diff options
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/X86InstrSSE.td')
-rw-r--r-- | capstone/suite/synctools/tablegen/X86/X86InstrSSE.td | 8258 |
1 files changed, 8258 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td b/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td new file mode 100644 index 000000000..c99af69f6 --- /dev/null +++ b/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td @@ -0,0 +1,8258 @@ +//===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the X86 SSE instruction set, defining the instructions, +// and properties of the instructions which are needed for code generation, +// machine code emission, and analysis. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 Instructions Classes +//===----------------------------------------------------------------------===// + +/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class +multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode, + RegisterClass RC, X86MemOperand x86memop, + Domain d, X86FoldableSchedWrite sched, + bit Is2Addr = 1> { + let isCommutable = 1 in { + def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpNode RC:$src1, RC:$src2))], d>, + Sched<[sched]>; + } + def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], d>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class +multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr, + SDPatternOperator OpNode, RegisterClass RC, + ValueType VT, string asm, Operand memopr, + ComplexPattern mem_cpat, Domain d, + X86FoldableSchedWrite sched, bit Is2Addr = 1> { +let isCodeGenOnly = 1, hasSideEffects = 0 in { + def rr_Int : SI_Int<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (VT (OpNode RC:$src1, RC:$src2)))], d>, + Sched<[sched]>; + let mayLoad = 1 in + def rm_Int : SI_Int<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (VT (OpNode RC:$src1, mem_cpat:$src2)))], d>, + Sched<[sched.Folded, ReadAfterLd]>; +} +} + +/// sse12_fp_packed - SSE 1 & 2 packed instructions class +multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode, + RegisterClass RC, ValueType vt, + X86MemOperand x86memop, PatFrag mem_frag, + Domain d, X86FoldableSchedWrite sched, + bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], d>, + Sched<[sched]>; + let mayLoad = 1 in + def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))], + d>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class +multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d, + string OpcodeStr, X86MemOperand x86memop, + X86FoldableSchedWrite sched, + list<dag> pat_rr, list<dag> pat_rm, + bit Is2Addr = 1> { + let isCommutable = 1, hasSideEffects = 0 in + def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + pat_rr, d>, + Sched<[sched]>; + let hasSideEffects = 0, mayLoad = 1 in + def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + pat_rm, d>, + Sched<[sched.Folded, ReadAfterLd]>; +} + + +/* +// Alias instructions that map fld0 to xorps for sse or vxorps for avx. +// This is expanded by ExpandPostRAPseudos. +let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, + isPseudo = 1, SchedRW = [WriteZero] in { + def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "", + [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1, NoAVX512]>; + def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "", + [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2, NoAVX512]>; +} +*/ + +//===----------------------------------------------------------------------===// +// AVX & SSE - Zero/One Vectors +//===----------------------------------------------------------------------===// + +// Alias instruction that maps zero vector to pxor / xorp* for sse. +// This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then +// swizzled by ExecutionDomainFix to pxor. +// We set canFoldAsLoad because this can be converted to a constant-pool +// load of an all-zeros value if folding it would be beneficial. +let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, + isPseudo = 1, SchedRW = [WriteZero] in { +def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "", + [(set VR128:$dst, (v4f32 immAllZerosV))]>; +} + +let Predicates = [NoAVX512] in +def : Pat<(v4i32 immAllZerosV), (V_SET0)>; + + +// The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI, +// and doesn't need it because on sandy bridge the register is set to zero +// at the rename stage without using any execution unit, so SET0PSY +// and SET0PDY can be used for vector int instructions without penalty +let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, + isPseudo = 1, Predicates = [NoAVX512], SchedRW = [WriteZero] in { +def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "", + [(set VR256:$dst, (v8i32 immAllZerosV))]>; +} + +// We set canFoldAsLoad because this can be converted to a constant-pool +// load of an all-ones value if folding it would be beneficial. +let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, + isPseudo = 1, SchedRW = [WriteZero] in { + def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "", + [(set VR128:$dst, (v4i32 immAllOnesV))]>; + let Predicates = [HasAVX1Only, OptForMinSize] in { + def AVX1_SETALLONES: I<0, Pseudo, (outs VR256:$dst), (ins), "", + [(set VR256:$dst, (v8i32 immAllOnesV))]>; + } + let Predicates = [HasAVX2] in + def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "", + [(set VR256:$dst, (v8i32 immAllOnesV))]>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Move FP Scalar Instructions +// +// Move Instructions. Register-to-register movss/movsd is not used for FR32/64 +// register copies because it's a partial register update; Register-to-register +// movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires +// that the insert be implementable in terms of a copy, and just mentioned, we +// don't use movss/movsd for copies. +//===----------------------------------------------------------------------===// + +multiclass sse12_move_rr<SDNode OpNode, ValueType vt, + X86MemOperand x86memop, string base_opc, + string asm_opr, Domain d, string Name> { + let isCommutable = 1 in + def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(base_opc, asm_opr), + [(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))], d>, + Sched<[SchedWriteFShuffle.XMM]>; + + // For the disassembler + let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in + def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(base_opc, asm_opr), []>, + Sched<[SchedWriteFShuffle.XMM]>, FoldGenData<Name#rr>; +} + +multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt, + X86MemOperand x86memop, string OpcodeStr, + Domain d, string Name, Predicate pred> { + // AVX + let Predicates = [UseAVX, OptForSize] in + defm V#NAME : sse12_move_rr<OpNode, vt, x86memop, OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}", d, + "V"#Name>, + VEX_4V, VEX_LIG, VEX_WIG; + + def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(store RC:$src, addr:$dst)], d>, + VEX, VEX_LIG, Sched<[WriteFStore]>, VEX_WIG; + // SSE1 & 2 + let Constraints = "$src1 = $dst" in { + let Predicates = [pred, NoSSE41_Or_OptForSize] in + defm NAME : sse12_move_rr<OpNode, vt, x86memop, OpcodeStr, + "\t{$src2, $dst|$dst, $src2}", d, Name>; + } + + def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(store RC:$src, addr:$dst)], d>, + Sched<[WriteFStore]>; + + // def : InstAlias<"v"#OpcodeStr#".s\t{$src2, $src1, $dst|$dst, $src1, $src2}", + // (!cast<Instruction>("V"#NAME#"rr_REV") + // VR128:$dst, VR128:$src1, VR128:$src2), 0>; + // def : InstAlias<OpcodeStr#".s\t{$src2, $dst|$dst, $src2}", + // (!cast<Instruction>(NAME#"rr_REV") + // VR128:$dst, VR128:$src2), 0>; +} + +// Loading from memory automatically zeroing upper bits. +multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop, + PatFrag mem_pat, string OpcodeStr, Domain d> { + def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (mem_pat addr:$src))], d>, + VEX, VEX_LIG, Sched<[WriteFLoad]>, VEX_WIG; + def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (mem_pat addr:$src))], d>, + Sched<[WriteFLoad]>; +} + +defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss", + SSEPackedSingle, "MOVSS", UseSSE1>, XS; +defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd", + SSEPackedDouble, "MOVSD", UseSSE2>, XD; + +let canFoldAsLoad = 1, isReMaterializable = 1 in { + defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss", + SSEPackedSingle>, XS; + defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd", + SSEPackedDouble>, XD; +} + +// Patterns +let Predicates = [UseAVX] in { + // MOVSSrm zeros the high parts of the register; represent this + // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0 + def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), + (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>; + def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), + (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>; + def : Pat<(v4f32 (X86vzload addr:$src)), + (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>; + + // MOVSDrm zeros the high parts of the register; represent this + // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0 + def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), + (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>; + def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), + (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>; + def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), + (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>; + def : Pat<(v2f64 (X86vzload addr:$src)), + (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>; + + // Represent the same patterns above but in the form they appear for + // 256-bit types + def : Pat<(v8f32 (X86vzmovl (insert_subvector undef, + (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))), + (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>; + def : Pat<(v8f32 (X86vzload addr:$src)), + (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>; + def : Pat<(v4f64 (X86vzmovl (insert_subvector undef, + (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))), + (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>; + def : Pat<(v4f64 (X86vzload addr:$src)), + (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>; + + // Extract and store. + def : Pat<(store (f32 (extractelt (v4f32 VR128:$src), (iPTR 0))), + addr:$dst), + (VMOVSSmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32))>; +} + +let Predicates = [UseAVX, OptForSize] in { + // Move scalar to XMM zero-extended, zeroing a VR128 then do a + // MOVSS to the lower bits. + def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), + (VMOVSSrr (v4f32 (V_SET0)), VR128:$src)>; + def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), + (VMOVSSrr (v4i32 (V_SET0)), VR128:$src)>; + + // Move low f32 and clear high bits. + def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v4f32 (VMOVSSrr (v4f32 (V_SET0)), + (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)))), sub_xmm)>; + def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v4i32 (VMOVSSrr (v4i32 (V_SET0)), + (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)))), sub_xmm)>; + + def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v2f64 (VMOVSDrr (v2f64 (V_SET0)), + (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)))), + sub_xmm)>; + def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v2i64 (VMOVSDrr (v2i64 (V_SET0)), + (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)))), + sub_xmm)>; +} + +let Predicates = [UseSSE1] in { + let Predicates = [UseSSE1, NoSSE41_Or_OptForSize] in { + // Move scalar to XMM zero-extended, zeroing a VR128 then do a + // MOVSS to the lower bits. + def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), + (MOVSSrr (v4f32 (V_SET0)), VR128:$src)>; + def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), + (MOVSSrr (v4i32 (V_SET0)), VR128:$src)>; + } + + // MOVSSrm already zeros the high parts of the register. + def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), + (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>; + def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), + (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>; + def : Pat<(v4f32 (X86vzload addr:$src)), + (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>; + + // Extract and store. + def : Pat<(store (f32 (extractelt (v4f32 VR128:$src), (iPTR 0))), + addr:$dst), + (MOVSSmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR32))>; +} + +let Predicates = [UseSSE2] in { + // MOVSDrm already zeros the high parts of the register. + def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), + (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>; + def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), + (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>; + def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), + (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>; + def : Pat<(v2f64 (X86vzload addr:$src)), + (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>; +} + +// Aliases to help the assembler pick two byte VEX encodings by swapping the +// operands relative to the normal instructions to use VEX.R instead of VEX.B. +// def : InstAlias<"vmovss\t{$src2, $src1, $dst|$dst, $src1, $src2}", +// (VMOVSSrr_REV VR128L:$dst, VR128:$src1, VR128H:$src2), 0>; +// def : InstAlias<"vmovsd\t{$src2, $src1, $dst|$dst, $src1, $src2}", +// (VMOVSDrr_REV VR128L:$dst, VR128:$src1, VR128H:$src2), 0>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Move Aligned/Unaligned FP Instructions +//===----------------------------------------------------------------------===// + +multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC, + X86MemOperand x86memop, PatFrag ld_frag, + string asm, Domain d, + X86SchedWriteMoveLS sched> { +let hasSideEffects = 0, isMoveReg = 1 in + def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>, + Sched<[sched.RR]>; +let canFoldAsLoad = 1, isReMaterializable = 1 in + def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (ld_frag addr:$src))], d>, + Sched<[sched.RM]>; +} + +let Predicates = [HasAVX, NoVLX] in { +defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", + SSEPackedSingle, SchedWriteFMoveLS.XMM>, + PS, VEX, VEX_WIG; +defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", + SSEPackedDouble, SchedWriteFMoveLS.XMM>, + PD, VEX, VEX_WIG; +defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", + SSEPackedSingle, SchedWriteFMoveLS.XMM>, + PS, VEX, VEX_WIG; +defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", + SSEPackedDouble, SchedWriteFMoveLS.XMM>, + PD, VEX, VEX_WIG; + +defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32, "movaps", + SSEPackedSingle, SchedWriteFMoveLS.YMM>, + PS, VEX, VEX_L, VEX_WIG; +defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64, "movapd", + SSEPackedDouble, SchedWriteFMoveLS.YMM>, + PD, VEX, VEX_L, VEX_WIG; +defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32, "movups", + SSEPackedSingle, SchedWriteFMoveLS.YMM>, + PS, VEX, VEX_L, VEX_WIG; +defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64, "movupd", + SSEPackedDouble, SchedWriteFMoveLS.YMM>, + PD, VEX, VEX_L, VEX_WIG; +} + +let Predicates = [UseSSE1] in { +defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", + SSEPackedSingle, SchedWriteFMoveLS.XMM>, + PS; +defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", + SSEPackedSingle, SchedWriteFMoveLS.XMM>, + PS; +} +let Predicates = [UseSSE2] in { +defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", + SSEPackedDouble, SchedWriteFMoveLS.XMM>, + PD; +defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", + SSEPackedDouble, SchedWriteFMoveLS.XMM>, + PD; +} + +let Predicates = [HasAVX, NoVLX] in { +let SchedRW = [SchedWriteFMoveLS.XMM.MR] in { +def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movaps\t{$src, $dst|$dst, $src}", + [(alignedstore (v4f32 VR128:$src), addr:$dst)]>, + VEX, VEX_WIG; +def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(alignedstore (v2f64 VR128:$src), addr:$dst)]>, + VEX, VEX_WIG; +def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movups\t{$src, $dst|$dst, $src}", + [(store (v4f32 VR128:$src), addr:$dst)]>, + VEX, VEX_WIG; +def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(store (v2f64 VR128:$src), addr:$dst)]>, + VEX, VEX_WIG; +} // SchedRW + +let SchedRW = [SchedWriteFMoveLS.YMM.MR] in { +def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movaps\t{$src, $dst|$dst, $src}", + [(alignedstore (v8f32 VR256:$src), addr:$dst)]>, + VEX, VEX_L, VEX_WIG; +def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(alignedstore (v4f64 VR256:$src), addr:$dst)]>, + VEX, VEX_L, VEX_WIG; +def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movups\t{$src, $dst|$dst, $src}", + [(store (v8f32 VR256:$src), addr:$dst)]>, + VEX, VEX_L, VEX_WIG; +def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(store (v4f64 VR256:$src), addr:$dst)]>, + VEX, VEX_L, VEX_WIG; +} // SchedRW +} // Predicate + +// For disassembler +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, + isMoveReg = 1 in { +let SchedRW = [SchedWriteFMoveLS.XMM.RR] in { + def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst), + (ins VR128:$src), + "movaps\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_WIG, FoldGenData<"VMOVAPSrr">; + def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst), + (ins VR128:$src), + "movapd\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_WIG, FoldGenData<"VMOVAPDrr">; + def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst), + (ins VR128:$src), + "movups\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_WIG, FoldGenData<"VMOVUPSrr">; + def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst), + (ins VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_WIG, FoldGenData<"VMOVUPDrr">; +} // SchedRW + +let SchedRW = [SchedWriteFMoveLS.YMM.RR] in { + def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst), + (ins VR256:$src), + "movaps\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPSYrr">; + def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst), + (ins VR256:$src), + "movapd\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPDYrr">; + def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst), + (ins VR256:$src), + "movups\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPSYrr">; + def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst), + (ins VR256:$src), + "movupd\t{$src, $dst|$dst, $src}", []>, + VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPDYrr">; +} // SchedRW +} // Predicate + +// Aliases to help the assembler pick two byte VEX encodings by swapping the +// operands relative to the normal instructions to use VEX.R instead of VEX.B. +// def : InstAlias<"vmovaps\t{$src, $dst|$dst, $src}", +// (VMOVAPSrr_REV VR128L:$dst, VR128H:$src), 0>; +// def : InstAlias<"vmovapd\t{$src, $dst|$dst, $src}", +// (VMOVAPDrr_REV VR128L:$dst, VR128H:$src), 0>; +// def : InstAlias<"vmovups\t{$src, $dst|$dst, $src}", +// (VMOVUPSrr_REV VR128L:$dst, VR128H:$src), 0>; +// def : InstAlias<"vmovupd\t{$src, $dst|$dst, $src}", +// (VMOVUPDrr_REV VR128L:$dst, VR128H:$src), 0>; +// def : InstAlias<"vmovaps\t{$src, $dst|$dst, $src}", +// (VMOVAPSYrr_REV VR256L:$dst, VR256H:$src), 0>; +// def : InstAlias<"vmovapd\t{$src, $dst|$dst, $src}", +// (VMOVAPDYrr_REV VR256L:$dst, VR256H:$src), 0>; +// def : InstAlias<"vmovups\t{$src, $dst|$dst, $src}", +// (VMOVUPSYrr_REV VR256L:$dst, VR256H:$src), 0>; +// def : InstAlias<"vmovupd\t{$src, $dst|$dst, $src}", +// (VMOVUPDYrr_REV VR256L:$dst, VR256H:$src), 0>; + +// Reversed version with ".s" suffix for GAS compatibility. +// def : InstAlias<"vmovaps.s\t{$src, $dst|$dst, $src}", +// (VMOVAPSrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"vmovapd.s\t{$src, $dst|$dst, $src}", +// (VMOVAPDrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"vmovups.s\t{$src, $dst|$dst, $src}", +// (VMOVUPSrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"vmovupd.s\t{$src, $dst|$dst, $src}", +// (VMOVUPDrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"vmovaps.s\t{$src, $dst|$dst, $src}", +// (VMOVAPSYrr_REV VR256:$dst, VR256:$src), 0>; +// def : InstAlias<"vmovapd.s\t{$src, $dst|$dst, $src}", +// (VMOVAPDYrr_REV VR256:$dst, VR256:$src), 0>; +// def : InstAlias<"vmovups.s\t{$src, $dst|$dst, $src}", +// (VMOVUPSYrr_REV VR256:$dst, VR256:$src), 0>; +// def : InstAlias<"vmovupd.s\t{$src, $dst|$dst, $src}", +// (VMOVUPDYrr_REV VR256:$dst, VR256:$src), 0>; + +let SchedRW = [SchedWriteFMoveLS.XMM.MR] in { +def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movaps\t{$src, $dst|$dst, $src}", + [(alignedstore (v4f32 VR128:$src), addr:$dst)]>; +def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movapd\t{$src, $dst|$dst, $src}", + [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; +def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movups\t{$src, $dst|$dst, $src}", + [(store (v4f32 VR128:$src), addr:$dst)]>; +def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", + [(store (v2f64 VR128:$src), addr:$dst)]>; +} // SchedRW + +// For disassembler +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, + isMoveReg = 1, SchedRW = [SchedWriteFMoveLS.XMM.RR] in { + def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movaps\t{$src, $dst|$dst, $src}", []>, + FoldGenData<"MOVAPSrr">; + def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movapd\t{$src, $dst|$dst, $src}", []>, + FoldGenData<"MOVAPDrr">; + def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movups\t{$src, $dst|$dst, $src}", []>, + FoldGenData<"MOVUPSrr">; + def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movupd\t{$src, $dst|$dst, $src}", []>, + FoldGenData<"MOVUPDrr">; +} + +// Reversed version with ".s" suffix for GAS compatibility. +// def : InstAlias<"movaps.s\t{$src, $dst|$dst, $src}", +// (MOVAPSrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"movapd.s\t{$src, $dst|$dst, $src}", +// (MOVAPDrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"movups.s\t{$src, $dst|$dst, $src}", +// (MOVUPSrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"movupd.s\t{$src, $dst|$dst, $src}", +// (MOVUPDrr_REV VR128:$dst, VR128:$src), 0>; + +let Predicates = [HasAVX, NoVLX] in { + // 256-bit load/store need to use floating point load/store in case we don't + // have AVX2. Execution domain fixing will convert to integer if AVX2 is + // available and changing the domain is beneficial. + def : Pat<(alignedloadv4i64 addr:$src), + (VMOVAPSYrm addr:$src)>; + def : Pat<(loadv4i64 addr:$src), + (VMOVUPSYrm addr:$src)>; + def : Pat<(alignedstore (v4i64 VR256:$src), addr:$dst), + (VMOVAPSYmr addr:$dst, VR256:$src)>; + def : Pat<(alignedstore (v8i32 VR256:$src), addr:$dst), + (VMOVAPSYmr addr:$dst, VR256:$src)>; + def : Pat<(alignedstore (v16i16 VR256:$src), addr:$dst), + (VMOVAPSYmr addr:$dst, VR256:$src)>; + def : Pat<(alignedstore (v32i8 VR256:$src), addr:$dst), + (VMOVAPSYmr addr:$dst, VR256:$src)>; + def : Pat<(store (v4i64 VR256:$src), addr:$dst), + (VMOVUPSYmr addr:$dst, VR256:$src)>; + def : Pat<(store (v8i32 VR256:$src), addr:$dst), + (VMOVUPSYmr addr:$dst, VR256:$src)>; + def : Pat<(store (v16i16 VR256:$src), addr:$dst), + (VMOVUPSYmr addr:$dst, VR256:$src)>; + def : Pat<(store (v32i8 VR256:$src), addr:$dst), + (VMOVUPSYmr addr:$dst, VR256:$src)>; +} + +// Use movaps / movups for SSE integer load / store (one byte shorter). +// The instructions selected below are then converted to MOVDQA/MOVDQU +// during the SSE domain pass. +let Predicates = [UseSSE1] in { + def : Pat<(alignedloadv2i64 addr:$src), + (MOVAPSrm addr:$src)>; + def : Pat<(loadv2i64 addr:$src), + (MOVUPSrm addr:$src)>; + + def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst), + (MOVAPSmr addr:$dst, VR128:$src)>; + def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), + (MOVAPSmr addr:$dst, VR128:$src)>; + def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), + (MOVAPSmr addr:$dst, VR128:$src)>; + def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), + (MOVAPSmr addr:$dst, VR128:$src)>; + def : Pat<(store (v2i64 VR128:$src), addr:$dst), + (MOVUPSmr addr:$dst, VR128:$src)>; + def : Pat<(store (v4i32 VR128:$src), addr:$dst), + (MOVUPSmr addr:$dst, VR128:$src)>; + def : Pat<(store (v8i16 VR128:$src), addr:$dst), + (MOVUPSmr addr:$dst, VR128:$src)>; + def : Pat<(store (v16i8 VR128:$src), addr:$dst), + (MOVUPSmr addr:$dst, VR128:$src)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Move Low packed FP Instructions +//===----------------------------------------------------------------------===// + +multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode pdnode, + string base_opc, string asm_opr> { + // No pattern as they need be special cased between high and low. + let hasSideEffects = 0, mayLoad = 1 in + def PSrm : PI<opc, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), + !strconcat(base_opc, "s", asm_opr), + [], SSEPackedSingle>, PS, + Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>; + + def PDrm : PI<opc, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2), + !strconcat(base_opc, "d", asm_opr), + [(set VR128:$dst, (v2f64 (pdnode VR128:$src1, + (scalar_to_vector (loadf64 addr:$src2)))))], + SSEPackedDouble>, PD, + Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>; +} + +multiclass sse12_mov_hilo_packed<bits<8>opc, SDPatternOperator pdnode, + string base_opc> { + let Predicates = [UseAVX] in + defm V#NAME : sse12_mov_hilo_packed_base<opc, pdnode, base_opc, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, + VEX_4V, VEX_WIG; + + let Constraints = "$src1 = $dst" in + defm NAME : sse12_mov_hilo_packed_base<opc, pdnode, base_opc, + "\t{$src2, $dst|$dst, $src2}">; +} + +defm MOVL : sse12_mov_hilo_packed<0x12, X86Movsd, "movlp">; + +let SchedRW = [WriteFStore] in { +let Predicates = [UseAVX] in { +def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlps\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt (bc_v2f64 (v4f32 VR128:$src)), + (iPTR 0))), addr:$dst)]>, + VEX, VEX_WIG; +def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlpd\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt (v2f64 VR128:$src), + (iPTR 0))), addr:$dst)]>, + VEX, VEX_WIG; +}// UseAVX +def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlps\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt (bc_v2f64 (v4f32 VR128:$src)), + (iPTR 0))), addr:$dst)]>; +def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movlpd\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt (v2f64 VR128:$src), + (iPTR 0))), addr:$dst)]>; +} // SchedRW + +let Predicates = [UseSSE1] in { + // (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS + def : Pat<(store (i64 (extractelt (bc_v2i64 (v4f32 VR128:$src2)), + (iPTR 0))), addr:$src1), + (MOVLPSmr addr:$src1, VR128:$src2)>; + + // This pattern helps select MOVLPS on SSE1 only targets. With SSE2 we'll + // end up with a movsd or blend instead of shufp. + // No need for aligned load, we're only loading 64-bits. + def : Pat<(X86Shufp (loadv4f32 addr:$src2), VR128:$src1, (i8 -28)), + (MOVLPSrm VR128:$src1, addr:$src2)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Move Hi packed FP Instructions +//===----------------------------------------------------------------------===// + +defm MOVH : sse12_mov_hilo_packed<0x16, X86Unpckl, "movhp">; + +let SchedRW = [WriteFStore] in { +// v2f64 extract element 1 is always custom lowered to unpack high to low +// and extract element 0 so the non-store version isn't too horrible. +let Predicates = [UseAVX] in { +def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhps\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt + (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)), + (bc_v2f64 (v4f32 VR128:$src))), + (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG; +def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhpd\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt + (v2f64 (X86Unpckh VR128:$src, VR128:$src)), + (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG; +} // UseAVX +def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhps\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt + (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)), + (bc_v2f64 (v4f32 VR128:$src))), + (iPTR 0))), addr:$dst)]>; +def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movhpd\t{$src, $dst|$dst, $src}", + [(store (f64 (extractelt + (v2f64 (X86Unpckh VR128:$src, VR128:$src)), + (iPTR 0))), addr:$dst)]>; +} // SchedRW + +let Predicates = [UseAVX] in { + // Also handle an i64 load because that may get selected as a faster way to + // load the data. + def : Pat<(v2f64 (X86Unpckl VR128:$src1, + (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))), + (VMOVHPDrm VR128:$src1, addr:$src2)>; + + def : Pat<(store (f64 (extractelt + (v2f64 (X86VPermilpi VR128:$src, (i8 1))), + (iPTR 0))), addr:$dst), + (VMOVHPDmr addr:$dst, VR128:$src)>; +} + +let Predicates = [UseSSE1] in { + // This pattern helps select MOVHPS on SSE1 only targets. With SSE2 we'll + // end up with a movsd or blend instead of shufp. + // No need for aligned load, we're only loading 64-bits. + def : Pat<(X86Movlhps VR128:$src1, (loadv4f32 addr:$src2)), + (MOVHPSrm VR128:$src1, addr:$src2)>; +} + +let Predicates = [UseSSE2] in { + // MOVHPD patterns + + // Also handle an i64 load because that may get selected as a faster way to + // load the data. + def : Pat<(v2f64 (X86Unpckl VR128:$src1, + (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))), + (MOVHPDrm VR128:$src1, addr:$src2)>; + + def : Pat<(store (f64 (extractelt + (v2f64 (X86Shufp VR128:$src, VR128:$src, (i8 1))), + (iPTR 0))), addr:$dst), + (MOVHPDmr addr:$dst, VR128:$src)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions +//===----------------------------------------------------------------------===// + +let Predicates = [UseAVX] in { + def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>, + VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG; + let isCommutable = 1 in + def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>, + VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG, + NotMemoryFoldable; +} +let Constraints = "$src1 = $dst" in { + def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movlhps\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, + (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>, + Sched<[SchedWriteFShuffle.XMM]>; + let isCommutable = 1 in + def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + "movhlps\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, + (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>, + Sched<[SchedWriteFShuffle.XMM]>, NotMemoryFoldable; +} + +// TODO: This is largely to trick fastisel into ignoring the pattern. +def UnpckhUnary : PatFrag<(ops node:$src1, node:$src2), + (X86Unpckh node:$src1, node:$src2), [{ + return N->getOperand(0) == N->getOperand(1); +}]>; + +let Predicates = [UseSSE2] in { + // TODO: This is a hack pattern to allow lowering to emit unpckh instead of + // movhlps for sse2 without changing a bunch of tests. + def : Pat<(v2f64 (UnpckhUnary VR128:$src, VR128:$src)), + (MOVHLPSrr VR128:$src, VR128:$src)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Conversion Instructions +//===----------------------------------------------------------------------===// + +multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, + string asm, X86FoldableSchedWrite sched> { + def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm, + [(set DstRC:$dst, (OpNode SrcRC:$src))]>, + Sched<[sched]>; + def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm, + [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>, + Sched<[sched.Folded]>; +} + +multiclass sse12_cvt_p<bits<8> opc, RegisterClass RC, X86MemOperand x86memop, + ValueType DstTy, ValueType SrcTy, PatFrag ld_frag, + string asm, Domain d, X86FoldableSchedWrite sched> { +let hasSideEffects = 0 in { + def rr : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src), asm, + [(set RC:$dst, (DstTy (sint_to_fp (SrcTy RC:$src))))], d>, + Sched<[sched]>; + let mayLoad = 1 in + def rm : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), asm, + [(set RC:$dst, (DstTy (sint_to_fp + (SrcTy (bitconvert (ld_frag addr:$src))))))], d>, + Sched<[sched.Folded]>; +} +} + +multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + X86MemOperand x86memop, string asm, + X86FoldableSchedWrite sched> { +let hasSideEffects = 0, Predicates = [UseAVX] in { + def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src), + !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>, + Sched<[sched]>; + let mayLoad = 1 in + def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), + (ins DstRC:$src1, x86memop:$src), + !