aboutsummaryrefslogtreecommitdiffstats
path: root/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td
diff options
context:
space:
mode:
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/X86InstrSSE.td')
-rw-r--r--capstone/suite/synctools/tablegen/X86/X86InstrSSE.td8258
1 files changed, 8258 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td b/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td
new file mode 100644
index 000000000..c99af69f6
--- /dev/null
+++ b/capstone/suite/synctools/tablegen/X86/X86InstrSSE.td
@@ -0,0 +1,8258 @@
+//===-- X86InstrSSE.td - SSE Instruction Set ---------------*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the X86 SSE instruction set, defining the instructions,
+// and properties of the instructions which are needed for code generation,
+// machine code emission, and analysis.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 Instructions Classes
+//===----------------------------------------------------------------------===//
+
+/// sse12_fp_scalar - SSE 1 & 2 scalar instructions class
+multiclass sse12_fp_scalar<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, X86MemOperand x86memop,
+ Domain d, X86FoldableSchedWrite sched,
+ bit Is2Addr = 1> {
+ let isCommutable = 1 in {
+ def rr : SI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpNode RC:$src1, RC:$src2))], d>,
+ Sched<[sched]>;
+ }
+ def rm : SI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpNode RC:$src1, (load addr:$src2)))], d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+/// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class
+multiclass sse12_fp_scalar_int<bits<8> opc, string OpcodeStr,
+ SDPatternOperator OpNode, RegisterClass RC,
+ ValueType VT, string asm, Operand memopr,
+ ComplexPattern mem_cpat, Domain d,
+ X86FoldableSchedWrite sched, bit Is2Addr = 1> {
+let isCodeGenOnly = 1, hasSideEffects = 0 in {
+ def rr_Int : SI_Int<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (VT (OpNode RC:$src1, RC:$src2)))], d>,
+ Sched<[sched]>;
+ let mayLoad = 1 in
+ def rm_Int : SI_Int<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, memopr:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (VT (OpNode RC:$src1, mem_cpat:$src2)))], d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+}
+
+/// sse12_fp_packed - SSE 1 & 2 packed instructions class
+multiclass sse12_fp_packed<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ RegisterClass RC, ValueType vt,
+ X86MemOperand x86memop, PatFrag mem_frag,
+ Domain d, X86FoldableSchedWrite sched,
+ bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))], d>,
+ Sched<[sched]>;
+ let mayLoad = 1 in
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpNode RC:$src1, (mem_frag addr:$src2)))],
+ d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+/// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class
+multiclass sse12_fp_packed_logical_rm<bits<8> opc, RegisterClass RC, Domain d,
+ string OpcodeStr, X86MemOperand x86memop,
+ X86FoldableSchedWrite sched,
+ list<dag> pat_rr, list<dag> pat_rm,
+ bit Is2Addr = 1> {
+ let isCommutable = 1, hasSideEffects = 0 in
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ pat_rr, d>,
+ Sched<[sched]>;
+ let hasSideEffects = 0, mayLoad = 1 in
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ pat_rm, d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+
+/*
+// Alias instructions that map fld0 to xorps for sse or vxorps for avx.
+// This is expanded by ExpandPostRAPseudos.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, SchedRW = [WriteZero] in {
+ def FsFLD0SS : I<0, Pseudo, (outs FR32:$dst), (ins), "",
+ [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1, NoAVX512]>;
+ def FsFLD0SD : I<0, Pseudo, (outs FR64:$dst), (ins), "",
+ [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2, NoAVX512]>;
+}
+*/
+
+//===----------------------------------------------------------------------===//
+// AVX & SSE - Zero/One Vectors
+//===----------------------------------------------------------------------===//
+
+// Alias instruction that maps zero vector to pxor / xorp* for sse.
+// This is expanded by ExpandPostRAPseudos to an xorps / vxorps, and then
+// swizzled by ExecutionDomainFix to pxor.
+// We set canFoldAsLoad because this can be converted to a constant-pool
+// load of an all-zeros value if folding it would be beneficial.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, SchedRW = [WriteZero] in {
+def V_SET0 : I<0, Pseudo, (outs VR128:$dst), (ins), "",
+ [(set VR128:$dst, (v4f32 immAllZerosV))]>;
+}
+
+let Predicates = [NoAVX512] in
+def : Pat<(v4i32 immAllZerosV), (V_SET0)>;
+
+
+// The same as done above but for AVX. The 256-bit AVX1 ISA doesn't support PI,
+// and doesn't need it because on sandy bridge the register is set to zero
+// at the rename stage without using any execution unit, so SET0PSY
+// and SET0PDY can be used for vector int instructions without penalty
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, Predicates = [NoAVX512], SchedRW = [WriteZero] in {
+def AVX_SET0 : I<0, Pseudo, (outs VR256:$dst), (ins), "",
+ [(set VR256:$dst, (v8i32 immAllZerosV))]>;
+}
+
+// We set canFoldAsLoad because this can be converted to a constant-pool
+// load of an all-ones value if folding it would be beneficial.
