;
+
+ // handle MOVcr, MOVdr, MOVrc, MOVrd by pretending they have MRM.mod = 3
+ if ((insn->firstByte == 0x0f && insn->opcodeType == TWOBYTE) &&
+ (insn->opcode >= 0x20 && insn->opcode <= 0x23 ))
+ insn->modRM |= 0xC0;
+
+ mod = modFromModRM(insn->modRM);
+ rm = rmFromModRM(insn->modRM);
+ reg = regFromModRM(insn->modRM);
+
+ /*
+ * This goes by insn->registerSize to pick the correct register, which messes
+ * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
+ * fixupReg().
+ */
+ switch (insn->registerSize) {
+ case 2:
+ insn->regBase = MODRM_REG_AX;
+ insn->eaRegBase = EA_REG_AX;
+ break;
+ case 4:
+ insn->regBase = MODRM_REG_EAX;
+ insn->eaRegBase = EA_REG_EAX;
+ break;
+ case 8:
+ insn->regBase = MODRM_REG_RAX;
+ insn->eaRegBase = EA_REG_RAX;
+ break;
+ }
+
+ reg |= rFromREX(insn->rexPrefix) << 3;
+ rm |= bFromREX(insn->rexPrefix) << 3;
+
+ evexrm = 0;
+ if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
+ reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
+ }
+
+ insn->reg = (Reg)(insn->regBase + reg);
+
+ switch (insn->addressSize) {
+ case 2: {
+ EABase eaBaseBase = EA_BASE_BX_SI;
+
+ switch (mod) {
+ case 0x0:
+ if (rm == 0x6) {
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ } else {
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_NONE;
+ }
+ break;
+ case 0x1:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_8;
+ insn->displacementSize = 1;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x2:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ insn->eaDisplacement = EA_DISP_16;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ case 0x3:
+ insn->eaBase = (EABase)(insn->eaRegBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ }
+
+ case 4:
+ case 8: {
+ EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
+
+ switch (mod) {
+ default: break;
+ case 0x0:
+ insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
+ // In determining whether RIP-relative mode is used (rm=5),
+ // or whether a SIB byte is present (rm=4),
+ // the extension bits (REX.b and EVEX.x) are ignored.
+ switch (rm & 7) {
+ case 0x4: // SIB byte is present
+ insn->eaBase = (insn->addressSize == 4 ?
+ EA_BASE_sib : EA_BASE_sib64);
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ case 0x5: // RIP-relative
+ insn->eaBase = EA_BASE_NONE;
+ insn->eaDisplacement = EA_DISP_32;
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ break;
+ }
+ break;
+ case 0x1:
+ insn->displacementSize = 1;
+ /* FALLTHROUGH */
+ case 0x2:
+ insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
+ switch (rm & 7) {
+ case 0x4: // SIB byte is present
+ insn->eaBase = EA_BASE_sib;
+ if (readSIB(insn) || readDisplacement(insn))
+ return -1;
+ break;
+ default:
+ insn->eaBase = (EABase)(eaBaseBase + rm);
+ if (readDisplacement(insn))
+ return -1;
+ break;
+ }
+ break;
+ case 0x3:
+ insn->eaDisplacement = EA_DISP_NONE;
+ insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
+ break;
+ }
+
+ break;
+ }
+ } /* switch (insn->addressSize) */
+
+ return 0;
+}
+
+#define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
+ static uint16_t name(struct InternalInstruction *insn, \
+ OperandType type, \
+ uint8_t index, \
+ uint8_t *valid) { \
+ *valid = 1; \
+ switch (type) { \
+ default: \
+ *valid = 0; \
+ return 0; \
+ case TYPE_Rv: \
+ return base + index; \
+ case TYPE_R8: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ if (insn->rexPrefix && \
+ index >= 4 && index <= 7) { \
+ return prefix##_SPL + (index - 4); \
+ } else { \
+ return prefix##_AL + index; \
+ } \
+ case TYPE_R16: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ return prefix##_AX + index; \
+ case TYPE_R32: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ return prefix##_EAX + index; \
+ case TYPE_R64: \
+ index &= mask; \
+ if (index > 0xf) \
+ *valid = 0; \
+ return prefix##_RAX + index; \
+ case TYPE_ZMM: \
+ return prefix##_ZMM0 + index; \
+ case TYPE_YMM: \