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>, + Sched<[sched.Folded, ReadAfterLd]>; +} // hasSideEffects = 0 +} + +let Predicates = [UseAVX] in { +defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, + "cvttss2si\t{$src, $dst|$dst, $src}", + WriteCvtSS2I>, + XS, VEX, VEX_LIG; +defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, + "cvttss2si\t{$src, $dst|$dst, $src}", + WriteCvtSS2I>, + XS, VEX, VEX_W, VEX_LIG; +defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, + "cvttsd2si\t{$src, $dst|$dst, $src}", + WriteCvtSD2I>, + XD, VEX, VEX_LIG; +defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64, + "cvttsd2si\t{$src, $dst|$dst, $src}", + WriteCvtSD2I>, + XD, VEX, VEX_W, VEX_LIG; + +// def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTTSS2SIrr GR32:$dst, FR32:$src), 0, "att">; +// def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0, "att">; +// def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTTSD2SIrr GR32:$dst, FR64:$src), 0, "att">; +// def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0, "att">; +// def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0, "att">; +// def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0, "att">; +// def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0, "att">; +// def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0, "att">; +} +// The assembler can recognize rr 64-bit instructions by seeing a rxx +// register, but the same isn't true when only using memory operands, +// provide other assembly "l" and "q" forms to address this explicitly +// where appropriate to do so. +defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}", + WriteCvtI2SS>, XS, VEX_4V, VEX_LIG; +defm VCVTSI642SS : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}", + WriteCvtI2SS>, XS, VEX_4V, VEX_W, VEX_LIG; +defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}", + WriteCvtI2SD>, XD, VEX_4V, VEX_LIG; +defm VCVTSI642SD : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}", + WriteCvtI2SD>, XD, VEX_4V, VEX_W, VEX_LIG; + +let Predicates = [UseAVX] in { + // def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}", + // (VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src), 0, "att">; + // def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}", + // (VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src), 0, "att">; + + def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))), + (VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>; + def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))), + (VCVTSI642SSrm (f32 (IMPLICIT_DEF)), addr:$src)>; + def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))), + (VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>; + def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))), + (VCVTSI642SDrm (f64 (IMPLICIT_DEF)), addr:$src)>; + + def : Pat<(f32 (sint_to_fp GR32:$src)), + (VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>; + def : Pat<(f32 (sint_to_fp GR64:$src)), + (VCVTSI642SSrr (f32 (IMPLICIT_DEF)), GR64:$src)>; + def : Pat<(f64 (sint_to_fp GR32:$src)), + (VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>; + def : Pat<(f64 (sint_to_fp GR64:$src)), + (VCVTSI642SDrr (f64 (IMPLICIT_DEF)), GR64:$src)>; +} + +defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, + "cvttss2si\t{$src, $dst|$dst, $src}", + WriteCvtSS2I>, XS; +defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, + "cvttss2si\t{$src, $dst|$dst, $src}", + WriteCvtSS2I>, XS, REX_W; +defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, + "cvttsd2si\t{$src, $dst|$dst, $src}", + WriteCvtSD2I>, XD; +defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64, + "cvttsd2si\t{$src, $dst|$dst, $src}", + WriteCvtSD2I>, XD, REX_W; +defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, + "cvtsi2ss{l}\t{$src, $dst|$dst, $src}", + WriteCvtI2SS>, XS; +defm CVTSI642SS : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64, + "cvtsi2ss{q}\t{$src, $dst|$dst, $src}", + WriteCvtI2SS>, XS, REX_W; +defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, + "cvtsi2sd{l}\t{$src, $dst|$dst, $src}", + WriteCvtI2SD>, XD; +defm CVTSI642SD : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64, + "cvtsi2sd{q}\t{$src, $dst|$dst, $src}", + WriteCvtI2SD>, XD, REX_W; + +// def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}", +// (CVTTSS2SIrr GR32:$dst, FR32:$src), 0, "att">; +// def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}", +// (CVTTSS2SIrm GR32:$dst, f32mem:$src), 0, "att">; +// def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}", +// (CVTTSD2SIrr GR32:$dst, FR64:$src), 0, "att">; +// def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}", +// (CVTTSD2SIrm GR32:$dst, f64mem:$src), 0, "att">; +// def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}", +// (CVTTSS2SI64rr GR64:$dst, FR32:$src), 0, "att">; +// def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}", +// (CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0, "att">; +// def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}", +// (CVTTSD2SI64rr GR64:$dst, FR64:$src), 0, "att">; +// def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}", +// (CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0, "att">; + +// def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}", +// (CVTSI2SSrm FR64:$dst, i32mem:$src), 0, "att">; +// def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}", +// (CVTSI2SDrm FR64:$dst, i32mem:$src), 0, "att">; + +// Conversion Instructions Intrinsics - Match intrinsics which expect MM +// and/or XMM operand(s). + +// FIXME: We probably want to match the rm form only when optimizing for +// size, to avoid false depenendecies (see sse_fp_unop_s for details) +multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC, + Intrinsic Int, Operand memop, ComplexPattern mem_cpat, + string asm, X86FoldableSchedWrite sched> { + def rr_Int : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), + [(set DstRC:$dst, (Int SrcRC:$src))]>, + Sched<[sched]>; + def rm_Int : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), + [(set DstRC:$dst, (Int mem_cpat:$src))]>, + Sched<[sched.Folded]>; +} + +multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC, + RegisterClass DstRC, X86MemOperand x86memop, + string asm, X86FoldableSchedWrite sched, + bit Is2Addr = 1> { +let hasSideEffects = 0 in { + def rr_Int : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + []>, Sched<[sched]>; + let mayLoad = 1 in + def rm_Int : SI<opc, MRMSrcMem, (outs DstRC:$dst), + (ins DstRC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + []>, Sched<[sched.Folded, ReadAfterLd]>; +} +} + +let Predicates = [UseAVX] in { +defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, + int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si", + WriteCvtSD2I>, XD, VEX, VEX_LIG; +defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, + int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si", + WriteCvtSD2I>, XD, VEX, VEX_W, VEX_LIG; +} +defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, + sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I>, XD; +defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64, + sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I>, XD, REX_W; + + +let isCodeGenOnly = 1 in { + let Predicates = [UseAVX] in { + defm VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + i32mem, "cvtsi2ss{l}", WriteCvtI2SS, 0>, XS, VEX_4V; + defm VCVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128, + i64mem, "cvtsi2ss{q}", WriteCvtI2SS, 0>, XS, VEX_4V, VEX_W; + defm VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + i32mem, "cvtsi2sd{l}", WriteCvtI2SD, 0>, XD, VEX_4V; + defm VCVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128, + i64mem, "cvtsi2sd{q}", WriteCvtI2SD, 0>, XD, VEX_4V, VEX_W; + } + let Constraints = "$src1 = $dst" in { + defm CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + i32mem, "cvtsi2ss{l}", WriteCvtI2SS>, XS; + defm CVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128, + i64mem, "cvtsi2ss{q}", WriteCvtI2SS>, XS, REX_W; + defm CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, + i32mem, "cvtsi2sd{l}", WriteCvtI2SD>, XD; + defm CVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128, + i64mem, "cvtsi2sd{q}", WriteCvtI2SD>, XD, REX_W; + } +} // isCodeGenOnly = 1 + +/// SSE 1 Only + +// Aliases for intrinsics +let isCodeGenOnly = 1 in { +let Predicates = [UseAVX] in { +defm VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, + ssmem, sse_load_f32, "cvttss2si", + WriteCvtSS2I>, XS, VEX; +defm VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, + int_x86_sse_cvttss2si64, ssmem, sse_load_f32, + "cvttss2si", WriteCvtSS2I>, + XS, VEX, VEX_W; +defm VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, + sdmem, sse_load_f64, "cvttsd2si", + WriteCvtSS2I>, XD, VEX; +defm VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, + int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64, + "cvttsd2si", WriteCvtSS2I>, + XD, VEX, VEX_W; +} +defm CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, + ssmem, sse_load_f32, "cvttss2si", + WriteCvtSS2I>, XS; +defm CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, + int_x86_sse_cvttss2si64, ssmem, sse_load_f32, + "cvttss2si", WriteCvtSS2I>, XS, REX_W; +defm CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, + sdmem, sse_load_f64, "cvttsd2si", + WriteCvtSD2I>, XD; +defm CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, + int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64, + "cvttsd2si", WriteCvtSD2I>, XD, REX_W; +} // isCodeGenOnly = 1 + +let Predicates = [UseAVX] in { +defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, + ssmem, sse_load_f32, "cvtss2si", + WriteCvtSS2I>, XS, VEX, VEX_LIG; +defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, + ssmem, sse_load_f32, "cvtss2si", + WriteCvtSS2I>, XS, VEX, VEX_W, VEX_LIG; +} +defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, + ssmem, sse_load_f32, "cvtss2si", + WriteCvtSS2I>, XS; +defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, + ssmem, sse_load_f32, "cvtss2si", + WriteCvtSS2I>, XS, REX_W; + +defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, loadv2i64, + "vcvtdq2ps\t{$src, $dst|$dst, $src}", + SSEPackedSingle, WriteCvtI2PS>, + PS, VEX, Requires<[HasAVX, NoVLX]>, VEX_WIG; +defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, i256mem, v8f32, v8i32, loadv4i64, + "vcvtdq2ps\t{$src, $dst|$dst, $src}", + SSEPackedSingle, WriteCvtI2PSY>, + PS, VEX, VEX_L, Requires<[HasAVX, NoVLX]>, VEX_WIG; + +defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, memopv2i64, + "cvtdq2ps\t{$src, $dst|$dst, $src}", + SSEPackedSingle, WriteCvtI2PS>, + PS, Requires<[UseSSE2]>; + +let Predicates = [UseAVX] in { +// def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">; +// def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}", +// (VCVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">; +// def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">; +// def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}", +// (VCVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">; +} + +// def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}", +// (CVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}", +// (CVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">; +// def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}", +// (CVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}", +// (CVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">; +// def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}", +// (CVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}", +// (CVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">; +// def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}", +// (CVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">; +// def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}", +// (CVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">; + +/// SSE 2 Only + +// Convert scalar double to scalar single +let hasSideEffects = 0, Predicates = [UseAVX] in { +def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst), + (ins FR32:$src1, FR64:$src2), + "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + VEX_4V, VEX_LIG, VEX_WIG, + Sched<[WriteCvtSD2SS]>; +let mayLoad = 1 in +def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), + (ins FR32:$src1, f64mem:$src2), + "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + XD, VEX_4V, VEX_LIG, VEX_WIG, + Sched<[WriteCvtSD2SS.Folded, ReadAfterLd]>; +} + +def : Pat<(f32 (fpround FR64:$src)), + (VCVTSD2SSrr (f32 (IMPLICIT_DEF)), FR64:$src)>, + Requires<[UseAVX]>; + +def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), + "cvtsd2ss\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (fpround FR64:$src))]>, + Sched<[WriteCvtSD2SS]>; +def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), + "cvtsd2ss\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (fpround (loadf64 addr:$src)))]>, + XD, Requires<[UseSSE2, OptForSize]>, + Sched<[WriteCvtSD2SS.Folded]>; + +let isCodeGenOnly = 1 in { +def VCVTSD2SSrr_Int: I<0x5A, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>, + XD, VEX_4V, VEX_WIG, Requires<[HasAVX]>, + Sched<[WriteCvtSD2SS]>; +def VCVTSD2SSrm_Int: I<0x5A, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2), + "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, (int_x86_sse2_cvtsd2ss + VR128:$src1, sse_load_f64:$src2))]>, + XD, VEX_4V, VEX_WIG, Requires<[HasAVX]>, + Sched<[WriteCvtSD2SS.Folded, ReadAfterLd]>; +let Constraints = "$src1 = $dst" in { +def CVTSD2SSrr_Int: I<0x5A, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "cvtsd2ss\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, + (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>, + XD, Requires<[UseSSE2]>, Sched<[WriteCvtSD2SS]>; +def CVTSD2SSrm_Int: I<0x5A, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2), + "cvtsd2ss\t{$src2, $dst|$dst, $src2}", + [(set VR128:$dst, (int_x86_sse2_cvtsd2ss + VR128:$src1, sse_load_f64:$src2))]>, + XD, Requires<[UseSSE2]>, + Sched<[WriteCvtSD2SS.Folded, ReadAfterLd]>; +} +} // isCodeGenOnly = 1 + +// Convert scalar single to scalar double +// SSE2 instructions with XS prefix +let hasSideEffects = 0 in { +def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), + (ins FR64:$src1, FR32:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + XS, VEX_4V, VEX_LIG, VEX_WIG, + Sched<[WriteCvtSS2SD]>, Requires<[UseAVX]>; +let mayLoad = 1 in +def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), + (ins FR64:$src1, f32mem:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + XS, VEX_4V, VEX_LIG, VEX_WIG, + Sched<[WriteCvtSS2SD.Folded, ReadAfterLd]>, + Requires<[UseAVX, OptForSize]>; +} + +def : Pat<(f64 (fpextend FR32:$src)), + (VCVTSS2SDrr (f64 (IMPLICIT_DEF)), FR32:$src)>, Requires<[UseAVX]>; +def : Pat<(fpextend (loadf32 addr:$src)), + (VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX, OptForSize]>; + +def : Pat<(extloadf32 addr:$src), + (VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>, + Requires<[UseAVX, OptForSize]>; +def : Pat<(extloadf32 addr:$src), + (VCVTSS2SDrr (f64 (IMPLICIT_DEF)), (VMOVSSrm addr:$src))>, + Requires<[UseAVX, OptForSpeed]>; + +def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), + "cvtss2sd\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (fpextend FR32:$src))]>, + XS, Requires<[UseSSE2]>, Sched<[WriteCvtSS2SD]>; +def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), + "cvtss2sd\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (extloadf32 addr:$src))]>, + XS, Requires<[UseSSE2, OptForSize]>, + Sched<[WriteCvtSS2SD.Folded]>; + +// extload f32 -> f64. This matches load+fpextend because we have a hack in +// the isel (PreprocessForFPConvert) that can introduce loads after dag +// combine. +// Since these loads aren't folded into the fpextend, we have to match it +// explicitly here. +def : Pat<(fpextend (loadf32 addr:$src)), + (CVTSS2SDrm addr:$src)>, Requires<[UseSSE2, OptForSize]>; +def : Pat<(extloadf32 addr:$src), + (CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[UseSSE2, OptForSpeed]>; + +let isCodeGenOnly = 1, hasSideEffects = 0 in { +def VCVTSS2SDrr_Int: I<0x5A, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, XS, VEX_4V, VEX_WIG, + Requires<[HasAVX]>, Sched<[WriteCvtSS2SD]>; +let mayLoad = 1 in +def VCVTSS2SDrm_Int: I<0x5A, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2), + "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, XS, VEX_4V, VEX_WIG, Requires<[HasAVX]>, + Sched<[WriteCvtSS2SD.Folded, ReadAfterLd]>; +let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix +def CVTSS2SDrr_Int: I<0x5A, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + "cvtss2sd\t{$src2, $dst|$dst, $src2}", + []>, XS, Requires<[UseSSE2]>, + Sched<[WriteCvtSS2SD]>; +let mayLoad = 1 in +def CVTSS2SDrm_Int: I<0x5A, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2), + "cvtss2sd\t{$src2, $dst|$dst, $src2}", + []>, XS, Requires<[UseSSE2]>, + Sched<[WriteCvtSS2SD.Folded, ReadAfterLd]>; +} +} // isCodeGenOnly = 1 + +// Patterns used for matching (v)cvtsi2ss, (v)cvtsi2sd, (v)cvtsd2ss and +// (v)cvtss2sd intrinsic sequences from clang which produce unnecessary +// vmovs{s,d} instructions +let Predicates = [UseAVX] in { +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector + (f32 (fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))), + (VCVTSD2SSrr_Int VR128:$dst, VR128:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector + (f64 (fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))), + (VCVTSS2SDrr_Int VR128:$dst, VR128:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))), + (VCVTSI642SSrr_Int VR128:$dst, GR64:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi64 addr:$src))))))), + (VCVTSI642SSrm_Int VR128:$dst, addr:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))), + (VCVTSI2SSrr_Int VR128:$dst, GR32:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi32 addr:$src))))))), + (VCVTSI2SSrm_Int VR128:$dst, addr:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))), + (VCVTSI642SDrr_Int VR128:$dst, GR64:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi64 addr:$src))))))), + (VCVTSI642SDrm_Int VR128:$dst, addr:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))), + (VCVTSI2SDrr_Int VR128:$dst, GR32:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi32 addr:$src))))))), + (VCVTSI2SDrm_Int VR128:$dst, addr:$src)>; +} // Predicates = [UseAVX] + +let Predicates = [UseSSE2] in { +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector + (f32 (fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))), + (CVTSD2SSrr_Int VR128:$dst, VR128:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector + (f64 (fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))), + (CVTSS2SDrr_Int VR128:$dst, VR128:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))), + (CVTSI642SDrr_Int VR128:$dst, GR64:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi64 addr:$src))))))), + (CVTSI642SDrm_Int VR128:$dst, addr:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))), + (CVTSI2SDrr_Int VR128:$dst, GR32:$src)>; + +def : Pat<(v2f64 (X86Movsd + (v2f64 VR128:$dst), + (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi32 addr:$src))))))), + (CVTSI2SDrm_Int VR128:$dst, addr:$src)>; +} // Predicates = [UseSSE2] + +let Predicates = [UseSSE1] in { +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))), + (CVTSI642SSrr_Int VR128:$dst, GR64:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi64 addr:$src))))))), + (CVTSI642SSrm_Int VR128:$dst, addr:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))), + (CVTSI2SSrr_Int VR128:$dst, GR32:$src)>; + +def : Pat<(v4f32 (X86Movss + (v4f32 VR128:$dst), + (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi32 addr:$src))))))), + (CVTSI2SSrm_Int VR128:$dst, addr:$src)>; +} // Predicates = [UseSSE1] + +let Predicates = [HasAVX, NoVLX] in { +// Convert packed single/double fp to doubleword +def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>, + VEX, Sched<[WriteCvtPS2I]>, VEX_WIG; +def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (loadv4f32 addr:$src))))]>, + VEX, Sched<[WriteCvtPS2ILd]>, VEX_WIG; +def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, + (v8i32 (X86cvtp2Int (v8f32 VR256:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPS2IY]>, VEX_WIG; +def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, + (v8i32 (X86cvtp2Int (loadv8f32 addr:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPS2IYLd]>, VEX_WIG; +} +def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>, + Sched<[WriteCvtPS2I]>; +def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (memopv4f32 addr:$src))))]>, + Sched<[WriteCvtPS2ILd]>; + + +// Convert Packed Double FP to Packed DW Integers +let Predicates = [HasAVX, NoVLX] in { +// The assembler can recognize rr 256-bit instructions by seeing a ymm +// register, but the same isn't true when using memory operands instead. +// Provide other assembly rr and rm forms to address this explicitly. +def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>, + VEX, Sched<[WriteCvtPD2I]>, VEX_WIG; + +// XMM only +// def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}", +// (VCVTPD2DQrr VR128:$dst, VR128:$src), 0>; +def VCVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "vcvtpd2dq{x}\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (loadv2f64 addr:$src))))]>, VEX, + Sched<[WriteCvtPD2ILd]>, VEX_WIG; +// def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}", +// (VCVTPD2DQrm VR128:$dst, f128mem:$src), 0, "intel">; + +// YMM only +def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), + "vcvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (v4f64 VR256:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPD2IY]>, VEX_WIG; +def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), + "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (loadv4f64 addr:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPD2IYLd]>, VEX_WIG; +// def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}", +// (VCVTPD2DQYrr VR128:$dst, VR256:$src), 0>; +// def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}", +// (VCVTPD2DQYrm VR128:$dst, f256mem:$src), 0, "intel">; +} + +def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (memopv2f64 addr:$src))))]>, + Sched<[WriteCvtPD2ILd]>; +def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>, + Sched<[WriteCvtPD2I]>; + +// Convert with truncation packed single/double fp to doubleword +// SSE2 packed instructions with XS prefix +let Predicates = [HasAVX, NoVLX] in { +def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (v4f32 VR128:$src))))]>, + VEX, Sched<[WriteCvtPS2I]>, VEX_WIG; +def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (loadv4f32 addr:$src))))]>, + VEX, Sched<[WriteCvtPS2ILd]>, VEX_WIG; +def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, + (v8i32 (X86cvttp2si (v8f32 VR256:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPS2IY]>, VEX_WIG; +def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, + (v8i32 (X86cvttp2si (loadv8f32 addr:$src))))]>, + VEX, VEX_L, + Sched<[WriteCvtPS2IYLd]>, VEX_WIG; +} + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))), + (VCVTTPS2DQrr VR128:$src)>; + def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))), + (VCVTTPS2DQrm addr:$src)>; + def : Pat<(v8i32 (fp_to_sint (v8f32 VR256:$src))), + (VCVTTPS2DQYrr VR256:$src)>; + def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))), + (VCVTTPS2DQYrm addr:$src)>; +} + +def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (v4f32 VR128:$src))))]>, + Sched<[WriteCvtPS2I]>; +def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvttps2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (memopv4f32 addr:$src))))]>, + Sched<[WriteCvtPS2ILd]>; + +let Predicates = [UseSSE2] in { + def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))), + (CVTTPS2DQrr VR128:$src)>; + def : Pat<(v4i32 (fp_to_sint (memopv4f32 addr:$src))), + (CVTTPS2DQrm addr:$src)>; +} + +let Predicates = [HasAVX, NoVLX] in +def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvttpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (v2f64 VR128:$src))))]>, + VEX, Sched<[WriteCvtPD2I]>, VEX_WIG; + +// The assembler can recognize rr 256-bit instructions by seeing a ymm +// register, but the same isn't true when using memory operands instead. +// Provide other assembly rr and rm forms to address this explicitly. + +// XMM only +// def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}", +// (VCVTTPD2DQrr VR128:$dst, VR128:$src), 0>; + +let Predicates = [HasAVX, NoVLX] in +def VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvttpd2dq{x}\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (loadv2f64 addr:$src))))]>, + VEX, Sched<[WriteCvtPD2ILd]>, VEX_WIG; +// def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}", +// (VCVTTPD2DQrm VR128:$dst, f128mem:$src), 0, "intel">; + +// YMM only +let Predicates = [HasAVX, NoVLX] in { +def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), + "cvttpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (v4f64 VR256:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPD2IY]>, VEX_WIG; +def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), + "cvttpd2dq{y}\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (loadv4f64 addr:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtPD2IYLd]>, VEX_WIG; +} +// def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}", +// (VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0>; +// def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}", +// (VCVTTPD2DQYrm VR128:$dst, f256mem:$src), 0, "intel">; + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4i32 (fp_to_sint (v4f64 VR256:$src))), + (VCVTTPD2DQYrr VR256:$src)>; + def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))), + (VCVTTPD2DQYrm addr:$src)>; +} + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvtp2Int (v2f64 VR128:$src)))))), + (VCVTPD2DQrr VR128:$src)>; + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvtp2Int (loadv2f64 addr:$src)))))), + (VCVTPD2DQrm addr:$src)>; + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvttp2si (v2f64 VR128:$src)))))), + (VCVTTPD2DQrr VR128:$src)>; + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvttp2si (loadv2f64 addr:$src)))))), + (VCVTTPD2DQrm addr:$src)>; +} // Predicates = [HasAVX, NoVLX] + +def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvttpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (v2f64 VR128:$src))))]>, + Sched<[WriteCvtPD2I]>; +def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), + "cvttpd2dq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (X86cvttp2si (memopv2f64 addr:$src))))]>, + Sched<[WriteCvtPD2ILd]>; + +let Predicates = [UseSSE2] in { + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvtp2Int (v2f64 VR128:$src)))))), + (CVTPD2DQrr VR128:$src)>; + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvtp2Int (memopv2f64 addr:$src)))))), + (CVTPD2DQrm addr:$src)>; + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvttp2si (v2f64 VR128:$src)))))), + (CVTTPD2DQrr VR128:$src)>; + def : Pat<(X86vzmovl (v2i64 (bitconvert + (v4i32 (X86cvttp2si (memopv2f64 addr:$src)))))), + (CVTTPD2DQrm addr:$src)>; +} // Predicates = [UseSSE2] + +// Convert packed single to packed double +let Predicates = [HasAVX, NoVLX] in { + // SSE2 instructions without OpSize prefix +def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2f64 (X86vfpext (v4f32 VR128:$src))))]>, + PS, VEX, Sched<[WriteCvtPS2PD]>, VEX_WIG; +def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), + "vcvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>, + PS, VEX, Sched<[WriteCvtPS2PD.Folded]>, VEX_WIG; +def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), + "vcvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, (v4f64 (fpextend (v4f32 VR128:$src))))]>, + PS, VEX, VEX_L, Sched<[WriteCvtPS2PDY]>, VEX_WIG; +def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src), + "vcvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, (v4f64 (extloadv4f32 addr:$src)))]>, + PS, VEX, VEX_L, Sched<[WriteCvtPS2PDY.Folded]>, VEX_WIG; +} + +let Predicates = [UseSSE2] in { +def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2f64 (X86vfpext (v4f32 VR128:$src))))]>, + PS, Sched<[WriteCvtPS2PD]>; +def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), + "cvtps2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>, + PS, Sched<[WriteCvtPS2PD.Folded]>; +} + +// Convert Packed DW Integers to Packed Double FP +let Predicates = [HasAVX, NoVLX] in { +let hasSideEffects = 0, mayLoad = 1 in +def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2f64 (X86VSintToFP (bc_v4i32 (loadv2i64 addr:$src)))))]>, + VEX, Sched<[WriteCvtI2PDLd]>, VEX_WIG; +def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2f64 (X86VSintToFP (v4i32 VR128:$src))))]>, + VEX, Sched<[WriteCvtI2PD]>, VEX_WIG; +def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, + (v4f64 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))))]>, + VEX, VEX_L, Sched<[WriteCvtI2PDYLd]>, + VEX_WIG; +def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), + "vcvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, + (v4f64 (sint_to_fp (v4i32 VR128:$src))))]>, + VEX, VEX_L, Sched<[WriteCvtI2PDY]>, VEX_WIG; +} + +let hasSideEffects = 0, mayLoad = 1 in +def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "cvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2f64 (X86VSintToFP (bc_v4i32 (loadv2i64 addr:$src)))))]>, + Sched<[WriteCvtI2PDLd]>; +def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtdq2pd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2f64 (X86VSintToFP (v4i32 VR128:$src))))]>, + Sched<[WriteCvtI2PD]>; + +// AVX register conversion intrinsics +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (VCVTDQ2PDrm addr:$src)>; + def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))), + (VCVTDQ2PDrm addr:$src)>; +} // Predicates = [HasAVX, NoVLX] + +// SSE2 register conversion intrinsics +let Predicates = [UseSSE2] in { + def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (CVTDQ2PDrm addr:$src)>; + def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))), + (CVTDQ2PDrm addr:$src)>; +} // Predicates = [UseSSE2] + +// Convert packed double to packed single +// The assembler can recognize rr 256-bit instructions by seeing a ymm +// register, but the same isn't true when using memory operands instead. +// Provide other assembly rr and rm forms to address this explicitly. +let Predicates = [HasAVX, NoVLX] in +def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (X86vfpround (v2f64 VR128:$src)))]>, + VEX, Sched<[WriteCvtPD2PS]>, VEX_WIG; + +// XMM only +// def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}", +// (VCVTPD2PSrr VR128:$dst, VR128:$src), 0>; +let Predicates = [HasAVX, NoVLX] in +def VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtpd2ps{x}\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (X86vfpround (loadv2f64 addr:$src)))]>, + VEX, Sched<[WriteCvtPD2PS.Folded]>, VEX_WIG; +// def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}", +// (VCVTPD2PSrm VR128:$dst, f128mem:$src), 0, "intel">; + +// YMM only +let Predicates = [HasAVX, NoVLX] in { +def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (fpround VR256:$src))]>, + VEX, VEX_L, Sched<[WriteCvtPD2PSY]>, VEX_WIG; +def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), + "cvtpd2ps{y}\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (fpround (loadv4f64 addr:$src)))]>, + VEX, VEX_L, Sched<[WriteCvtPD2PSY.Folded]>, VEX_WIG; +} +// def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}", +// (VCVTPD2PSYrr VR128:$dst, VR256:$src), 0>; +// def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}", +// (VCVTPD2PSYrm VR128:$dst, f256mem:$src), 0, "intel">; + +def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (X86vfpround (v2f64 VR128:$src)))]>, + Sched<[WriteCvtPD2PS]>; +def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + "cvtpd2ps\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (X86vfpround (memopv2f64 addr:$src)))]>, + Sched<[WriteCvtPD2PS.Folded]>; + +// AVX 256-bit register conversion intrinsics +// FIXME: Migrate SSE conversion intrinsics matching to use patterns as below +// whenever possible to avoid declaring two versions of each one. + +let Predicates = [HasAVX, NoVLX] in { + // Match fpround and fpextend for 128/256-bit conversions + def : Pat<(X86vzmovl (v2f64 (bitconvert + (v4f32 (X86vfpround (v2f64 VR128:$src)))))), + (VCVTPD2PSrr VR128:$src)>; + def : Pat<(X86vzmovl (v2f64 (bitconvert + (v4f32 (X86vfpround (loadv2f64 addr:$src)))))), + (VCVTPD2PSrm addr:$src)>; +} + +let Predicates = [UseSSE2] in { + // Match fpround and fpextend for 128 conversions + def : Pat<(X86vzmovl (v2f64 (bitconvert + (v4f32 (X86vfpround (v2f64 VR128:$src)))))), + (CVTPD2PSrr VR128:$src)>; + def : Pat<(X86vzmovl (v2f64 (bitconvert + (v4f32 (X86vfpround (memopv2f64 addr:$src)))))), + (CVTPD2PSrm addr:$src)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Compare Instructions +//===----------------------------------------------------------------------===// + +// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions +multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop, + Operand CC, SDNode OpNode, ValueType VT, + PatFrag ld_frag, string asm, string asm_alt, + X86FoldableSchedWrite sched> { + let isCommutable = 1 in + def rr : SIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm, + [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))]>, + Sched<[sched]>; + def rm : SIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm, + [(set RC:$dst, (OpNode (VT RC:$src1), + (ld_frag addr:$src2), imm:$cc))]>, + Sched<[sched.Folded, ReadAfterLd]>; + + // Accept explicit immediate argument form instead of comparison code. + let isAsmParserOnly = 1, hasSideEffects = 0 in { + def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$cc), asm_alt, []>, + Sched<[sched]>, NotMemoryFoldable; + let mayLoad = 1 in + def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$cc), asm_alt, []>, + Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable; + } +} + +let ExeDomain = SSEPackedSingle in +defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32, + "cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", + "cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}", + SchedWriteFCmpSizes.PS.Scl>, XS, VEX_4V, VEX_LIG, VEX_WIG; +let ExeDomain = SSEPackedDouble in +defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64, + "cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + "cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}", + SchedWriteFCmpSizes.PD.Scl>, + XD, VEX_4V, VEX_LIG, VEX_WIG; + +let Constraints = "$src1 = $dst" in { + let ExeDomain = SSEPackedSingle in + defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32, + "cmp${cc}ss\t{$src2, $dst|$dst, $src2}", + "cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}", + SchedWriteFCmpSizes.PS.Scl>, XS; + let ExeDomain = SSEPackedDouble in + defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64, + "cmp${cc}sd\t{$src2, $dst|$dst, $src2}", + "cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}", + SchedWriteFCmpSizes.PD.Scl>, XD; +} + +multiclass sse12_cmp_scalar_int<Operand memop, Operand CC, + Intrinsic Int, string asm, X86FoldableSchedWrite sched, + ComplexPattern mem_cpat> { + def rr_Int : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src, CC:$cc), asm, + [(set VR128:$dst, (Int VR128:$src1, + VR128:$src, imm:$cc))]>, + Sched<[sched]>; +let mayLoad = 1 in + def rm_Int : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, memop:$src, CC:$cc), asm, + [(set VR128:$dst, (Int VR128:$src1, + mem_cpat:$src, imm:$cc))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let isCodeGenOnly = 1 in { + // Aliases to match intrinsics which expect XMM operand(s). + let ExeDomain = SSEPackedSingle in + defm VCMPSS : sse12_cmp_scalar_int<ssmem, AVXCC, int_x86_sse_cmp_ss, + "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}", + SchedWriteFCmpSizes.PS.Scl, sse_load_f32>, XS, VEX_4V; + let ExeDomain = SSEPackedDouble in + defm VCMPSD : sse12_cmp_scalar_int<sdmem, AVXCC, int_x86_sse2_cmp_sd, + "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}", + SchedWriteFCmpSizes.PD.Scl, sse_load_f64>, + XD, VEX_4V; + let Constraints = "$src1 = $dst" in { + let ExeDomain = SSEPackedSingle in + defm CMPSS : sse12_cmp_scalar_int<ssmem, SSECC, int_x86_sse_cmp_ss, + "cmp${cc}ss\t{$src, $dst|$dst, $src}", + SchedWriteFCmpSizes.PS.Scl, sse_load_f32>, XS; + let ExeDomain = SSEPackedDouble in + defm CMPSD : sse12_cmp_scalar_int<sdmem, SSECC, int_x86_sse2_cmp_sd, + "cmp${cc}sd\t{$src, $dst|$dst, $src}", + SchedWriteFCmpSizes.PD.Scl, sse_load_f64>, XD; +} +} + + +// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS +multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode, + ValueType vt, X86MemOperand x86memop, + PatFrag ld_frag, string OpcodeStr, + X86FoldableSchedWrite sched> { +let hasSideEffects = 0 in { + def rr: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))]>, + Sched<[sched]>; +let mayLoad = 1 in + def rm: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (OpNode (vt RC:$src1), + (ld_frag addr:$src2)))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} +} + +// sse12_ord_cmp_int - Intrinsic version of sse12_ord_cmp +multiclass sse12_ord_cmp_int<bits<8> opc, RegisterClass RC, SDNode OpNode, + ValueType vt, Operand memop, + ComplexPattern mem_cpat, string OpcodeStr, + X86FoldableSchedWrite sched> { + def rr_Int: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))]>, + Sched<[sched]>; +let mayLoad = 1 in + def rm_Int: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, memop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (OpNode (vt RC:$src1), + mem_cpat:$src2))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Defs = [EFLAGS] in { + defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, + "ucomiss", WriteFCom>, PS, VEX, VEX_LIG, VEX_WIG; + defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, + "ucomisd", WriteFCom>, PD, VEX, VEX_LIG, VEX_WIG; + let Pattern = []<dag> in { + defm VCOMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32, + "comiss", WriteFCom>, PS, VEX, VEX_LIG, VEX_WIG; + defm VCOMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64, + "comisd", WriteFCom>, PD, VEX, VEX_LIG, VEX_WIG; + } + + let isCodeGenOnly = 1 in { + defm VUCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem, + sse_load_f32, "ucomiss", WriteFCom>, PS, VEX, VEX_WIG; + defm VUCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem, + sse_load_f64, "ucomisd", WriteFCom>, PD, VEX, VEX_WIG; + + defm VCOMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem, + sse_load_f32, "comiss", WriteFCom>, PS, VEX, VEX_WIG; + defm VCOMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem, + sse_load_f64, "comisd", WriteFCom>, PD, VEX, VEX_WIG; + } + defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, + "ucomiss", WriteFCom>, PS; + defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, + "ucomisd", WriteFCom>, PD; + + let Pattern = []<dag> in { + defm COMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32, + "comiss", WriteFCom>, PS; + defm COMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64, + "comisd", WriteFCom>, PD; + } + + let isCodeGenOnly = 1 in { + defm UCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem, + sse_load_f32, "ucomiss", WriteFCom>, PS; + defm UCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem, + sse_load_f64, "ucomisd", WriteFCom>, PD; + + defm COMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem, + sse_load_f32, "comiss", WriteFCom>, PS; + defm COMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem, + sse_load_f64, "comisd", WriteFCom>, PD; + } +} // Defs = [EFLAGS] + +// sse12_cmp_packed - sse 1 & 2 compare packed instructions +multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop, + Operand CC, ValueType VT, string asm, + string asm_alt, X86FoldableSchedWrite sched, + Domain d, PatFrag ld_frag> { + let isCommutable = 1 in + def rri : PIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm, + [(set RC:$dst, (VT (X86cmpp RC:$src1, RC:$src2, imm:$cc)))], d>, + Sched<[sched]>; + def rmi : PIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm, + [(set RC:$dst, + (VT (X86cmpp RC:$src1, (ld_frag addr:$src2), imm:$cc)))], d>, + Sched<[sched.Folded, ReadAfterLd]>; + + // Accept explicit immediate argument form instead of comparison code. + let isAsmParserOnly = 1, hasSideEffects = 0 in { + def rri_alt : PIi8<0xC2, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$cc), + asm_alt, [], d>, Sched<[sched]>, NotMemoryFoldable; + let mayLoad = 1 in + def rmi_alt : PIi8<0xC2, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$cc), + asm_alt, [], d>, Sched<[sched.Folded, ReadAfterLd]>, + NotMemoryFoldable; + } +} + +defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, v4f32, + "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}", + SchedWriteFCmpSizes.PS.XMM, SSEPackedSingle, loadv4f32>, PS, VEX_4V, VEX_WIG; +defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, v2f64, + "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}", + SchedWriteFCmpSizes.PD.XMM, SSEPackedDouble, loadv2f64>, PD, VEX_4V, VEX_WIG; +defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, v8f32, + "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}", + SchedWriteFCmpSizes.PS.YMM, SSEPackedSingle, loadv8f32>, PS, VEX_4V, VEX_L, VEX_WIG; +defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, v4f64, + "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}", + SchedWriteFCmpSizes.PD.YMM, SSEPackedDouble, loadv4f64>, PD, VEX_4V, VEX_L, VEX_WIG; +let Constraints = "$src1 = $dst" in { + defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, v4f32, + "cmp${cc}ps\t{$src2, $dst|$dst, $src2}", + "cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}", + SchedWriteFCmpSizes.PS.XMM, SSEPackedSingle, memopv4f32>, PS; + defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, v2f64, + "cmp${cc}pd\t{$src2, $dst|$dst, $src2}", + "cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}", + SchedWriteFCmpSizes.PD.XMM, SSEPackedDouble, memopv2f64>, PD; +} + +def