+let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1,
+ isPseudo = 1, SchedRW = [WriteZero] in {
+ def V_SETALLONES : I<0, Pseudo, (outs VR128:$dst), (ins), "",
+ [(set VR128:$dst, (v4i32 immAllOnesV))]>;
+ let Predicates = [HasAVX1Only, OptForMinSize] in {
+ def AVX1_SETALLONES: I<0, Pseudo, (outs VR256:$dst), (ins), "",
+ [(set VR256:$dst, (v8i32 immAllOnesV))]>;
+ }
+ let Predicates = [HasAVX2] in
+ def AVX2_SETALLONES : I<0, Pseudo, (outs VR256:$dst), (ins), "",
+ [(set VR256:$dst, (v8i32 immAllOnesV))]>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move FP Scalar Instructions
+//
+// Move Instructions. Register-to-register movss/movsd is not used for FR32/64
+// register copies because it's a partial register update; Register-to-register
+// movss/movsd is not modeled as an INSERT_SUBREG because INSERT_SUBREG requires
+// that the insert be implementable in terms of a copy, and just mentioned, we
+// don't use movss/movsd for copies.
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_move_rr<SDNode OpNode, ValueType vt,
+ X86MemOperand x86memop, string base_opc,
+ string asm_opr, Domain d, string Name> {
+ let isCommutable = 1 in
+ def rr : SI<0x10, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(base_opc, asm_opr),
+ [(set VR128:$dst, (vt (OpNode VR128:$src1, VR128:$src2)))], d>,
+ Sched<[SchedWriteFShuffle.XMM]>;
+
+ // For the disassembler
+ let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
+ def rr_REV : SI<0x11, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(base_opc, asm_opr), []>,
+ Sched<[SchedWriteFShuffle.XMM]>, FoldGenData<Name#rr>;
+}
+
+multiclass sse12_move<RegisterClass RC, SDNode OpNode, ValueType vt,
+ X86MemOperand x86memop, string OpcodeStr,
+ Domain d, string Name, Predicate pred> {
+ // AVX
+ let Predicates = [UseAVX, OptForSize] in
+ defm V#NAME : sse12_move_rr<OpNode, vt, x86memop, OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}", d,
+ "V"#Name>,
+ VEX_4V, VEX_LIG, VEX_WIG;
+
+ def V#NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(store RC:$src, addr:$dst)], d>,
+ VEX, VEX_LIG, Sched<[WriteFStore]>, VEX_WIG;
+ // SSE1 & 2
+ let Constraints = "$src1 = $dst" in {
+ let Predicates = [pred, NoSSE41_Or_OptForSize] in
+ defm NAME : sse12_move_rr<OpNode, vt, x86memop, OpcodeStr,
+ "\t{$src2, $dst|$dst, $src2}", d, Name>;
+ }
+
+ def NAME#mr : SI<0x11, MRMDestMem, (outs), (ins x86memop:$dst, RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(store RC:$src, addr:$dst)], d>,
+ Sched<[WriteFStore]>;
+
+ // def : InstAlias<"v"#OpcodeStr#".s\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ // (!cast<Instruction>("V"#NAME#"rr_REV")
+ // VR128:$dst, VR128:$src1, VR128:$src2), 0>;
+ // def : InstAlias<OpcodeStr#".s\t{$src2, $dst|$dst, $src2}",
+ // (!cast<Instruction>(NAME#"rr_REV")
+ // VR128:$dst, VR128:$src2), 0>;
+}
+
+// Loading from memory automatically zeroing upper bits.