+ return prefix##_YMM0 + index; \
+ case TYPE_XMM: \
+ return prefix##_XMM0 + index; \
+ case TYPE_VK: \
+ index &= 0xf; \
+ if (index > 7) \
+ *valid = 0; \
+ return prefix##_K0 + index; \
+ case TYPE_MM64: \
+ return prefix##_MM0 + (index & 0x7); \
+ case TYPE_SEGMENTREG: \
+ if ((index & 7) > 5) \
+ *valid = 0; \
+ return prefix##_ES + (index & 7); \
+ case TYPE_DEBUGREG: \
+ return prefix##_DR0 + index; \
+ case TYPE_CONTROLREG: \
+ return prefix##_CR0 + index; \
+ case TYPE_BNDR: \
+ if (index > 3) \
+ *valid = 0; \
+ return prefix##_BND0 + index; \
+ case TYPE_MVSIBX: \
+ return prefix##_XMM0 + index; \
+ case TYPE_MVSIBY: \
+ return prefix##_YMM0 + index; \
+ case TYPE_MVSIBZ: \
+ return prefix##_ZMM0 + index; \
+ } \
+ }
+
+/*
+ * fixup*Value - Consults an operand type to determine the meaning of the
+ * reg or R/M field. If the operand is an XMM operand, for example, an
+ * operand would be XMM0 instead of AX, which readModRM() would otherwise
+ * misinterpret it as.
+ *
+ * @param insn - The instruction containing the operand.
+ * @param type - The operand type.
+ * @param index - The existing value of the field as reported by readModRM().
+ * @param valid - The address of a uint8_t. The target is set to 1 if the
+ * field is valid for the register class; 0 if not.
+ * @return - The proper value.
+ */
+GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
+GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
+
+/*
+ * fixupReg - Consults an operand specifier to determine which of the
+ * fixup*Value functions to use in correcting readModRM()'ss interpretation.
+ *
+ * @param insn - See fixup*Value().
+ * @param op - The operand specifier.
+ * @return - 0 if fixup was successful; -1 if the register returned was
+ * invalid for its class.
+ */
+static int fixupReg(struct InternalInstruction *insn,
+ const struct OperandSpecifier *op)
+{
+ uint8_t valid;
+
+ switch ((OperandEncoding)op->encoding) {
+ default:
+ // debug("Expected a REG or R/M encoding in fixupReg");
+ return -1;
+ case ENCODING_VVVV:
+ insn->vvvv = (Reg)fixupRegValue(insn,
+ (OperandType)op->type,
+ insn->vvvv,
+ &valid);
+ if (!valid)
+ return -1;
+ break;
+ case ENCODING_REG:
+ insn->reg = (Reg)fixupRegValue(insn,
+ (OperandType)op->type,
+ insn->reg - insn->regBase,
+ &valid);
+ if (!valid)
+ return -1;
+ break;
+ CASE_ENCODING_RM:
+ if (insn->eaBase >= insn->eaRegBase) {
+ insn->eaBase = (EABase)fixupRMValue(insn,
+ (OperandType)op->type,
+ insn->eaBase - insn->eaRegBase,
+ &valid);
+ if (!valid)
+ return -1;
+ }
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readOpcodeRegister - Reads an operand from the opcode field of an
+ * instruction and interprets it appropriately given the operand width.
+ * Handles AddRegFrm instructions.
+ *
+ * @param insn - the instruction whose opcode field is to be read.
+ * @param size - The width (in bytes) of the register being specified.
+ * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
+ * RAX.
+ * @return - 0 on success; nonzero otherwise.
+ */
+static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size)
+{
+ if (size == 0)
+ size = insn->registerSize;
+
+ switch (size) {
+ case 1:
+ insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ if (insn->rexPrefix &&
+ insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
+ insn->opcodeRegister < MODRM_REG_AL + 0x8) {
+ insn->opcodeRegister = (Reg)(MODRM_REG_SPL
+ + (insn->opcodeRegister - MODRM_REG_AL - 4));
+ }
+
+ break;
+ case 2:
+ insn->opcodeRegister = (Reg)(MODRM_REG_AX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ case 4:
+ insn->opcodeRegister = (Reg)(MODRM_REG_EAX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ case 8:
+ insn->opcodeRegister = (Reg)(MODRM_REG_RAX
+ + ((bFromREX(insn->rexPrefix) << 3)
+ | (insn->opcode & 7)));
+ break;
+ }
+
+ return 0;
+}
+
+/*
+ * readImmediate - Consumes an immediate operand from an instruction, given the
+ * desired operand size.