CommutableCMPCC : PatLeaf<(imm), [{ + uint64_t Imm = N->getZExtValue() & 0x7; + return (Imm == 0x00 || Imm == 0x03 || Imm == 0x04 || Imm == 0x07); +}]>; + +// Patterns to select compares with loads in first operand. +let Predicates = [HasAVX] in { + def : Pat<(v4f64 (X86cmpp (loadv4f64 addr:$src2), VR256:$src1, + CommutableCMPCC:$cc)), + (VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(v8f32 (X86cmpp (loadv8f32 addr:$src2), VR256:$src1, + CommutableCMPCC:$cc)), + (VCMPPSYrmi VR256:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(v2f64 (X86cmpp (loadv2f64 addr:$src2), VR128:$src1, + CommutableCMPCC:$cc)), + (VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(v4f32 (X86cmpp (loadv4f32 addr:$src2), VR128:$src1, + CommutableCMPCC:$cc)), + (VCMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1, + CommutableCMPCC:$cc)), + (VCMPSDrm FR64:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1, + CommutableCMPCC:$cc)), + (VCMPSSrm FR32:$src1, addr:$src2, imm:$cc)>; +} + +let Predicates = [UseSSE2] in { + def : Pat<(v2f64 (X86cmpp (memopv2f64 addr:$src2), VR128:$src1, + CommutableCMPCC:$cc)), + (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1, + CommutableCMPCC:$cc)), + (CMPSDrm FR64:$src1, addr:$src2, imm:$cc)>; +} + +let Predicates = [UseSSE1] in { + def : Pat<(v4f32 (X86cmpp (memopv4f32 addr:$src2), VR128:$src1, + CommutableCMPCC:$cc)), + (CMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>; + + def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1, + CommutableCMPCC:$cc)), + (CMPSSrm FR32:$src1, addr:$src2, imm:$cc)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Shuffle Instructions +//===----------------------------------------------------------------------===// + +/// sse12_shuffle - sse 1 & 2 fp shuffle instructions +multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop, + ValueType vt, string asm, PatFrag mem_frag, + X86FoldableSchedWrite sched, Domain d> { + def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$src3), asm, + [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2), + (i8 imm:$src3))))], d>, + Sched<[sched.Folded, ReadAfterLd]>; + def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), asm, + [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2, + (i8 imm:$src3))))], d>, + Sched<[sched]>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32, + "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + loadv4f32, SchedWriteFShuffle.XMM, SSEPackedSingle>, + PS, VEX_4V, VEX_WIG; + defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32, + "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + loadv8f32, SchedWriteFShuffle.YMM, SSEPackedSingle>, + PS, VEX_4V, VEX_L, VEX_WIG; + defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64, + "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + loadv2f64, SchedWriteFShuffle.XMM, SSEPackedDouble>, + PD, VEX_4V, VEX_WIG; + defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64, + "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + loadv4f64, SchedWriteFShuffle.YMM, SSEPackedDouble>, + PD, VEX_4V, VEX_L, VEX_WIG; +} +let Constraints = "$src1 = $dst" in { + defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32, + "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}", + memopv4f32, SchedWriteFShuffle.XMM, SSEPackedSingle>, PS; + defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64, + "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}", + memopv2f64, SchedWriteFShuffle.XMM, SSEPackedDouble>, PD; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Unpack FP Instructions +//===----------------------------------------------------------------------===// + +/// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave +multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt, + PatFrag mem_frag, RegisterClass RC, + X86MemOperand x86memop, string asm, + X86FoldableSchedWrite sched, Domain d, + bit IsCommutable = 0> { + let isCommutable = IsCommutable in + def rr : PI<opc, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2), + asm, [(set RC:$dst, + (vt (OpNode RC:$src1, RC:$src2)))], d>, + Sched<[sched]>; + def rm : PI<opc, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + asm, [(set RC:$dst, + (vt (OpNode RC:$src1, + (mem_frag addr:$src2))))], d>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoVLX] in { +defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, loadv4f32, + VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG; +defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, loadv2f64, + VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD, VEX_4V, VEX_WIG; +defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, loadv4f32, + VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG; +defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, loadv2f64, + VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.XMM, SSEPackedDouble>, PD, VEX_4V, VEX_WIG; + +defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, loadv8f32, + VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG; +defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, loadv4f64, + VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG; +defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, loadv8f32, + VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG; +defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, loadv4f64, + VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", + SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG; +}// Predicates = [HasAVX, NoVLX] + +let Constraints = "$src1 = $dst" in { + defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32, + VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}", + SchedWriteFShuffle.XMM, SSEPackedSingle>, PS; + defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memopv2f64, + VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}", + SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD; + defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memopv4f32, + VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}", + SchedWriteFShuffle.XMM, SSEPackedSingle>, PS; + defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memopv2f64, + VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}", + SchedWriteFShuffle.XMM, SSEPackedDouble>, PD; +} // Constraints = "$src1 = $dst" + +let Predicates = [HasAVX1Only] in { + def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))), + (VUNPCKLPSYrm VR256:$src1, addr:$src2)>; + def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)), + (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>; + def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))), + (VUNPCKHPSYrm VR256:$src1, addr:$src2)>; + def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)), + (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>; + + def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))), + (VUNPCKLPDYrm VR256:$src1, addr:$src2)>; + def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)), + (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>; + def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))), + (VUNPCKHPDYrm VR256:$src1, addr:$src2)>; + def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)), + (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>; +} + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Extract Floating-Point Sign mask +//===----------------------------------------------------------------------===// + +/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave +multiclass sse12_extr_sign_mask<RegisterClass RC, ValueType vt, + string asm, Domain d> { + def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src), + !strconcat(asm, "\t{$src, $dst|$dst, $src}"), + [(set GR32orGR64:$dst, (X86movmsk (vt RC:$src)))], d>, + Sched<[WriteFMOVMSK]>; +} + +let Predicates = [HasAVX] in { + defm VMOVMSKPS : sse12_extr_sign_mask<VR128, v4f32, "movmskps", + SSEPackedSingle>, PS, VEX, VEX_WIG; + defm VMOVMSKPD : sse12_extr_sign_mask<VR128, v2f64, "movmskpd", + SSEPackedDouble>, PD, VEX, VEX_WIG; + defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, v8f32, "movmskps", + SSEPackedSingle>, PS, VEX, VEX_L, VEX_WIG; + defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, v4f64, "movmskpd", + SSEPackedDouble>, PD, VEX, VEX_L, VEX_WIG; +} + +defm MOVMSKPS : sse12_extr_sign_mask<VR128, v4f32, "movmskps", + SSEPackedSingle>, PS; +defm MOVMSKPD : sse12_extr_sign_mask<VR128, v2f64, "movmskpd", + SSEPackedDouble>, PD; + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Logical Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { // SSE integer instructions + +/// PDI_binop_rm - Simple SSE2 binary operator. +multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, X86FoldableSchedWrite sched, + bit IsCommutable, bit Is2Addr> { + let isCommutable = IsCommutable in + def rr : PDI<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpVT (OpNode RC:$src1, + (bitconvert (memop_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} +} // ExeDomain = SSEPackedInt + +multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode, + ValueType OpVT128, ValueType OpVT256, + X86SchedWriteWidths sched, bit IsCommutable, + Predicate prd> { +let Predicates = [HasAVX, prd] in + defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128, + VR128, loadv2i64, i128mem, sched.XMM, + IsCommutable, 0>, VEX_4V, VEX_WIG; + +let Constraints = "$src1 = $dst" in + defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128, + memopv2i64, i128mem, sched.XMM, IsCommutable, 1>; + +let Predicates = [HasAVX2, prd] in + defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, + OpVT256, VR256, loadv4i64, i256mem, sched.YMM, + IsCommutable, 0>, VEX_4V, VEX_L, VEX_WIG; +} + +// These are ordered here for pattern ordering requirements with the fp versions + +defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64, + SchedWriteVecLogic, 1, NoVLX>; +defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64, + SchedWriteVecLogic, 1, NoVLX>; +defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64, + SchedWriteVecLogic, 1, NoVLX>; +defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64, + SchedWriteVecLogic, 0, NoVLX>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Logical Instructions +//===----------------------------------------------------------------------===// + +/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops +/// +/// There are no patterns here because isel prefers integer versions for SSE2 +/// and later. There are SSE1 v4f32 patterns later. +multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr, + SDNode OpNode, X86SchedWriteWidths sched> { + let Predicates = [HasAVX, NoVLX] in { + defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f256mem, sched.YMM, + [], [], 0>, PS, VEX_4V, VEX_L, VEX_WIG; + + defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f256mem, sched.YMM, + [], [], 0>, PD, VEX_4V, VEX_L, VEX_WIG; + + defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f128mem, sched.XMM, + [], [], 0>, PS, VEX_4V, VEX_WIG; + + defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f128mem, sched.XMM, + [], [], 0>, PD, VEX_4V, VEX_WIG; + } + + let Constraints = "$src1 = $dst" in { + defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle, + !strconcat(OpcodeStr, "ps"), f128mem, sched.XMM, + [], []>, PS; + + defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble, + !strconcat(OpcodeStr, "pd"), f128mem, sched.XMM, + [], []>, PD; + } +} + +defm AND : sse12_fp_packed_logical<0x54, "and", and, SchedWriteFLogic>; +defm OR : sse12_fp_packed_logical<0x56, "or", or, SchedWriteFLogic>; +defm XOR : sse12_fp_packed_logical<0x57, "xor", xor, SchedWriteFLogic>; +let isCommutable = 0 in + defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp, SchedWriteFLogic>; + +// If only AVX1 is supported, we need to handle integer operations with +// floating point instructions since the integer versions aren't available. +let Predicates = [HasAVX1Only] in { + def : Pat<(v4i64 (and VR256:$src1, VR256:$src2)), + (VANDPSYrr VR256:$src1, VR256:$src2)>; + def : Pat<(v4i64 (or VR256:$src1, VR256:$src2)), + (VORPSYrr VR256:$src1, VR256:$src2)>; + def : Pat<(v4i64 (xor VR256:$src1, VR256:$src2)), + (VXORPSYrr VR256:$src1, VR256:$src2)>; + def : Pat<(v4i64 (X86andnp VR256:$src1, VR256:$src2)), + (VANDNPSYrr VR256:$src1, VR256:$src2)>; + + def : Pat<(and VR256:$src1, (loadv4i64 addr:$src2)), + (VANDPSYrm VR256:$src1, addr:$src2)>; + def : Pat<(or VR256:$src1, (loadv4i64 addr:$src2)), + (VORPSYrm VR256:$src1, addr:$src2)>; + def : Pat<(xor VR256:$src1, (loadv4i64 addr:$src2)), + (VXORPSYrm VR256:$src1, addr:$src2)>; + def : Pat<(X86andnp VR256:$src1, (loadv4i64 addr:$src2)), + (VANDNPSYrm VR256:$src1, addr:$src2)>; +} + +let Predicates = [HasAVX, NoVLX_Or_NoDQI] in { + // Use packed logical operations for scalar ops. + def : Pat<(f64 (X86fand FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (VANDPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + def : Pat<(f64 (X86for FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (VORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + def : Pat<(f64 (X86fxor FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (VXORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + def : Pat<(f64 (X86fandn FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (VANDNPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + + def : Pat<(f32 (X86fand FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (VANDPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; + def : Pat<(f32 (X86for FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (VORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; + def : Pat<(f32 (X86fxor FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (VXORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; + def : Pat<(f32 (X86fandn FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (VANDNPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; +} + +let Predicates = [UseSSE1] in { + // Use packed logical operations for scalar ops. + def : Pat<(f32 (X86fand FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (ANDPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; + def : Pat<(f32 (X86for FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (ORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; + def : Pat<(f32 (X86fxor FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (XORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; + def : Pat<(f32 (X86fandn FR32:$src1, FR32:$src2)), + (COPY_TO_REGCLASS + (v4f32 (ANDNPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)), + (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))), + FR32)>; +} + +let Predicates = [UseSSE2] in { + // Use packed logical operations for scalar ops. + def : Pat<(f64 (X86fand FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (ANDPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + def : Pat<(f64 (X86for FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (ORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + def : Pat<(f64 (X86fxor FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (XORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; + def : Pat<(f64 (X86fandn FR64:$src1, FR64:$src2)), + (COPY_TO_REGCLASS + (v2f64 (ANDNPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)), + (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))), + FR64)>; +} + +// Patterns for packed operations when we don't have integer type available. +def : Pat<(v4f32 (X86fand VR128:$src1, VR128:$src2)), + (ANDPSrr VR128:$src1, VR128:$src2)>; +def : Pat<(v4f32 (X86for VR128:$src1, VR128:$src2)), + (ORPSrr VR128:$src1, VR128:$src2)>; +def : Pat<(v4f32 (X86fxor VR128:$src1, VR128:$src2)), + (XORPSrr VR128:$src1, VR128:$src2)>; +def : Pat<(v4f32 (X86fandn VR128:$src1, VR128:$src2)), + (ANDNPSrr VR128:$src1, VR128:$src2)>; + +def : Pat<(X86fand VR128:$src1, (memopv4f32 addr:$src2)), + (ANDPSrm VR128:$src1, addr:$src2)>; +def : Pat<(X86for VR128:$src1, (memopv4f32 addr:$src2)), + (ORPSrm VR128:$src1, addr:$src2)>; +def : Pat<(X86fxor VR128:$src1, (memopv4f32 addr:$src2)), + (XORPSrm VR128:$src1, addr:$src2)>; +def : Pat<(X86fandn VR128:$src1, (memopv4f32 addr:$src2)), + (ANDNPSrm VR128:$src1, addr:$src2)>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Arithmetic Instructions +//===----------------------------------------------------------------------===// + +/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and +/// vector forms. +/// +/// In addition, we also have a special variant of the scalar form here to +/// represent the associated intrinsic operation. This form is unlike the +/// plain scalar form, in that it takes an entire vector (instead of a scalar) +/// and leaves the top elements unmodified (therefore these cannot be commuted). +/// +/// These three forms can each be reg+reg or reg+mem. +/// + +/// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those +/// classes below +multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr, + SDNode OpNode, X86SchedWriteSizes sched> { + let Predicates = [HasAVX, NoVLX] in { + defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, + VR128, v4f32, f128mem, loadv4f32, + SSEPackedSingle, sched.PS.XMM, 0>, PS, VEX_4V, VEX_WIG; + defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, + VR128, v2f64, f128mem, loadv2f64, + SSEPackedDouble, sched.PD.XMM, 0>, PD, VEX_4V, VEX_WIG; + + defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), + OpNode, VR256, v8f32, f256mem, loadv8f32, + SSEPackedSingle, sched.PS.YMM, 0>, PS, VEX_4V, VEX_L, VEX_WIG; + defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), + OpNode, VR256, v4f64, f256mem, loadv4f64, + SSEPackedDouble, sched.PD.YMM, 0>, PD, VEX_4V, VEX_L, VEX_WIG; + } + + let Constraints = "$src1 = $dst" in { + defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128, + v4f32, f128mem, memopv4f32, SSEPackedSingle, + sched.PS.XMM>, PS; + defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128, + v2f64, f128mem, memopv2f64, SSEPackedDouble, + sched.PD.XMM>, PD; + } +} + +multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, + X86SchedWriteSizes sched> { + defm V#NAME#SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"), + OpNode, FR32, f32mem, SSEPackedSingle, sched.PS.Scl, 0>, + XS, VEX_4V, VEX_LIG, VEX_WIG; + defm V#NAME#SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"), + OpNode, FR64, f64mem, SSEPackedDouble, sched.PD.Scl, 0>, + XD, VEX_4V, VEX_LIG, VEX_WIG; + + let Constraints = "$src1 = $dst" in { + defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"), + OpNode, FR32, f32mem, SSEPackedSingle, + sched.PS.Scl>, XS; + defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"), + OpNode, FR64, f64mem, SSEPackedDouble, + sched.PD.Scl>, XD; + } +} + +multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr, + SDPatternOperator OpNode, + X86SchedWriteSizes sched> { + defm V#NAME#SS : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v4f32, + !strconcat(OpcodeStr, "ss"), ssmem, sse_load_f32, + SSEPackedSingle, sched.PS.Scl, 0>, XS, VEX_4V, VEX_LIG, VEX_WIG; + defm V#NAME#SD : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v2f64, + !strconcat(OpcodeStr, "sd"), sdmem, sse_load_f64, + SSEPackedDouble, sched.PD.Scl, 0>, XD, VEX_4V, VEX_LIG, VEX_WIG; + + let Constraints = "$src1 = $dst" in { + defm SS : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v4f32, + !strconcat(OpcodeStr, "ss"), ssmem, sse_load_f32, + SSEPackedSingle, sched.PS.Scl>, XS; + defm SD : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v2f64, + !strconcat(OpcodeStr, "sd"), sdmem, sse_load_f64, + SSEPackedDouble, sched.PD.Scl>, XD; + } +} + +// Binary Arithmetic instructions +defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SchedWriteFAddSizes>, + basic_sse12_fp_binop_s<0x58, "add", fadd, SchedWriteFAddSizes>, + basic_sse12_fp_binop_s_int<0x58, "add", null_frag, SchedWriteFAddSizes>; +defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SchedWriteFMulSizes>, + basic_sse12_fp_binop_s<0x59, "mul", fmul, SchedWriteFMulSizes>, + basic_sse12_fp_binop_s_int<0x59, "mul", null_frag, SchedWriteFMulSizes>; +let isCommutable = 0 in { + defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SchedWriteFAddSizes>, + basic_sse12_fp_binop_s<0x5C, "sub", fsub, SchedWriteFAddSizes>, + basic_sse12_fp_binop_s_int<0x5C, "sub", null_frag, SchedWriteFAddSizes>; + defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SchedWriteFDivSizes>, + basic_sse12_fp_binop_s<0x5E, "div", fdiv, SchedWriteFDivSizes>, + basic_sse12_fp_binop_s_int<0x5E, "div", null_frag, SchedWriteFDivSizes>; + defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SchedWriteFCmpSizes>, + basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SchedWriteFCmpSizes>, + basic_sse12_fp_binop_s_int<0x5F, "max", X86fmaxs, SchedWriteFCmpSizes>; + defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SchedWriteFCmpSizes>, + basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SchedWriteFCmpSizes>, + basic_sse12_fp_binop_s_int<0x5D, "min", X86fmins, SchedWriteFCmpSizes>; +} + +let isCodeGenOnly = 1 in { + defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SchedWriteFCmpSizes>, + basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SchedWriteFCmpSizes>; + defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SchedWriteFCmpSizes>, + basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SchedWriteFCmpSizes>; +} + +// Patterns used to select SSE scalar fp arithmetic instructions from +// either: +// +// (1) a scalar fp operation followed by a blend +// +// The effect is that the backend no longer emits unnecessary vector +// insert instructions immediately after SSE scalar fp instructions +// like addss or mulss. +// +// For example, given the following code: +// __m128 foo(__m128 A, __m128 B) { +// A[0] += B[0]; +// return A; +// } +// +// Previously we generated: +// addss %xmm0, %xmm1 +// movss %xmm1, %xmm0 +// +// We now generate: +// addss %xmm1, %xmm0 +// +// (2) a vector packed single/double fp operation followed by a vector insert +// +// The effect is that the backend converts the packed fp instruction +// followed by a vector insert into a single SSE scalar fp instruction. +// +// For example, given the following code: +// __m128 foo(__m128 A, __m128 B) { +// __m128 C = A + B; +// return (__m128) {c[0], a[1], a[2], a[3]}; +// } +// +// Previously we generated: +// addps %xmm0, %xmm1 +// movss %xmm1, %xmm0 +// +// We now generate: +// addss %xmm1, %xmm0 + +// TODO: Some canonicalization in lowering would simplify the number of +// patterns we have to try to match. +multiclass scalar_math_patterns<SDNode Op, string OpcPrefix, SDNode Move, + ValueType VT, ValueType EltTy, + RegisterClass RC, Predicate BasePredicate> { + let Predicates = [BasePredicate] in { + // extracted scalar math op with insert via movss/movsd + def : Pat<(VT (Move (VT VR128:$dst), + (VT (scalar_to_vector + (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))), + RC:$src))))), + (!cast<Instruction>(OpcPrefix#rr_Int) VT:$dst, + (VT (COPY_TO_REGCLASS RC:$src, VR128)))>; + } + + // Repeat for AVX versions of the instructions. + let Predicates = [UseAVX] in { + // extracted scalar math op with insert via movss/movsd + def : Pat<(VT (Move (VT VR128:$dst), + (VT (scalar_to_vector + (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))), + RC:$src))))), + (!cast<Instruction>("V"#OpcPrefix#rr_Int) VT:$dst, + (VT (COPY_TO_REGCLASS RC:$src, VR128)))>; + } +} + +defm : scalar_math_patterns<fadd, "ADDSS", X86Movss, v4f32, f32, FR32, UseSSE1>; +defm : scalar_math_patterns<fsub, "SUBSS", X86Movss, v4f32, f32, FR32, UseSSE1>; +defm : scalar_math_patterns<fmul, "MULSS", X86Movss, v4f32, f32, FR32, UseSSE1>; +defm : scalar_math_patterns<fdiv, "DIVSS", X86Movss, v4f32, f32, FR32, UseSSE1>; + +defm : scalar_math_patterns<fadd, "ADDSD", X86Movsd, v2f64, f64, FR64, UseSSE2>; +defm : scalar_math_patterns<fsub, "SUBSD", X86Movsd, v2f64, f64, FR64, UseSSE2>; +defm : scalar_math_patterns<fmul, "MULSD", X86Movsd, v2f64, f64, FR64, UseSSE2>; +defm : scalar_math_patterns<fdiv, "DIVSD", X86Movsd, v2f64, f64, FR64, UseSSE2>; + +/// Unop Arithmetic +/// In addition, we also have a special variant of the scalar form here to +/// represent the associated intrinsic operation. This form is unlike the +/// plain scalar form, in that it takes an entire vector (instead of a +/// scalar) and leaves the top elements undefined. +/// +/// And, we have a special variant form for a full-vector intrinsic form. + +/// sse_fp_unop_s - SSE1 unops in scalar form +/// For the non-AVX defs, we need $src1 to be tied to $dst because +/// the HW instructions are 2 operand / destructive. +multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC, + ValueType ScalarVT, X86MemOperand x86memop, + Operand intmemop, SDNode OpNode, Domain d, + X86FoldableSchedWrite sched, Predicate target> { + let hasSideEffects = 0 in { + def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1), + !strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"), + [(set RC:$dst, (OpNode RC:$src1))], d>, Sched<[sched]>, + Requires<[target]>; + let mayLoad = 1 in + def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1), + !strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"), + [(set RC:$dst, (OpNode (load addr:$src1)))], d>, + Sched<[sched.Folded, ReadAfterLd]>, + Requires<[target, OptForSize]>; + + let isCodeGenOnly = 1, Constraints = "$src1 = $dst", ExeDomain = d in { + def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), []>, + Sched<[sched]>; + let mayLoad = 1 in + def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, intmemop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), []>, + Sched<[sched.Folded, ReadAfterLd]>; + } + } + +} + +multiclass sse_fp_unop_s_intr<RegisterClass RC, ValueType vt, + ComplexPattern int_cpat, Intrinsic Intr, + Predicate target, string Suffix> { + let Predicates = [target] in { + // These are unary operations, but they are modeled as having 2 source operands + // because the high elements of the destination are unchanged in SSE. + def : Pat<(Intr VR128:$src), + (!cast<Instruction>(NAME#r_Int) VR128:$src, VR128:$src)>; + } + // We don't want to fold scalar loads into these instructions unless + // optimizing for size. This is because the folded instruction will have a + // partial register update, while the unfolded sequence will not, e.g. + // movss mem, %xmm0 + // rcpss %xmm0, %xmm0 + // which has a clobber before the rcp, vs. + // rcpss mem, %xmm0 + let Predicates = [target, OptForSize] in { + def : Pat<(Intr int_cpat:$src2), + (!cast<Instruction>(NAME#m_Int) + (vt (IMPLICIT_DEF)), addr:$src2)>; + } +} + +multiclass avx_fp_unop_s_intr<RegisterClass RC, ValueType vt, ComplexPattern int_cpat, + Intrinsic Intr, Predicate target> { + let Predicates = [target] in { + def : Pat<(Intr VR128:$src), + (!cast<Instruction>(NAME#r_Int) VR128:$src, + VR128:$src)>; + } + let Predicates = [target, OptForSize] in { + def : Pat<(Intr int_cpat:$src2), + (!cast<Instruction>(NAME#m_Int) + (vt (IMPLICIT_DEF)), addr:$src2)>; + } +} + +multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC, + ValueType ScalarVT, X86MemOperand x86memop, + Operand intmemop, SDNode OpNode, Domain d, + X86FoldableSchedWrite sched, Predicate target> { + let hasSideEffects = 0 in { + def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [], d>, Sched<[sched]>; + let mayLoad = 1 in + def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [], d>, Sched<[sched.Folded, ReadAfterLd]>; + let isCodeGenOnly = 1, ExeDomain = d in { + def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, Sched<[sched]>; + let mayLoad = 1 in + def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, intmemop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, Sched<[sched.Folded, ReadAfterLd]>; + } + } + + // We don't want to fold scalar loads into these instructions unless + // optimizing for size. This is because the folded instruction will have a + // partial register update, while the unfolded sequence will not, e.g. + // vmovss mem, %xmm0 + // vrcpss %xmm0, %xmm0, %xmm0 + // which has a clobber before the rcp, vs. + // vrcpss mem, %xmm0, %xmm0 + // TODO: In theory, we could fold the load, and avoid the stall caused by + // the partial register store, either in BreakFalseDeps or with smarter RA. + let Predicates = [target] in { + def : Pat<(OpNode RC:$src), (!cast<Instruction>(NAME#r) + (ScalarVT (IMPLICIT_DEF)), RC:$src)>; + } + let Predicates = [target, OptForSize] in { + def : Pat<(ScalarVT (OpNode (load addr:$src))), + (!cast<Instruction>(NAME#m) (ScalarVT (IMPLICIT_DEF)), + addr:$src)>; + } +} + +/// sse1_fp_unop_p - SSE1 unops in packed form. +multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode, + X86SchedWriteWidths sched, list<Predicate> prds> { +let Predicates = prds in { + def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>, + VEX, Sched<[sched.XMM]>, VEX_WIG; + def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (loadv4f32 addr:$src)))]>, + VEX, Sched<[sched.XMM.Folded]>, VEX_WIG; + def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))]>, + VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG; + def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat("v", OpcodeStr, + "ps\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (OpNode (loadv8f32 addr:$src)))]>, + VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG; +} + + def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>, + Sched<[sched.XMM]>; + def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>, + Sched<[sched.XMM.Folded]>; +} + +/// sse2_fp_unop_p - SSE2 unops in vector forms. +multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr, + SDNode OpNode, X86SchedWriteWidths sched> { +let Predicates = [HasAVX, NoVLX] in { + def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>, + VEX, Sched<[sched.XMM]>, VEX_WIG; + def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (loadv2f64 addr:$src)))]>, + VEX, Sched<[sched.XMM.Folded]>, VEX_WIG; + def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))]>, + VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG; + def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat("v", OpcodeStr, + "pd\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (OpNode (loadv4f64 addr:$src)))]>, + VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG; +} + + def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>, + Sched<[sched.XMM]>; + def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), + !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>, + Sched<[sched.XMM.Folded]>; +} + +multiclass sse1_fp_unop_s_intr<bits<8> opc, string OpcodeStr, SDNode OpNode, + X86SchedWriteWidths sched, Predicate AVXTarget> { + defm SS : sse_fp_unop_s_intr<FR32, v4f32, sse_load_f32, + !cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss), + UseSSE1, "SS">, XS; + defm V#NAME#SS : avx_fp_unop_s_intr<FR32, v4f32, sse_load_f32, + !cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss), + AVXTarget>, + XS, VEX_4V, VEX_LIG, VEX_WIG, NotMemoryFoldable; +} + +multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, + X86SchedWriteWidths sched, Predicate AVXTarget> { + defm SS : sse_fp_unop_s<opc, OpcodeStr##ss, FR32, f32, f32mem, + ssmem, OpNode, SSEPackedSingle, sched.Scl, UseSSE1>, XS; + defm V#NAME#SS : avx_fp_unop_s<opc, "v"#OpcodeStr##ss, FR32, f32, + f32mem, ssmem, OpNode, SSEPackedSingle, sched.Scl, AVXTarget>, + XS, VEX_4V, VEX_LIG, VEX_WIG; +} + +multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode, + X86SchedWriteWidths sched, Predicate AVXTarget> { + defm SD : sse_fp_unop_s<opc, OpcodeStr##sd, FR64, f64, f64mem, + sdmem, OpNode, SSEPackedDouble, sched.Scl, UseSSE2>, XD; + defm V#NAME#SD : avx_fp_unop_s<opc, "v"#OpcodeStr##sd, FR64, f64, + f64mem, sdmem, OpNode, SSEPackedDouble, sched.Scl, AVXTarget>, + XD, VEX_4V, VEX_LIG, VEX_WIG; +} + +// Square root. +defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, SchedWriteFSqrt, UseAVX>, + sse1_fp_unop_p<0x51, "sqrt", fsqrt, SchedWriteFSqrt, [HasAVX, NoVLX]>, + sse2_fp_unop_s<0x51, "sqrt", fsqrt, SchedWriteFSqrt64, UseAVX>, + sse2_fp_unop_p<0x51, "sqrt", fsqrt, SchedWriteFSqrt64>; + +// Reciprocal approximations. Note that these typically require refinement +// in order to obtain suitable precision. +defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>, + sse1_fp_unop_s_intr<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>, + sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, [HasAVX]>; +defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>, + sse1_fp_unop_s_intr<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>, + sse1_fp_unop_p<0x53, "rcp", X86frcp, SchedWriteFRcp, [HasAVX]>; + +// There is no f64 version of the reciprocal approximation instructions. + +multiclass scalar_unary_math_patterns<SDNode OpNode, string OpcPrefix, SDNode Move, + ValueType VT, Predicate BasePredicate> { + let Predicates = [BasePredicate] in { + def : Pat<(VT (Move VT:$dst, (scalar_to_vector + (OpNode (extractelt VT:$src, 0))))), + (!cast<Instruction>(OpcPrefix#r_Int) VT:$dst, VT:$src)>; + } + + // Repeat for AVX versions of the instructions. + let Predicates = [UseAVX] in { + def : Pat<(VT (Move VT:$dst, (scalar_to_vector + (OpNode (extractelt VT:$src, 0))))), + (!cast<Instruction>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>; + } +} + +multiclass scalar_unary_math_imm_patterns<SDNode OpNode, string OpcPrefix, SDNode Move, + ValueType VT, bits<8> ImmV, + Predicate BasePredicate> { + let Predicates = [BasePredicate] in { + def : Pat<(VT (Move VT:$dst, (scalar_to_vector + (OpNode (extractelt VT:$src, 0))))), + (!cast<Instruction>(OpcPrefix#r_Int) VT:$dst, VT:$src, (i32 ImmV))>; + } + + // Repeat for AVX versions of the instructions. + let Predicates = [UseAVX] in { + def : Pat<(VT (Move VT:$dst, (scalar_to_vector + (OpNode (extractelt VT:$src, 0))))), + (!cast<Instruction>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src, (i32 ImmV))>; + } +} + +defm : scalar_unary_math_patterns<fsqrt, "SQRTSS", X86Movss, v4f32, UseSSE1>; +defm : scalar_unary_math_patterns<fsqrt, "SQRTSD", X86Movsd, v2f64, UseSSE2>; + +multiclass scalar_unary_math_intr_patterns<Intrinsic Intr, string OpcPrefix, + SDNode Move, ValueType VT, + Predicate BasePredicate> { + let Predicates = [BasePredicate] in { + def : Pat<(VT (Move VT:$dst, (Intr VT:$src))), + (!cast<Instruction>(OpcPrefix#r_Int) VT:$dst, VT:$src)>; + } + + // Repeat for AVX versions of the instructions. + let Predicates = [HasAVX] in { + def : Pat<(VT (Move VT:$dst, (Intr VT:$src))), + (!cast<Instruction>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>; + } +} + +defm : scalar_unary_math_intr_patterns<int_x86_sse_rcp_ss, "RCPSS", X86Movss, + v4f32, UseSSE1>; +defm : scalar_unary_math_intr_patterns<int_x86_sse_rsqrt_ss, "RSQRTSS", X86Movss, + v4f32, UseSSE1>; + + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Non-temporal stores +//===----------------------------------------------------------------------===// + +let AddedComplexity = 400 in { // Prefer non-temporal versions +let Predicates = [HasAVX, NoVLX] in { +let SchedRW = [SchedWriteFMoveLSNT.XMM.MR] in { +def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), + addr:$dst)]>, VEX, VEX_WIG; +def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2f64 VR128:$src), + addr:$dst)]>, VEX, VEX_WIG; +} // SchedRW + +let SchedRW = [SchedWriteFMoveLSNT.YMM.MR] in { +def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v8f32 VR256:$src), + addr:$dst)]>, VEX, VEX_L, VEX_WIG; +def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f64 VR256:$src), + addr:$dst)]>, VEX, VEX_L, VEX_WIG; +} // SchedRW + +let ExeDomain = SSEPackedInt in { +def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2i64 VR128:$src), + addr:$dst)]>, VEX, VEX_WIG, + Sched<[SchedWriteVecMoveLSNT.XMM.MR]>; +def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), + (ins i256mem:$dst, VR256:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4i64 VR256:$src), + addr:$dst)]>, VEX, VEX_L, VEX_WIG, + Sched<[SchedWriteVecMoveLSNT.YMM.MR]>; +} // ExeDomain +} // Predicates + +let SchedRW = [SchedWriteFMoveLSNT.XMM.MR] in { +def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntps\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; +def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntpd\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>; +} // SchedRW + +let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecMoveLSNT.XMM.MR] in +def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), + "movntdq\t{$src, $dst|$dst, $src}", + [(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)]>; + +let SchedRW = [WriteStoreNT] in { +// There is no AVX form for instructions below this point +def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), + "movnti{l}\t{$src, $dst|$dst, $src}", + [(nontemporalstore (i32 GR32:$src), addr:$dst)]>, + PS, Requires<[HasSSE2]>; +def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), + "movnti{q}\t{$src, $dst|$dst, $src}", + [(nontemporalstore (i64 GR64:$src), addr:$dst)]>, + PS, Requires<[HasSSE2]>; +} // SchedRW = [WriteStoreNT] + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(alignednontemporalstore (v8i32 VR256:$src), addr:$dst), + (VMOVNTDQYmr addr:$dst, VR256:$src)>; + def : Pat<(alignednontemporalstore (v16i16 VR256:$src), addr:$dst), + (VMOVNTDQYmr addr:$dst, VR256:$src)>; + def : Pat<(alignednontemporalstore (v32i8 VR256:$src), addr:$dst), + (VMOVNTDQYmr addr:$dst, VR256:$src)>; + + def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst), + (VMOVNTDQmr addr:$dst, VR128:$src)>; + def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst), + (VMOVNTDQmr addr:$dst, VR128:$src)>; + def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst), + (VMOVNTDQmr addr:$dst, VR128:$src)>; +} + +let Predicates = [UseSSE2] in { + def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst), + (MOVNTDQmr addr:$dst, VR128:$src)>; + def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst), + (MOVNTDQmr addr:$dst, VR128:$src)>; + def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst), + (MOVNTDQmr addr:$dst, VR128:$src)>; +} + +} // AddedComplexity + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Prefetch and memory fence +//===----------------------------------------------------------------------===// + +// Prefetch intrinsic. +let Predicates = [HasSSEPrefetch], SchedRW = [WriteLoad] in { +def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src), + "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))]>, TB; +def PREFETCHT1 : I<0x18, MRM2m, (outs), (ins i8mem:$src), + "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))]>, TB; +def PREFETCHT2 : I<0x18, MRM3m, (outs), (ins i8mem:$src), + "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))]>, TB; +def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src), + "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))]>, TB; +} + +// FIXME: How should flush instruction be modeled? +let SchedRW = [WriteLoad] in { +// Flush cache +def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), + "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, + PS, Requires<[HasSSE2]>; +} + +let SchedRW = [WriteNop] in { +// Pause. This "instruction" is encoded as "rep; nop", so even though it +// was introduced with SSE2, it's backward compatible. +def PAUSE : I<0x90, RawFrm, (outs), (ins), + "pause", [(int_x86_sse2_pause)]>, OBXS; +} + +let SchedRW = [WriteFence] in { +// Load, store, and memory fence +// TODO: As with mfence, we may want to ease the availablity of sfence/lfence +// to include any 64-bit target. +def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>, + PS, Requires<[HasSSE1]>; +def LFENCE : I<0xAE, MRM_E8, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>, + PS, Requires<[HasSSE2]>; +def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>, + PS, Requires<[HasMFence]>; +} // SchedRW + +def : Pat<(X86MFence), (MFENCE)>; + +//===----------------------------------------------------------------------===// +// SSE 1 & 2 - Load/Store XCSR register +//===----------------------------------------------------------------------===// + +def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), + "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, + VEX, Sched<[WriteLDMXCSR]>, VEX_WIG; +def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), + "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, + VEX, Sched<[WriteSTMXCSR]>, VEX_WIG; + +def LDMXCSR : I<0xAE, MRM2m, (outs), (ins i32mem:$src), + "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, + TB, Sched<[WriteLDMXCSR]>; +def STMXCSR : I<0xAE, MRM3m, (outs), (ins i32mem:$dst), + "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, + TB, Sched<[WriteSTMXCSR]>; + +//===---------------------------------------------------------------------===// +// SSE2 - Move Aligned/Unaligned Packed Integer Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { // SSE integer instructions + +let hasSideEffects = 0 in { +def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG; +def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG; +def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG; +def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG; +} + +// For Disassembler +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { +def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.XMM.RR]>, + VEX, VEX_WIG, FoldGenData<"VMOVDQArr">; +def VMOVDQAYrr_REV : VPDI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.RR]>, + VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQAYrr">; +def VMOVDQUrr_REV : VSSI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.XMM.RR]>, + VEX, VEX_WIG, FoldGenData<"VMOVDQUrr">; +def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.RR]>, + VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQUYrr">; +} + +let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1, + hasSideEffects = 0, Predicates = [HasAVX,NoVLX] in { +def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (alignedloadv2i64 addr:$src))]>, + Sched<[SchedWriteVecMoveLS.XMM.RM]>, VEX, VEX_WIG; +def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.RM]>, + VEX, VEX_L, VEX_WIG; +def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (loadv2i64 addr:$src))]>, + Sched<[SchedWriteVecMoveLS.XMM.RM]>, + XS, VEX, VEX_WIG; +def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.RM]>, + XS, VEX, VEX_L, VEX_WIG; +} + +let mayStore = 1, hasSideEffects = 0, Predicates = [HasAVX,NoVLX] in { +def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [(alignedstore (v2i64 VR128:$src), addr:$dst)]>, + Sched<[SchedWriteVecMoveLS.XMM.MR]>, VEX, VEX_WIG; +def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs), + (ins i256mem:$dst, VR256:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLS.YMM.MR]>, VEX, VEX_L, VEX_WIG; +def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "vmovdqu\t{$src, $dst|$dst, $src}", + [(store (v2i64 VR128:$src), addr:$dst)]>, + Sched<[SchedWriteVecMoveLS.XMM.MR]>, XS, VEX, VEX_WIG; +def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), + "vmovdqu\t{$src, $dst|$dst, $src}",[]>, + Sched<[SchedWriteVecMoveLS.YMM.MR]>, XS, VEX, VEX_L, VEX_WIG; +} + +let SchedRW = [SchedWriteVecMoveLS.XMM.RR] in { +let hasSideEffects = 0 in { +def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>; + +def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, + XS, Requires<[UseSSE2]>; +} + +// For Disassembler +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in { +def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", []>, + FoldGenData<"MOVDQArr">; + +def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", []>, + XS, Requires<[UseSSE2]>, FoldGenData<"MOVDQUrr">; +} +} // SchedRW + +let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1, + hasSideEffects = 0, SchedRW = [SchedWriteVecMoveLS.XMM.RM] in { +def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>; +def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "movdqu\t{$src, $dst|$dst, $src}", + [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, + XS, Requires<[UseSSE2]>; +} + +let mayStore = 1, hasSideEffects = 0, + SchedRW = [SchedWriteVecMoveLS.XMM.MR] in { +def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "movdqa\t{$src, $dst|$dst, $src}", + [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; +def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), + "movdqu\t{$src, $dst|$dst, $src}", + [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, + XS, Requires<[UseSSE2]>; +} + +} // ExeDomain = SSEPackedInt + +// Aliases to help the assembler pick two byte VEX encodings by swapping the +// operands relative to the normal instructions to use VEX.R instead of VEX.B. +// def : InstAlias<"vmovdqa\t{$src, $dst|$dst, $src}", +// (VMOVDQArr_REV VR128L:$dst, VR128H:$src), 0>; +// def : InstAlias<"vmovdqa\t{$src, $dst|$dst, $src}", +// (VMOVDQAYrr_REV VR256L:$dst, VR256H:$src), 0>; +// def : InstAlias<"vmovdqu\t{$src, $dst|$dst, $src}", +// (VMOVDQUrr_REV VR128L:$dst, VR128H:$src), 0>; +// def : InstAlias<"vmovdqu\t{$src, $dst|$dst, $src}", +// (VMOVDQUYrr_REV VR256L:$dst, VR256H:$src), 0>; + +// Reversed version with ".s" suffix for GAS compatibility. +// def : InstAlias<"vmovdqa.s\t{$src, $dst|$dst, $src}", +// (VMOVDQArr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"vmovdqa.s\t{$src, $dst|$dst, $src}", +// (VMOVDQAYrr_REV VR256:$dst, VR256:$src), 0>; +// def : InstAlias<"vmovdqu.s\t{$src, $dst|$dst, $src}", +// (VMOVDQUrr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"vmovdqu.s\t{$src, $dst|$dst, $src}", +// (VMOVDQUYrr_REV VR256:$dst, VR256:$src), 0>; + +// Reversed version with ".s" suffix for GAS compatibility. +// def : InstAlias<"movdqa.s\t{$src, $dst|$dst, $src}", +// (MOVDQArr_REV VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"movdqu.s\t{$src, $dst|$dst, $src}", +// (MOVDQUrr_REV VR128:$dst, VR128:$src), 0>; + +let Predicates = [HasAVX, NoVLX] in { + // Additional patterns for other integer sizes. + def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), + (VMOVDQAmr addr:$dst, VR128:$src)>; + def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), + (VMOVDQAmr addr:$dst, VR128:$src)>; + def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), + (VMOVDQAmr addr:$dst, VR128:$src)>; + def : Pat<(store (v4i32 VR128:$src), addr:$dst), + (VMOVDQUmr addr:$dst, VR128:$src)>; + def : Pat<(store (v8i16 VR128:$src), addr:$dst), + (VMOVDQUmr addr:$dst, VR128:$src)>; + def : Pat<(store (v16i8 VR128:$src), addr:$dst), + (VMOVDQUmr addr:$dst, VR128:$src)>; +} + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Arithmetic Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { // SSE integer instructions + +/// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types +multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType DstVT, ValueType SrcVT, RegisterClass RC, + PatFrag memop_frag, X86MemOperand x86memop, + X86FoldableSchedWrite sched, bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : PDI<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>, + Sched<[sched]>; + def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), + (bitconvert (memop_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} +} // ExeDomain = SSEPackedInt + +defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32, + SchedWriteVecALU, 1, NoVLX>; +defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64, + SchedWriteVecALU, 1, NoVLX>; +defm PADDSB : PDI_binop_all<0xEC, "paddsb", X86adds, v16i8, v32i8, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PADDSW : PDI_binop_all<0xED, "paddsw", X86adds, v8i16, v16i16, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PADDUSB : PDI_binop_all<0xDC, "paddusb", X86addus, v16i8, v32i8, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PADDUSW : PDI_binop_all<0xDD, "paddusw", X86addus, v8i16, v16i16, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16, + SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>; +defm PMULHUW : PDI_binop_all<0xE4, "pmulhuw", mulhu, v8i16, v16i16, + SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>; +defm PMULHW : PDI_binop_all<0xE5, "pmulhw", mulhs, v8i16, v16i16, + SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>; +defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8, + SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; +defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16, + SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; +defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32, + SchedWriteVecALU, 0, NoVLX>; +defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64, + SchedWriteVecALU, 0, NoVLX>; +defm PSUBSB : PDI_binop_all<0xE8, "psubsb", X86subs, v16i8, v32i8, + SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; +defm PSUBSW : PDI_binop_all<0xE9, "psubsw", X86subs, v8i16, v16i16, + SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; +defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", X86subus, v16i8, v32i8, + SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; +defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", X86subus, v8i16, v16i16, + SchedWriteVecALU, 0, NoVLX_Or_NoBWI>; +defm PMINUB : PDI_binop_all<0xDA, "pminub", umin, v16i8, v32i8, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PMINSW : PDI_binop_all<0xEA, "pminsw", smin, v8i16, v16i16, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", umax, v16i8, v32i8, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", smax, v8i16, v16i16, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PAVGB : PDI_binop_all<0xE0, "pavgb", X86avg, v16i8, v32i8, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PAVGW : PDI_binop_all<0xE3, "pavgw", X86avg, v8i16, v16i16, + SchedWriteVecALU, 1, NoVLX_Or_NoBWI>; +defm PMULUDQ : PDI_binop_all<0xF4, "pmuludq", X86pmuludq, v2i64, v4i64, + SchedWriteVecIMul, 1, NoVLX>; + +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in +defm VPMADDWD : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v4i32, v8i16, VR128, + loadv2i64, i128mem, SchedWriteVecIMul.XMM, 0>, + VEX_4V, VEX_WIG; + +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in +defm VPMADDWDY : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v8i32, v16i16, + VR256, loadv4i64, i256mem, SchedWriteVecIMul.YMM, + 0>, VEX_4V, VEX_L, VEX_WIG; +let Constraints = "$src1 = $dst" in +defm PMADDWD : PDI_binop_rm2<0xF5, "pmaddwd", X86vpmaddwd, v4i32, v8i16, VR128, + memopv2i64, i128mem, SchedWriteVecIMul.XMM>; + +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in +defm VPSADBW : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v2i64, v16i8, VR128, + loadv2i64, i128mem, SchedWritePSADBW.XMM, 0>, + VEX_4V, VEX_WIG; +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in +defm VPSADBWY : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v4i64, v32i8, VR256, + loadv4i64, i256mem, SchedWritePSADBW.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; +let Constraints = "$src1 = $dst" in +defm PSADBW : PDI_binop_rm2<0xF6, "psadbw", X86psadbw, v2i64, v16i8, VR128, + memopv2i64, i128mem, SchedWritePSADBW.XMM>; + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Logical Instructions +//===---------------------------------------------------------------------===// + +multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm, + string OpcodeStr, SDNode OpNode, + SDNode OpNode2, RegisterClass RC, + X86FoldableSchedWrite sched, + X86FoldableSchedWrite schedImm, + ValueType DstVT, ValueType SrcVT, + PatFrag ld_frag, bit Is2Addr = 1> { + // src2 is always 128-bit + def rr : PDI<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (DstVT (OpNode RC:$src1, (SrcVT VR128:$src2))))]>, + Sched<[sched]>; + def rm : PDI<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (DstVT (OpNode RC:$src1, + (SrcVT (bitconvert (ld_frag addr:$src2))))))]>, + Sched<[sched.Folded, ReadAfterLd]>; + def ri : PDIi8<opc2, ImmForm, (outs RC:$dst), + (ins RC:$src1, u8imm:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i8 imm:$src2))))]>, + Sched<[schedImm]>; +} + +multiclass PDI_binop_rmi_all<bits<8> opc, bits<8> opc2, Format ImmForm, + string OpcodeStr, SDNode OpNode, + SDNode OpNode2, ValueType DstVT128, + ValueType DstVT256, ValueType SrcVT, + X86SchedWriteWidths sched, + X86SchedWriteWidths schedImm, Predicate prd> { +let Predicates = [HasAVX, prd] in + defm V#NAME : PDI_binop_rmi<opc, opc2, ImmForm, !strconcat("v", OpcodeStr), + OpNode, OpNode2, VR128, sched.XMM, schedImm.XMM, + DstVT128, SrcVT, loadv2i64, 0>, VEX_4V, VEX_WIG; +let Predicates = [HasAVX2, prd] in + defm V#NAME#Y : PDI_binop_rmi<opc, opc2, ImmForm, !strconcat("v", OpcodeStr), + OpNode, OpNode2, VR256, sched.YMM, schedImm.YMM, + DstVT256, SrcVT, loadv2i64, 0>, VEX_4V, VEX_L, + VEX_WIG; +let Constraints = "$src1 = $dst" in + defm NAME : PDI_binop_rmi<opc, opc2, ImmForm, OpcodeStr, OpNode, OpNode2, + VR128, sched.XMM, schedImm.XMM, DstVT128, SrcVT, + memopv2i64>; +} + +multiclass PDI_binop_ri<bits<8> opc, Format ImmForm, string OpcodeStr, + SDNode OpNode, RegisterClass RC, ValueType VT, + X86FoldableSchedWrite sched, bit Is2Addr = 1> { + def ri : PDIi8<opc, ImmForm, (outs RC:$dst), (ins RC:$src1, u8imm:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (VT (OpNode RC:$src1, (i8 imm:$src2))))]>, + Sched<[sched]>; +} + +multiclass PDI_binop_ri_all<bits<8> opc, Format ImmForm, string OpcodeStr, + SDNode OpNode, X86SchedWriteWidths sched> { +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in + defm V#NAME : PDI_binop_ri<opc, ImmForm, !strconcat("v", OpcodeStr), OpNode, + VR128, v16i8, sched.XMM, 0>, VEX_4V, VEX_WIG; +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in + defm V#NAME#Y : PDI_binop_ri<opc, ImmForm, !strconcat("v", OpcodeStr), OpNode, + VR256, v32i8, sched.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; +let Constraints = "$src1 = $dst" in + defm NAME : PDI_binop_ri<opc, ImmForm, OpcodeStr, OpNode, VR128, v16i8, + sched.XMM>; +} + +let ExeDomain = SSEPackedInt in { + defm PSLLW : PDI_binop_rmi_all<0xF1, 0x71, MRM6r, "psllw", X86vshl, X86vshli, + v8i16, v16i16, v8i16, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX_Or_NoBWI>; + defm PSLLD : PDI_binop_rmi_all<0xF2, 0x72, MRM6r, "pslld", X86vshl, X86vshli, + v4i32, v8i32, v4i32, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX>; + defm PSLLQ : PDI_binop_rmi_all<0xF3, 0x73, MRM6r, "psllq", X86vshl, X86vshli, + v2i64, v4i64, v2i64, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX>; + + defm PSRLW : PDI_binop_rmi_all<0xD1, 0x71, MRM2r, "psrlw", X86vsrl, X86vsrli, + v8i16, v16i16, v8i16, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX_Or_NoBWI>; + defm PSRLD : PDI_binop_rmi_all<0xD2, 0x72, MRM2r, "psrld", X86vsrl, X86vsrli, + v4i32, v8i32, v4i32, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX>; + defm PSRLQ : PDI_binop_rmi_all<0xD3, 0x73, MRM2r, "psrlq", X86vsrl, X86vsrli, + v2i64, v4i64, v2i64, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX>; + + defm PSRAW : PDI_binop_rmi_all<0xE1, 0x71, MRM4r, "psraw", X86vsra, X86vsrai, + v8i16, v16i16, v8i16, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX_Or_NoBWI>; + defm PSRAD : PDI_binop_rmi_all<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai, + v4i32, v8i32, v4i32, SchedWriteVecShift, + SchedWriteVecShiftImm, NoVLX>; + + defm PSLLDQ : PDI_binop_ri_all<0x73, MRM7r, "pslldq", X86vshldq, + SchedWriteShuffle>; + defm PSRLDQ : PDI_binop_ri_all<0x73, MRM3r, "psrldq", X86vshrdq, + SchedWriteShuffle>; +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Comparison Instructions +//===---------------------------------------------------------------------===// + +defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8, + SchedWriteVecALU, 1, TruePredicate>; +defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16, + SchedWriteVecALU, 1, TruePredicate>; +defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32, + SchedWriteVecALU, 1, TruePredicate>; +defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8, + SchedWriteVecALU, 0, TruePredicate>; +defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16, + SchedWriteVecALU, 0, TruePredicate>; +defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32, + SchedWriteVecALU, 0, TruePredicate>; + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Shuffle Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { +multiclass sse2_pshuffle<string OpcodeStr, ValueType vt128, ValueType vt256, + SDNode OpNode, X86SchedWriteWidths sched, + Predicate prd> { +let Predicates = [HasAVX, prd] in { + def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, u8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))]>, + VEX, Sched<[sched.XMM]>, VEX_WIG; + def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1, u8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode (bitconvert (loadv2i64 addr:$src1)), + (i8 imm:$src2))))]>, VEX, + Sched<[sched.XMM.Folded]>, VEX_WIG; +} + +let Predicates = [HasAVX2, prd] in { + def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, u8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (vt256 (OpNode VR256:$src1, (i8 imm:$src2))))]>, + VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG; + def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst), + (ins i256mem:$src1, u8imm:$src2), + !strconcat("v", OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (vt256 (OpNode (bitconvert (loadv4i64 addr:$src1)), + (i8 imm:$src2))))]>, VEX, VEX_L, + Sched<[sched.YMM.Folded]>, VEX_WIG; +} + +let Predicates = [UseSSE2] in { + def ri : Ii8<0x70, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))]>, + Sched<[sched.XMM]>; + def mi : Ii8<0x70, MRMSrcMem, + (outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)), + (i8 imm:$src2))))]>, + Sched<[sched.XMM.Folded]>; +} +} +} // ExeDomain = SSEPackedInt + +defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd, + SchedWriteShuffle, NoVLX>, PD; +defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw, + SchedWriteShuffle, NoVLX_Or_NoBWI>, XS; +defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw, + SchedWriteShuffle, NoVLX_Or_NoBWI>, XD; + +//===---------------------------------------------------------------------===// +// Packed Integer Pack Instructions (SSE & AVX) +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { +multiclass sse2_pack<bits<8> opc, string OpcodeStr, ValueType OutVT, + ValueType ArgVT, SDNode OpNode, RegisterClass RC, + X86MemOperand x86memop, X86FoldableSchedWrite sched, + PatFrag ld_frag, bit Is2Addr = 1> { + def rr : PDI<opc, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (OutVT (OpNode (ArgVT RC:$src1), RC:$src2)))]>, + Sched<[sched]>; + def rm : PDI<opc, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (OutVT (OpNode (ArgVT RC:$src1), + (bitconvert (ld_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +multiclass sse4_pack<bits<8> opc, string OpcodeStr, ValueType OutVT, + ValueType ArgVT, SDNode OpNode, RegisterClass RC, + X86MemOperand x86memop, X86FoldableSchedWrite sched, + PatFrag ld_frag, bit Is2Addr = 1> { + def rr : SS48I<opc, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (OutVT (OpNode (ArgVT RC:$src1), RC:$src2)))]>, + Sched<[sched]>; + def rm : SS48I<opc, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (OutVT (OpNode (ArgVT RC:$src1), + (bitconvert (ld_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + defm VPACKSSWB : sse2_pack<0x63, "vpacksswb", v16i8, v8i16, X86Packss, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPACKSSDW : sse2_pack<0x6B, "vpackssdw", v8i16, v4i32, X86Packss, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + + defm VPACKUSWB : sse2_pack<0x67, "vpackuswb", v16i8, v8i16, X86Packus, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPACKUSDW : sse4_pack<0x2B, "vpackusdw", v8i16, v4i32, X86Packus, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V; +} + +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { + defm VPACKSSWBY : sse2_pack<0x63, "vpacksswb", v32i8, v16i16, X86Packss, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPACKSSDWY : sse2_pack<0x6B, "vpackssdw", v16i16, v8i32, X86Packss, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + + defm VPACKUSWBY : sse2_pack<0x67, "vpackuswb", v32i8, v16i16, X86Packus, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPACKUSDWY : sse4_pack<0x2B, "vpackusdw", v16i16, v8i32, X86Packus, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L; +} + +let Constraints = "$src1 = $dst" in { + defm PACKSSWB : sse2_pack<0x63, "packsswb", v16i8, v8i16, X86Packss, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PACKSSDW : sse2_pack<0x6B, "packssdw", v8i16, v4i32, X86Packss, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + + defm PACKUSWB : sse2_pack<0x67, "packuswb", v16i8, v8i16, X86Packus, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + + defm PACKUSDW : sse4_pack<0x2B, "packusdw", v8i16, v4i32, X86Packus, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; +} +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Unpack Instructions +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { +multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt, + SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, + X86FoldableSchedWrite sched, PatFrag ld_frag, + bit Is2Addr = 1> { + def rr : PDI<opc, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + def rm : PDI<opc, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, + (bitconvert (ld_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; +} + +let Predicates = [HasAVX, NoVLX] in { + defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; + defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>, + VEX_4V, VEX_WIG; +} + +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { + defm VPUNPCKLBWY : sse2_unpack<0x60, "vpunpcklbw", v32i8, X86Unpckl, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPUNPCKLWDY : sse2_unpack<0x61, "vpunpcklwd", v16i16, X86Unpckl, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPUNPCKHBWY : sse2_unpack<0x68, "vpunpckhbw", v32i8, X86Unpckh, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPUNPCKHWDY : sse2_unpack<0x69, "vpunpckhwd", v16i16, X86Unpckh, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; +} + +let Predicates = [HasAVX2, NoVLX] in { + defm VPUNPCKLDQY : sse2_unpack<0x62, "vpunpckldq", v8i32, X86Unpckl, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPUNPCKLQDQY : sse2_unpack<0x6C, "vpunpcklqdq", v4i64, X86Unpckl, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPUNPCKHDQY : sse2_unpack<0x6A, "vpunpckhdq", v8i32, X86Unpckh, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPUNPCKHQDQY : sse2_unpack<0x6D, "vpunpckhqdq", v4i64, X86Unpckh, VR256, + i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>, + VEX_4V, VEX_L, VEX_WIG; +} + +let Constraints = "$src1 = $dst" in { + defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + + defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; + defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh, VR128, + i128mem, SchedWriteShuffle.XMM, memopv2i64>; +} +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Integer Extract and Insert +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { +multiclass sse2_pinsrw<bit Is2Addr = 1> { + def rr : Ii8<0xC4, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, + GR32orGR64:$src2, u8imm:$src3), + !if(Is2Addr, + "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", + "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set VR128:$dst, + (X86pinsrw VR128:$src1, GR32orGR64:$src2, imm:$src3))]>, + Sched<[WriteVecInsert]>; + def rm : Ii8<0xC4, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, + i16mem:$src2, u8imm:$src3), + !if(Is2Addr, + "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", + "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set VR128:$dst, + (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), + imm:$src3))]>, + Sched<[WriteVecInsertLd, ReadAfterLd]>; +} + +// Extract +let Predicates = [HasAVX, NoBWI] in +def VPEXTRWrr : Ii8<0xC5, MRMSrcReg, + (outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2), + "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1), + imm:$src2))]>, + PD, VEX, Sched<[WriteVecExtract]>; +def PEXTRWrr : PDIi8<0xC5, MRMSrcReg, + (outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2), + "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1), + imm:$src2))]>, + Sched<[WriteVecExtract]>; + +// Insert +let Predicates = [HasAVX, NoBWI] in +defm VPINSRW : sse2_pinsrw<0>, PD, VEX_4V; + +let Predicates = [UseSSE2], Constraints = "$src1 = $dst" in +defm PINSRW : sse2_pinsrw, PD; + +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Packed Mask Creation +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt in { + +def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), + (ins VR128:$src), + "pmovmskb\t{$src, $dst|$dst, $src}", + [(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>, + Sched<[WriteVecMOVMSK]>, VEX, VEX_WIG; + +let Predicates = [HasAVX2] in { +def VPMOVMSKBYrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), + (ins VR256:$src), + "pmovmskb\t{$src, $dst|$dst, $src}", + [(set GR32orGR64:$dst, (X86movmsk (v32i8 VR256:$src)))]>, + Sched<[WriteVecMOVMSKY]>, VEX, VEX_L, VEX_WIG; +} + +def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src), + "pmovmskb\t{$src, $dst|$dst, $src}", + [(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>, + Sched<[WriteVecMOVMSK]>; + +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Conditional Store +//===---------------------------------------------------------------------===// + +let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecMoveLS.XMM.MR] in { +let Uses = [EDI], Predicates = [HasAVX,Not64BitMode] in +def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs), + (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>, + VEX, VEX_WIG; +let Uses = [RDI], Predicates = [HasAVX,In64BitMode] in +def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs), + (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>, + VEX, VEX_WIG; + +let Uses = [EDI], Predicates = [UseSSE2,Not64BitMode] in +def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; +let Uses = [RDI], Predicates = [UseSSE2,In64BitMode] in +def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), + "maskmovdqu\t{$mask, $src|$src, $mask}", + [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>; + +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// SSE2 - Move Doubleword/Quadword +//===---------------------------------------------------------------------===// + +//===---------------------------------------------------------------------===// +// Move Int Doubleword to Packed Double Int +// +let ExeDomain = SSEPackedInt in { +def VMOVDI2PDIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (scalar_to_vector GR32:$src)))]>, + VEX, Sched<[WriteVecMoveFromGpr]>; +def VMOVDI2PDIrm : VS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, + VEX, Sched<[WriteVecLoad]>; +def VMOV64toPQIrr : VRS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (scalar_to_vector GR64:$src)))]>, + VEX, Sched<[WriteVecMoveFromGpr]>; +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in +def VMOV64toPQIrm : VRS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "movq\t{$src, $dst|$dst, $src}", []>, + VEX, Sched<[WriteVecLoad]>; +let isCodeGenOnly = 1 in +def VMOV64toSDrr : VRS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (bitconvert GR64:$src))]>, + VEX, Sched<[WriteVecMoveFromGpr]>; + +def MOVDI2PDIrr : S2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (scalar_to_vector GR32:$src)))]>, + Sched<[WriteVecMoveFromGpr]>; +def MOVDI2PDIrm : S2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, + Sched<[WriteVecLoad]>; +def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (scalar_to_vector GR64:$src)))]>, + Sched<[WriteVecMoveFromGpr]>; +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in +def MOV64toPQIrm : RS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "movq\t{$src, $dst|$dst, $src}", []>, + Sched<[WriteVecLoad]>; +let isCodeGenOnly = 1 in +def MOV64toSDrr : RS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (bitconvert GR64:$src))]>, + Sched<[WriteVecMoveFromGpr]>; +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// Move Int Doubleword to Single Scalar +// +let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { + def VMOVDI2SSrr : VS2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (bitconvert GR32:$src))]>, + VEX, Sched<[WriteVecMoveFromGpr]>; + + def VMOVDI2SSrm : VS2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>, + VEX, Sched<[WriteVecLoad]>; + def MOVDI2SSrr : S2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (bitconvert GR32:$src))]>, + Sched<[WriteVecMoveFromGpr]>; + + def MOVDI2SSrm : S2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>, + Sched<[WriteVecLoad]>; +} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 + +//===---------------------------------------------------------------------===// +// Move Packed Doubleword Int to Packed Double Int +// +let ExeDomain = SSEPackedInt in { +def VMOVPDI2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (extractelt (v4i32 VR128:$src), + (iPTR 0)))]>, VEX, + Sched<[WriteVecMoveToGpr]>; +def VMOVPDI2DImr : VS2I<0x7E, MRMDestMem, (outs), + (ins i32mem:$dst, VR128:$src), + "movd\t{$src, $dst|$dst, $src}", + [(store (i32 (extractelt (v4i32 VR128:$src), + (iPTR 0))), addr:$dst)]>, + VEX, Sched<[WriteVecStore]>; +def MOVPDI2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (extractelt (v4i32 VR128:$src), + (iPTR 0)))]>, + Sched<[WriteVecMoveToGpr]>; +def MOVPDI2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), + "movd\t{$src, $dst|$dst, $src}", + [(store (i32 (extractelt (v4i32 VR128:$src), + (iPTR 0))), addr:$dst)]>, + Sched<[WriteVecStore]>; +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// Move Packed Doubleword Int first element to Doubleword Int +// +let ExeDomain = SSEPackedInt in { +let SchedRW = [WriteVecMoveToGpr] in { +def VMOVPQIto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set GR64:$dst, (extractelt (v2i64 VR128:$src), + (iPTR 0)))]>, + VEX; + +def MOVPQIto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set GR64:$dst, (extractelt (v2i64 VR128:$src), + (iPTR 0)))]>; +} //SchedRW + +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in +def VMOVPQIto64mr : VRS2I<0x7E, MRMDestMem, (outs), + (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", []>, + VEX, Sched<[WriteVecStore]>; +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in +def MOVPQIto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", []>, + Sched<[WriteVecStore]>; +} // ExeDomain = SSEPackedInt + +//===---------------------------------------------------------------------===// +// Bitcast FR64 <-> GR64 +// +let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { + let Predicates = [UseAVX] in + def VMOV64toSDrm : VS2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>, + VEX, Sched<[WriteVecLoad]>; + def VMOVSDto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set GR64:$dst, (bitconvert FR64:$src))]>, + VEX, Sched<[WriteVecMoveToGpr]>; + def VMOVSDto64mr : VRS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>, + VEX, Sched<[WriteVecStore]>; + + def MOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>, + Sched<[WriteVecLoad]>; + def MOVSDto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set GR64:$dst, (bitconvert FR64:$src))]>, + Sched<[WriteVecMoveToGpr]>; + def MOVSDto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), + "movq\t{$src, $dst|$dst, $src}", + [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>, + Sched<[WriteVecStore]>; +} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 + +//===---------------------------------------------------------------------===// +// Move Scalar Single to Double Int +// +let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in { + def VMOVSS2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (bitconvert FR32:$src))]>, + VEX, Sched<[WriteVecMoveToGpr]>; + def VMOVSS2DImr : VS2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>, + VEX, Sched<[WriteVecStore]>; + def MOVSS2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (bitconvert FR32:$src))]>, + Sched<[WriteVecMoveToGpr]>; + def MOVSS2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), + "movd\t{$src, $dst|$dst, $src}", + [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>, + Sched<[WriteVecStore]>; +} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1 + +let Predicates = [UseAVX] in { + def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))), + (VMOVDI2PDIrr GR32:$src)>; + + def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))), + (VMOV64toPQIrr GR64:$src)>; + + def : Pat<(v4i64 (X86vzmovl (insert_subvector undef, + (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))), + (SUBREG_TO_REG (i64 0), (v2i64 (VMOV64toPQIrr GR64:$src)), sub_xmm)>; + // AVX 128-bit movd/movq instructions write zeros in the high 128-bit part. + // These instructions also write zeros in the high part of a 256-bit register. + def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))), + (VMOVDI2PDIrm addr:$src)>; + def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))), + (VMOVDI2PDIrm addr:$src)>; + def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), + (VMOVDI2PDIrm addr:$src)>; + def : Pat<(v4i32 (X86vzload addr:$src)), + (VMOVDI2PDIrm addr:$src)>; + def : Pat<(v8i32 (X86vzmovl (insert_subvector undef, + (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))), + (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIrm addr:$src)), sub_xmm)>; + def : Pat<(v8i32 (X86vzload addr:$src)), + (SUBREG_TO_REG (i64 0), (v4i32 (VMOVDI2PDIrm addr:$src)), sub_xmm)>; + // Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext. + def : Pat<(v8i32 (X86vzmovl (insert_subvector undef, + (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))), + (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIrr GR32:$src)), sub_xmm)>; +} + +let Predicates = [UseSSE2] in { + def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))), + (MOVDI2PDIrr GR32:$src)>; + + def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))), + (MOV64toPQIrr GR64:$src)>; + def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))), + (MOVDI2PDIrm addr:$src)>; + def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))), + (MOVDI2PDIrm addr:$src)>; + def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), + (MOVDI2PDIrm addr:$src)>; + def : Pat<(v4i32 (X86vzload addr:$src)), + (MOVDI2PDIrm addr:$src)>; +} + +// Before the MC layer of LLVM existed, clang emitted "movd" assembly instead of +// "movq" due to MacOS parsing limitation. In order to parse old assembly, we add +// these aliases. +// def : InstAlias<"movd\t{$src, $dst|$dst, $src}", +// (MOV64toPQIrr VR128:$dst, GR64:$src), 0>; +// def : InstAlias<"movd\t{$src, $dst|$dst, $src}", +// (MOVPQIto64rr GR64:$dst, VR128:$src), 0>; +// Allow "vmovd" but print "vmovq" since we don't need compatibility for AVX. +// def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}", +// (VMOV64toPQIrr VR128:$dst, GR64:$src), 0>; +// def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}", +// (VMOVPQIto64rr GR64:$dst, VR128:$src), 0>; + +//===---------------------------------------------------------------------===// +// SSE2 - Move Quadword +//===---------------------------------------------------------------------===// + +//===---------------------------------------------------------------------===// +// Move Quadword Int to Packed Quadword Int +// + +let ExeDomain = SSEPackedInt, SchedRW = [WriteVecLoad] in { +def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "vmovq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, + VEX, Requires<[UseAVX]>, VEX_WIG; +def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, + (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, + XS, Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix +} // ExeDomain, SchedRW + +//===---------------------------------------------------------------------===// +// Move Packed Quadword Int to Quadword Int +// +let ExeDomain = SSEPackedInt, SchedRW = [WriteVecStore] in { +def VMOVPQI2QImr : VS2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(store (i64 (extractelt (v2i64 VR128:$src), + (iPTR 0))), addr:$dst)]>, + VEX, VEX_WIG; +def MOVPQI2QImr : S2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(store (i64 (extractelt (v2i64 VR128:$src), + (iPTR 0))), addr:$dst)]>; +} // ExeDomain, SchedRW + +// For disassembler only +let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, + SchedRW = [SchedWriteVecLogic.XMM] in { +def VMOVPQI2QIrr : VS2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG; +def MOVPQI2QIrr : S2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src), + "movq\t{$src, $dst|$dst, $src}", []>; +} + +// Aliases to help the assembler pick two byte VEX encodings by swapping the +// operands relative to the normal instructions to use VEX.R instead of VEX.B. +// def : InstAlias<"vmovq\t{$src, $dst|$dst, $src}", +// (VMOVPQI2QIrr VR128L:$dst, VR128H:$src), 0>; + +// def : InstAlias<"vmovq.s\t{$src, $dst|$dst, $src}", +// (VMOVPQI2QIrr VR128:$dst, VR128:$src), 0>; +// def : InstAlias<"movq.s\t{$src, $dst|$dst, $src}", +// (MOVPQI2QIrr VR128:$dst, VR128:$src), 0>; + +let Predicates = [UseAVX] in { + def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), + (VMOVQI2PQIrm addr:$src)>; + def : Pat<(v2i64 (X86vzload addr:$src)), + (VMOVQI2PQIrm addr:$src)>; + def : Pat<(v4i64 (X86vzmovl (insert_subvector undef, + (v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))), + (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIrm addr:$src)), sub_xmm)>; + def : Pat<(v4i64 (X86vzload addr:$src)), + (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIrm addr:$src)), sub_xmm)>; +} + +let Predicates = [UseSSE2] in { + def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), + (MOVQI2PQIrm addr:$src)>; + def : Pat<(v2i64 (X86vzload addr:$src)), (MOVQI2PQIrm addr:$src)>; +} + +//===---------------------------------------------------------------------===// +// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in +// IA32 document. movq xmm1, xmm2 does clear the high bits. +// +let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecLogic.XMM] in { +def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "vmovq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, + XS, VEX, Requires<[UseAVX]>, VEX_WIG; +def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + "movq\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, + XS, Requires<[UseSSE2]>; +} // ExeDomain, SchedRW + +let Predicates = [UseAVX] in { + def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))), + (VMOVZPQILo2PQIrr VR128:$src)>; +} +let Predicates = [UseSSE2] in { + def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))), + (MOVZPQILo2PQIrr VR128:$src)>; +} + +//===---------------------------------------------------------------------===// +// SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP +//===---------------------------------------------------------------------===// + +multiclass sse3_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr, + ValueType vt, RegisterClass RC, PatFrag mem_frag, + X86MemOperand x86memop, X86FoldableSchedWrite sched> { +def rr : S3SI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (vt (OpNode RC:$src)))]>, + Sched<[sched]>; +def rm : S3SI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (OpNode (mem_frag addr:$src)))]>, + Sched<[sched.Folded]>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm VMOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup", + v4f32, VR128, loadv4f32, f128mem, + SchedWriteFShuffle.XMM>, VEX, VEX_WIG; + defm VMOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup", + v4f32, VR128, loadv4f32, f128mem, + SchedWriteFShuffle.XMM>, VEX, VEX_WIG; + defm VMOVSHDUPY : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup", + v8f32, VR256, loadv8f32, f256mem, + SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG; + defm VMOVSLDUPY : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup", + v8f32, VR256, loadv8f32, f256mem, + SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG; +} +defm MOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "movshdup", v4f32, VR128, + memopv4f32, f128mem, SchedWriteFShuffle.XMM>; +defm MOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "movsldup", v4f32, VR128, + memopv4f32, f128mem, SchedWriteFShuffle.XMM>; + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4i32 (X86Movshdup VR128:$src)), + (VMOVSHDUPrr VR128:$src)>; + def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (loadv2i64 addr:$src)))), + (VMOVSHDUPrm addr:$src)>; + def : Pat<(v4i32 (X86Movsldup VR128:$src)), + (VMOVSLDUPrr VR128:$src)>; + def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (loadv2i64 addr:$src)))), + (VMOVSLDUPrm addr:$src)>; + def : Pat<(v8i32 (X86Movshdup VR256:$src)), + (VMOVSHDUPYrr VR256:$src)>; + def : Pat<(v8i32 (X86Movshdup (bc_v8i32 (loadv4i64 addr:$src)))), + (VMOVSHDUPYrm addr:$src)>; + def : Pat<(v8i32 (X86Movsldup VR256:$src)), + (VMOVSLDUPYrr VR256:$src)>; + def : Pat<(v8i32 (X86Movsldup (bc_v8i32 (loadv4i64 addr:$src)))), + (VMOVSLDUPYrm addr:$src)>; +} + +let Predicates = [UseSSE3] in { + def : Pat<(v4i32 (X86Movshdup VR128:$src)), + (MOVSHDUPrr VR128:$src)>; + def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (memopv2i64 addr:$src)))), + (MOVSHDUPrm addr:$src)>; + def : Pat<(v4i32 (X86Movsldup VR128:$src)), + (MOVSLDUPrr VR128:$src)>; + def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (memopv2i64 addr:$src)))), + (MOVSLDUPrm addr:$src)>; +} + +//===---------------------------------------------------------------------===// +// SSE3 - Replicate Double FP - MOVDDUP +//===---------------------------------------------------------------------===// + +multiclass sse3_replicate_dfp<string OpcodeStr, X86SchedWriteWidths sched> { +def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v2f64 (X86Movddup VR128:$src)))]>, + Sched<[sched.XMM]>; +def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, + (v2f64 (X86Movddup + (scalar_to_vector (loadf64 addr:$src)))))]>, + Sched<[sched.XMM.Folded]>; +} + +// FIXME: Merge with above classes when there are patterns for the ymm version +multiclass sse3_replicate_dfp_y<string OpcodeStr, X86SchedWriteWidths sched> { +def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>, + Sched<[sched.YMM]>; +def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, + (v4f64 (X86Movddup (loadv4f64 addr:$src))))]>, + Sched<[sched.YMM.Folded]>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm VMOVDDUP : sse3_replicate_dfp<"vmovddup", SchedWriteFShuffle>, + VEX, VEX_WIG; + defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup", SchedWriteFShuffle>, + VEX, VEX_L, VEX_WIG; +} + +defm MOVDDUP : sse3_replicate_dfp<"movddup", SchedWriteFShuffle>; + + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(X86Movddup (loadv2f64 addr:$src)), + (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; +} + +let Predicates = [UseSSE3] in { + // No need for aligned memory as this only loads 64-bits. + def : Pat<(X86Movddup (loadv2f64 addr:$src)), + (MOVDDUPrm addr:$src)>; +} + +//===---------------------------------------------------------------------===// +// SSE3 - Move Unaligned Integer +//===---------------------------------------------------------------------===// + +let Predicates = [HasAVX] in { + def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vlddqu\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, + Sched<[SchedWriteVecMoveLS.XMM.RM]>, VEX, VEX_WIG; + def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), + "vlddqu\t{$src, $dst|$dst, $src}", + [(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>, + Sched<[SchedWriteVecMoveLS.YMM.RM]>, VEX, VEX_L, VEX_WIG; +} // Predicates + +def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "lddqu\t{$src, $dst|$dst, $src}", + [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, + Sched<[SchedWriteVecMoveLS.XMM.RM]>; + +//===---------------------------------------------------------------------===// +// SSE3 - Arithmetic +//===---------------------------------------------------------------------===// + +multiclass sse3_addsub<string OpcodeStr, ValueType vt, RegisterClass RC, + X86MemOperand x86memop, X86FoldableSchedWrite sched, + PatFrag ld_frag, bit Is2Addr = 1> { + def rr : I<0xD0, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (X86Addsub RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + def rm : I<0xD0, MRMSrcMem, + (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (X86Addsub RC:$src1, (ld_frag addr:$src2))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX] in { + let ExeDomain = SSEPackedSingle in { + defm VADDSUBPS : sse3_addsub<"vaddsubps", v4f32, VR128, f128mem, + SchedWriteFAddSizes.PS.XMM, loadv4f32, 0>, + XD, VEX_4V, VEX_WIG; + defm VADDSUBPSY : sse3_addsub<"vaddsubps", v8f32, VR256, f256mem, + SchedWriteFAddSizes.PS.YMM, loadv8f32, 0>, + XD, VEX_4V, VEX_L, VEX_WIG; + } + let ExeDomain = SSEPackedDouble in { + defm VADDSUBPD : sse3_addsub<"vaddsubpd", v2f64, VR128, f128mem, + SchedWriteFAddSizes.PD.XMM, loadv2f64, 0>, + PD, VEX_4V, VEX_WIG; + defm VADDSUBPDY : sse3_addsub<"vaddsubpd", v4f64, VR256, f256mem, + SchedWriteFAddSizes.PD.YMM, loadv4f64, 0>, + PD, VEX_4V, VEX_L, VEX_WIG; + } +} +let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in { + let ExeDomain = SSEPackedSingle in + defm ADDSUBPS : sse3_addsub<"addsubps", v4f32, VR128, f128mem, + SchedWriteFAddSizes.PS.XMM, memopv4f32>, XD; + let ExeDomain = SSEPackedDouble in + defm ADDSUBPD : sse3_addsub<"addsubpd", v2f64, VR128, f128mem, + SchedWriteFAddSizes.PD.XMM, memopv2f64>, PD; +} + +//===---------------------------------------------------------------------===// +// SSE3 Instructions +//===---------------------------------------------------------------------===// + +// Horizontal ops +multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC, + X86MemOperand x86memop, SDNode OpNode, + X86FoldableSchedWrite sched, PatFrag ld_frag, + bit Is2Addr = 1> { + def rr : S3DI<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + + def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, (ld_frag addr:$src2))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} +multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC, + X86MemOperand x86memop, SDNode OpNode, + X86FoldableSchedWrite sched, PatFrag ld_frag, + bit Is2Addr = 1> { + def rr : S3I<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + + def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (vt (OpNode RC:$src1, (ld_frag addr:$src2))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX] in { + let ExeDomain = SSEPackedSingle in { + defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem, + X86fhadd, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG; + defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem, + X86fhsub, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG; + defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem, + X86fhadd, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG; + defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem, + X86fhsub, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG; + } + let ExeDomain = SSEPackedDouble in { + defm VHADDPD : S3_Int<0x7C, "vhaddpd", v2f64, VR128, f128mem, + X86fhadd, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG; + defm VHSUBPD : S3_Int<0x7D, "vhsubpd", v2f64, VR128, f128mem, + X86fhsub, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG; + defm VHADDPDY : S3_Int<0x7C, "vhaddpd", v4f64, VR256, f256mem, + X86fhadd, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG; + defm VHSUBPDY : S3_Int<0x7D, "vhsubpd", v4f64, VR256, f256mem, + X86fhsub, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG; + } +} + +let Constraints = "$src1 = $dst" in { + let ExeDomain = SSEPackedSingle in { + defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, X86fhadd, + WriteFHAdd, memopv4f32>; + defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, X86fhsub, + WriteFHAdd, memopv4f32>; + } + let ExeDomain = SSEPackedDouble in { + defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, X86fhadd, + WriteFHAdd, memopv2f64>; + defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, X86fhsub, + WriteFHAdd, memopv2f64>; + } +} + +//===---------------------------------------------------------------------===// +// SSSE3 - Packed Absolute Instructions +//===---------------------------------------------------------------------===// + +/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. +multiclass SS3I_unop_rm<bits<8> opc, string OpcodeStr, ValueType vt, + SDNode OpNode, X86SchedWriteWidths sched, PatFrag ld_frag> { + def rr : SS38I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (vt (OpNode VR128:$src)))]>, + Sched<[sched.XMM]>; + + def rm : SS38I<opc, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, + (vt (OpNode (bitconvert (ld_frag addr:$src)))))]>, + Sched<[sched.XMM.Folded]>; +} + +/// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. +multiclass SS3I_unop_rm_y<bits<8> opc, string OpcodeStr, ValueType vt, + SDNode OpNode, X86SchedWriteWidths sched> { + def Yrr : SS38I<opc, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, (vt (OpNode VR256:$src)))]>, + Sched<[sched.YMM]>; + + def Yrm : SS38I<opc, MRMSrcMem, (outs VR256:$dst), + (ins i256mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, + (vt (OpNode (bitconvert (loadv4i64 addr:$src)))))]>, + Sched<[sched.YMM.Folded]>; +} + +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + defm VPABSB : SS3I_unop_rm<0x1C, "vpabsb", v16i8, abs, SchedWriteVecALU, + loadv2i64>, VEX, VEX_WIG; + defm VPABSW : SS3I_unop_rm<0x1D, "vpabsw", v8i16, abs, SchedWriteVecALU, + loadv2i64>, VEX, VEX_WIG; +} +let Predicates = [HasAVX, NoVLX] in { + defm VPABSD : SS3I_unop_rm<0x1E, "vpabsd", v4i32, abs, SchedWriteVecALU, + loadv2i64>, VEX, VEX_WIG; +} +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { + defm VPABSB : SS3I_unop_rm_y<0x1C, "vpabsb", v32i8, abs, SchedWriteVecALU>, + VEX, VEX_L, VEX_WIG; + defm VPABSW : SS3I_unop_rm_y<0x1D, "vpabsw", v16i16, abs, SchedWriteVecALU>, + VEX, VEX_L, VEX_WIG; +} +let Predicates = [HasAVX2, NoVLX] in { + defm VPABSD : SS3I_unop_rm_y<0x1E, "vpabsd", v8i32, abs, SchedWriteVecALU>, + VEX, VEX_L, VEX_WIG; +} + +defm PABSB : SS3I_unop_rm<0x1C, "pabsb", v16i8, abs, SchedWriteVecALU, + memopv2i64>; +defm PABSW : SS3I_unop_rm<0x1D, "pabsw", v8i16, abs, SchedWriteVecALU, + memopv2i64>; +defm PABSD : SS3I_unop_rm<0x1E, "pabsd", v4i32, abs, SchedWriteVecALU, + memopv2i64>; + +//===---------------------------------------------------------------------===// +// SSSE3 - Packed Binary Operator Instructions +//===---------------------------------------------------------------------===// + +/// SS3I_binop_rm - Simple SSSE3 bin op +multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType DstVT, ValueType OpVT, RegisterClass RC, + PatFrag memop_frag, X86MemOperand x86memop, + X86FoldableSchedWrite sched, bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : SS38I<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (DstVT (OpNode (OpVT RC:$src1), RC:$src2)))]>, + Sched<[sched]>; + def rm : SS38I<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (DstVT (OpNode (OpVT RC:$src1), + (bitconvert (memop_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}. +multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId128, X86FoldableSchedWrite sched, + PatFrag ld_frag, bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : SS38I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>, + Sched<[sched]>; + def rm : SS38I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set VR128:$dst, + (IntId128 VR128:$src1, + (bitconvert (ld_frag addr:$src2))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr, + Intrinsic IntId256, + X86FoldableSchedWrite sched> { + let isCommutable = 1 in + def Yrr : SS38I<opc, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR256:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>, + Sched<[sched]>; + def Yrm : SS38I<opc, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, i256mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let ImmT = NoImm, Predicates = [HasAVX, NoVLX_Or_NoBWI] in { +let isCommutable = 0 in { + defm VPSHUFB : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v16i8, v16i8, + VR128, loadv2i64, i128mem, + SchedWriteVarShuffle.XMM, 0>, VEX_4V, VEX_WIG; + defm VPMADDUBSW : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v8i16, + v16i8, VR128, loadv2i64, i128mem, + SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG; +} +defm VPMULHRSW : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v8i16, v8i16, + VR128, loadv2i64, i128mem, + SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG; +} + +let ImmT = NoImm, Predicates = [HasAVX] in { +let isCommutable = 0 in { + defm VPHADDW : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v8i16, v8i16, VR128, + loadv2i64, i128mem, + SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG; + defm VPHADDD : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v4i32, v4i32, VR128, + loadv2i64, i128mem, + SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG; + defm VPHSUBW : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v8i16, v8i16, VR128, + loadv2i64, i128mem, + SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG; + defm VPHSUBD : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v4i32, v4i32, VR128, + loadv2i64, i128mem, + SchedWritePHAdd.XMM, 0>, VEX_4V; + defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb", + int_x86_ssse3_psign_b_128, + SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG; + defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw", + int_x86_ssse3_psign_w_128, + SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG; + defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd", + int_x86_ssse3_psign_d_128, + SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG; + defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw", + int_x86_ssse3_phadd_sw_128, + SchedWritePHAdd.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG; + defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw", + int_x86_ssse3_phsub_sw_128, + SchedWritePHAdd.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG; +} +} + +let ImmT = NoImm, Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { +let isCommutable = 0 in { + defm VPSHUFBY : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v32i8, v32i8, + VR256, loadv4i64, i256mem, + SchedWriteVarShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; + defm VPMADDUBSWY : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v16i16, + v32i8, VR256, loadv4i64, i256mem, + SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; +} +defm VPMULHRSWY : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v16i16, v16i16, + VR256, loadv4i64, i256mem, + SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; +} + +let ImmT = NoImm, Predicates = [HasAVX2] in { +let isCommutable = 0 in { + defm VPHADDWY : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v16i16, v16i16, + VR256, loadv4i64, i256mem, + SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; + defm VPHADDDY : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v8i32, v8i32, VR256, + loadv4i64, i256mem, + SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; + defm VPHSUBWY : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v16i16, v16i16, + VR256, loadv4i64, i256mem, + SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; + defm VPHSUBDY : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v8i32, v8i32, VR256, + loadv4i64, i256mem, + SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L; + defm VPSIGNB : SS3I_binop_rm_int_y<0x08, "vpsignb", int_x86_avx2_psign_b, + SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG; + defm VPSIGNW : SS3I_binop_rm_int_y<0x09, "vpsignw", int_x86_avx2_psign_w, + SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG; + defm VPSIGND : SS3I_binop_rm_int_y<0x0A, "vpsignd", int_x86_avx2_psign_d, + SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG; + defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw", + int_x86_avx2_phadd_sw, + SchedWritePHAdd.YMM>, VEX_4V, VEX_L, VEX_WIG; + defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw", + int_x86_avx2_phsub_sw, + SchedWritePHAdd.YMM>, VEX_4V, VEX_L, VEX_WIG; +} +} + +// None of these have i8 immediate fields. +let ImmT = NoImm, Constraints = "$src1 = $dst" in { +let isCommutable = 0 in { + defm PHADDW : SS3I_binop_rm<0x01, "phaddw", X86hadd, v8i16, v8i16, VR128, + memopv2i64, i128mem, SchedWritePHAdd.XMM>; + defm PHADDD : SS3I_binop_rm<0x02, "phaddd", X86hadd, v4i32, v4i32, VR128, + memopv2i64, i128mem, SchedWritePHAdd.XMM>; + defm PHSUBW : SS3I_binop_rm<0x05, "phsubw", X86hsub, v8i16, v8i16, VR128, + memopv2i64, i128mem, SchedWritePHAdd.XMM>; + defm PHSUBD : SS3I_binop_rm<0x06, "phsubd", X86hsub, v4i32, v4i32, VR128, + memopv2i64, i128mem, SchedWritePHAdd.XMM>; + defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", int_x86_ssse3_psign_b_128, + SchedWriteVecALU.XMM, memopv2i64>; + defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", int_x86_ssse3_psign_w_128, + SchedWriteVecALU.XMM, memopv2i64>; + defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", int_x86_ssse3_psign_d_128, + SchedWriteVecALU.XMM, memopv2i64>; + defm PSHUFB : SS3I_binop_rm<0x00, "pshufb", X86pshufb, v16i8, v16i8, VR128, + memopv2i64, i128mem, SchedWriteVarShuffle.XMM>; + defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw", + int_x86_ssse3_phadd_sw_128, + SchedWritePHAdd.XMM, memopv2i64>; + defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw", + int_x86_ssse3_phsub_sw_128, + SchedWritePHAdd.XMM, memopv2i64>; + defm PMADDUBSW : SS3I_binop_rm<0x04, "pmaddubsw", X86vpmaddubsw, v8i16, + v16i8, VR128, memopv2i64, i128mem, + SchedWriteVecIMul.XMM>; +} +defm PMULHRSW : SS3I_binop_rm<0x0B, "pmulhrsw", X86mulhrs, v8i16, v8i16, + VR128, memopv2i64, i128mem, SchedWriteVecIMul.XMM>; +} + +//===---------------------------------------------------------------------===// +// SSSE3 - Packed Align Instruction Patterns +//===---------------------------------------------------------------------===// + +multiclass ssse3_palignr<string asm, ValueType VT, RegisterClass RC, + PatFrag memop_frag, X86MemOperand x86memop, + X86FoldableSchedWrite sched, bit Is2Addr = 1> { + let hasSideEffects = 0 in { + def rri : SS3AI<0x0F, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, (VT (X86PAlignr RC:$src1, RC:$src2, (i8 imm:$src3))))]>, + Sched<[sched]>; + let mayLoad = 1 in + def rmi : SS3AI<0x0F, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, (VT (X86PAlignr RC:$src1, + (bitconvert (memop_frag addr:$src2)), + (i8 imm:$src3))))]>, + Sched<[sched.Folded, ReadAfterLd]>; + } +} + +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in + defm VPALIGNR : ssse3_palignr<"vpalignr", v16i8, VR128, loadv2i64, i128mem, + SchedWriteShuffle.XMM, 0>, VEX_4V, VEX_WIG; +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in + defm VPALIGNRY : ssse3_palignr<"vpalignr", v32i8, VR256, loadv4i64, i256mem, + SchedWriteShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG; +let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in + defm PALIGNR : ssse3_palignr<"palignr", v16i8, VR128, memopv2i64, i128mem, + SchedWriteShuffle.XMM>; + +//===---------------------------------------------------------------------===// +// SSSE3 - Thread synchronization +//===---------------------------------------------------------------------===// + +let SchedRW = [WriteSystem] in { +/* +let usesCustomInserter = 1 in { +def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3), + [(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>, + Requires<[HasSSE3]>; +} +*/ + +let Uses = [EAX, ECX, EDX] in +def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>, + TB, Requires<[HasSSE3]>; + +let Uses = [ECX, EAX] in +def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait", + [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>; +} // SchedRW + +// def : InstAlias<"mwait\t{%eax, %ecx|ecx, eax}", (MWAITrr)>, Requires<[Not64BitMode]>; +// def : InstAlias<"mwait\t{%rax, %rcx|rcx, rax}", (MWAITrr)>, Requires<[In64BitMode]>; + +// def : InstAlias<"monitor\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITORrrr)>, +// Requires<[Not64BitMode]>; +// def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORrrr)>, +// Requires<[In64BitMode]>; + +//===----------------------------------------------------------------------===// +// SSE4.1 - Packed Move with Sign/Zero Extend +//===----------------------------------------------------------------------===// + +multiclass SS41I_pmovx_rrrm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp, + RegisterClass OutRC, RegisterClass InRC, + X86FoldableSchedWrite sched> { + def rr : SS48I<opc, MRMSrcReg, (outs OutRC:$dst), (ins InRC:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>, + Sched<[sched]>; + + def rm : SS48I<opc, MRMSrcMem, (outs OutRC:$dst), (ins MemOp:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>, + Sched<[sched.Folded]>; +} + +multiclass SS41I_pmovx_rm_all<bits<8> opc, string OpcodeStr, + X86MemOperand MemOp, X86MemOperand MemYOp, + Predicate prd> { + defm NAME : SS41I_pmovx_rrrm<opc, OpcodeStr, MemOp, VR128, VR128, + SchedWriteShuffle.XMM>; + let Predicates = [HasAVX, prd] in + defm V#NAME : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemOp, + VR128, VR128, SchedWriteShuffle.XMM>, + VEX, VEX_WIG; + let Predicates = [HasAVX2, prd] in + defm V#NAME#Y : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemYOp, + VR256, VR128, WriteShuffle256>, + VEX, VEX_L, VEX_WIG; +} + +multiclass SS41I_pmovx_rm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp, + X86MemOperand MemYOp, Predicate prd> { + defm PMOVSX#NAME : SS41I_pmovx_rm_all<opc, !strconcat("pmovsx", OpcodeStr), + MemOp, MemYOp, prd>; + defm PMOVZX#NAME : SS41I_pmovx_rm_all<!add(opc, 0x10), + !strconcat("pmovzx", OpcodeStr), + MemOp, MemYOp, prd>; +} + +defm BW : SS41I_pmovx_rm<0x20, "bw", i64mem, i128mem, NoVLX_Or_NoBWI>; +defm WD : SS41I_pmovx_rm<0x23, "wd", i64mem, i128mem, NoVLX>; +defm DQ : SS41I_pmovx_rm<0x25, "dq", i64mem, i128mem, NoVLX>; + +defm BD : SS41I_pmovx_rm<0x21, "bd", i32mem, i64mem, NoVLX>; +defm WQ : SS41I_pmovx_rm<0x24, "wq", i32mem, i64mem, NoVLX>; + +defm BQ : SS41I_pmovx_rm<0x22, "bq", i16mem, i32mem, NoVLX>; + +// AVX2 Patterns +multiclass SS41I_pmovx_avx2_patterns<string OpcPrefix, string ExtTy, SDNode ExtOp> { + // Register-Register patterns + let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + def : Pat<(v16i16 (ExtOp (v16i8 VR128:$src))), + (!cast<I>(OpcPrefix#BWYrr) VR128:$src)>; + } + let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v8i32 (ExtOp (v16i8 VR128:$src))), + (!cast<I>(OpcPrefix#BDYrr) VR128:$src)>; + def : Pat<(v4i64 (ExtOp (v16i8 VR128:$src))), + (!cast<I>(OpcPrefix#BQYrr) VR128:$src)>; + + def : Pat<(v8i32 (ExtOp (v8i16 VR128:$src))), + (!cast<I>(OpcPrefix#WDYrr) VR128:$src)>; + def : Pat<(v4i64 (ExtOp (v8i16 VR128:$src))), + (!cast<I>(OpcPrefix#WQYrr) VR128:$src)>; + + def : Pat<(v4i64 (ExtOp (v4i32 VR128:$src))), + (!cast<I>(OpcPrefix#DQYrr) VR128:$src)>; + } + + // Simple Register-Memory patterns + let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + def : Pat<(v16i16 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)), + (!cast<I>(OpcPrefix#BWYrm) addr:$src)>; + } + let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v8i32 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)), + (!cast<I>(OpcPrefix#BDYrm) addr:$src)>; + def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)), + (!cast<I>(OpcPrefix#BQYrm) addr:$src)>; + + def : Pat<(v8i32 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)), + (!cast<I>(OpcPrefix#WDYrm) addr:$src)>; + def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)), + (!cast<I>(OpcPrefix#WQYrm) addr:$src)>; + + def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi32") addr:$src)), + (!cast<I>(OpcPrefix#DQYrm) addr:$src)>; + } + + // AVX2 Register-Memory patterns + let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BWYrm) addr:$src)>; + def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BWYrm) addr:$src)>; + def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BWYrm) addr:$src)>; + } + let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v8i32 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (!cast<I>(OpcPrefix#BDYrm) addr:$src)>; + def : Pat<(v8i32 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BDYrm) addr:$src)>; + def : Pat<(v8i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BDYrm) addr:$src)>; + def : Pat<(v8i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BDYrm) addr:$src)>; + + def : Pat<(v4i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), + (!cast<I>(OpcPrefix#BQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))), + (!cast<I>(OpcPrefix#BQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BQYrm) addr:$src)>; + + def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WDYrm) addr:$src)>; + def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WDYrm) addr:$src)>; + def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WDYrm) addr:$src)>; + + def : Pat<(v4i64 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (!cast<I>(OpcPrefix#WQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WQYrm) addr:$src)>; + + def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#DQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#DQYrm) addr:$src)>; + def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#DQYrm) addr:$src)>; + } +} + +defm : SS41I_pmovx_avx2_patterns<"VPMOVSX", "s", X86vsext>; +defm : SS41I_pmovx_avx2_patterns<"VPMOVZX", "z", X86vzext>; + +// SSE4.1/AVX patterns. +multiclass SS41I_pmovx_patterns<string OpcPrefix, string ExtTy, + SDNode ExtOp> { + let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + def : Pat<(v8i16 (ExtOp (v16i8 VR128:$src))), + (!cast<I>(OpcPrefix#BWrr) VR128:$src)>; + } + let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4i32 (ExtOp (v16i8 VR128:$src))), + (!cast<I>(OpcPrefix#BDrr) VR128:$src)>; + def : Pat<(v2i64 (ExtOp (v16i8 VR128:$src))), + (!cast<I>(OpcPrefix#BQrr) VR128:$src)>; + + def : Pat<(v4i32 (ExtOp (v8i16 VR128:$src))), + (!cast<I>(OpcPrefix#WDrr) VR128:$src)>; + def : Pat<(v2i64 (ExtOp (v8i16 VR128:$src))), + (!cast<I>(OpcPrefix#WQrr) VR128:$src)>; + + def : Pat<(v2i64 (ExtOp (v4i32 VR128:$src))), + (!cast<I>(OpcPrefix#DQrr) VR128:$src)>; + } + let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + def : Pat<(v8i16 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)), + (!cast<I>(OpcPrefix#BWrm) addr:$src)>; + } + let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4i32 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)), + (!cast<I>(OpcPrefix#BDrm) addr:$src)>; + def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)), + (!cast<I>(OpcPrefix#BQrm) addr:$src)>; + + def : Pat<(v4i32 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)), + (!cast<I>(OpcPrefix#WDrm) addr:$src)>; + def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)), + (!cast<I>(OpcPrefix#WQrm) addr:$src)>; + + def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi32") addr:$src)), + (!cast<I>(OpcPrefix#DQrm) addr:$src)>; + } + let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (!cast<I>(OpcPrefix#BWrm) addr:$src)>; + def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), + (!cast<I>(OpcPrefix#BWrm) addr:$src)>; + def : Pat<(v8i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BWrm) addr:$src)>; + def : Pat<(v8i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BWrm) addr:$src)>; + def : Pat<(v8i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BWrm) addr:$src)>; + } + let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4i32 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), + (!cast<I>(OpcPrefix#BDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))), + (!cast<I>(OpcPrefix#BDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BDrm) addr:$src)>; + + def : Pat<(v2i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (extloadi32i16 addr:$src)))))), + (!cast<I>(OpcPrefix#BQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))), + (!cast<I>(OpcPrefix#BQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#BQrm) addr:$src)>; + + def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (!cast<I>(OpcPrefix#WDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), + (!cast<I>(OpcPrefix#WDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WDrm) addr:$src)>; + def : Pat<(v4i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WDrm) addr:$src)>; + + def : Pat<(v2i64 (ExtOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))), + (!cast<I>(OpcPrefix#WQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (v8i16 (vzmovl_v4i32 addr:$src)))), + (!cast<I>(OpcPrefix#WQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#WQrm) addr:$src)>; + + def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))), + (!cast<I>(OpcPrefix#DQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))), + (!cast<I>(OpcPrefix#DQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#DQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))), + (!cast<I>(OpcPrefix#DQrm) addr:$src)>; + def : Pat<(v2i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))), + (!cast<I>(OpcPrefix#DQrm) addr:$src)>; + } +} + +defm : SS41I_pmovx_patterns<"VPMOVSX", "s", sext_invec>; +defm : SS41I_pmovx_patterns<"VPMOVZX", "z", zext_invec>; + +let Predicates = [UseSSE41] in { + defm : SS41I_pmovx_patterns<"PMOVSX", "s", sext_invec>; + defm : SS41I_pmovx_patterns<"PMOVZX", "z", zext_invec>; +} + +//===----------------------------------------------------------------------===// +// SSE4.1 - Extract Instructions +//===----------------------------------------------------------------------===// + +/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem +multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> { + def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst), + (ins VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set GR32orGR64:$dst, (X86pextrb (v16i8 VR128:$src1), + imm:$src2))]>, + Sched<[WriteVecExtract]>; + let hasSideEffects = 0, mayStore = 1 in + def mr : SS4AIi8<opc, MRMDestMem, (outs), + (ins i8mem:$dst, VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), + addr:$dst)]>, Sched<[WriteVecExtractSt]>; +} + +let Predicates = [HasAVX, NoBWI] in + defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX; + +defm PEXTRB : SS41I_extract8<0x14, "pextrb">; + + +/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination +multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> { + let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in + def rr_REV : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst), + (ins VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>, + Sched<[WriteVecExtract]>, FoldGenData<NAME#rr>; + + let hasSideEffects = 0, mayStore = 1 in + def mr : SS4AIi8<opc, MRMDestMem, (outs), + (ins i16mem:$dst, VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(store (i16 (trunc (X86pextrw (v8i16 VR128:$src1), imm:$src2))), + addr:$dst)]>, Sched<[WriteVecExtractSt]>; +} + +let Predicates = [HasAVX, NoBWI] in + defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX; + +defm PEXTRW : SS41I_extract16<0x15, "pextrw">; + + +/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination +multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> { + def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst), + (ins VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set GR32:$dst, + (extractelt (v4i32 VR128:$src1), imm:$src2))]>, + Sched<[WriteVecExtract]>; + def mr : SS4AIi8<opc, MRMDestMem, (outs), + (ins i32mem:$dst, VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(store (extractelt (v4i32 VR128:$src1), imm:$src2), + addr:$dst)]>, Sched<[WriteVecExtractSt]>; +} + +let Predicates = [HasAVX, NoDQI] in + defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX; + +defm PEXTRD : SS41I_extract32<0x16, "pextrd">; + +/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination +multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> { + def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst), + (ins VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set GR64:$dst, + (extractelt (v2i64 VR128:$src1), imm:$src2))]>, + Sched<[WriteVecExtract]>; + def mr : SS4AIi8<opc, MRMDestMem, (outs), + (ins i64mem:$dst, VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(store (extractelt (v2i64 VR128:$src1), imm:$src2), + addr:$dst)]>, Sched<[WriteVecExtractSt]>; +} + +let Predicates = [HasAVX, NoDQI] in + defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W; + +defm PEXTRQ : SS41I_extract64<0x16, "pextrq">, REX_W; + +/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory +/// destination +multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> { + def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst), + (ins VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set GR32orGR64:$dst, + (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))]>, + Sched<[WriteVecExtract]>; + def mr : SS4AIi8<opc, MRMDestMem, (outs), + (ins f32mem:$dst, VR128:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2), + addr:$dst)]>, Sched<[WriteVecExtractSt]>; +} + +let ExeDomain = SSEPackedSingle in { + let Predicates = [UseAVX] in + defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX, VEX_WIG; + defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">; +} + +// Also match an EXTRACTPS store when the store is done as f32 instead of i32. +def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)), + imm:$src2))), + addr:$dst), + (VEXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>, + Requires<[HasAVX]>; +def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)), + imm:$src2))), + addr:$dst), + (EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>, + Requires<[UseSSE41]>; + +//===----------------------------------------------------------------------===// +// SSE4.1 - Insert Instructions +//===----------------------------------------------------------------------===// + +multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, GR32orGR64:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86pinsrb VR128:$src1, GR32orGR64:$src2, imm:$src3))]>, + Sched<[WriteVecInsert]>; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i8mem:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86pinsrb VR128:$src1, (extloadi8 addr:$src2), + imm:$src3))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoBWI] in + defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PINSRB : SS41I_insert8<0x20, "pinsrb">; + +multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, GR32:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>, + Sched<[WriteVecInsert]>; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i32mem:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2), + imm:$src3)))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoDQI] in + defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V; +let Constraints = "$src1 = $dst" in + defm PINSRD : SS41I_insert32<0x22, "pinsrd">; + +multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, GR64:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>, + Sched<[WriteVecInsert]>; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i64mem:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2), + imm:$src3)))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoDQI] in + defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W; +let Constraints = "$src1 = $dst" in + defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W; + +// insertps has a few different modes, there's the first two here below which +// are optimized inserts that won't zero arbitrary elements in the destination +// vector. The next one matches the intrinsic and could zero arbitrary elements +// in the target vector. +multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1> { + def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86insertps VR128:$src1, VR128:$src2, imm:$src3))]>, + Sched<[SchedWriteFShuffle.XMM]>; + def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, f32mem:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(asm, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (X86insertps VR128:$src1, + (v4f32 (scalar_to_vector (loadf32 addr:$src2))), + imm:$src3))]>, + Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>; +} + +let ExeDomain = SSEPackedSingle in { + let Predicates = [UseAVX] in + defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, + VEX_4V, VEX_WIG; + let Constraints = "$src1 = $dst" in + defm INSERTPS : SS41I_insertf32<0x21, "insertps", 1>; +} + +let Predicates = [UseAVX] in { + // If we're inserting an element from a vbroadcast of a load, fold the + // load into the X86insertps instruction. + def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1), + (X86VBroadcast (loadf32 addr:$src2)), imm:$src3)), + (VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>; + def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1), + (X86VBroadcast (loadv4f32 addr:$src2)), imm:$src3)), + (VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>; +} + +//===----------------------------------------------------------------------===// +// SSE4.1 - Round Instructions +//===----------------------------------------------------------------------===// + +multiclass sse41_fp_unop_p<bits<8> opc, string OpcodeStr, + X86MemOperand x86memop, RegisterClass RC, + ValueType VT, PatFrag mem_frag, SDNode OpNode, + X86FoldableSchedWrite sched> { + // Intrinsic operation, reg. + // Vector intrinsic operation, reg + def r : SS4AIi8<opc, MRMSrcReg, + (outs RC:$dst), (ins RC:$src1, i32u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, (VT (OpNode RC:$src1, imm:$src2)))]>, + Sched<[sched]>; + + // Vector intrinsic operation, mem + def m : SS4AIi8<opc, MRMSrcMem, + (outs RC:$dst), (ins x86memop:$src1, i32u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, + (VT (OpNode (mem_frag addr:$src1),imm:$src2)))]>, + Sched<[sched.Folded]>; +} + +multiclass avx_fp_unop_rm<bits<8> opcss, bits<8> opcsd, + string OpcodeStr, X86FoldableSchedWrite sched> { +let ExeDomain = SSEPackedSingle, hasSideEffects = 0 in { + def SSr : SS4AIi8<opcss, MRMSrcReg, + (outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32u8imm:$src3), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, Sched<[sched]>; + + let mayLoad = 1 in + def SSm : SS4AIi8<opcss, MRMSrcMem, + (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2, i32u8imm:$src3), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, Sched<[sched.Folded, ReadAfterLd]>; +} // ExeDomain = SSEPackedSingle, hasSideEffects = 0 + +let ExeDomain = SSEPackedDouble, hasSideEffects = 0 in { + def SDr : SS4AIi8<opcsd, MRMSrcReg, + (outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32u8imm:$src3), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, Sched<[sched]>; + + let mayLoad = 1 in + def SDm : SS4AIi8<opcsd, MRMSrcMem, + (outs FR64:$dst), (ins FR64:$src1, f64mem:$src2, i32u8imm:$src3), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + []>, Sched<[sched.Folded, ReadAfterLd]>; +} // ExeDomain = SSEPackedDouble, hasSideEffects = 0 +} + +multiclass sse41_fp_unop_s<bits<8> opcss, bits<8> opcsd, + string OpcodeStr, X86FoldableSchedWrite sched> { +let ExeDomain = SSEPackedSingle, hasSideEffects = 0 in { + def SSr : SS4AIi8<opcss, MRMSrcReg, + (outs FR32:$dst), (ins FR32:$src1, i32u8imm:$src2), + !strconcat(OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, Sched<[sched]>; + + let mayLoad = 1 in + def SSm : SS4AIi8<opcss, MRMSrcMem, + (outs FR32:$dst), (ins f32mem:$src1, i32u8imm:$src2), + !strconcat(OpcodeStr, + "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, Sched<[sched.Folded, ReadAfterLd]>; +} // ExeDomain = SSEPackedSingle, hasSideEffects = 0 + +let ExeDomain = SSEPackedDouble, hasSideEffects = 0 in { + def SDr : SS4AIi8<opcsd, MRMSrcReg, + (outs FR64:$dst), (ins FR64:$src1, i32u8imm:$src2), + !strconcat(OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, Sched<[sched]>; + + let mayLoad = 1 in + def SDm : SS4AIi8<opcsd, MRMSrcMem, + (outs FR64:$dst), (ins f64mem:$src1, i32u8imm:$src2), + !strconcat(OpcodeStr, + "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + []>, Sched<[sched.Folded, ReadAfterLd]>; +} // ExeDomain = SSEPackedDouble, hasSideEffects = 0 +} + +multiclass sse41_fp_binop_s<bits<8> opcss, bits<8> opcsd, + string OpcodeStr, X86FoldableSchedWrite sched, + ValueType VT32, ValueType VT64, + SDNode OpNode, bit Is2Addr = 1> { +let ExeDomain = SSEPackedSingle, isCodeGenOnly = 1 in { + def SSr_Int : SS4AIi8<opcss, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, (VT32 (OpNode VR128:$src1, VR128:$src2, imm:$src3)))]>, + Sched<[sched]>; + + def SSm_Int : SS4AIi8<opcss, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (OpNode VR128:$src1, sse_load_f32:$src2, imm:$src3))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} // ExeDomain = SSEPackedSingle, isCodeGenOnly = 1 + +let ExeDomain = SSEPackedDouble, isCodeGenOnly = 1 in { + def SDr_Int : SS4AIi8<opcsd, MRMSrcReg, + (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, (VT64 (OpNode VR128:$src1, VR128:$src2, imm:$src3)))]>, + Sched<[sched]>; + + def SDm_Int : SS4AIi8<opcsd, MRMSrcMem, + (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set VR128:$dst, + (OpNode VR128:$src1, sse_load_f64:$src2, imm:$src3))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} // ExeDomain = SSEPackedDouble, isCodeGenOnly = 1 +} + +// FP round - roundss, roundps, roundsd, roundpd +let Predicates = [HasAVX, NoVLX] in { + let ExeDomain = SSEPackedSingle in { + // Intrinsic form + defm VROUNDPS : sse41_fp_unop_p<0x08, "vroundps", f128mem, VR128, v4f32, + loadv4f32, X86VRndScale, SchedWriteFRnd.XMM>, + VEX, VEX_WIG; + defm VROUNDPSY : sse41_fp_unop_p<0x08, "vroundps", f256mem, VR256, v8f32, + loadv8f32, X86VRndScale, SchedWriteFRnd.YMM>, + VEX, VEX_L, VEX_WIG; + } + + let ExeDomain = SSEPackedDouble in { + defm VROUNDPD : sse41_fp_unop_p<0x09, "vroundpd", f128mem, VR128, v2f64, + loadv2f64, X86VRndScale, SchedWriteFRnd.XMM>, + VEX, VEX_WIG; + defm VROUNDPDY : sse41_fp_unop_p<0x09, "vroundpd", f256mem, VR256, v4f64, + loadv4f64, X86VRndScale, SchedWriteFRnd.YMM>, + VEX, VEX_L, VEX_WIG; + } +} +let Predicates = [HasAVX, NoAVX512] in { + defm VROUND : sse41_fp_binop_s<0x0A, 0x0B, "vround", SchedWriteFRnd.Scl, + v4f32, v2f64, X86RndScales, 0>, + VEX_4V, VEX_LIG, VEX_WIG; + defm VROUND : avx_fp_unop_rm<0x0A, 0x0B, "vround", SchedWriteFRnd.Scl>, + VEX_4V, VEX_LIG, VEX_WIG; +} + +let Predicates = [UseAVX] in { + def : Pat<(ffloor FR32:$src), + (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x9))>; + def : Pat<(f32 (fnearbyint FR32:$src)), + (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>; + def : Pat<(f32 (fceil FR32:$src)), + (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xA))>; + def : Pat<(f32 (frint FR32:$src)), + (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>; + def : Pat<(f32 (ftrunc FR32:$src)), + (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xB))>; + + def : Pat<(f64 (ffloor FR64:$src)), + (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x9))>; + def : Pat<(f64 (fnearbyint FR64:$src)), + (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>; + def : Pat<(f64 (fceil FR64:$src)), + (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xA))>; + def : Pat<(f64 (frint FR64:$src)), + (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>; + def : Pat<(f64 (ftrunc FR64:$src)), + (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xB))>; +} + +let Predicates = [UseAVX, OptForSize] in { + def : Pat<(ffloor (loadf32 addr:$src)), + (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0x9))>; + def : Pat<(f32 (fnearbyint (loadf32 addr:$src))), + (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0xC))>; + def : Pat<(f32 (fceil (loadf32 addr:$src))), + (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0xA))>; + def : Pat<(f32 (frint (loadf32 addr:$src))), + (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0x4))>; + def : Pat<(f32 (ftrunc (loadf32 addr:$src))), + (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0xB))>; + + def : Pat<(f64 (ffloor (loadf64 addr:$src))), + (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0x9))>; + def : Pat<(f64 (fnearbyint (loadf64 addr:$src))), + (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0xC))>; + def : Pat<(f64 (fceil (loadf64 addr:$src))), + (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0xA))>; + def : Pat<(f64 (frint (loadf64 addr:$src))), + (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0x4))>; + def : Pat<(f64 (ftrunc (loadf64 addr:$src))), + (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0xB))>; +} + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4f32 (ffloor VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0x9))>; + def : Pat<(v4f32 (fnearbyint VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0xC))>; + def : Pat<(v4f32 (fceil VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0xA))>; + def : Pat<(v4f32 (frint VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0x4))>; + def : Pat<(v4f32 (ftrunc VR128:$src)), + (VROUNDPSr VR128:$src, (i32 0xB))>; + + def : Pat<(v4f32 (ffloor (loadv4f32 addr:$src))), + (VROUNDPSm addr:$src, (i32 0x9))>; + def : Pat<(v4f32 (fnearbyint (loadv4f32 addr:$src))), + (VROUNDPSm addr:$src, (i32 0xC))>; + def : Pat<(v4f32 (fceil (loadv4f32 addr:$src))), + (VROUNDPSm addr:$src, (i32 0xA))>; + def : Pat<(v4f32 (frint (loadv4f32 addr:$src))), + (VROUNDPSm addr:$src, (i32 0x4))>; + def : Pat<(v4f32 (ftrunc (loadv4f32 addr:$src))), + (VROUNDPSm addr:$src, (i32 0xB))>; + + def : Pat<(v2f64 (ffloor VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0x9))>; + def : Pat<(v2f64 (fnearbyint VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0xC))>; + def : Pat<(v2f64 (fceil VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0xA))>; + def : Pat<(v2f64 (frint VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0x4))>; + def : Pat<(v2f64 (ftrunc VR128:$src)), + (VROUNDPDr VR128:$src, (i32 0xB))>; + + def : Pat<(v2f64 (ffloor (loadv2f64 addr:$src))), + (VROUNDPDm addr:$src, (i32 0x9))>; + def : Pat<(v2f64 (fnearbyint (loadv2f64 addr:$src))), + (VROUNDPDm addr:$src, (i32 0xC))>; + def : Pat<(v2f64 (fceil (loadv2f64 addr:$src))), + (VROUNDPDm addr:$src, (i32 0xA))>; + def : Pat<(v2f64 (frint (loadv2f64 addr:$src))), + (VROUNDPDm addr:$src, (i32 0x4))>; + def : Pat<(v2f64 (ftrunc (loadv2f64 addr:$src))), + (VROUNDPDm addr:$src, (i32 0xB))>; + + def : Pat<(v8f32 (ffloor VR256:$src)), + (VROUNDPSYr VR256:$src, (i32 0x9))>; + def : Pat<(v8f32 (fnearbyint VR256:$src)), + (VROUNDPSYr VR256:$src, (i32 0xC))>; + def : Pat<(v8f32 (fceil VR256:$src)), + (VROUNDPSYr VR256:$src, (i32 0xA))>; + def : Pat<(v8f32 (frint VR256:$src)), + (VROUNDPSYr VR256:$src, (i32 0x4))>; + def : Pat<(v8f32 (ftrunc VR256:$src)), + (VROUNDPSYr VR256:$src, (i32 0xB))>; + + def : Pat<(v8f32 (ffloor (loadv8f32 addr:$src))), + (VROUNDPSYm addr:$src, (i32 0x9))>; + def : Pat<(v8f32 (fnearbyint (loadv8f32 addr:$src))), + (VROUNDPSYm addr:$src, (i32 0xC))>; + def : Pat<(v8f32 (fceil (loadv8f32 addr:$src))), + (VROUNDPSYm addr:$src, (i32 0xA))>; + def : Pat<(v8f32 (frint (loadv8f32 addr:$src))), + (VROUNDPSYm addr:$src, (i32 0x4))>; + def : Pat<(v8f32 (ftrunc (loadv8f32 addr:$src))), + (VROUNDPSYm addr:$src, (i32 0xB))>; + + def : Pat<(v4f64 (ffloor VR256:$src)), + (VROUNDPDYr VR256:$src, (i32 0x9))>; + def : Pat<(v4f64 (fnearbyint VR256:$src)), + (VROUNDPDYr VR256:$src, (i32 0xC))>; + def : Pat<(v4f64 (fceil VR256:$src)), + (VROUNDPDYr VR256:$src, (i32 0xA))>; + def : Pat<(v4f64 (frint VR256:$src)), + (VROUNDPDYr VR256:$src, (i32 0x4))>; + def : Pat<(v4f64 (ftrunc VR256:$src)), + (VROUNDPDYr VR256:$src, (i32 0xB))>; + + def : Pat<(v4f64 (ffloor (loadv4f64 addr:$src))), + (VROUNDPDYm addr:$src, (i32 0x9))>; + def : Pat<(v4f64 (fnearbyint (loadv4f64 addr:$src))), + (VROUNDPDYm addr:$src, (i32 0xC))>; + def : Pat<(v4f64 (fceil (loadv4f64 addr:$src))), + (VROUNDPDYm addr:$src, (i32 0xA))>; + def : Pat<(v4f64 (frint (loadv4f64 addr:$src))), + (VROUNDPDYm addr:$src, (i32 0x4))>; + def : Pat<(v4f64 (ftrunc (loadv4f64 addr:$src))), + (VROUNDPDYm addr:$src, (i32 0xB))>; +} + +let ExeDomain = SSEPackedSingle in +defm ROUNDPS : sse41_fp_unop_p<0x08, "roundps", f128mem, VR128, v4f32, + memopv4f32, X86VRndScale, SchedWriteFRnd.XMM>; +let ExeDomain = SSEPackedDouble in +defm ROUNDPD : sse41_fp_unop_p<0x09, "roundpd", f128mem, VR128, v2f64, + memopv2f64, X86VRndScale, SchedWriteFRnd.XMM>; + +defm ROUND : sse41_fp_unop_s<0x0A, 0x0B, "round", SchedWriteFRnd.Scl>; + +let Constraints = "$src1 = $dst" in +defm ROUND : sse41_fp_binop_s<0x0A, 0x0B, "round", SchedWriteFRnd.Scl, + v4f32, v2f64, X86RndScales>; + +let Predicates = [UseSSE41] in { + def : Pat<(ffloor FR32:$src), + (ROUNDSSr FR32:$src, (i32 0x9))>; + def : Pat<(f32 (fnearbyint FR32:$src)), + (ROUNDSSr FR32:$src, (i32 0xC))>; + def : Pat<(f32 (fceil FR32:$src)), + (ROUNDSSr FR32:$src, (i32 0xA))>; + def : Pat<(f32 (frint FR32:$src)), + (ROUNDSSr FR32:$src, (i32 0x4))>; + def : Pat<(f32 (ftrunc FR32:$src)), + (ROUNDSSr FR32:$src, (i32 0xB))>; + + def : Pat<(f64 (ffloor FR64:$src)), + (ROUNDSDr FR64:$src, (i32 0x9))>; + def : Pat<(f64 (fnearbyint FR64:$src)), + (ROUNDSDr FR64:$src, (i32 0xC))>; + def : Pat<(f64 (fceil FR64:$src)), + (ROUNDSDr FR64:$src, (i32 0xA))>; + def : Pat<(f64 (frint FR64:$src)), + (ROUNDSDr FR64:$src, (i32 0x4))>; + def : Pat<(f64 (ftrunc FR64:$src)), + (ROUNDSDr FR64:$src, (i32 0xB))>; +} + +let Predicates = [UseSSE41, OptForSize] in { + def : Pat<(ffloor (loadf32 addr:$src)), + (ROUNDSSm addr:$src, (i32 0x9))>; + def : Pat<(f32 (fnearbyint (loadf32 addr:$src))), + (ROUNDSSm addr:$src, (i32 0xC))>; + def : Pat<(f32 (fceil (loadf32 addr:$src))), + (ROUNDSSm addr:$src, (i32 0xA))>; + def : Pat<(f32 (frint (loadf32 addr:$src))), + (ROUNDSSm addr:$src, (i32 0x4))>; + def : Pat<(f32 (ftrunc (loadf32 addr:$src))), + (ROUNDSSm addr:$src, (i32 0xB))>; + + def : Pat<(f64 (ffloor (loadf64 addr:$src))), + (ROUNDSDm addr:$src, (i32 0x9))>; + def : Pat<(f64 (fnearbyint (loadf64 addr:$src))), + (ROUNDSDm addr:$src, (i32 0xC))>; + def : Pat<(f64 (fceil (loadf64 addr:$src))), + (ROUNDSDm addr:$src, (i32 0xA))>; + def : Pat<(f64 (frint (loadf64 addr:$src))), + (ROUNDSDm addr:$src, (i32 0x4))>; + def : Pat<(f64 (ftrunc (loadf64 addr:$src))), + (ROUNDSDm addr:$src, (i32 0xB))>; +} + +let Predicates = [UseSSE41] in { + def : Pat<(v4f32 (ffloor VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0x9))>; + def : Pat<(v4f32 (fnearbyint VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0xC))>; + def : Pat<(v4f32 (fceil VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0xA))>; + def : Pat<(v4f32 (frint VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0x4))>; + def : Pat<(v4f32 (ftrunc VR128:$src)), + (ROUNDPSr VR128:$src, (i32 0xB))>; + + def : Pat<(v4f32 (ffloor (memopv4f32 addr:$src))), + (ROUNDPSm addr:$src, (i32 0x9))>; + def : Pat<(v4f32 (fnearbyint (memopv4f32 addr:$src))), + (ROUNDPSm addr:$src, (i32 0xC))>; + def : Pat<(v4f32 (fceil (memopv4f32 addr:$src))), + (ROUNDPSm addr:$src, (i32 0xA))>; + def : Pat<(v4f32 (frint (memopv4f32 addr:$src))), + (ROUNDPSm addr:$src, (i32 0x4))>; + def : Pat<(v4f32 (ftrunc (memopv4f32 addr:$src))), + (ROUNDPSm addr:$src, (i32 0xB))>; + + def : Pat<(v2f64 (ffloor VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0x9))>; + def : Pat<(v2f64 (fnearbyint VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0xC))>; + def : Pat<(v2f64 (fceil VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0xA))>; + def : Pat<(v2f64 (frint VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0x4))>; + def : Pat<(v2f64 (ftrunc VR128:$src)), + (ROUNDPDr VR128:$src, (i32 0xB))>; + + def : Pat<(v2f64 (ffloor (memopv2f64 addr:$src))), + (ROUNDPDm addr:$src, (i32 0x9))>; + def : Pat<(v2f64 (fnearbyint (memopv2f64 addr:$src))), + (ROUNDPDm addr:$src, (i32 0xC))>; + def : Pat<(v2f64 (fceil (memopv2f64 addr:$src))), + (ROUNDPDm addr:$src, (i32 0xA))>; + def : Pat<(v2f64 (frint (memopv2f64 addr:$src))), + (ROUNDPDm addr:$src, (i32 0x4))>; + def : Pat<(v2f64 (ftrunc (memopv2f64 addr:$src))), + (ROUNDPDm addr:$src, (i32 0xB))>; +} + +defm : scalar_unary_math_imm_patterns<ffloor, "ROUNDSS", X86Movss, + v4f32, 0x01, UseSSE41>; +defm : scalar_unary_math_imm_patterns<fceil, "ROUNDSS", X86Movss, + v4f32, 0x02, UseSSE41>; +defm : scalar_unary_math_imm_patterns<ffloor, "ROUNDSD", X86Movsd, + v2f64, 0x01, UseSSE41>; +defm : scalar_unary_math_imm_patterns<fceil, "ROUNDSD", X86Movsd, + v2f64, 0x02, UseSSE41>; + +//===----------------------------------------------------------------------===// +// SSE4.1 - Packed Bit Test +//===----------------------------------------------------------------------===// + +// ptest instruction we'll lower to this in X86ISelLowering primarily from +// the intel intrinsic that corresponds to this. +let Defs = [EFLAGS], Predicates = [HasAVX] in { +def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), + "vptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>, + Sched<[SchedWriteVecTest.XMM]>, VEX, VEX_WIG; +def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), + "vptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS,(X86ptest VR128:$src1, (loadv2i64 addr:$src2)))]>, + Sched<[SchedWriteVecTest.XMM.Folded, ReadAfterLd]>, + VEX, VEX_WIG; + +def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2), + "vptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>, + Sched<[SchedWriteVecTest.YMM]>, VEX, VEX_L, VEX_WIG; +def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2), + "vptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS,(X86ptest VR256:$src1, (loadv4i64 addr:$src2)))]>, + Sched<[SchedWriteVecTest.YMM.Folded, ReadAfterLd]>, + VEX, VEX_L, VEX_WIG; +} + +let Defs = [EFLAGS] in { +def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), + "ptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>, + Sched<[SchedWriteVecTest.XMM]>; +def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), + "ptest\t{$src2, $src1|$src1, $src2}", + [(set EFLAGS, (X86ptest VR128:$src1, (memopv2i64 addr:$src2)))]>, + Sched<[SchedWriteVecTest.XMM.Folded, ReadAfterLd]>; +} + +// The bit test instructions below are AVX only +multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC, + X86MemOperand x86memop, PatFrag mem_frag, ValueType vt, + X86FoldableSchedWrite sched> { + def rr : SS48I<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (X86testp RC:$src1, (vt RC:$src2)))]>, + Sched<[sched]>, VEX; + def rm : SS48I<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"), + [(set EFLAGS, (X86testp RC:$src1, (mem_frag addr:$src2)))]>, + Sched<[sched.Folded, ReadAfterLd]>, VEX; +} + +let Defs = [EFLAGS], Predicates = [HasAVX] in { +let ExeDomain = SSEPackedSingle in { +defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, loadv4f32, v4f32, + SchedWriteFTest.XMM>; +defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, loadv8f32, v8f32, + SchedWriteFTest.YMM>, VEX_L; +} +let ExeDomain = SSEPackedDouble in { +defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, loadv2f64, v2f64, + SchedWriteFTest.XMM>; +defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, loadv4f64, v4f64, + SchedWriteFTest.YMM>, VEX_L; +} +} + +//===----------------------------------------------------------------------===// +// SSE4.1 - Misc Instructions +//===----------------------------------------------------------------------===// + +let Defs = [EFLAGS], Predicates = [HasPOPCNT] in { + def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), + "popcnt{w}\t{$src, $dst|$dst, $src}", + [(set GR16:$dst, (ctpop GR16:$src)), (implicit EFLAGS)]>, + Sched<[WritePOPCNT]>, OpSize16, XS; + def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), + "popcnt{w}\t{$src, $dst|$dst, $src}", + [(set GR16:$dst, (ctpop (loadi16 addr:$src))), + (implicit EFLAGS)]>, + Sched<[WritePOPCNT.Folded]>, OpSize16, XS; + + def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), + "popcnt{l}\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (ctpop GR32:$src)), (implicit EFLAGS)]>, + Sched<[WritePOPCNT]>, OpSize32, XS; + + def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), + "popcnt{l}\t{$src, $dst|$dst, $src}", + [(set GR32:$dst, (ctpop (loadi32 addr:$src))), + (implicit EFLAGS)]>, + Sched<[WritePOPCNT.Folded]>, OpSize32, XS; + + def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), + "popcnt{q}\t{$src, $dst|$dst, $src}", + [(set GR64:$dst, (ctpop GR64:$src)), (implicit EFLAGS)]>, + Sched<[WritePOPCNT]>, XS; + def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), + "popcnt{q}\t{$src, $dst|$dst, $src}", + [(set GR64:$dst, (ctpop (loadi64 addr:$src))), + (implicit EFLAGS)]>, + Sched<[WritePOPCNT.Folded]>, XS; +} + +// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. +multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr, + SDNode OpNode, PatFrag ld_frag, + X86FoldableSchedWrite Sched> { + def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, (v8i16 (OpNode (v8i16 VR128:$src))))]>, + Sched<[Sched]>; + def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, + (v8i16 (OpNode (v8i16 (bitconvert (ld_frag addr:$src))))))]>, + Sched<[Sched.Folded]>; +} + +// PHMIN has the same profile as PSAD, thus we use the same scheduling +// model, although the naming is misleading. +let Predicates = [HasAVX] in +defm VPHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "vphminposuw", + X86phminpos, loadv2i64, + WritePHMINPOS>, VEX, VEX_WIG; +defm PHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "phminposuw", + X86phminpos, memopv2i64, + WritePHMINPOS>; + +/// SS48I_binop_rm - Simple SSE41 binary operator. +multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, X86FoldableSchedWrite sched, + bit Is2Addr = 1> { + let isCommutable = 1 in + def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (OpVT (OpNode RC:$src1, (bitconvert (memop_frag addr:$src2)))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", smin, v4i32, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", umin, v4i32, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v4i32, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", umax, v4i32, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMULDQ : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v2i64, VR128, + loadv2i64, i128mem, SchedWriteVecIMul.XMM, 0>, + VEX_4V, VEX_WIG; +} +let Predicates = [HasAVX, NoVLX_Or_NoBWI] in { + defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", smin, v16i8, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", umin, v8i16, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v16i8, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v8i16, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; +} + +let Predicates = [HasAVX2, NoVLX] in { + defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", smin, v8i32, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", umin, v8i32, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v8i32, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", umax, v8i32, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMULDQY : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v4i64, VR256, + loadv4i64, i256mem, SchedWriteVecIMul.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; +} +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { + defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", smin, v32i8, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", umin, v16i16, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v32i8, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v16i16, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; +} + +let Constraints = "$src1 = $dst" in { + defm PMINSB : SS48I_binop_rm<0x38, "pminsb", smin, v16i8, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMINSD : SS48I_binop_rm<0x39, "pminsd", smin, v4i32, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMINUD : SS48I_binop_rm<0x3B, "pminud", umin, v4i32, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", umin, v8i16, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", smax, v16i8, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", smax, v4i32, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", umax, v4i32, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", umax, v8i16, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; + defm PMULDQ : SS48I_binop_rm<0x28, "pmuldq", X86pmuldq, v2i64, VR128, + memopv2i64, i128mem, SchedWriteVecIMul.XMM, 1>; +} + +let Predicates = [HasAVX, NoVLX] in + defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128, + loadv2i64, i128mem, SchedWritePMULLD.XMM, 0>, + VEX_4V, VEX_WIG; +let Predicates = [HasAVX] in + defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + +let Predicates = [HasAVX2, NoVLX] in + defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256, + loadv4i64, i256mem, SchedWritePMULLD.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; +let Predicates = [HasAVX2] in + defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + +let Constraints = "$src1 = $dst" in { + defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, VR128, + memopv2i64, i128mem, SchedWritePMULLD.XMM, 1>; + defm PCMPEQQ : SS48I_binop_rm<0x29, "pcmpeqq", X86pcmpeq, v2i64, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>; +} + +/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate +multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId, RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, bit Is2Addr, + X86FoldableSchedWrite sched> { + let isCommutable = 1 in + def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>, + Sched<[sched]>; + def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, + (IntId RC:$src1, + (bitconvert (memop_frag addr:$src2)), imm:$src3))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +/// SS41I_binop_rmi - SSE 4.1 binary operator with 8-bit immediate +multiclass SS41I_binop_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, bit Is2Addr, + X86FoldableSchedWrite sched> { + let isCommutable = 1 in + def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>, + Sched<[sched]>; + def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, + (OpVT (OpNode RC:$src1, + (bitconvert (memop_frag addr:$src2)), imm:$src3)))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +def BlendCommuteImm2 : SDNodeXForm<imm, [{ + uint8_t Imm = N->getZExtValue() & 0x03; + return getI8Imm(Imm ^ 0x03, SDLoc(N)); +}]>; + +def BlendCommuteImm4 : SDNodeXForm<imm, [{ + uint8_t Imm = N->getZExtValue() & 0x0f; + return getI8Imm(Imm ^ 0x0f, SDLoc(N)); +}]>; + +def BlendCommuteImm8 : SDNodeXForm<imm, [{ + uint8_t Imm = N->getZExtValue() & 0xff; + return getI8Imm(Imm ^ 0xff, SDLoc(N)); +}]>; + +let Predicates = [HasAVX] in { + let isCommutable = 0 in { + defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw, + VR128, loadv2i64, i128mem, 0, + SchedWriteMPSAD.XMM>, VEX_4V, VEX_WIG; + } + + let ExeDomain = SSEPackedSingle in + defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps, + VR128, loadv4f32, f128mem, 0, + SchedWriteDPPS.XMM>, VEX_4V, VEX_WIG; + let ExeDomain = SSEPackedDouble in + defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd, + VR128, loadv2f64, f128mem, 0, + SchedWriteDPPD.XMM>, VEX_4V, VEX_WIG; + let ExeDomain = SSEPackedSingle in + defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256, + VR256, loadv8f32, i256mem, 0, + SchedWriteDPPS.YMM>, VEX_4V, VEX_L, VEX_WIG; +} + +let Predicates = [HasAVX2] in { + let isCommutable = 0 in { + defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw, + VR256, loadv4i64, i256mem, 0, + SchedWriteMPSAD.YMM>, VEX_4V, VEX_L, VEX_WIG; + } +} + +let Constraints = "$src1 = $dst" in { + let isCommutable = 0 in { + defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw, + VR128, memopv2i64, i128mem, 1, + SchedWriteMPSAD.XMM>; + } + + let ExeDomain = SSEPackedSingle in + defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps, + VR128, memopv4f32, f128mem, 1, + SchedWriteDPPS.XMM>; + let ExeDomain = SSEPackedDouble in + defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd, + VR128, memopv2f64, f128mem, 1, + SchedWriteDPPD.XMM>; +} + +/// SS41I_blend_rmi - SSE 4.1 blend with 8-bit immediate +multiclass SS41I_blend_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, bit Is2Addr, Domain d, + X86FoldableSchedWrite sched, SDNodeXForm commuteXForm> { +let ExeDomain = d, Constraints = !if(Is2Addr, "$src1 = $dst", "") in { + let isCommutable = 1 in + def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>, + Sched<[sched]>; + def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$src3), + !if(Is2Addr, + !strconcat(OpcodeStr, + "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), + [(set RC:$dst, + (OpVT (OpNode RC:$src1, + (bitconvert (memop_frag addr:$src2)), imm:$src3)))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + + // Pattern to commute if load is in first source. + def : Pat<(OpVT (OpNode (bitconvert (memop_frag addr:$src2)), + RC:$src1, imm:$src3)), + (!cast<Instruction>(NAME#"rmi") RC:$src1, addr:$src2, + (commuteXForm imm:$src3))>; +} + +let Predicates = [HasAVX] in { + defm VBLENDPS : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v4f32, + VR128, loadv4f32, f128mem, 0, SSEPackedSingle, + SchedWriteFBlend.XMM, BlendCommuteImm4>, + VEX_4V, VEX_WIG; + defm VBLENDPSY : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v8f32, + VR256, loadv8f32, f256mem, 0, SSEPackedSingle, + SchedWriteFBlend.YMM, BlendCommuteImm8>, + VEX_4V, VEX_L, VEX_WIG; + defm VBLENDPD : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v2f64, + VR128, loadv2f64, f128mem, 0, SSEPackedDouble, + SchedWriteFBlend.XMM, BlendCommuteImm2>, + VEX_4V, VEX_WIG; + defm VBLENDPDY : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v4f64, + VR256, loadv4f64, f256mem, 0, SSEPackedDouble, + SchedWriteFBlend.YMM, BlendCommuteImm4>, + VEX_4V, VEX_L, VEX_WIG; + defm VPBLENDW : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v8i16, + VR128, loadv2i64, i128mem, 0, SSEPackedInt, + SchedWriteBlend.XMM, BlendCommuteImm8>, + VEX_4V, VEX_WIG; +} + +let Predicates = [HasAVX2] in { + defm VPBLENDWY : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v16i16, + VR256, loadv4i64, i256mem, 0, SSEPackedInt, + SchedWriteBlend.YMM, BlendCommuteImm8>, + VEX_4V, VEX_L, VEX_WIG; +} + +defm BLENDPS : SS41I_blend_rmi<0x0C, "blendps", X86Blendi, v4f32, + VR128, memopv4f32, f128mem, 1, SSEPackedSingle, + SchedWriteFBlend.XMM, BlendCommuteImm4>; +defm BLENDPD : SS41I_blend_rmi<0x0D, "blendpd", X86Blendi, v2f64, + VR128, memopv2f64, f128mem, 1, SSEPackedDouble, + SchedWriteFBlend.XMM, BlendCommuteImm2>; +defm PBLENDW : SS41I_blend_rmi<0x0E, "pblendw", X86Blendi, v8i16, + VR128, memopv2i64, i128mem, 1, SSEPackedInt, + SchedWriteBlend.XMM, BlendCommuteImm8>; + +// For insertion into the zero index (low half) of a 256-bit vector, it is +// more efficient to generate a blend with immediate instead of an insert*128. +let Predicates = [HasAVX] in { +def : Pat<(insert_subvector (v4f64 VR256:$src1), (v2f64 VR128:$src2), (iPTR 0)), + (VBLENDPDYrri VR256:$src1, + (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0x3)>; +def : Pat<(insert_subvector (v8f32 VR256:$src1), (v4f32 VR128:$src2), (iPTR 0)), + (VBLENDPSYrri VR256:$src1, + (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +} + +/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators +multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr, + RegisterClass RC, X86MemOperand x86memop, + PatFrag mem_frag, Intrinsic IntId, + X86FoldableSchedWrite sched> { + def rr : Ii8Reg<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, RC:$src3), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))], + SSEPackedInt>, TAPD, VEX_4V, + Sched<[sched]>; + + def rm : Ii8Reg<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, RC:$src3), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set RC:$dst, + (IntId RC:$src1, (bitconvert (mem_frag addr:$src2)), + RC:$src3))], SSEPackedInt>, TAPD, VEX_4V, + Sched<[sched.Folded, ReadAfterLd, + // x86memop:$src2 + ReadDefault, ReadDefault, ReadDefault, ReadDefault, + ReadDefault, + // RC::$src3 + ReadAfterLd]>; +} + +let Predicates = [HasAVX] in { +let ExeDomain = SSEPackedDouble in { +defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, f128mem, + loadv2f64, int_x86_sse41_blendvpd, + SchedWriteFVarBlend.XMM>; +defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, f256mem, + loadv4f64, int_x86_avx_blendv_pd_256, + SchedWriteFVarBlend.YMM>, VEX_L; +} // ExeDomain = SSEPackedDouble +let ExeDomain = SSEPackedSingle in { +defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, f128mem, + loadv4f32, int_x86_sse41_blendvps, + SchedWriteFVarBlend.XMM>; +defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, f256mem, + loadv8f32, int_x86_avx_blendv_ps_256, + SchedWriteFVarBlend.YMM>, VEX_L; +} // ExeDomain = SSEPackedSingle +defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem, + loadv2i64, int_x86_sse41_pblendvb, + SchedWriteVarBlend.XMM>; +} + +let Predicates = [HasAVX2] in { +defm VPBLENDVBY : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR256, i256mem, + loadv4i64, int_x86_avx2_pblendvb, + SchedWriteVarBlend.YMM>, VEX_L; +} + +let Predicates = [HasAVX] in { + def : Pat<(v16i8 (vselect (v16i8 VR128:$mask), (v16i8 VR128:$src1), + (v16i8 VR128:$src2))), + (VPBLENDVBrr