+multiclass sse12_move_rm<RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_pat, string OpcodeStr, Domain d> {
+ def V#NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (mem_pat addr:$src))], d>,
+ VEX, VEX_LIG, Sched<[WriteFLoad]>, VEX_WIG;
+ def NAME#rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (mem_pat addr:$src))], d>,
+ Sched<[WriteFLoad]>;
+}
+
+defm MOVSS : sse12_move<FR32, X86Movss, v4f32, f32mem, "movss",
+ SSEPackedSingle, "MOVSS", UseSSE1>, XS;
+defm MOVSD : sse12_move<FR64, X86Movsd, v2f64, f64mem, "movsd",
+ SSEPackedDouble, "MOVSD", UseSSE2>, XD;
+
+let canFoldAsLoad = 1, isReMaterializable = 1 in {
+ defm MOVSS : sse12_move_rm<FR32, f32mem, loadf32, "movss",
+ SSEPackedSingle>, XS;
+ defm MOVSD : sse12_move_rm<FR64, f64mem, loadf64, "movsd",
+ SSEPackedDouble>, XD;
+}
+
+// Patterns
+let Predicates = [UseAVX] in {
+ // MOVSSrm zeros the high parts of the register; represent this
+ // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (VMOVSSrm addr:$src), VR128)>;
+
+ // MOVSDrm zeros the high parts of the register; represent this
+ // with SUBREG_TO_REG. The AVX versions also write: DST[255:128] <- 0
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (VMOVSDrm addr:$src), VR128)>;
+
+ // Represent the same patterns above but in the form they appear for
+ // 256-bit types
+ def : Pat<(v8f32 (X86vzmovl (insert_subvector undef,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
+ def : Pat<(v8f32 (X86vzload addr:$src)),
+ (SUBREG_TO_REG (i32 0), (VMOVSSrm addr:$src), sub_xmm)>;
+ def : Pat<(v4f64 (X86vzmovl (insert_subvector undef,
+ (v2f64 (scalar_to_vector (loadf64 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
+ def : Pat<(v4f64 (X86vzload addr:$src)),
+ (SUBREG_TO_REG (i32 0), (VMOVSDrm addr:$src), sub_xmm)>;
+
+ // Extract and store.
+ def : Pat<(store (f32 (extractelt (v4f32 VR128:$src), (iPTR 0))),
+ addr:$dst),
+ (VMOVSSmr addr:$dst, (COPY_TO_REGCLASS (v4f32 VR128:$src), FR32))>;
+}
+
+let Predicates = [UseAVX, OptForSize] in {
+ // Move scalar to XMM zero-extended, zeroing a VR128 then do a
+ // MOVSS to the lower bits.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (VMOVSSrr (v4f32 (V_SET0)), VR128:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (VMOVSSrr (v4i32 (V_SET0)), VR128:$src)>;
+
+ // Move low f32 and clear high bits.
+ def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v4f32 (VMOVSSrr (v4f32 (V_SET0)),
+ (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)))), sub_xmm)>;
+ def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v4i32 (VMOVSSrr (v4i32 (V_SET0)),
+ (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)))), sub_xmm)>;
+
+ def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v2f64 (VMOVSDrr (v2f64 (V_SET0)),
+ (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)))),
+ sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v2i64 (VMOVSDrr (v2i64 (V_SET0)),
+ (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)))),
+ sub_xmm)>;
+}
+
+let Predicates = [UseSSE1] in {
+ let Predicates = [UseSSE1, NoSSE41_Or_OptForSize] in {
+ // Move scalar to XMM zero-extended, zeroing a VR128 then do a
+ // MOVSS to the lower bits.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (MOVSSrr (v4f32 (V_SET0)), VR128:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (MOVSSrr (v4i32 (V_SET0)), VR128:$src)>;
+ }
+
+ // MOVSSrm already zeros the high parts of the register.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))),
+ (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
+ def : Pat<(v4f32 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (MOVSSrm addr:$src), VR128)>;
+
+ // Extract and store.
+ def : Pat<(store (f32 (extractelt (v4f32 VR128:$src), (iPTR 0))),
+ addr:$dst),
+ (MOVSSmr addr:$dst, (COPY_TO_REGCLASS VR128:$src, FR32))>;
+}
+
+let Predicates = [UseSSE2] in {
+ // MOVSDrm already zeros the high parts of the register.
+ def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+ def : Pat<(v2f64 (X86vzload addr:$src)),
+ (COPY_TO_REGCLASS (MOVSDrm addr:$src), VR128)>;
+}
+
+// Aliases to help the assembler pick two byte VEX encodings by swapping the
+// operands relative to the normal instructions to use VEX.R instead of VEX.B.