+ *
+ * @param insn - The instruction whose operand is to be read.
+ * @param size - The width (in bytes) of the operand.
+ * @return - 0 if the immediate was successfully consumed; nonzero
+ * otherwise.
+ */
+static int readImmediate(struct InternalInstruction* insn, uint8_t size)
+{
+ uint8_t imm8;
+ uint16_t imm16;
+ uint32_t imm32;
+ uint64_t imm64;
+
+ if (insn->numImmediatesConsumed == 2) {
+ // debug("Already consumed two immediates");
+ return -1;
+ }
+
+ if (size == 0)
+ size = insn->immediateSize;
+ else
+ insn->immediateSize = size;
+
+ insn->immediateOffset = insn->readerCursor - insn->startLocation;
+
+ switch (size) {
+ case 1:
+ if (consumeByte(insn, &imm8))
+ return -1;
+
+ insn->immediates[insn->numImmediatesConsumed] = imm8;
+ break;
+ case 2:
+ if (consumeUInt16(insn, &imm16))
+ return -1;
+
+ insn->immediates[insn->numImmediatesConsumed] = imm16;
+ break;
+ case 4:
+ if (consumeUInt32(insn, &imm32))
+ return -1;
+
+ insn->immediates[insn->numImmediatesConsumed] = imm32;
+ break;
+ case 8:
+ if (consumeUInt64(insn, &imm64))
+ return -1;
+ insn->immediates[insn->numImmediatesConsumed] = imm64;
+ break;
+ }
+
+ insn->numImmediatesConsumed++;
+
+ return 0;
+}
+
+/*
+ * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
+ *
+ * @param insn - The instruction whose operand is to be read.
+ * @return - 0 if the vvvv was successfully consumed; nonzero
+ * otherwise.
+ */
+static int readVVVV(struct InternalInstruction* insn)
+{
+ int vvvv;
+
+ if (insn->vectorExtensionType == TYPE_EVEX)
+ vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
+ vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
+ else if (insn->vectorExtensionType == TYPE_VEX_3B)
+ vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
+ else if (insn->vectorExtensionType == TYPE_VEX_2B)
+ vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
+ else if (insn->vectorExtensionType == TYPE_XOP)
+ vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
+ else
+ return -1;
+
+ if (insn->mode != MODE_64BIT)
+ vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
+
+ insn->vvvv = (Reg)vvvv;
+
+ return 0;
+}
+
+/*
+ * readMaskRegister - Reads an mask register from the opcode field of an
+ * instruction.
+ *
+ * @param insn - The instruction whose opcode field is to be read.
+ * @return - 0 on success; nonzero otherwise.
+ */
+static int readMaskRegister(struct InternalInstruction* insn)
+{
+ if (insn->vectorExtensionType != TYPE_EVEX)
+ return -1;
+
+ insn->writemask = (Reg)(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
+
+ return 0;
+}
+
+/*
+ * readOperands - Consults the specifier for an instruction and consumes all
+ * operands for that instruction, interpreting them as it goes.
+ *
+ * @param insn - The instruction whose operands are to be read and interpreted.
+ * @return - 0 if all operands could be read; nonzero otherwise.
+ */
+static int readOperands(struct InternalInstruction* insn)
+{
+ int hasVVVV, needVVVV;
+ int sawRegImm = 0;
+ int i;
+
+ /* If non-zero vvvv specified, need to make sure one of the operands
+ uses it. */
+ hasVVVV = !readVVVV(insn);
+ needVVVV = hasVVVV && (insn->vvvv != 0);
+
+ for (i = 0; i < X86_MAX_OPERANDS; ++i) {
+ const OperandSpecifier *op = &x86OperandSets[insn->spec->operands][i];
+ switch (op->encoding) {
+ case ENCODING_NONE:
+ case ENCODING_SI:
+ case ENCODING_DI:
+ break;
+
+ CASE_ENCODING_VSIB:
+ // VSIB can use the V2 bit so check only the other bits.