VR128:$src2, VR128:$src1, VR128:$mask)>; + def : Pat<(v4i32 (vselect (v4i32 VR128:$mask), (v4i32 VR128:$src1), + (v4i32 VR128:$src2))), + (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>; + def : Pat<(v4f32 (vselect (v4i32 VR128:$mask), (v4f32 VR128:$src1), + (v4f32 VR128:$src2))), + (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>; + def : Pat<(v2i64 (vselect (v2i64 VR128:$mask), (v2i64 VR128:$src1), + (v2i64 VR128:$src2))), + (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>; + def : Pat<(v2f64 (vselect (v2i64 VR128:$mask), (v2f64 VR128:$src1), + (v2f64 VR128:$src2))), + (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>; + def : Pat<(v8i32 (vselect (v8i32 VR256:$mask), (v8i32 VR256:$src1), + (v8i32 VR256:$src2))), + (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>; + def : Pat<(v8f32 (vselect (v8i32 VR256:$mask), (v8f32 VR256:$src1), + (v8f32 VR256:$src2))), + (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>; + def : Pat<(v4i64 (vselect (v4i64 VR256:$mask), (v4i64 VR256:$src1), + (v4i64 VR256:$src2))), + (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>; + def : Pat<(v4f64 (vselect (v4i64 VR256:$mask), (v4f64 VR256:$src1), + (v4f64 VR256:$src2))), + (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>; +} + +let Predicates = [HasAVX2] in { + def : Pat<(v32i8 (vselect (v32i8 VR256:$mask), (v32i8 VR256:$src1), + (v32i8 VR256:$src2))), + (VPBLENDVBYrr VR256:$src2, VR256:$src1, VR256:$mask)>; +} + +// Prefer a movss or movsd over a blendps when optimizing for size. these were +// changed to use blends because blends have better throughput on sandybridge +// and haswell, but movs[s/d] are 1-2 byte shorter instructions. +let Predicates = [HasAVX, OptForSpeed] in { + def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), + (VBLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>; + def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), + (VPBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>; + + def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)), + (VBLENDPSrri VR128:$src1, VR128:$src2, (i8 1))>; + def : Pat<(v4f32 (X86Movss VR128:$src1, (loadv4f32 addr:$src2))), + (VBLENDPSrmi VR128:$src1, addr:$src2, (i8 1))>; + def : Pat<(v4f32 (X86Movss (loadv4f32 addr:$src2), VR128:$src1)), + (VBLENDPSrmi VR128:$src1, addr:$src2, (i8 0xe))>; + + def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)), + (VBLENDPDrri VR128:$src1, VR128:$src2, (i8 1))>; + def : Pat<(v2f64 (X86Movsd VR128:$src1, (loadv2f64 addr:$src2))), + (VBLENDPDrmi VR128:$src1, addr:$src2, (i8 1))>; + def : Pat<(v2f64 (X86Movsd (loadv2f64 addr:$src2), VR128:$src1)), + (VBLENDPDrmi VR128:$src1, addr:$src2, (i8 2))>; + + // Move low f32 and clear high bits. + def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v4f32 (VBLENDPSrri (v4f32 (V_SET0)), + (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)), + (i8 1))), sub_xmm)>; + def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v4i32 (VPBLENDWrri (v4i32 (V_SET0)), + (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)), + (i8 3))), sub_xmm)>; + + def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v2f64 (VBLENDPDrri (v2f64 (V_SET0)), + (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)), + (i8 1))), sub_xmm)>; + def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))), + (SUBREG_TO_REG (i32 0), + (v2i64 (VPBLENDWrri (v2i64 (V_SET0)), + (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)), + (i8 0xf))), sub_xmm)>; +} + +// Prefer a movss or movsd over a blendps when optimizing for size. these were +// changed to use blends because blends have better throughput on sandybridge +// and haswell, but movs[s/d] are 1-2 byte shorter instructions. +let Predicates = [UseSSE41, OptForSpeed] in { + // With SSE41 we can use blends for these patterns. + def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), + (BLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>; + def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), + (PBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>; + + def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)), + (BLENDPSrri VR128:$src1, VR128:$src2, (i8 1))>; + def : Pat<(v4f32 (X86Movss VR128:$src1, (memopv4f32 addr:$src2))), + (BLENDPSrmi VR128:$src1, addr:$src2, (i8 1))>; + def : Pat<(v4f32 (X86Movss (memopv4f32 addr:$src2), VR128:$src1)), + (BLENDPSrmi VR128:$src1, addr:$src2, (i8 0xe))>; + + def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)), + (BLENDPDrri VR128:$src1, VR128:$src2, (i8 1))>; + def : Pat<(v2f64 (X86Movsd VR128:$src1, (memopv2f64 addr:$src2))), + (BLENDPDrmi VR128:$src1, addr:$src2, (i8 1))>; + def : Pat<(v2f64 (X86Movsd (memopv2f64 addr:$src2), VR128:$src1)), + (BLENDPDrmi VR128:$src1, addr:$src2, (i8 2))>; +} + + +/// SS41I_ternary_int - SSE 4.1 ternary operator +let Uses = [XMM0], Constraints = "$src1 = $dst" in { + multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag, + X86MemOperand x86memop, Intrinsic IntId, + X86FoldableSchedWrite sched> { + def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, + "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"), + [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>, + Sched<[sched]>; + + def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, x86memop:$src2), + !strconcat(OpcodeStr, + "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"), + [(set VR128:$dst, + (IntId VR128:$src1, + (bitconvert (mem_frag addr:$src2)), XMM0))]>, + Sched<[sched.Folded, ReadAfterLd]>; + } +} + +let ExeDomain = SSEPackedDouble in +defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64, f128mem, + int_x86_sse41_blendvpd, SchedWriteFVarBlend.XMM>; +let ExeDomain = SSEPackedSingle in +defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32, f128mem, + int_x86_sse41_blendvps, SchedWriteFVarBlend.XMM>; +defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64, i128mem, + int_x86_sse41_pblendvb, SchedWriteVarBlend.XMM>; + +// Aliases with the implicit xmm0 argument +// def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}", +// (BLENDVPDrr0 VR128:$dst, VR128:$src2), 0>; +// def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}", +// (BLENDVPDrm0 VR128:$dst, f128mem:$src2), 0>; +// def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}", +// (BLENDVPSrr0 VR128:$dst, VR128:$src2), 0>; +// def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}", +// (BLENDVPSrm0 VR128:$dst, f128mem:$src2), 0>; +// def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}", +// (PBLENDVBrr0 VR128:$dst, VR128:$src2), 0>; +// def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}", +// (PBLENDVBrm0 VR128:$dst, i128mem:$src2), 0>; + +let Predicates = [UseSSE41] in { + def : Pat<(v16i8 (vselect (v16i8 XMM0), (v16i8 VR128:$src1), + (v16i8 VR128:$src2))), + (PBLENDVBrr0 VR128:$src2, VR128:$src1)>; + def : Pat<(v4i32 (vselect (v4i32 XMM0), (v4i32 VR128:$src1), + (v4i32 VR128:$src2))), + (BLENDVPSrr0 VR128:$src2, VR128:$src1)>; + def : Pat<(v4f32 (vselect (v4i32 XMM0), (v4f32 VR128:$src1), + (v4f32 VR128:$src2))), + (BLENDVPSrr0 VR128:$src2, VR128:$src1)>; + def : Pat<(v2i64 (vselect (v2i64 XMM0), (v2i64 VR128:$src1), + (v2i64 VR128:$src2))), + (BLENDVPDrr0 VR128:$src2, VR128:$src1)>; + def : Pat<(v2f64 (vselect (v2i64 XMM0), (v2f64 VR128:$src1), + (v2f64 VR128:$src2))), + (BLENDVPDrr0 VR128:$src2, VR128:$src1)>; +} + +let AddedComplexity = 400 in { // Prefer non-temporal versions + +let Predicates = [HasAVX, NoVLX] in +def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "vmovntdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLSNT.XMM.RM]>, VEX, VEX_WIG; +let Predicates = [HasAVX2, NoVLX] in +def VMOVNTDQAYrm : SS48I<0x2A, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), + "vmovntdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLSNT.YMM.RM]>, VEX, VEX_L, VEX_WIG; +def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), + "movntdqa\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteVecMoveLSNT.XMM.RM]>; + +let Predicates = [HasAVX2, NoVLX] in { + def : Pat<(v8f32 (alignednontemporalload addr:$src)), + (VMOVNTDQAYrm addr:$src)>; + def : Pat<(v4f64 (alignednontemporalload addr:$src)), + (VMOVNTDQAYrm addr:$src)>; + def : Pat<(v4i64 (alignednontemporalload addr:$src)), + (VMOVNTDQAYrm addr:$src)>; +} + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4f32 (alignednontemporalload addr:$src)), + (VMOVNTDQArm addr:$src)>; + def : Pat<(v2f64 (alignednontemporalload addr:$src)), + (VMOVNTDQArm addr:$src)>; + def : Pat<(v2i64 (alignednontemporalload addr:$src)), + (VMOVNTDQArm addr:$src)>; +} + +let Predicates = [UseSSE41] in { + def : Pat<(v4f32 (alignednontemporalload addr:$src)), + (MOVNTDQArm addr:$src)>; + def : Pat<(v2f64 (alignednontemporalload addr:$src)), + (MOVNTDQArm addr:$src)>; + def : Pat<(v2i64 (alignednontemporalload addr:$src)), + (MOVNTDQArm addr:$src)>; +} + +} // AddedComplexity + +//===----------------------------------------------------------------------===// +// SSE4.2 - Compare Instructions +//===----------------------------------------------------------------------===// + +/// SS42I_binop_rm - Simple SSE 4.2 binary operator +multiclass SS42I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, X86FoldableSchedWrite sched, + bit Is2Addr = 1> { + def rr : SS428I<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>, + Sched<[sched]>; + def rm : SS428I<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2), + !if(Is2Addr, + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), + [(set RC:$dst, + (OpVT (OpNode RC:$src1, (memop_frag addr:$src2))))]>, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX] in + defm VPCMPGTQ : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v2i64, VR128, + loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>, + VEX_4V, VEX_WIG; + +let Predicates = [HasAVX2] in + defm VPCMPGTQY : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v4i64, VR256, + loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>, + VEX_4V, VEX_L, VEX_WIG; + +let Constraints = "$src1 = $dst" in + defm PCMPGTQ : SS42I_binop_rm<0x37, "pcmpgtq", X86pcmpgt, v2i64, VR128, + memopv2i64, i128mem, SchedWriteVecALU.XMM>; + +//===----------------------------------------------------------------------===// +// SSE4.2 - String/text Processing Instructions +//===----------------------------------------------------------------------===// + +multiclass pcmpistrm_SS42AI<string asm> { + def rr : SS42AI<0x62, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src2, u8imm:$src3), + !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), + []>, Sched<[WritePCmpIStrM]>; + let mayLoad = 1 in + def rm :SS42AI<0x62, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src2, u8imm:$src3), + !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), + []>, Sched<[WritePCmpIStrM.Folded, ReadAfterLd]>; +} + +let Defs = [XMM0, EFLAGS], hasSideEffects = 0 in { + let Predicates = [HasAVX] in + defm VPCMPISTRM : pcmpistrm_SS42AI<"vpcmpistrm">, VEX; + defm PCMPISTRM : pcmpistrm_SS42AI<"pcmpistrm"> ; +} + +multiclass SS42AI_pcmpestrm<string asm> { + def rr : SS42AI<0x60, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src3, u8imm:$src5), + !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), + []>, Sched<[WritePCmpEStrM]>; + let mayLoad = 1 in + def rm : SS42AI<0x60, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src3, u8imm:$src5), + !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), + []>, Sched<[WritePCmpEStrM.Folded, ReadAfterLd]>; +} + +let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in { + let Predicates = [HasAVX] in + defm VPCMPESTRM : SS42AI_pcmpestrm<"vpcmpestrm">, VEX; + defm PCMPESTRM : SS42AI_pcmpestrm<"pcmpestrm">; +} + +multiclass SS42AI_pcmpistri<string asm> { + def rr : SS42AI<0x63, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src2, u8imm:$src3), + !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), + []>, Sched<[WritePCmpIStrI]>; + let mayLoad = 1 in + def rm : SS42AI<0x63, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src2, u8imm:$src3), + !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), + []>, Sched<[WritePCmpIStrI.Folded, ReadAfterLd]>; +} + +let Defs = [ECX, EFLAGS], hasSideEffects = 0 in { + let Predicates = [HasAVX] in + defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX; + defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">; +} + +multiclass SS42AI_pcmpestri<string asm> { + def rr : SS42AI<0x61, MRMSrcReg, (outs), + (ins VR128:$src1, VR128:$src3, u8imm:$src5), + !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), + []>, Sched<[WritePCmpEStrI]>; + let mayLoad = 1 in + def rm : SS42AI<0x61, MRMSrcMem, (outs), + (ins VR128:$src1, i128mem:$src3, u8imm:$src5), + !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), + []>, Sched<[WritePCmpEStrI.Folded, ReadAfterLd]>; +} + +let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in { + let Predicates = [HasAVX] in + defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX; + defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">; +} + +//===----------------------------------------------------------------------===// +// SSE4.2 - CRC Instructions +//===----------------------------------------------------------------------===// + +// No CRC instructions have AVX equivalents + +// crc intrinsic instruction +// This set of instructions are only rm, the only difference is the size +// of r and m. +class SS42I_crc32r<bits<8> opc, string asm, RegisterClass RCOut, + RegisterClass RCIn, SDPatternOperator Int> : + SS42FI<opc, MRMSrcReg, (outs RCOut:$dst), (ins RCOut:$src1, RCIn:$src2), + !strconcat(asm, "\t{$src2, $src1|$src1, $src2}"), + [(set RCOut:$dst, (Int RCOut:$src1, RCIn:$src2))]>, + Sched<[WriteCRC32]>; + +class SS42I_crc32m<bits<8> opc, string asm, RegisterClass RCOut, + X86MemOperand x86memop, SDPatternOperator Int> : + SS42FI<opc, MRMSrcMem, (outs RCOut:$dst), (ins RCOut:$src1, x86memop:$src2), + !strconcat(asm, "\t{$src2, $src1|$src1, $src2}"), + [(set RCOut:$dst, (Int RCOut:$src1, (load addr:$src2)))]>, + Sched<[WriteCRC32.Folded, ReadAfterLd]>; + +let Constraints = "$src1 = $dst" in { + def CRC32r32m8 : SS42I_crc32m<0xF0, "crc32{b}", GR32, i8mem, + int_x86_sse42_crc32_32_8>; + def CRC32r32r8 : SS42I_crc32r<0xF0, "crc32{b}", GR32, GR8, + int_x86_sse42_crc32_32_8>; + def CRC32r32m16 : SS42I_crc32m<0xF1, "crc32{w}", GR32, i16mem, + int_x86_sse42_crc32_32_16>, OpSize16; + def CRC32r32r16 : SS42I_crc32r<0xF1, "crc32{w}", GR32, GR16, + int_x86_sse42_crc32_32_16>, OpSize16; + def CRC32r32m32 : SS42I_crc32m<0xF1, "crc32{l}", GR32, i32mem, + int_x86_sse42_crc32_32_32>, OpSize32; + def CRC32r32r32 : SS42I_crc32r<0xF1, "crc32{l}", GR32, GR32, + int_x86_sse42_crc32_32_32>, OpSize32; + def CRC32r64m64 : SS42I_crc32m<0xF1, "crc32{q}", GR64, i64mem, + int_x86_sse42_crc32_64_64>, REX_W; + def CRC32r64r64 : SS42I_crc32r<0xF1, "crc32{q}", GR64, GR64, + int_x86_sse42_crc32_64_64>, REX_W; + let hasSideEffects = 0 in { + let mayLoad = 1 in + def CRC32r64m8 : SS42I_crc32m<0xF0, "crc32{b}", GR64, i8mem, + null_frag>, REX_W; + def CRC32r64r8 : SS42I_crc32r<0xF0, "crc32{b}", GR64, GR8, + null_frag>, REX_W; + } +} + +//===----------------------------------------------------------------------===// +// SHA-NI Instructions +//===----------------------------------------------------------------------===// + +// FIXME: Is there a better scheduler class for SHA than WriteVecIMul? +multiclass SHAI_binop<bits<8> Opc, string OpcodeStr, Intrinsic IntId, + X86FoldableSchedWrite sched, bit UsesXMM0 = 0> { + def rr : I<Opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !if(UsesXMM0, + !strconcat(OpcodeStr, "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"), + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}")), + [!if(UsesXMM0, + (set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0)), + (set VR128:$dst, (IntId VR128:$src1, VR128:$src2)))]>, + T8, Sched<[sched]>; + + def rm : I<Opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !if(UsesXMM0, + !strconcat(OpcodeStr, "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"), + !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}")), + [!if(UsesXMM0, + (set VR128:$dst, (IntId VR128:$src1, + (bc_v4i32 (memopv2i64 addr:$src2)), XMM0)), + (set VR128:$dst, (IntId VR128:$src1, + (bc_v4i32 (memopv2i64 addr:$src2)))))]>, T8, + Sched<[sched.Folded, ReadAfterLd]>; +} + +let Constraints = "$src1 = $dst", Predicates = [HasSHA] in { + def SHA1RNDS4rri : Ii8<0xCC, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, u8imm:$src3), + "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}", + [(set VR128:$dst, + (int_x86_sha1rnds4 VR128:$src1, VR128:$src2, + (i8 imm:$src3)))]>, TA, + Sched<[SchedWriteVecIMul.XMM]>; + def SHA1RNDS4rmi : Ii8<0xCC, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2, u8imm:$src3), + "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}", + [(set VR128:$dst, + (int_x86_sha1rnds4 VR128:$src1, + (bc_v4i32 (memopv2i64 addr:$src2)), + (i8 imm:$src3)))]>, TA, + Sched<[SchedWriteVecIMul.XMM.Folded, ReadAfterLd]>; + + defm SHA1NEXTE : SHAI_binop<0xC8, "sha1nexte", int_x86_sha1nexte, + SchedWriteVecIMul.XMM>; + defm SHA1MSG1 : SHAI_binop<0xC9, "sha1msg1", int_x86_sha1msg1, + SchedWriteVecIMul.XMM>; + defm SHA1MSG2 : SHAI_binop<0xCA, "sha1msg2", int_x86_sha1msg2, + SchedWriteVecIMul.XMM>; + + let Uses=[XMM0] in + defm SHA256RNDS2 : SHAI_binop<0xCB, "sha256rnds2", int_x86_sha256rnds2, + SchedWriteVecIMul.XMM, 1>; + + defm SHA256MSG1 : SHAI_binop<0xCC, "sha256msg1", int_x86_sha256msg1, + SchedWriteVecIMul.XMM>; + defm SHA256MSG2 : SHAI_binop<0xCD, "sha256msg2", int_x86_sha256msg2, + SchedWriteVecIMul.XMM>; +} + +// Aliases with explicit %xmm0 +// def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}", +// (SHA256RNDS2rr VR128:$dst, VR128:$src2), 0>; +// def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}", +// (SHA256RNDS2rm VR128:$dst, i128mem:$src2), 0>; + +//===----------------------------------------------------------------------===// +// AES-NI Instructions +//===----------------------------------------------------------------------===// + +multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr, + Intrinsic IntId, PatFrag ld_frag, + bit Is2Addr = 0, RegisterClass RC = VR128, + X86MemOperand MemOp = i128mem> { + let AsmString = OpcodeStr## + !if(Is2Addr, "\t{$src2, $dst|$dst, $src2}", + "\t{$src2, $src1, $dst|$dst, $src1, $src2}") in { + def rr : AES8I<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), "", + [(set RC:$dst, (IntId RC:$src1, RC:$src2))]>, + Sched<[WriteAESDecEnc]>; + def rm : AES8I<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, MemOp:$src2), "", + [(set RC:$dst, (IntId RC:$src1, (ld_frag addr:$src2)))]>, + Sched<[WriteAESDecEnc.Folded, ReadAfterLd]>; + } +} + +// Perform One Round of an AES Encryption/Decryption Flow +let Predicates = [HasAVX, NoVLX_Or_NoVAES, HasAES] in { + defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc", + int_x86_aesni_aesenc, loadv2i64>, VEX_4V, VEX_WIG; + defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast", + int_x86_aesni_aesenclast, loadv2i64>, VEX_4V, VEX_WIG; + defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec", + int_x86_aesni_aesdec, loadv2i64>, VEX_4V, VEX_WIG; + defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast", + int_x86_aesni_aesdeclast, loadv2i64>, VEX_4V, VEX_WIG; +} + +let Predicates = [NoVLX, HasVAES] in { + defm VAESENCY : AESI_binop_rm_int<0xDC, "vaesenc", + int_x86_aesni_aesenc_256, loadv4i64, 0, VR256, + i256mem>, VEX_4V, VEX_L, VEX_WIG; + defm VAESENCLASTY : AESI_binop_rm_int<0xDD, "vaesenclast", + int_x86_aesni_aesenclast_256, loadv4i64, 0, VR256, + i256mem>, VEX_4V, VEX_L, VEX_WIG; + defm VAESDECY : AESI_binop_rm_int<0xDE, "vaesdec", + int_x86_aesni_aesdec_256, loadv4i64, 0, VR256, + i256mem>, VEX_4V, VEX_L, VEX_WIG; + defm VAESDECLASTY : AESI_binop_rm_int<0xDF, "vaesdeclast", + int_x86_aesni_aesdeclast_256, loadv4i64, 0, VR256, + i256mem>, VEX_4V, VEX_L, VEX_WIG; +} + +let Constraints = "$src1 = $dst" in { + defm AESENC : AESI_binop_rm_int<0xDC, "aesenc", + int_x86_aesni_aesenc, memopv2i64, 1>; + defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast", + int_x86_aesni_aesenclast, memopv2i64, 1>; + defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec", + int_x86_aesni_aesdec, memopv2i64, 1>; + defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast", + int_x86_aesni_aesdeclast, memopv2i64, 1>; +} + +// Perform the AES InvMixColumn Transformation +let Predicates = [HasAVX, HasAES] in { + def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1), + "vaesimc\t{$src1, $dst|$dst, $src1}", + [(set VR128:$dst, + (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>, + VEX, VEX_WIG; + def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1), + "vaesimc\t{$src1, $dst|$dst, $src1}", + [(set VR128:$dst, (int_x86_aesni_aesimc (loadv2i64 addr:$src1)))]>, + Sched<[WriteAESIMC.Folded]>, VEX, VEX_WIG; +} +def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1), + "aesimc\t{$src1, $dst|$dst, $src1}", + [(set VR128:$dst, + (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>; +def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1), + "aesimc\t{$src1, $dst|$dst, $src1}", + [(set VR128:$dst, (int_x86_aesni_aesimc (memopv2i64 addr:$src1)))]>, + Sched<[WriteAESIMC.Folded]>; + +// AES Round Key Generation Assist +let Predicates = [HasAVX, HasAES] in { + def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, u8imm:$src2), + "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>, + Sched<[WriteAESKeyGen]>, VEX, VEX_WIG; + def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1, u8imm:$src2), + "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_aesni_aeskeygenassist (loadv2i64 addr:$src1), imm:$src2))]>, + Sched<[WriteAESKeyGen.Folded]>, VEX, VEX_WIG; +} +def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, u8imm:$src2), + "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>, + Sched<[WriteAESKeyGen]>; +def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), + (ins i128mem:$src1, u8imm:$src2), + "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, + (int_x86_aesni_aeskeygenassist (memopv2i64 addr:$src1), imm:$src2))]>, + Sched<[WriteAESKeyGen.Folded]>; + +//===----------------------------------------------------------------------===// +// PCLMUL Instructions +//===----------------------------------------------------------------------===// + +// Immediate transform to help with commuting. +def PCLMULCommuteImm : SDNodeXForm<imm, [{ + uint8_t Imm = N->getZExtValue(); + return getI8Imm((uint8_t)((Imm >> 4) | (Imm << 4)), SDLoc(N)); +}]>; + +// SSE carry-less Multiplication instructions +let Predicates = [NoAVX, HasPCLMUL] in { + let Constraints = "$src1 = $dst" in { + let isCommutable = 1 in + def PCLMULQDQrr : PCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2, u8imm:$src3), + "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}", + [(set VR128:$dst, + (int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))]>, + Sched<[WriteCLMul]>; + + def PCLMULQDQrm : PCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2, u8imm:$src3), + "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}", + [(set VR128:$dst, + (int_x86_pclmulqdq VR128:$src1, (memopv2i64 addr:$src2), + imm:$src3))]>, + Sched<[WriteCLMul.Folded, ReadAfterLd]>; + } // Constraints = "$src1 = $dst" + + def : Pat<(int_x86_pclmulqdq (memopv2i64 addr:$src2), VR128:$src1, + (i8 imm:$src3)), + (PCLMULQDQrm VR128:$src1, addr:$src2, + (PCLMULCommuteImm imm:$src3))>; +} // Predicates = [NoAVX, HasPCLMUL] + +// SSE aliases +foreach HI = ["hq","lq"] in +foreach LO = ["hq","lq"] in { + // def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}", + // (PCLMULQDQrr VR128:$dst, VR128:$src, + // !add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>; + // def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}", + // (PCLMULQDQrm VR128:$dst, i128mem:$src, + // !add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>; +} + +// AVX carry-less Multiplication instructions +multiclass vpclmulqdq<RegisterClass RC, X86MemOperand MemOp, + PatFrag LdFrag, Intrinsic IntId> { + let isCommutable = 1 in + def rr : PCLMULIi8<0x44, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), + "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + [(set RC:$dst, + (IntId RC:$src1, RC:$src2, imm:$src3))]>, + Sched<[WriteCLMul]>; + + def rm : PCLMULIi8<0x44, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, MemOp:$src2, u8imm:$src3), + "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + [(set RC:$dst, + (IntId RC:$src1, (LdFrag addr:$src2), imm:$src3))]>, + Sched<[WriteCLMul.Folded, ReadAfterLd]>; + + // We can commute a load in the first operand by swapping the sources and + // rotating the immediate. + def : Pat<(IntId (LdFrag addr:$src2), RC:$src1, (i8 imm:$src3)), + (!cast<Instruction>(NAME#"rm") RC:$src1, addr:$src2, + (PCLMULCommuteImm imm:$src3))>; +} + +let Predicates = [HasAVX, NoVLX_Or_NoVPCLMULQDQ, HasPCLMUL] in +defm VPCLMULQDQ : vpclmulqdq<VR128, i128mem, loadv2i64, + int_x86_pclmulqdq>, VEX_4V, VEX_WIG; + +let Predicates = [NoVLX, HasVPCLMULQDQ] in +defm VPCLMULQDQY : vpclmulqdq<VR256, i256mem, loadv4i64, + int_x86_pclmulqdq_256>, VEX_4V, VEX_L, VEX_WIG; + +/* +multiclass vpclmulqdq_aliases_impl<string InstStr, RegisterClass RC, + X86MemOperand MemOp, string Hi, string Lo> { + // def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}", + // (!cast<Instruction>(InstStr # "rr") RC:$dst, RC:$src1, RC:$src2, + // !add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>; + // def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}", + // (!cast<Instruction>(InstStr # "rm") RC:$dst, RC:$src1, MemOp:$src2, + // !add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>; +} + +multiclass vpclmulqdq_aliases<string InstStr, RegisterClass RC, + X86MemOperand MemOp> { + defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "hq", "hq">; + defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "hq", "lq">; + defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "lq", "hq">; + defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "lq", "lq">; +} + +// AVX aliases +defm : vpclmulqdq_aliases<"VPCLMULQDQ", VR128, i128mem>; +defm : vpclmulqdq_aliases<"VPCLMULQDQY", VR256, i256mem>; +*/ + +//===----------------------------------------------------------------------===// +// SSE4A Instructions +//===----------------------------------------------------------------------===// + +let Predicates = [HasSSE4A] in { + +let ExeDomain = SSEPackedInt in { +let Constraints = "$src = $dst" in { +def EXTRQI : Ii8<0x78, MRMXr, (outs VR128:$dst), + (ins VR128:$src, u8imm:$len, u8imm:$idx), + "extrq\t{$idx, $len, $src|$src, $len, $idx}", + [(set VR128:$dst, (X86extrqi VR128:$src, imm:$len, + imm:$idx))]>, + PD, Sched<[SchedWriteVecALU.XMM]>; +def EXTRQ : I<0x79, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src, VR128:$mask), + "extrq\t{$mask, $src|$src, $mask}", + [(set VR128:$dst, (int_x86_sse4a_extrq VR128:$src, + VR128:$mask))]>, + PD, Sched<[SchedWriteVecALU.XMM]>; + +def INSERTQI : Ii8<0x78, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src, VR128:$src2, u8imm:$len, u8imm:$idx), + "insertq\t{$idx, $len, $src2, $src|$src, $src2, $len, $idx}", + [(set VR128:$dst, (X86insertqi VR128:$src, VR128:$src2, + imm:$len, imm:$idx))]>, + XD, Sched<[SchedWriteVecALU.XMM]>; +def INSERTQ : I<0x79, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src, VR128:$mask), + "insertq\t{$mask, $src|$src, $mask}", + [(set VR128:$dst, (int_x86_sse4a_insertq VR128:$src, + VR128:$mask))]>, + XD, Sched<[SchedWriteVecALU.XMM]>; +} +} // ExeDomain = SSEPackedInt + +// Non-temporal (unaligned) scalar stores. +let AddedComplexity = 400 in { // Prefer non-temporal versions +let hasSideEffects = 0, mayStore = 1, SchedRW = [SchedWriteFMoveLSNT.Scl.MR] in { +def MOVNTSS : I<0x2B, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src), + "movntss\t{$src, $dst|$dst, $src}", []>, XS; + +def MOVNTSD : I<0x2B, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), + "movntsd\t{$src, $dst|$dst, $src}", []>, XD; +} // SchedRW + +def : Pat<(nontemporalstore FR32:$src, addr:$dst), + (MOVNTSS addr:$dst, (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>; + +def : Pat<(nontemporalstore FR64:$src, addr:$dst), + (MOVNTSD addr:$dst, (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>; + +} // AddedComplexity +} // HasSSE4A + +//===----------------------------------------------------------------------===// +// AVX Instructions +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// VBROADCAST - Load from memory and broadcast to all elements of the +// destination operand +// +class avx_broadcast_rm<bits<8> opc, string OpcodeStr, RegisterClass RC, + X86MemOperand x86memop, ValueType VT, + PatFrag ld_frag, SchedWrite Sched> : + AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (VT (X86VBroadcast (ld_frag addr:$src))))]>, + Sched<[Sched]>, VEX; + +// AVX2 adds register forms +class avx2_broadcast_rr<bits<8> opc, string OpcodeStr, RegisterClass RC, + ValueType ResVT, ValueType OpVT, SchedWrite Sched> : + AVX28I<opc, MRMSrcReg, (outs RC:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set RC:$dst, (ResVT (X86VBroadcast (OpVT VR128:$src))))]>, + Sched<[Sched]>, VEX; + +let ExeDomain = SSEPackedSingle, Predicates = [HasAVX, NoVLX] in { + def VBROADCASTSSrm : avx_broadcast_rm<0x18, "vbroadcastss", VR128, + f32mem, v4f32, loadf32, + SchedWriteFShuffle.XMM.Folded>; + def VBROADCASTSSYrm : avx_broadcast_rm<0x18, "vbroadcastss", VR256, + f32mem, v8f32, loadf32, + SchedWriteFShuffle.XMM.Folded>, VEX_L; +} +let ExeDomain = SSEPackedDouble, Predicates = [HasAVX, NoVLX] in +def VBROADCASTSDYrm : avx_broadcast_rm<0x19, "vbroadcastsd", VR256, f64mem, + v4f64, loadf64, + SchedWriteFShuffle.XMM.Folded>, VEX_L; + +let ExeDomain = SSEPackedSingle, Predicates = [HasAVX2, NoVLX] in { + def VBROADCASTSSrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR128, + v4f32, v4f32, SchedWriteFShuffle.XMM>; + def VBROADCASTSSYrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR256, + v8f32, v4f32, WriteFShuffle256>, VEX_L; +} +let ExeDomain = SSEPackedDouble, Predicates = [HasAVX2, NoVLX] in +def VBROADCASTSDYrr : avx2_broadcast_rr<0x19, "vbroadcastsd", VR256, + v4f64, v2f64, WriteFShuffle256>, VEX_L; + +let Predicates = [HasAVX, NoVLX] in { + def : Pat<(v4f32 (X86VBroadcast (v4f32 (scalar_to_vector (loadf32 addr:$src))))), + (VBROADCASTSSrm addr:$src)>; + def : Pat<(v8f32 (X86VBroadcast (v4f32 (scalar_to_vector (loadf32 addr:$src))))), + (VBROADCASTSSYrm addr:$src)>; + def : Pat<(v4f64 (X86VBroadcast (v2f64 (scalar_to_vector (loadf64 addr:$src))))), + (VBROADCASTSDYrm addr:$src)>; +} + +//===----------------------------------------------------------------------===// +// VBROADCAST*128 - Load from memory and broadcast 128-bit vector to both +// halves of a 256-bit vector. +// +let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX2] in +def VBROADCASTI128 : AVX8I<0x5A, MRMSrcMem, (outs VR256:$dst), + (ins i128mem:$src), + "vbroadcasti128\t{$src, $dst|$dst, $src}", []>, + Sched<[WriteShuffleLd]>, VEX, VEX_L; + +let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX], + ExeDomain = SSEPackedSingle in +def VBROADCASTF128 : AVX8I<0x1A, MRMSrcMem, (outs VR256:$dst), + (ins f128mem:$src), + "vbroadcastf128\t{$src, $dst|$dst, $src}", []>, + Sched<[SchedWriteFShuffle.XMM.Folded]>, VEX, VEX_L; + +let Predicates = [HasAVX2, NoVLX] in { +def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))), + (VBROADCASTI128 addr:$src)>; +def : Pat<(v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src)))), + (VBROADCASTI128 addr:$src)>; +def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))), + (VBROADCASTI128 addr:$src)>; +def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))), + (VBROADCASTI128 addr:$src)>; +} + +let Predicates = [HasAVX, NoVLX] in { +def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))), + (VBROADCASTF128 addr:$src)>; +def : Pat<(v8f32 (X86SubVBroadcast (loadv4f32 addr:$src))), + (VBROADCASTF128 addr:$src)>; +} + +let Predicates = [HasAVX1Only] in { +def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))), + (VBROADCASTF128 addr:$src)>; +def : Pat<(v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src)))), + (VBROADCASTF128 addr:$src)>; +def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))), + (VBROADCASTF128 addr:$src)>; +def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))), + (VBROADCASTF128 addr:$src)>; +} + +//===----------------------------------------------------------------------===// +// VINSERTF128 - Insert packed floating-point values +// +let hasSideEffects = 0, ExeDomain = SSEPackedSingle in { +def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR128:$src2, u8imm:$src3), + "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + []>, Sched<[WriteFShuffle256]>, VEX_4V, VEX_L; +let mayLoad = 1 in +def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, f128mem:$src2, u8imm:$src3), + "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + []>, Sched<[WriteFShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L; +} + +// To create a 256-bit all ones value, we should produce VCMPTRUEPS +// with YMM register containing zero. +// FIXME: Avoid producing vxorps to clear the fake inputs. +let Predicates = [HasAVX1Only] in { +def : Pat<(v8i32 immAllOnesV), (VCMPPSYrri (AVX_SET0), (AVX_SET0), 0xf)>; +} + +multiclass vinsert_lowering<string InstrStr, ValueType From, ValueType To, + PatFrag memop_frag> { + def : Pat<(vinsert128_insert:$ins (To VR256:$src1), (From VR128:$src2), + (iPTR imm)), + (!cast<Instruction>(InstrStr#rr) VR256:$src1, VR128:$src2, + (INSERT_get_vinsert128_imm VR256:$ins))>; + def : Pat<(vinsert128_insert:$ins (To VR256:$src1), + (From (bitconvert (memop_frag addr:$src2))), + (iPTR imm)), + (!cast<Instruction>(InstrStr#rm) VR256:$src1, addr:$src2, + (INSERT_get_vinsert128_imm VR256:$ins))>; +} + +let Predicates = [HasAVX, NoVLX] in { + defm : vinsert_lowering<"VINSERTF128", v4f32, v8f32, loadv4f32>; + defm : vinsert_lowering<"VINSERTF128", v2f64, v4f64, loadv2f64>; +} + +let Predicates = [HasAVX1Only] in { + defm : vinsert_lowering<"VINSERTF128", v2i64, v4i64, loadv2i64>; + defm : vinsert_lowering<"VINSERTF128", v4i32, v8i32, loadv2i64>; + defm : vinsert_lowering<"VINSERTF128", v8i16, v16i16, loadv2i64>; + defm : vinsert_lowering<"VINSERTF128", v16i8, v32i8, loadv2i64>; +} + +//===----------------------------------------------------------------------===// +// VEXTRACTF128 - Extract packed floating-point values +// +let hasSideEffects = 0, ExeDomain = SSEPackedSingle in { +def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst), + (ins VR256:$src1, u8imm:$src2), + "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, Sched<[WriteFShuffle256]>, VEX, VEX_L; +let mayStore = 1 in +def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs), + (ins f128mem:$dst, VR256:$src1, u8imm:$src2), + "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}", + []>, Sched<[WriteFStoreX]>, VEX, VEX_L; +} + +multiclass vextract_lowering<string InstrStr, ValueType From, ValueType To> { + def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)), + (To (!cast<Instruction>(InstrStr#rr) + (From VR256:$src1), + (EXTRACT_get_vextract128_imm VR128:$ext)))>; + def : Pat<(store (To (vextract128_extract:$ext (From VR256:$src1), + (iPTR imm))), addr:$dst), + (!cast<Instruction>(InstrStr#mr) addr:$dst, VR256:$src1, + (EXTRACT_get_vextract128_imm VR128:$ext))>; +} + +// AVX1 patterns +let Predicates = [HasAVX, NoVLX] in { + defm : vextract_lowering<"VEXTRACTF128", v8f32, v4f32>; + defm : vextract_lowering<"VEXTRACTF128", v4f64, v2f64>; +} + +let Predicates = [HasAVX1Only] in { + defm : vextract_lowering<"VEXTRACTF128", v4i64, v2i64>; + defm : vextract_lowering<"VEXTRACTF128", v8i32, v4i32>; + defm : vextract_lowering<"VEXTRACTF128", v16i16, v8i16>; + defm : vextract_lowering<"VEXTRACTF128", v32i8, v16i8>; +} + +//===----------------------------------------------------------------------===// +// VMASKMOV - Conditional SIMD Packed Loads and Stores +// +multiclass avx_movmask_rm<bits<8> opc_rm, bits<8> opc_mr, string OpcodeStr, + Intrinsic IntLd, Intrinsic IntLd256, + Intrinsic IntSt, Intrinsic IntSt256> { + def rm : AVX8I<opc_rm, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, f128mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, (IntLd addr:$src2, VR128:$src1))]>, + VEX_4V, Sched<[WriteFMaskedLoad]>; + def Yrm : AVX8I<opc_rm, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, f256mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>, + VEX_4V, VEX_L, Sched<[WriteFMaskedLoadY]>; + def mr : AVX8I<opc_mr, MRMDestMem, (outs), + (ins f128mem:$dst, VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(IntSt addr:$dst, VR128:$src1, VR128:$src2)]>, + VEX_4V, Sched<[WriteFMaskedStore]>; + def Ymr : AVX8I<opc_mr, MRMDestMem, (outs), + (ins f256mem:$dst, VR256:$src1, VR256:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, + VEX_4V, VEX_L, Sched<[WriteFMaskedStoreY]>; +} + +let ExeDomain = SSEPackedSingle in +defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps", + int_x86_avx_maskload_ps, + int_x86_avx_maskload_ps_256, + int_x86_avx_maskstore_ps, + int_x86_avx_maskstore_ps_256>; +let ExeDomain = SSEPackedDouble in +defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd", + int_x86_avx_maskload_pd, + int_x86_avx_maskload_pd_256, + int_x86_avx_maskstore_pd, + int_x86_avx_maskstore_pd_256>; + +//===----------------------------------------------------------------------===// +// VPERMIL - Permute Single and Double Floating-Point Values +// + +multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr, + RegisterClass RC, X86MemOperand x86memop_f, + X86MemOperand x86memop_i, PatFrag i_frag, + ValueType f_vt, ValueType i_vt, + X86FoldableSchedWrite sched, + X86FoldableSchedWrite varsched> { + let Predicates = [HasAVX, NoVLX] in { + def rr : AVX8I<opc_rm, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, (f_vt (X86VPermilpv RC:$src1, (i_vt RC:$src2))))]>, VEX_4V, + Sched<[varsched]>; + def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop_i:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, (f_vt (X86VPermilpv RC:$src1, + (i_vt (bitconvert (i_frag addr:$src2))))))]>, VEX_4V, + Sched<[varsched.Folded, ReadAfterLd]>; + + def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, u8imm:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, (f_vt (X86VPermilpi RC:$src1, (i8 imm:$src2))))]>, VEX, + Sched<[sched]>; + def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst), + (ins x86memop_f:$src1, u8imm:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, + (f_vt (X86VPermilpi (load addr:$src1), (i8 imm:$src2))))]>, VEX, + Sched<[sched.Folded]>; + }// Predicates = [HasAVX, NoVLX] +} + +let ExeDomain = SSEPackedSingle in { + defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem, + loadv2i64, v4f32, v4i32, SchedWriteFShuffle.XMM, + SchedWriteFVarShuffle.XMM>; + defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem, + loadv4i64, v8f32, v8i32, SchedWriteFShuffle.YMM, + SchedWriteFVarShuffle.YMM>, VEX_L; +} +let ExeDomain = SSEPackedDouble in { + defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem, + loadv2i64, v2f64, v2i64, SchedWriteFShuffle.XMM, + SchedWriteFVarShuffle.XMM>; + defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem, + loadv4i64, v4f64, v4i64, SchedWriteFShuffle.YMM, + SchedWriteFVarShuffle.YMM>, VEX_L; +} + +//===----------------------------------------------------------------------===// +// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks +// + +let ExeDomain = SSEPackedSingle in { +let isCommutable = 1 in +def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR256:$src2, u8imm:$src3), + "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + [(set VR256:$dst, (v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2, + (i8 imm:$src3))))]>, VEX_4V, VEX_L, + Sched<[WriteFShuffle256]>; +def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, f256mem:$src2, u8imm:$src3), + "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4f64 addr:$src2), + (i8 imm:$src3)))]>, VEX_4V, VEX_L, + Sched<[WriteFShuffle256Ld, ReadAfterLd]>; +} + +// Immediate transform to help with commuting. +def Perm2XCommuteImm : SDNodeXForm<imm, [{ + return getI8Imm(N->getZExtValue() ^ 0x22, SDLoc(N)); +}]>; + +let Predicates = [HasAVX] in { +// Pattern with load in other operand. +def : Pat<(v4f64 (X86VPerm2x128 (loadv4f64 addr:$src2), + VR256:$src1, (i8 imm:$imm))), + (VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>; +} + +let Predicates = [HasAVX1Only] in { +def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))), + (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>; +def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, + (loadv4i64 addr:$src2), (i8 imm:$imm))), + (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>; +// Pattern with load in other operand. +def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2), + VR256:$src1, (i8 imm:$imm))), + (VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>; +} + +//===----------------------------------------------------------------------===// +// VZERO - Zero YMM registers +// Note: These instruction do not affect the YMM16-YMM31. +// + +let SchedRW = [WriteSystem] in { +let Defs = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, + YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15] in { + // Zero All YMM registers + def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall", + [(int_x86_avx_vzeroall)]>, PS, VEX, VEX_L, + Requires<[HasAVX]>, VEX_WIG; + + // Zero Upper bits of YMM registers + def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper", + [(int_x86_avx_vzeroupper)]>, PS, VEX, + Requires<[HasAVX]>, VEX_WIG; +} // Defs +} // SchedRW + +//===----------------------------------------------------------------------===// +// Half precision conversion instructions +// + +multiclass f16c_ph2ps<RegisterClass RC, X86MemOperand x86memop, + X86FoldableSchedWrite sched> { + def rr : I<0x13, MRMSrcReg, (outs RC:$dst), (ins VR128:$src), + "vcvtph2ps\t{$src, $dst|$dst, $src}", + [(set RC:$dst, (X86cvtph2ps VR128:$src))]>, + T8PD, VEX, Sched<[sched]>; + let hasSideEffects = 0, mayLoad = 1 in + def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), + "vcvtph2ps\t{$src, $dst|$dst, $src}", + [(set RC:$dst, (X86cvtph2ps (bc_v8i16 + (loadv2i64 addr:$src))))]>, + T8PD, VEX, Sched<[sched.Folded]>; +} + +multiclass f16c_ps2ph<RegisterClass RC, X86MemOperand x86memop, + SchedWrite RR, SchedWrite MR> { + def rr : Ii8<0x1D, MRMDestReg, (outs VR128:$dst), + (ins RC:$src1, i32u8imm:$src2), + "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set VR128:$dst, (X86cvtps2ph RC:$src1, imm:$src2))]>, + TAPD, VEX, Sched<[RR]>; + let hasSideEffects = 0, mayStore = 1 in + def mr : Ii8<0x1D, MRMDestMem, (outs), + (ins x86memop:$dst, RC:$src1, i32u8imm:$src2), + "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + TAPD, VEX, Sched<[MR]>; +} + +let Predicates = [HasF16C, NoVLX] in { + defm VCVTPH2PS : f16c_ph2ps<VR128, f64mem, WriteCvtPH2PS>; + defm VCVTPH2PSY : f16c_ph2ps<VR256, f128mem, WriteCvtPH2PSY>, VEX_L; + defm VCVTPS2PH : f16c_ps2ph<VR128, f64mem, WriteCvtPS2PH, + WriteCvtPS2PHSt>; + defm VCVTPS2PHY : f16c_ps2ph<VR256, f128mem, WriteCvtPS2PHY, + WriteCvtPS2PHYSt>, VEX_L; + + // Pattern match vcvtph2ps of a scalar i64 load. + def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzmovl_v2i64 addr:$src)))), + (VCVTPH2PSrm addr:$src)>; + def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzload_v2i64 addr:$src)))), + (VCVTPH2PSrm addr:$src)>; + def : Pat<(v4f32 (X86cvtph2ps (v8i16 (bitconvert + (v2i64 (scalar_to_vector (loadi64 addr:$src))))))), + (VCVTPH2PSrm addr:$src)>; + + def : Pat<(store (f64 (extractelt + (bc_v2f64 (v8i16 (X86cvtps2ph VR128:$src1, i32:$src2))), + (iPTR 0))), addr:$dst), + (VCVTPS2PHmr addr:$dst, VR128:$src1, imm:$src2)>; + def : Pat<(store (i64 (extractelt + (bc_v2i64 (v8i16 (X86cvtps2ph VR128:$src1, i32:$src2))), + (iPTR 0))), addr:$dst), + (VCVTPS2PHmr addr:$dst, VR128:$src1, imm:$src2)>; + def : Pat<(store (v8i16 (X86cvtps2ph VR256:$src1, i32:$src2)), addr:$dst), + (VCVTPS2PHYmr addr:$dst, VR256:$src1, imm:$src2)>; +} + +// Patterns for matching conversions from float to half-float and vice versa. +let Predicates = [HasF16C, NoVLX] in { + // Use MXCSR.RC for rounding instead of explicitly specifying the default + // rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the + // configurations we support (the default). However, falling back to MXCSR is + // more consistent with other instructions, which are always controlled by it. + // It's encoded as 0b100. + def : Pat<(fp_to_f16 FR32:$src), + (i16 (EXTRACT_SUBREG (VMOVPDI2DIrr (v8i16 (VCVTPS2PHrr + (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 4))), sub_16bit))>; + + def : Pat<(f16_to_fp GR16:$src), + (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSrr + (v4i32 (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128)))), FR32)) >; + + def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32:$src))), + (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSrr + (v8i16 (VCVTPS2PHrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 4)))), FR32)) >; +} + +//===----------------------------------------------------------------------===// +// AVX2 Instructions +//===----------------------------------------------------------------------===// + +/// AVX2_blend_rmi - AVX2 blend with 8-bit immediate +multiclass AVX2_blend_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType OpVT, X86FoldableSchedWrite sched, + RegisterClass RC, PatFrag memop_frag, + X86MemOperand x86memop, SDNodeXForm commuteXForm> { + let isCommutable = 1 in + def rri : AVX2AIi8<opc, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>, + Sched<[sched]>, VEX_4V; + def rmi : AVX2AIi8<opc, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, x86memop:$src2, u8imm:$src3), + !strconcat(OpcodeStr, + "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), + [(set RC:$dst, + (OpVT (OpNode RC:$src1, + (bitconvert (memop_frag addr:$src2)), imm:$src3)))]>, + Sched<[sched.Folded, ReadAfterLd]>, VEX_4V; + + // Pattern to commute if load is in first source. + def : Pat<(OpVT (OpNode (bitconvert (memop_frag addr:$src2)), + RC:$src1, imm:$src3)), + (!cast<Instruction>(NAME#"rmi") RC:$src1, addr:$src2, + (commuteXForm imm:$src3))>; +} + +defm VPBLENDD : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v4i32, + SchedWriteBlend.XMM, VR128, loadv2i64, i128mem, + BlendCommuteImm4>; +defm VPBLENDDY : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v8i32, + SchedWriteBlend.YMM, VR256, loadv4i64, i256mem, + BlendCommuteImm8>, VEX_L; + +// For insertion into the zero index (low half) of a 256-bit vector, it is +// more efficient to generate a blend with immediate instead of an insert*128. +let Predicates = [HasAVX2] in { +def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)), + (VPBLENDDYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)), + (VPBLENDDYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)), + (VPBLENDDYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)), + (VPBLENDDYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +} + +let Predicates = [HasAVX1Only] in { +def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)), + (VBLENDPSYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)), + (VBLENDPSYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)), + (VBLENDPSYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)), + (VBLENDPSYrri VR256:$src1, + (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + VR128:$src2, sub_xmm), 0xf)>; +} + +//===----------------------------------------------------------------------===// +// VPBROADCAST - Load from memory and broadcast to all elements of the +// destination operand +// +multiclass avx2_broadcast<bits<8> opc, string OpcodeStr, + X86MemOperand x86memop, PatFrag ld_frag, + ValueType OpVT128, ValueType OpVT256, Predicate prd> { + let Predicates = [HasAVX2, prd] in { + def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, + (OpVT128 (X86VBroadcast (OpVT128 VR128:$src))))]>, + Sched<[SchedWriteShuffle.XMM]>, VEX; + def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR128:$dst, + (OpVT128 (X86VBroadcast (ld_frag addr:$src))))]>, + Sched<[SchedWriteShuffle.XMM.Folded]>, VEX; + def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, + (OpVT256 (X86VBroadcast (OpVT128 VR128:$src))))]>, + Sched<[WriteShuffle256]>, VEX, VEX_L; + def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), (ins x86memop:$src), + !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), + [(set VR256:$dst, + (OpVT256 (X86VBroadcast (ld_frag addr:$src))))]>, + Sched<[SchedWriteShuffle.XMM.Folded]>, VEX, VEX_L; + + // Provide aliases for broadcast from the same register class that + // automatically does the extract. + def : Pat<(OpVT256 (X86VBroadcast (OpVT256 VR256:$src))), + (!cast<Instruction>(NAME#"Yrr") + (OpVT128 (EXTRACT_SUBREG (OpVT256 VR256:$src),sub_xmm)))>; + } +} + +defm VPBROADCASTB : avx2_broadcast<0x78, "vpbroadcastb", i8mem, loadi8, + v16i8, v32i8, NoVLX_Or_NoBWI>; +defm VPBROADCASTW : avx2_broadcast<0x79, "vpbroadcastw", i16mem, loadi16, + v8i16, v16i16, NoVLX_Or_NoBWI>; +defm VPBROADCASTD : avx2_broadcast<0x58, "vpbroadcastd", i32mem, loadi32, + v4i32, v8i32, NoVLX>; +defm VPBROADCASTQ : avx2_broadcast<0x59, "vpbroadcastq", i64mem, loadi64, + v2i64, v4i64, NoVLX>; + +let Predicates = [HasAVX2, NoVLX] in { + // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD. + def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload addr:$src)))), + (VPBROADCASTQrm addr:$src)>; + def : Pat<(v4i64 (X86VBroadcast (v4i64 (X86vzload addr:$src)))), + (VPBROADCASTQYrm addr:$src)>; + + def : Pat<(v4i32 (X86VBroadcast (v4i32 (scalar_to_vector (loadi32 addr:$src))))), + (VPBROADCASTDrm addr:$src)>; + def : Pat<(v8i32 (X86VBroadcast (v4i32 (scalar_to_vector (loadi32 addr:$src))))), + (VPBROADCASTDYrm addr:$src)>; + def : Pat<(v2i64 (X86VBroadcast (v2i64 (scalar_to_vector (loadi64 addr:$src))))), + (VPBROADCASTQrm addr:$src)>; + def : Pat<(v4i64 (X86VBroadcast (v2i64 (scalar_to_vector (loadi64 addr:$src))))), + (VPBROADCASTQYrm addr:$src)>; +} +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { + // loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably. + // This means we'll encounter truncated i32 loads; match that here. + def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), + (VPBROADCASTWrm addr:$src)>; + def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))), + (VPBROADCASTWYrm addr:$src)>; + def : Pat<(v8i16 (X86VBroadcast + (i16 (trunc (i32 (zextloadi16 addr:$src)))))), + (VPBROADCASTWrm addr:$src)>; + def : Pat<(v16i16 (X86VBroadcast + (i16 (trunc (i32 (zextloadi16 addr:$src)))))), + (VPBROADCASTWYrm addr:$src)>; +} + +let Predicates = [HasAVX2, NoVLX] in { + // Provide aliases for broadcast from the same register class that + // automatically does the extract. + def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256:$src))), + (VBROADCASTSSYrr (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), + sub_xmm)))>; + def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256:$src))), + (VBROADCASTSDYrr (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), + sub_xmm)))>; +} + +let Predicates = [HasAVX2, NoVLX] in { + // Provide fallback in case the load node that is used in the patterns above + // is used by additional users, which prevents the pattern selection. + def : Pat<(v4f32 (X86VBroadcast FR32:$src)), + (VBROADCASTSSrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>; + def : Pat<(v8f32 (X86VBroadcast FR32:$src)), + (VBROADCASTSSYrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>; + def : Pat<(v4f64 (X86VBroadcast FR64:$src)), + (VBROADCASTSDYrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>; +} + +let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in { + def : Pat<(v16i8 (X86VBroadcast GR8:$src)), + (VPBROADCASTBrr (v16i8 (COPY_TO_REGCLASS + (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), + GR8:$src, sub_8bit)), + VR128)))>; + def : Pat<(v32i8 (X86VBroadcast GR8:$src)), + (VPBROADCASTBYrr (v16i8 (COPY_TO_REGCLASS + (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), + GR8:$src, sub_8bit)), + VR128)))>; + + def : Pat<(v8i16 (X86VBroadcast GR16:$src)), + (VPBROADCASTWrr (v8i16 (COPY_TO_REGCLASS + (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), + GR16:$src, sub_16bit)), + VR128)))>; + def : Pat<(v16i16 (X86VBroadcast GR16:$src)), + (VPBROADCASTWYrr (v8i16 (COPY_TO_REGCLASS + (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), + GR16:$src, sub_16bit)), + VR128)))>; +} +let Predicates = [HasAVX2, NoVLX] in { + def : Pat<(v4i32 (X86VBroadcast GR32:$src)), + (VPBROADCASTDrr (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)))>; + def : Pat<(v8i32 (X86VBroadcast GR32:$src)), + (VPBROADCASTDYrr (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)))>; + def : Pat<(v2i64 (X86VBroadcast GR64:$src)), + (VPBROADCASTQrr (v2i64 (COPY_TO_REGCLASS GR64:$src, VR128)))>; + def : Pat<(v4i64 (X86VBroadcast GR64:$src)), + (VPBROADCASTQYrr (v2i64 (COPY_TO_REGCLASS GR64:$src, VR128)))>; +} + +// AVX1 broadcast patterns +let Predicates = [HasAVX1Only] in { +def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))), + (VBROADCASTSSYrm addr:$src)>; +def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))), + (VBROADCASTSDYrm addr:$src)>; +def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))), + (VBROADCASTSSrm addr:$src)>; +} + + // Provide fallback in case the load node that is used in the patterns above + // is used by additional users, which prevents the pattern selection. +let Predicates = [HasAVX, NoVLX] in { + // 128bit broadcasts: + def : Pat<(v2f64 (X86VBroadcast f64:$src)), + (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>; + def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))), + (VMOVDDUPrm addr:$src)>; + + def : Pat<(v2f64 (X86VBroadcast v2f64:$src)), + (VMOVDDUPrr VR128:$src)>; + def : Pat<(v2f64 (X86VBroadcast (loadv2f64 addr:$src))), + (VMOVDDUPrm addr:$src)>; +} + +let Predicates = [HasAVX1Only] in { + def : Pat<(v4f32 (X86VBroadcast FR32:$src)), + (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)>; + def : Pat<(v8f32 (X86VBroadcast FR32:$src)), + (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), + (v4f32 (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)), sub_xmm), + (v4f32 (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)), 1)>; + def : Pat<(v4f64 (X86VBroadcast FR64:$src)), + (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), + (v2f64 (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))), sub_xmm), + (v2f64 (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))), 1)>; + + def : Pat<(v4i32 (X86VBroadcast GR32:$src)), + (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)), 0)>; + def : Pat<(v8i32 (X86VBroadcast GR32:$src)), + (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), + (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)), 0)), sub_xmm), + (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)), 0)), 1)>; + def : Pat<(v4i64 (X86VBroadcast GR64:$src)), + (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), + (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR64:$src, VR128)), 0x44)), sub_xmm), + (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR64:$src, VR128)), 0x44)), 1)>; + + def : Pat<(v2i64 (X86VBroadcast i64:$src)), + (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR64:$src, VR128)), 0x44)>; + def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))), + (VMOVDDUPrm addr:$src)>; +} + +//===----------------------------------------------------------------------===// +// VPERM - Permute instructions +// + +multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag, + ValueType OpVT, X86FoldableSchedWrite Sched, + X86MemOperand memOp> { + let Predicates = [HasAVX2, NoVLX] in { + def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR256:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (OpVT (X86VPermv VR256:$src1, VR256:$src2)))]>, + Sched<[Sched]>, VEX_4V, VEX_L; + def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, memOp:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (OpVT (X86VPermv VR256:$src1, + (bitconvert (mem_frag addr:$src2)))))]>, + Sched<[Sched.Folded, ReadAfterLd]>, VEX_4V, VEX_L; + } +} + +defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32, WriteVarShuffle256, + i256mem>; +let ExeDomain = SSEPackedSingle in +defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32, WriteFVarShuffle256, + f256mem>; + +multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag, + ValueType OpVT, X86FoldableSchedWrite Sched, + X86MemOperand memOp> { + let Predicates = [HasAVX2, NoVLX] in { + def Yri : AVX2AIi8<opc, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (OpVT (X86VPermi VR256:$src1, (i8 imm:$src2))))]>, + Sched<[Sched]>, VEX, VEX_L; + def Ymi : AVX2AIi8<opc, MRMSrcMem, (outs VR256:$dst), + (ins memOp:$src1, u8imm:$src2), + !strconcat(OpcodeStr, + "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (OpVT (X86VPermi (mem_frag addr:$src1), + (i8 imm:$src2))))]>, + Sched<[Sched.Folded, ReadAfterLd]>, VEX, VEX_L; + } +} + +defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64, + WriteShuffle256, i256mem>, VEX_W; +let ExeDomain = SSEPackedDouble in +defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64, + WriteFShuffle256, f256mem>, VEX_W; + +//===----------------------------------------------------------------------===// +// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks +// +let isCommutable = 1 in +def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR256:$src2, u8imm:$src3), + "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + [(set VR256:$dst, (v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, + (i8 imm:$src3))))]>, Sched<[WriteShuffle256]>, + VEX_4V, VEX_L; +def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, f256mem:$src2, u8imm:$src3), + "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2), + (i8 imm:$src3)))]>, + Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L; + +let Predicates = [HasAVX2] in +def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2), + VR256:$src1, (i8 imm:$imm))), + (VPERM2I128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>; + + +//===----------------------------------------------------------------------===// +// VINSERTI128 - Insert packed integer values +// +let hasSideEffects = 0 in { +def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR128:$src2, u8imm:$src3), + "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + []>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L; +let mayLoad = 1 in +def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, i128mem:$src2, u8imm:$src3), + "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", + []>, Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L; +} + +let Predicates = [HasAVX2, NoVLX] in { + defm : vinsert_lowering<"VINSERTI128", v2i64, v4i64, loadv2i64>; + defm : vinsert_lowering<"VINSERTI128", v4i32, v8i32, loadv2i64>; + defm : vinsert_lowering<"VINSERTI128", v8i16, v16i16, loadv2i64>; + defm : vinsert_lowering<"VINSERTI128", v16i8, v32i8, loadv2i64>; +} + +//===----------------------------------------------------------------------===// +// VEXTRACTI128 - Extract packed integer values +// +def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst), + (ins VR256:$src1, u8imm:$src2), + "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + Sched<[WriteShuffle256]>, VEX, VEX_L; +let hasSideEffects = 0, mayStore = 1 in +def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs), + (ins i128mem:$dst, VR256:$src1, u8imm:$src2), + "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, + Sched<[SchedWriteVecMoveLS.XMM.MR]>, VEX, VEX_L; + +let Predicates = [HasAVX2, NoVLX] in { + defm : vextract_lowering<"VEXTRACTI128", v4i64, v2i64>; + defm : vextract_lowering<"VEXTRACTI128", v8i32, v4i32>; + defm : vextract_lowering<"VEXTRACTI128", v16i16, v8i16>; + defm : vextract_lowering<"VEXTRACTI128", v32i8, v16i8>; +} + +//===----------------------------------------------------------------------===// +// VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores +// +multiclass avx2_pmovmask<string OpcodeStr, + Intrinsic IntLd128, Intrinsic IntLd256, + Intrinsic IntSt128, Intrinsic IntSt256> { + def rm : AVX28I<0x8c, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, (IntLd128 addr:$src2, VR128:$src1))]>, + VEX_4V, Sched<[WriteVecMaskedLoad]>; + def Yrm : AVX28I<0x8c, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, i256mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>, + VEX_4V, VEX_L, Sched<[WriteVecMaskedLoadY]>; + def mr : AVX28I<0x8e, MRMDestMem, (outs), + (ins i128mem:$dst, VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(IntSt128 addr:$dst, VR128:$src1, VR128:$src2)]>, + VEX_4V, Sched<[WriteVecMaskedStore]>; + def Ymr : AVX28I<0x8e, MRMDestMem, (outs), + (ins i256mem:$dst, VR256:$src1, VR256:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>, + VEX_4V, VEX_L, Sched<[WriteVecMaskedStoreY]>; +} + +defm VPMASKMOVD : avx2_pmovmask<"vpmaskmovd", + int_x86_avx2_maskload_d, + int_x86_avx2_maskload_d_256, + int_x86_avx2_maskstore_d, + int_x86_avx2_maskstore_d_256>; +defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq", + int_x86_avx2_maskload_q, + int_x86_avx2_maskload_q_256, + int_x86_avx2_maskstore_q, + int_x86_avx2_maskstore_q_256>, VEX_W; + +multiclass maskmov_lowering<string InstrStr, RegisterClass RC, ValueType VT, + ValueType MaskVT, string BlendStr, ValueType ZeroVT> { + // masked store + def: Pat<(X86mstore addr:$ptr, (MaskVT RC:$mask), (VT RC:$src)), + (!cast<Instruction>(InstrStr#"mr") addr:$ptr, RC:$mask, RC:$src)>; + // masked load + def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), undef)), + (!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)>; + def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), + (VT (bitconvert (ZeroVT immAllZerosV))))), + (!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)>; + def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), (VT RC:$src0))), + (!cast<Instruction>(BlendStr#"rr") + RC:$src0, + (VT (!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)), + RC:$mask)>; +} +let Predicates = [HasAVX] in { + defm : maskmov_lowering<"VMASKMOVPS", VR128, v4f32, v4i32, "VBLENDVPS", v4i32>; + defm : maskmov_lowering<"VMASKMOVPD", VR128, v2f64, v2i64, "VBLENDVPD", v4i32>; + defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8f32, v8i32, "VBLENDVPSY", v8i32>; + defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4f64, v4i64, "VBLENDVPDY", v8i32>; +} +let Predicates = [HasAVX1Only] in { + // load/store i32/i64 not supported use ps/pd version + defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8i32, v8i32, "VBLENDVPSY", v8i32>; + defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4i64, v4i64, "VBLENDVPDY", v8i32>; + defm : maskmov_lowering<"VMASKMOVPS", VR128, v4i32, v4i32, "VBLENDVPS", v4i32>; + defm : maskmov_lowering<"VMASKMOVPD", VR128, v2i64, v2i64, "VBLENDVPD", v4i32>; +} +let Predicates = [HasAVX2] in { + defm : maskmov_lowering<"VPMASKMOVDY", VR256, v8i32, v8i32, "VBLENDVPSY", v8i32>; + defm : maskmov_lowering<"VPMASKMOVQY", VR256, v4i64, v4i64, "VBLENDVPDY", v8i32>; + defm : maskmov_lowering<"VPMASKMOVD", VR128, v4i32, v4i32, "VBLENDVPS", v4i32>; + defm : maskmov_lowering<"VPMASKMOVQ", VR128, v2i64, v2i64, "VBLENDVPD", v4i32>; +} + +//===----------------------------------------------------------------------===// +// SubVector Broadcasts +// Provide fallback in case the load node that is used in the patterns above +// is used by additional users, which prevents the pattern selection. + +let Predicates = [HasAVX2, NoVLX] in { +def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))), + (VINSERTI128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v2i64 VR128:$src), 1)>; +def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))), + (VINSERTI128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v4i32 VR128:$src), 1)>; +def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))), + (VINSERTI128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v8i16 VR128:$src), 1)>; +def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))), + (VINSERTI128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v16i8 VR128:$src), 1)>; +} + +let Predicates = [HasAVX, NoVLX] in { +def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128:$src))), + (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v2f64 VR128:$src), 1)>; +def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128:$src))), + (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v4f32 VR128:$src), 1)>; +} + +let Predicates = [HasAVX1Only] in { +def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))), + (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v2i64 VR128:$src), 1)>; +def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))), + (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v4i32 VR128:$src), 1)>; +def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))), + (VINSERTF128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v8i16 VR128:$src), 1)>; +def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))), + (VINSERTF128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm), + (v16i8 VR128:$src), 1)>; +} + +//===----------------------------------------------------------------------===// +// Variable Bit Shifts +// +multiclass avx2_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode, + ValueType vt128, ValueType vt256> { + def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst), + (ins VR128:$src1, VR128:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode VR128:$src1, (vt128 VR128:$src2))))]>, + VEX_4V, Sched<[SchedWriteVarVecShift.XMM]>; + def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst), + (ins VR128:$src1, i128mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR128:$dst, + (vt128 (OpNode VR128:$src1, + (vt128 (bitconvert (loadv2i64 addr:$src2))))))]>, + VEX_4V, Sched<[SchedWriteVarVecShift.XMM.Folded, ReadAfterLd]>; + def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), + (ins VR256:$src1, VR256:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (vt256 (OpNode VR256:$src1, (vt256 VR256:$src2))))]>, + VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM]>; + def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), + (ins VR256:$src1, i256mem:$src2), + !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set VR256:$dst, + (vt256 (OpNode VR256:$src1, + (vt256 (bitconvert (loadv4i64 addr:$src2))))))]>, + VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM.Folded, ReadAfterLd]>; +} + +let Predicates = [HasAVX2, NoVLX] in { + defm VPSLLVD : avx2_var_shift<0x47, "vpsllvd", shl, v4i32, v8i32>; + defm VPSLLVQ : avx2_var_shift<0x47, "vpsllvq", shl, v2i64, v4i64>, VEX_W; + defm VPSRLVD : avx2_var_shift<0x45, "vpsrlvd", srl, v4i32, v8i32>; + defm VPSRLVQ : avx2_var_shift<0x45, "vpsrlvq", srl, v2i64, v4i64>, VEX_W; + defm VPSRAVD : avx2_var_shift<0x46, "vpsravd", sra, v4i32, v8i32>; + + def : Pat<(v4i32 (X86vsrav VR128:$src1, VR128:$src2)), + (VPSRAVDrr VR128:$src1, VR128:$src2)>; + def : Pat<(v4i32 (X86vsrav VR128:$src1, + (bitconvert (loadv2i64 addr:$src2)))), + (VPSRAVDrm VR128:$src1, addr:$src2)>; + def : Pat<(v8i32 (X86vsrav VR256:$src1, VR256:$src2)), + (VPSRAVDYrr VR256:$src1, VR256:$src2)>; + def : Pat<(v8i32 (X86vsrav VR256:$src1, + (bitconvert (loadv4i64 addr:$src2)))), + (VPSRAVDYrm VR256:$src1, addr:$src2)>; +} + +//===----------------------------------------------------------------------===// +// VGATHER - GATHER Operations + +// FIXME: Improve scheduling of gather instructions. +multiclass avx2_gather<bits<8> opc, string OpcodeStr, ValueType VTx, + ValueType VTy, PatFrag GatherNode128, + PatFrag GatherNode256, RegisterClass RC256, + X86MemOperand memop128, X86MemOperand memop256, + ValueType MTx = VTx, ValueType MTy = VTy> { + def rm : AVX28I<opc, MRMSrcMem4VOp3, (outs VR128:$dst, VR128:$mask_wb), + (ins VR128:$src1, memop128:$src2, VR128:$mask), + !strconcat(OpcodeStr, + "\t{$mask, $src2, $dst|$dst, $src2, $mask}"), + [(set (VTx VR128:$dst), (MTx VR128:$mask_wb), + (GatherNode128 VR128:$src1, VR128:$mask, + vectoraddr:$src2))]>, + VEX, Sched<[WriteLoad]>; + def Yrm : AVX28I<opc, MRMSrcMem4VOp3, (outs RC256:$dst, RC256:$mask_wb), + (ins RC256:$src1, memop256:$src2, RC256:$mask), + !strconcat(OpcodeStr, + "\t{$mask, $src2, $dst|$dst, $src2, $mask}"), + [(set (VTy RC256:$dst), (MTy RC256:$mask_wb), + (GatherNode256 RC256:$src1, RC256:$mask, + vectoraddr:$src2))]>, + VEX, VEX_L, Sched<[WriteLoad]>; +} + +let Predicates = [UseAVX2] in { + let mayLoad = 1, hasSideEffects = 0, Constraints + = "@earlyclobber $dst,@earlyclobber $mask_wb, $src1 = $dst, $mask = $mask_wb" + in { + defm VPGATHERDQ : avx2_gather<0x90, "vpgatherdq", v2i64, v4i64, mgatherv4i32, + mgatherv4i32, VR256, vx128mem, vx256mem>, VEX_W; + defm VPGATHERQQ : avx2_gather<0x91, "vpgatherqq", v2i64, v4i64, mgatherv2i64, + mgatherv4i64, VR256, vx128mem, vy256mem>, VEX_W; + defm VPGATHERDD : avx2_gather<0x90, "vpgatherdd", v4i32, v8i32, mgatherv4i32, + mgatherv8i32, VR256, vx128mem, vy256mem>; + defm VPGATHERQD : avx2_gather<0x91, "vpgatherqd", v4i32, v4i32, mgatherv2i64, + mgatherv4i64, VR128, vx64mem, vy128mem>; + + let ExeDomain = SSEPackedDouble in { + defm VGATHERDPD : avx2_gather<0x92, "vgatherdpd", v2f64, v4f64, mgatherv4i32, + mgatherv4i32, VR256, vx128mem, vx256mem, + v2i64, v4i64>, VEX_W; + defm VGATHERQPD : avx2_gather<0x93, "vgatherqpd", v2f64, v4f64, mgatherv2i64, + mgatherv4i64, VR256, vx128mem, vy256mem, + v2i64, v4i64>, VEX_W; + } + + let ExeDomain = SSEPackedSingle in { + defm VGATHERDPS : avx2_gather<0x92, "vgatherdps", v4f32, v8f32, mgatherv4i32, + mgatherv8i32, VR256, vx128mem, vy256mem, + v4i32, v8i32>; + defm VGATHERQPS : avx2_gather<0x93, "vgatherqps", v4f32, v4f32, mgatherv2i64, + mgatherv4i64, VR128, vx64mem, vy128mem, + v4i32, v4i32>; + } + } +} + +//===----------------------------------------------------------------------===// +// Extra selection patterns for f128, f128mem + +// movaps is shorter than movdqa. movaps is in SSE and movdqa is in SSE2. +def : Pat<(alignedstore (f128 VR128:$src), addr:$dst), + (MOVAPSmr addr:$dst, (COPY_TO_REGCLASS (f128 VR128:$src), VR128))>; +def : Pat<(store (f128 VR128:$src), addr:$dst), + (MOVUPSmr addr:$dst, (COPY_TO_REGCLASS (f128 VR128:$src), VR128))>; + +def : Pat<(alignedloadf128 addr:$src), + (COPY_TO_REGCLASS (MOVAPSrm addr:$src), VR128)>; +def : Pat<(loadf128 addr:$src), + (COPY_TO_REGCLASS (MOVUPSrm addr:$src), VR128)>; + +// andps is shorter than andpd or pand. andps is SSE and andpd/pand are in SSE2 +def : Pat<(f128 (X86fand VR128:$src1, (memopf128 addr:$src2))), + (COPY_TO_REGCLASS + (ANDPSrm (COPY_TO_REGCLASS VR128:$src1, VR128), f128mem:$src2), + VR128)>; + +def : Pat<(f128 (X86fand VR128:$src1, VR128:$src2)), + (COPY_TO_REGCLASS + (ANDPSrr (COPY_TO_REGCLASS VR128:$src1, VR128), + (COPY_TO_REGCLASS VR128:$src2, VR128)), VR128)>; + +def : Pat<(f128 (X86for VR128:$src1, (memopf128 addr:$src2))), + (COPY_TO_REGCLASS + (ORPSrm (COPY_TO_REGCLASS VR128:$src1, VR128), f128mem:$src2), + VR128)>; + +def : Pat<(f128 (X86for VR128:$src1, VR128:$src2)), + (COPY_TO_REGCLASS + (ORPSrr (COPY_TO_REGCLASS VR128:$src1, VR128), + (COPY_TO_REGCLASS VR128:$src2, VR128)), VR128)>; + +def : Pat<(f128 (X86fxor VR128:$src1, (memopf128 addr:$src2))), + (COPY_TO_REGCLASS + (XORPSrm (COPY_TO_REGCLASS VR128:$src1, VR128), f128mem:$src2), + VR128)>; + +def : Pat<(f128 (X86fxor VR128:$src1, VR128:$src2)), + (COPY_TO_REGCLASS + (XORPSrr (COPY_TO_REGCLASS VR128:$src1, VR128), + (COPY_TO_REGCLASS VR128:$src2, VR128)), VR128)>; + +//===----------------------------------------------------------------------===// +// GFNI instructions +//===----------------------------------------------------------------------===// + +multiclass GF2P8MULB_rm<string OpcodeStr, ValueType OpVT, + RegisterClass RC, PatFrag MemOpFrag, + X86MemOperand X86MemOp, bit Is2Addr = 0> { + let ExeDomain = SSEPackedInt, + AsmString = !if(Is2Addr, + OpcodeStr##"\t{$src2, $dst|$dst, $src2}", + OpcodeStr##"\t{$src2, $src1, $dst|$dst, $src1, $src2}") in { + let isCommutable = 1 in + def rr : PDI<0xCF, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), "", + [(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1, RC:$src2)))]>, + Sched<[SchedWriteVecALU.XMM]>, T8PD; + + def rm : PDI<0xCF, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, X86MemOp:$src2), "", + [(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1, + (bitconvert (MemOpFrag addr:$src2)))))]>, + Sched<[SchedWriteVecALU.XMM.Folded, ReadAfterLd]>, T8PD; + } +} + +multiclass GF2P8AFFINE_rmi<bits<8> Op, string OpStr, ValueType OpVT, + SDNode OpNode, RegisterClass RC, PatFrag MemOpFrag, + X86MemOperand X86MemOp, bit Is2Addr = 0> { + let AsmString = !if(Is2Addr, + OpStr##"\t{$src3, $src2, $dst|$dst, $src2, $src3}", + OpStr##"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}") in { + def rri : Ii8<Op, MRMSrcReg, (outs RC:$dst), + (ins RC:$src1, RC:$src2, u8imm:$src3), "", + [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))], + SSEPackedInt>, Sched<[SchedWriteVecALU.XMM]>; + def rmi : Ii8<Op, MRMSrcMem, (outs RC:$dst), + (ins RC:$src1, X86MemOp:$src2, u8imm:$src3), "", + [(set RC:$dst, (OpVT (OpNode RC:$src1, + (bitconvert (MemOpFrag addr:$src2)), + imm:$src3)))], SSEPackedInt>, + Sched<[SchedWriteVecALU.XMM.Folded, ReadAfterLd]>; + } +} + +multiclass GF2P8AFFINE_common<bits<8> Op, string OpStr, SDNode OpNode> { + let Constraints = "$src1 = $dst", + Predicates = [HasGFNI, UseSSE2] in + defm NAME : GF2P8AFFINE_rmi<Op, OpStr, v16i8, OpNode, + VR128, loadv2i64, i128mem, 1>; + let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in { + defm V##NAME : GF2P8AFFINE_rmi<Op, "v"##OpStr, v16i8, OpNode, VR128, + loadv2i64, i128mem>, VEX_4V, VEX_W; + defm V##NAME##Y : GF2P8AFFINE_rmi<Op, "v"##OpStr, v32i8, OpNode, VR256, + loadv4i64, i256mem>, VEX_4V, VEX_L, VEX_W; + } +} + +// GF2P8MULB +let Constraints = "$src1 = $dst", + Predicates = [HasGFNI, UseSSE2] in +defm GF2P8MULB : GF2P8MULB_rm<"gf2p8mulb", v16i8, VR128, memopv2i64, + i128mem, 1>; +let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in { + defm VGF2P8MULB : GF2P8MULB_rm<"vgf2p8mulb", v16i8, VR128, loadv2i64, + i128mem>, VEX_4V; + defm VGF2P8MULBY : GF2P8MULB_rm<"vgf2p8mulb", v32i8, VR256, loadv4i64, + i256mem>, VEX_4V, VEX_L; +} +// GF2P8AFFINEINVQB, GF2P8AFFINEQB +let isCommutable = 0 in { + defm GF2P8AFFINEINVQB : GF2P8AFFINE_common<0xCF, "gf2p8affineinvqb", + X86GF2P8affineinvqb>, TAPD; + defm GF2P8AFFINEQB : GF2P8AFFINE_common<0xCE, "gf2p8affineqb", + X86GF2P8affineqb>, TAPD; +} + |