+// def : InstAlias<"vmovss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+// (VMOVSSrr_REV VR128L:$dst, VR128:$src1, VR128H:$src2), 0>;
+// def : InstAlias<"vmovsd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+// (VMOVSDrr_REV VR128L:$dst, VR128:$src1, VR128H:$src2), 0>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Aligned/Unaligned FP Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_mov_packed<bits<8> opc, RegisterClass RC,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ string asm, Domain d,
+ X86SchedWriteMoveLS sched> {
+let hasSideEffects = 0, isMoveReg = 1 in
+ def rr : PI<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>,
+ Sched<[sched.RR]>;
+let canFoldAsLoad = 1, isReMaterializable = 1 in
+ def rm : PI<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (ld_frag addr:$src))], d>,
+ Sched<[sched.RM]>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps",
+ SSEPackedSingle, SchedWriteFMoveLS.XMM>,
+ PS, VEX, VEX_WIG;
+defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd",
+ SSEPackedDouble, SchedWriteFMoveLS.XMM>,
+ PD, VEX, VEX_WIG;
+defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups",
+ SSEPackedSingle, SchedWriteFMoveLS.XMM>,
+ PS, VEX, VEX_WIG;
+defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd",
+ SSEPackedDouble, SchedWriteFMoveLS.XMM>,
+ PD, VEX, VEX_WIG;
+
+defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32, "movaps",
+ SSEPackedSingle, SchedWriteFMoveLS.YMM>,
+ PS, VEX, VEX_L, VEX_WIG;
+defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64, "movapd",
+ SSEPackedDouble, SchedWriteFMoveLS.YMM>,
+ PD, VEX, VEX_L, VEX_WIG;
+defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32, "movups",
+ SSEPackedSingle, SchedWriteFMoveLS.YMM>,
+ PS, VEX, VEX_L, VEX_WIG;
+defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64, "movupd",
+ SSEPackedDouble, SchedWriteFMoveLS.YMM>,
+ PD, VEX, VEX_L, VEX_WIG;
+}
+
+let Predicates = [UseSSE1] in {
+defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps",
+ SSEPackedSingle, SchedWriteFMoveLS.XMM>,
+ PS;
+defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups",
+ SSEPackedSingle, SchedWriteFMoveLS.XMM>,
+ PS;
+}
+let Predicates = [UseSSE2] in {
+defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd",
+ SSEPackedDouble, SchedWriteFMoveLS.XMM>,
+ PD;
+defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd",
+ SSEPackedDouble, SchedWriteFMoveLS.XMM>,
+ PD;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+let SchedRW = [SchedWriteFMoveLS.XMM.MR] in {
+def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v4f32 VR128:$src), addr:$dst)]>,
+ VEX, VEX_WIG;
+def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v2f64 VR128:$src), addr:$dst)]>,
+ VEX, VEX_WIG;
+def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}",
+ [(store (v4f32 VR128:$src), addr:$dst)]>,
+ VEX, VEX_WIG;
+def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}",
+ [(store (v2f64 VR128:$src), addr:$dst)]>,
+ VEX, VEX_WIG;
+} // SchedRW
+
+let SchedRW = [SchedWriteFMoveLS.YMM.MR] in {
+def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v8f32 VR256:$src), addr:$dst)]>,
+ VEX, VEX_L, VEX_WIG;
+def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v4f64 VR256:$src), addr:$dst)]>,
+ VEX, VEX_L, VEX_WIG;
+def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movups\t{$src, $dst|$dst, $src}",
+ [(store (v8f32 VR256:$src), addr:$dst)]>,
+ VEX, VEX_L, VEX_WIG;
+def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src),
+ "movupd\t{$src, $dst|$dst, $src}",
+ [(store (v4f64 VR256:$src), addr:$dst)]>,
+ VEX, VEX_L, VEX_WIG;
+} // SchedRW
+} // Predicate
+
+// For disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ isMoveReg = 1 in {
+let SchedRW = [SchedWriteFMoveLS.XMM.RR] in {
+ def VMOVAPSrr_REV : VPSI<0x29, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_WIG, FoldGenData<"VMOVAPSrr">;
+ def VMOVAPDrr_REV : VPDI<0x29, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_WIG, FoldGenData<"VMOVAPDrr">;
+ def VMOVUPSrr_REV : VPSI<0x11, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_WIG, FoldGenData<"VMOVUPSrr">;
+ def VMOVUPDrr_REV : VPDI<0x11, MRMDestReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_WIG, FoldGenData<"VMOVUPDrr">;
+} // SchedRW
+
+let SchedRW = [SchedWriteFMoveLS.YMM.RR] in {
+ def VMOVAPSYrr_REV : VPSI<0x29, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movaps\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPSYrr">;
+ def VMOVAPDYrr_REV : VPDI<0x29, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movapd\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVAPDYrr">;
+ def VMOVUPSYrr_REV : VPSI<0x11, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movups\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPSYrr">;
+ def VMOVUPDYrr_REV : VPDI<0x11, MRMDestReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ "movupd\t{$src, $dst|$dst, $src}", []>,
+ VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVUPDYrr">;
+} // SchedRW
+} // Predicate
+
+// Aliases to help the assembler pick two byte VEX encodings by swapping the
+// operands relative to the normal instructions to use VEX.R instead of VEX.B.