+ if (needVVVV)
+ needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
+
+ if (readModRM(insn))
+ return -1;
+
+ // Reject if SIB wasn't used.
+ if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
+ return -1;
+
+ // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
+ if (insn->sibIndex == SIB_INDEX_NONE)
+ insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
+
+ // If EVEX.v2 is set this is one of the 16-31 registers.
+ if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
+ v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
+ insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
+
+ // Adjust the index register to the correct size.
+ switch (op->type) {
+ default:
+ // debug("Unhandled VSIB index type");
+ return -1;
+ case TYPE_MVSIBX:
+ insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 +
+ (insn->sibIndex - insn->sibIndexBase));
+ break;
+ case TYPE_MVSIBY:
+ insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 +
+ (insn->sibIndex - insn->sibIndexBase));
+ break;
+ case TYPE_MVSIBZ:
+ insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 +
+ (insn->sibIndex - insn->sibIndexBase));
+ break;
+ }
+
+ // Apply the AVX512 compressed displacement scaling factor.
+ if (op->encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
+ insn->displacement *= 1 << (op->encoding - ENCODING_VSIB);
+ break;
+
+ case ENCODING_REG:
+ CASE_ENCODING_RM:
+ if (readModRM(insn))
+ return -1;
+
+ if (fixupReg(insn, op))
+ return -1;
+
+ // Apply the AVX512 compressed displacement scaling factor.
+ if (op->encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
+ insn->displacement *= 1 << (op->encoding - ENCODING_RM);
+ break;
+
+ case ENCODING_IB:
+ if (sawRegImm) {
+ /* Saw a register immediate so don't read again and instead split the
+ previous immediate. FIXME: This is a hack. */
+ insn->immediates[insn->numImmediatesConsumed] =
+ insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
+ ++insn->numImmediatesConsumed;
+ break;
+ }
+ if (readImmediate(insn, 1))
+ return -1;
+ if (op->type == TYPE_XMM || op->type == TYPE_YMM)
+ sawRegImm = 1;
+ break;
+
+ case ENCODING_IW:
+ if (readImmediate(insn, 2))
+ return -1;
+ break;
+
+ case ENCODING_ID:
+ if (readImmediate(insn, 4))
+ return -1;
+ break;
+
+ case ENCODING_IO:
+ if (readImmediate(insn, 8))
+ return -1;
+ break;
+
+ case ENCODING_Iv:
+ if (readImmediate(insn, insn->immediateSize))
+ return -1;
+ break;
+
+ case ENCODING_Ia:
+ if (readImmediate(insn, insn->addressSize))
+ return -1;
+ break;
+
+ case ENCODING_IRC:
+ insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
+ lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
+ break;
+
+ case ENCODING_RB:
+ if (readOpcodeRegister(insn, 1))
+ return -1;
+ break;
+
+ case ENCODING_RW:
+ if (readOpcodeRegister(insn, 2))
+ return -1;
+ break;
+
+ case ENCODING_RD:
+ if (readOpcodeRegister(insn, 4))
+ return -1;
+ break;
+
+ case ENCODING_RO:
+ if (readOpcodeRegister(insn, 8))
+ return -1;
+ break;
+
+ case ENCODING_Rv:
+ if (readOpcodeRegister(insn, 0))
+ return -1;
+ break;
+
+ case ENCODING_FP:
+ break;
+
+ case ENCODING_VVVV:
+ if (!hasVVVV)
+ return -1;
+
+ needVVVV = 0; /* Mark that we have found a VVVV operand. */
+
+ if (insn->mode != MODE_64BIT)
+ insn->vvvv = (Reg)(insn->vvvv & 0x7);
+
+ if (fixupReg(insn, op))
+ return -1;
+ break;
+
+ case ENCODING_WRITEMASK:
+ if (readMaskRegister(insn))
+ return -1;
+ break;
+
+ case ENCODING_DUP:
+ break;
+
+ default:
+ // dbgprintf(insn, "Encountered an operand with an unknown encoding.");
+ return -1;
+ }
+ }
+
+ /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
+ if (needVVVV)
+ return -1;
+
+ return 0;
+}
+
+// return True if instruction is illegal to use with prefixes
+// This also check & fix the isPrefixNN when a prefix is irrelevant.