+// def : InstAlias<"vmovaps\t{$src, $dst|$dst, $src}",
+// (VMOVAPSrr_REV VR128L:$dst, VR128H:$src), 0>;
+// def : InstAlias<"vmovapd\t{$src, $dst|$dst, $src}",
+// (VMOVAPDrr_REV VR128L:$dst, VR128H:$src), 0>;
+// def : InstAlias<"vmovups\t{$src, $dst|$dst, $src}",
+// (VMOVUPSrr_REV VR128L:$dst, VR128H:$src), 0>;
+// def : InstAlias<"vmovupd\t{$src, $dst|$dst, $src}",
+// (VMOVUPDrr_REV VR128L:$dst, VR128H:$src), 0>;
+// def : InstAlias<"vmovaps\t{$src, $dst|$dst, $src}",
+// (VMOVAPSYrr_REV VR256L:$dst, VR256H:$src), 0>;
+// def : InstAlias<"vmovapd\t{$src, $dst|$dst, $src}",
+// (VMOVAPDYrr_REV VR256L:$dst, VR256H:$src), 0>;
+// def : InstAlias<"vmovups\t{$src, $dst|$dst, $src}",
+// (VMOVUPSYrr_REV VR256L:$dst, VR256H:$src), 0>;
+// def : InstAlias<"vmovupd\t{$src, $dst|$dst, $src}",
+// (VMOVUPDYrr_REV VR256L:$dst, VR256H:$src), 0>;
+
+// Reversed version with ".s" suffix for GAS compatibility.
+// def : InstAlias<"vmovaps.s\t{$src, $dst|$dst, $src}",
+// (VMOVAPSrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"vmovapd.s\t{$src, $dst|$dst, $src}",
+// (VMOVAPDrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"vmovups.s\t{$src, $dst|$dst, $src}",
+// (VMOVUPSrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"vmovupd.s\t{$src, $dst|$dst, $src}",
+// (VMOVUPDrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"vmovaps.s\t{$src, $dst|$dst, $src}",
+// (VMOVAPSYrr_REV VR256:$dst, VR256:$src), 0>;
+// def : InstAlias<"vmovapd.s\t{$src, $dst|$dst, $src}",
+// (VMOVAPDYrr_REV VR256:$dst, VR256:$src), 0>;
+// def : InstAlias<"vmovups.s\t{$src, $dst|$dst, $src}",
+// (VMOVUPSYrr_REV VR256:$dst, VR256:$src), 0>;
+// def : InstAlias<"vmovupd.s\t{$src, $dst|$dst, $src}",
+// (VMOVUPDYrr_REV VR256:$dst, VR256:$src), 0>;
+
+let SchedRW = [SchedWriteFMoveLS.XMM.MR] in {
+def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v4f32 VR128:$src), addr:$dst)]>;
+def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v2f64 VR128:$src), addr:$dst)]>;
+def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}",
+ [(store (v4f32 VR128:$src), addr:$dst)]>;
+def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}",
+ [(store (v2f64 VR128:$src), addr:$dst)]>;
+} // SchedRW
+
+// For disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ isMoveReg = 1, SchedRW = [SchedWriteFMoveLS.XMM.RR] in {
+ def MOVAPSrr_REV : PSI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movaps\t{$src, $dst|$dst, $src}", []>,
+ FoldGenData<"MOVAPSrr">;
+ def MOVAPDrr_REV : PDI<0x29, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movapd\t{$src, $dst|$dst, $src}", []>,
+ FoldGenData<"MOVAPDrr">;
+ def MOVUPSrr_REV : PSI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movups\t{$src, $dst|$dst, $src}", []>,
+ FoldGenData<"MOVUPSrr">;
+ def MOVUPDrr_REV : PDI<0x11, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movupd\t{$src, $dst|$dst, $src}", []>,
+ FoldGenData<"MOVUPDrr">;
+}
+
+// Reversed version with ".s" suffix for GAS compatibility.
+// def : InstAlias<"movaps.s\t{$src, $dst|$dst, $src}",
+// (MOVAPSrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"movapd.s\t{$src, $dst|$dst, $src}",
+// (MOVAPDrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"movups.s\t{$src, $dst|$dst, $src}",
+// (MOVUPSrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"movupd.s\t{$src, $dst|$dst, $src}",
+// (MOVUPDrr_REV VR128:$dst, VR128:$src), 0>;
+
+let Predicates = [HasAVX, NoVLX] in {
+ // 256-bit load/store need to use floating point load/store in case we don't
+ // have AVX2. Execution domain fixing will convert to integer if AVX2 is
+ // available and changing the domain is beneficial.
+ def : Pat<(alignedloadv4i64 addr:$src),
+ (VMOVAPSYrm addr:$src)>;
+ def : Pat<(loadv4i64 addr:$src),
+ (VMOVUPSYrm addr:$src)>;
+ def : Pat<(alignedstore (v4i64 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignedstore (v8i32 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignedstore (v16i16 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignedstore (v32i8 VR256:$src), addr:$dst),
+ (VMOVAPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v4i64 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v8i32 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v16i16 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+ def : Pat<(store (v32i8 VR256:$src), addr:$dst),
+ (VMOVUPSYmr addr:$dst, VR256:$src)>;
+}
+
+// Use movaps / movups for SSE integer load / store (one byte shorter).
+// The instructions selected below are then converted to MOVDQA/MOVDQU
+// during the SSE domain pass.
+let Predicates = [UseSSE1] in {
+ def : Pat<(alignedloadv2i64 addr:$src),
+ (MOVAPSrm addr:$src)>;
+ def : Pat<(loadv2i64 addr:$src),
+ (MOVUPSrm addr:$src)>;
+
+ def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v2i64 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v4i32 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v8i16 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v16i8 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, VR128:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Low packed FP Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_mov_hilo_packed_base<bits<8>opc, SDNode pdnode,
+ string base_opc, string asm_opr> {
+ // No pattern as they need be special cased between high and low.
+ let hasSideEffects = 0, mayLoad = 1 in
+ def PSrm : PI<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
+ !strconcat(base_opc, "s", asm_opr),
+ [], SSEPackedSingle>, PS,
+ Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>;
+
+ def PDrm : PI<opc, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, f64mem:$src2),
+ !strconcat(base_opc, "d", asm_opr),
+ [(set VR128:$dst, (v2f64 (pdnode VR128:$src1,
+ (scalar_to_vector (loadf64 addr:$src2)))))],
+ SSEPackedDouble>, PD,
+ Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>;
+}
+
+multiclass sse12_mov_hilo_packed<bits<8>opc, SDPatternOperator pdnode,
+ string base_opc> {
+ let Predicates = [UseAVX] in
+ defm V#NAME : sse12_mov_hilo_packed_base<opc, pdnode, base_opc,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}">,
+ VEX_4V, VEX_WIG;
+
+ let Constraints = "$src1 = $dst" in
+ defm NAME : sse12_mov_hilo_packed_base<opc, pdnode, base_opc,
+ "\t{$src2, $dst|$dst, $src2}">;
+}
+
+defm MOVL : sse12_mov_hilo_packed<0x12, X86Movsd, "movlp">;
+
+let SchedRW = [WriteFStore] in {
+let Predicates = [UseAVX] in {
+def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt (bc_v2f64 (v4f32 VR128:$src)),
+ (iPTR 0))), addr:$dst)]>,
+ VEX, VEX_WIG;
+def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt (v2f64 VR128:$src),
+ (iPTR 0))), addr:$dst)]>,
+ VEX, VEX_WIG;
+}// UseAVX
+def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt (bc_v2f64 (v4f32 VR128:$src)),
+ (iPTR 0))), addr:$dst)]>;
+def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movlpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt (v2f64 VR128:$src),
+ (iPTR 0))), addr:$dst)]>;
+} // SchedRW
+
+let Predicates = [UseSSE1] in {
+ // (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS
+ def : Pat<(store (i64 (extractelt (bc_v2i64 (v4f32 VR128:$src2)),
+ (iPTR 0))), addr:$src1),
+ (MOVLPSmr addr:$src1, VR128:$src2)>;
+
+ // This pattern helps select MOVLPS on SSE1 only targets. With SSE2 we'll
+ // end up with a movsd or blend instead of shufp.
+ // No need for aligned load, we're only loading 64-bits.
+ def : Pat<(X86Shufp (loadv4f32 addr:$src2), VR128:$src1, (i8 -28)),
+ (MOVLPSrm VR128:$src1, addr:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Hi packed FP Instructions
+//===----------------------------------------------------------------------===//
+
+defm MOVH : sse12_mov_hilo_packed<0x16, X86Unpckl, "movhp">;
+
+let SchedRW = [WriteFStore] in {
+// v2f64 extract element 1 is always custom lowered to unpack high to low
+// and extract element 0 so the non-store version isn't too horrible.
+let Predicates = [UseAVX] in {
+def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt
+ (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
+ (bc_v2f64 (v4f32 VR128:$src))),
+ (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG;
+def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt
+ (v2f64 (X86Unpckh VR128:$src, VR128:$src)),
+ (iPTR 0))), addr:$dst)]>, VEX, VEX_WIG;
+} // UseAVX
+def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhps\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt
+ (X86Unpckh (bc_v2f64 (v4f32 VR128:$src)),
+ (bc_v2f64 (v4f32 VR128:$src))),
+ (iPTR 0))), addr:$dst)]>;
+def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movhpd\t{$src, $dst|$dst, $src}",
+ [(store (f64 (extractelt
+ (v2f64 (X86Unpckh VR128:$src, VR128:$src)),
+ (iPTR 0))), addr:$dst)]>;
+} // SchedRW
+
+let Predicates = [UseAVX] in {
+ // Also handle an i64 load because that may get selected as a faster way to
+ // load the data.
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
+ (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
+ (VMOVHPDrm VR128:$src1, addr:$src2)>;
+
+ def : Pat<(store (f64 (extractelt
+ (v2f64 (X86VPermilpi VR128:$src, (i8 1))),
+ (iPTR 0))), addr:$dst),
+ (VMOVHPDmr addr:$dst, VR128:$src)>;
+}
+
+let Predicates = [UseSSE1] in {
+ // This pattern helps select MOVHPS on SSE1 only targets. With SSE2 we'll
+ // end up with a movsd or blend instead of shufp.