+static bool checkPrefix(struct InternalInstruction *insn)
+{
+ // LOCK prefix
+ if (insn->hasLockPrefix) {
+ switch(insn->instructionID) {
+ default:
+ // invalid LOCK
+ return true;
+
+ // nop dword [rax]
+ case X86_NOOPL:
+
+ // DEC
+ case X86_DEC16m:
+ case X86_DEC32m:
+ case X86_DEC64m:
+ case X86_DEC8m:
+
+ // ADC
+ case X86_ADC16mi:
+ case X86_ADC16mi8:
+ case X86_ADC16mr:
+ case X86_ADC32mi:
+ case X86_ADC32mi8:
+ case X86_ADC32mr:
+ case X86_ADC64mi32:
+ case X86_ADC64mi8:
+ case X86_ADC64mr:
+ case X86_ADC8mi:
+ case X86_ADC8mi8:
+ case X86_ADC8mr:
+ case X86_ADC8rm:
+ case X86_ADC16rm:
+ case X86_ADC32rm:
+ case X86_ADC64rm:
+
+ // ADD
+ case X86_ADD16mi:
+ case X86_ADD16mi8:
+ case X86_ADD16mr:
+ case X86_ADD32mi:
+ case X86_ADD32mi8:
+ case X86_ADD32mr:
+ case X86_ADD64mi32:
+ case X86_ADD64mi8:
+ case X86_ADD64mr:
+ case X86_ADD8mi:
+ case X86_ADD8mi8:
+ case X86_ADD8mr:
+ case X86_ADD8rm:
+ case X86_ADD16rm:
+ case X86_ADD32rm:
+ case X86_ADD64rm:
+
+ // AND
+ case X86_AND16mi:
+ case X86_AND16mi8:
+ case X86_AND16mr:
+ case X86_AND32mi:
+ case X86_AND32mi8:
+ case X86_AND32mr:
+ case X86_AND64mi32:
+ case X86_AND64mi8:
+ case X86_AND64mr:
+ case X86_AND8mi:
+ case X86_AND8mi8:
+ case X86_AND8mr:
+ case X86_AND8rm:
+ case X86_AND16rm:
+ case X86_AND32rm:
+ case X86_AND64rm:
+
+ // BTC
+ case X86_BTC16mi8:
+ case X86_BTC16mr:
+ case X86_BTC32mi8:
+ case X86_BTC32mr:
+ case X86_BTC64mi8:
+ case X86_BTC64mr:
+
+ // BTR
+ case X86_BTR16mi8:
+ case X86_BTR16mr:
+ case X86_BTR32mi8:
+ case X86_BTR32mr:
+ case X86_BTR64mi8:
+ case X86_BTR64mr:
+
+ // BTS
+ case X86_BTS16mi8:
+ case X86_BTS16mr:
+ case X86_BTS32mi8:
+ case X86_BTS32mr:
+ case X86_BTS64mi8:
+ case X86_BTS64mr:
+
+ // CMPXCHG
+ case X86_CMPXCHG16B:
+ case X86_CMPXCHG16rm:
+ case X86_CMPXCHG32rm:
+ case X86_CMPXCHG64rm:
+ case X86_CMPXCHG8rm:
+ case X86_CMPXCHG8B:
+
+ // INC
+ case X86_INC16m:
+ case X86_INC32m:
+ case X86_INC64m:
+ case X86_INC8m:
+
+ // NEG
+ case X86_NEG16m:
+ case X86_NEG32m:
+ case X86_NEG64m:
+ case X86_NEG8m:
+
+ // NOT
+ case X86_NOT16m:
+ case X86_NOT32m:
+ case X86_NOT64m:
+ case X86_NOT8m:
+
+ // OR
+ case X86_OR16mi:
+ case X86_OR16mi8:
+ case X86_OR16mr:
+ case X86_OR32mi:
+ case X86_OR32mi8:
+ case X86_OR32mr:
+ case X86_OR64mi32:
+ case X86_OR64mi8:
+ case X86_OR64mr:
+ case X86_OR8mi8:
+ case X86_OR8mi:
+ case X86_OR8mr:
+ case X86_OR8rm:
+ case X86_OR16rm:
+ case X86_OR32rm:
+ case X86_OR64rm:
+
+ // SBB
+ case X86_SBB16mi:
+ case X86_SBB16mi8:
+ case X86_SBB16mr:
+ case X86_SBB32mi:
+ case X86_SBB32mi8:
+ case X86_SBB32mr:
+ case X86_SBB64mi32:
+ case X86_SBB64mi8:
+ case X86_SBB64mr:
+ case X86_SBB8mi:
+ case X86_SBB8mi8:
+ case X86_SBB8mr:
+
+ // SUB
+ case X86_SUB16mi:
+ case X86_SUB16mi8:
+ case X86_SUB16mr:
+ case X86_SUB32mi:
+ case X86_SUB32mi8:
+ case X86_SUB32mr:
+ case X86_SUB64mi32:
+ case X86_SUB64mi8:
+ case X86_SUB64mr:
+ case X86_SUB8mi8:
+ case X86_SUB8mi:
+ case X86_SUB8mr:
+ case X86_SUB8rm:
+ case X86_SUB16rm:
+ case X86_SUB32rm:
+ case X86_SUB64rm:
+
+ // XADD
+ case X86_XADD16rm:
+ case X86_XADD32rm:
+ case X86_XADD64rm:
+ case X86_XADD8rm:
+
+ // XCHG
+ case X86_XCHG16rm:
+ case X86_XCHG32rm:
+ case X86_XCHG64rm:
+ case X86_XCHG8rm:
+
+ // XOR
+ case X86_XOR16mi:
+ case X86_XOR16mi8:
+ case X86_XOR16mr:
+ case X86_XOR32mi:
+ case X86_XOR32mi8:
+ case X86_XOR32mr:
+ case X86_XOR64mi32:
+ case X86_XOR64mi8:
+ case X86_XOR64mr:
+ case X86_XOR8mi8:
+ case X86_XOR8mi:
+ case X86_XOR8mr:
+ case X86_XOR8rm:
+ case X86_XOR16rm:
+ case X86_XOR32rm:
+ case X86_XOR64rm:
+
+ // this instruction can be used with LOCK prefix
+ return false;
+ }
+ }
+
+#if 0
+ // REPNE prefix
+ if (insn->repeatPrefix) {
+ // 0xf2 can be a part of instruction encoding, but not really a prefix.
+ // In such a case, clear it.
+ if (insn->twoByteEscape == 0x0f) {
+ insn->prefix0 = 0;
+ }
+ }
+#endif
+
+ // no invalid prefixes
+ return false;
+}
+
+/*
+ * decodeInstruction - Reads and interprets a full instruction provided by the
+ * user.
+ *
+ * @param insn - A pointer to the instruction to be populated. Must be
+ * pre-allocated.
+ * @param reader - The function to be used to read the instruction's bytes.
+ * @param readerArg - A generic argument to be passed to the reader to store
+ * any internal state.
+ * @param startLoc - The address (in the reader's address space) of the first
+ * byte in the instruction.
+ * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
+ * decode the instruction in.
+ * @return - 0 if instruction is valid; nonzero if not.
+ */
+int decodeInstruction(struct InternalInstruction *insn,
+ byteReader_t reader,
+ const void *readerArg,
+ uint64_t startLoc,
+ DisassemblerMode mode)
+{
+ insn->reader = reader;
+ insn->readerArg = readerArg;
+ insn->startLocation = startLoc;
+ insn->readerCursor = startLoc;
+ insn->mode = mode;
+ insn->numImmediatesConsumed = 0;
+
+ if (readPrefixes(insn) ||
+ readOpcode(insn) ||
+ getID(insn) ||
+ insn->instructionID == 0 ||
+ checkPrefix(insn) ||
+ readOperands(insn))
+ return -1;
+
+ insn->length = (size_t)(insn->readerCursor - insn->startLocation);
+
+ // instruction length must be <= 15 to be valid
+ if (insn->length > 15)
+ return -1;
+
+ if (insn->operandSize == 0)
+ insn->operandSize = insn->registerSize;
+
+ insn->operands = &x86OperandSets[insn->spec->operands][0];
+
+ return 0;
+}
+
+#endif
+