+ // No need for aligned load, we're only loading 64-bits.
+ def : Pat<(X86Movlhps VR128:$src1, (loadv4f32 addr:$src2)),
+ (MOVHPSrm VR128:$src1, addr:$src2)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // MOVHPD patterns
+
+ // Also handle an i64 load because that may get selected as a faster way to
+ // load the data.
+ def : Pat<(v2f64 (X86Unpckl VR128:$src1,
+ (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src2)))))),
+ (MOVHPDrm VR128:$src1, addr:$src2)>;
+
+ def : Pat<(store (f64 (extractelt
+ (v2f64 (X86Shufp VR128:$src, VR128:$src, (i8 1))),
+ (iPTR 0))), addr:$dst),
+ (MOVHPDmr addr:$dst, VR128:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Move Low to High and High to Low packed FP Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [UseAVX] in {
+ def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>,
+ VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG;
+ let isCommutable = 1 in
+ def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>,
+ VEX_4V, Sched<[SchedWriteFShuffle.XMM]>, VEX_WIG,
+ NotMemoryFoldable;
+}
+let Constraints = "$src1 = $dst" in {
+ def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movlhps\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movlhps VR128:$src1, VR128:$src2)))]>,
+ Sched<[SchedWriteFShuffle.XMM]>;
+ let isCommutable = 1 in
+ def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ "movhlps\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (v4f32 (X86Movhlps VR128:$src1, VR128:$src2)))]>,
+ Sched<[SchedWriteFShuffle.XMM]>, NotMemoryFoldable;
+}
+
+// TODO: This is largely to trick fastisel into ignoring the pattern.
+def UnpckhUnary : PatFrag<(ops node:$src1, node:$src2),
+ (X86Unpckh node:$src1, node:$src2), [{
+ return N->getOperand(0) == N->getOperand(1);
+}]>;
+
+let Predicates = [UseSSE2] in {
+ // TODO: This is a hack pattern to allow lowering to emit unpckh instead of
+ // movhlps for sse2 without changing a bunch of tests.
+ def : Pat<(v2f64 (UnpckhUnary VR128:$src, VR128:$src)),
+ (MOVHLPSrr VR128:$src, VR128:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Conversion Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
+ string asm, X86FoldableSchedWrite sched> {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src), asm,
+ [(set DstRC:$dst, (OpNode SrcRC:$src))]>,
+ Sched<[sched]>;
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins x86memop:$src), asm,
+ [(set DstRC:$dst, (OpNode (ld_frag addr:$src)))]>,
+ Sched<[sched.Folded]>;
+}
+
+multiclass sse12_cvt_p<bits<8> opc, RegisterClass RC, X86MemOperand x86memop,
+ ValueType DstTy, ValueType SrcTy, PatFrag ld_frag,
+ string asm, Domain d, X86FoldableSchedWrite sched> {
+let hasSideEffects = 0 in {
+ def rr : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src), asm,
+ [(set RC:$dst, (DstTy (sint_to_fp (SrcTy RC:$src))))], d>,
+ Sched<[sched]>;
+ let mayLoad = 1 in
+ def rm : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), asm,
+ [(set RC:$dst, (DstTy (sint_to_fp
+ (SrcTy (bitconvert (ld_frag addr:$src))))))], d>,
+ Sched<[sched.Folded]>;
+}
+}
+
+multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ X86MemOperand x86memop, string asm,
+ X86FoldableSchedWrite sched> {
+let hasSideEffects = 0, Predicates = [UseAVX] in {
+ def rr : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src),
+ !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ Sched<[sched]>;
+ let mayLoad = 1 in
+ def rm : SI<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins DstRC:$src1, x86memop:$src),
+ !strconcat(asm,"\t{$src, $src1, $dst|$dst, $src1, $src}"), []>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+} // hasSideEffects = 0
+}
+
+let Predicates = [UseAVX] in {
+defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSS2I>,
+ XS, VEX, VEX_LIG;
+defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSS2I>,
+ XS, VEX, VEX_W, VEX_LIG;
+defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSD2I>,
+ XD, VEX, VEX_LIG;
+defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSD2I>,
+ XD, VEX, VEX_W, VEX_LIG;
+
+// def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTTSS2SIrr GR32:$dst, FR32:$src), 0, "att">;
+// def : InstAlias<"vcvttss2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTTSS2SIrm GR32:$dst, f32mem:$src), 0, "att">;
+// def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTTSD2SIrr GR32:$dst, FR64:$src), 0, "att">;
+// def : InstAlias<"vcvttsd2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTTSD2SIrm GR32:$dst, f64mem:$src), 0, "att">;
+// def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTTSS2SI64rr GR64:$dst, FR32:$src), 0, "att">;
+// def : InstAlias<"vcvttss2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTTSS2SI64rm GR64:$dst, f32mem:$src), 0, "att">;
+// def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTTSD2SI64rr GR64:$dst, FR64:$src), 0, "att">;
+// def : InstAlias<"vcvttsd2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTTSD2SI64rm GR64:$dst, f64mem:$src), 0, "att">;
+}
+// The assembler can recognize rr 64-bit instructions by seeing a rxx
+// register, but the same isn't true when only using memory operands,
+// provide other assembly "l" and "q" forms to address this explicitly
+// where appropriate to do so.
+defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss{l}",
+ WriteCvtI2SS>, XS, VEX_4V, VEX_LIG;
+defm VCVTSI642SS : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}",
+ WriteCvtI2SS>, XS, VEX_4V, VEX_W, VEX_LIG;
+defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}",
+ WriteCvtI2SD>, XD, VEX_4V, VEX_LIG;
+defm VCVTSI642SD : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}",
+ WriteCvtI2SD>, XD, VEX_4V, VEX_W, VEX_LIG;
+
+let Predicates = [UseAVX] in {
+ // def : InstAlias<"vcvtsi2ss\t{$src, $src1, $dst|$dst, $src1, $src}",
+ // (VCVTSI2SSrm FR64:$dst, FR64:$src1, i32mem:$src), 0, "att">;
+ // def : InstAlias<"vcvtsi2sd\t{$src, $src1, $dst|$dst, $src1, $src}",
+ // (VCVTSI2SDrm FR64:$dst, FR64:$src1, i32mem:$src), 0, "att">;
+
+ def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))),
+ (VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+ def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))),
+ (VCVTSI642SSrm (f32 (IMPLICIT_DEF)), addr:$src)>;
+ def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))),
+ (VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+ def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))),
+ (VCVTSI642SDrm (f64 (IMPLICIT_DEF)), addr:$src)>;
+
+ def : Pat<(f32 (sint_to_fp GR32:$src)),
+ (VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>;
+ def : Pat<(f32 (sint_to_fp GR64:$src)),
+ (VCVTSI642SSrr (f32 (IMPLICIT_DEF)), GR64:$src)>;
+ def : Pat<(f64 (sint_to_fp GR32:$src)),
+ (VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>;
+ def : Pat<(f64 (sint_to_fp GR64:$src)),
+ (VCVTSI642SDrr (f64 (IMPLICIT_DEF)), GR64:$src)>;
+}
+
+defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSS2I>, XS;
+defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32,
+ "cvttss2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSS2I>, XS, REX_W;
+defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSD2I>, XD;
+defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64,
+ "cvttsd2si\t{$src, $dst|$dst, $src}",
+ WriteCvtSD2I>, XD, REX_W;
+defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32,
+ "cvtsi2ss{l}\t{$src, $dst|$dst, $src}",
+ WriteCvtI2SS>, XS;
+defm CVTSI642SS : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64,
+ "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
+ WriteCvtI2SS>, XS, REX_W;
+defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32,
+ "cvtsi2sd{l}\t{$src, $dst|$dst, $src}",
+ WriteCvtI2SD>, XD;
+defm CVTSI642SD : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64,
+ "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
+ WriteCvtI2SD>, XD, REX_W;
+
+// def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTTSS2SIrr GR32:$dst, FR32:$src), 0, "att">;
+// def : InstAlias<"cvttss2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTTSS2SIrm GR32:$dst, f32mem:$src), 0, "att">;
+// def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTTSD2SIrr GR32:$dst, FR64:$src), 0, "att">;
+// def : InstAlias<"cvttsd2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTTSD2SIrm GR32:$dst, f64mem:$src), 0, "att">;
+// def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTTSS2SI64rr GR64:$dst, FR32:$src), 0, "att">;
+// def : InstAlias<"cvttss2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTTSS2SI64rm GR64:$dst, f32mem:$src), 0, "att">;
+// def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTTSD2SI64rr GR64:$dst, FR64:$src), 0, "att">;
+// def : InstAlias<"cvttsd2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTTSD2SI64rm GR64:$dst, f64mem:$src), 0, "att">;
+
+// def : InstAlias<"cvtsi2ss\t{$src, $dst|$dst, $src}",
+// (CVTSI2SSrm FR64:$dst, i32mem:$src), 0, "att">;
+// def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
+// (CVTSI2SDrm FR64:$dst, i32mem:$src), 0, "att">;
+
+// Conversion Instructions Intrinsics - Match intrinsics which expect MM
+// and/or XMM operand(s).
+
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
+multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
+ Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
+ string asm, X86FoldableSchedWrite sched> {
+ def rr_Int : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins SrcRC:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (Int SrcRC:$src))]>,
+ Sched<[sched]>;
+ def rm_Int : SI<opc, MRMSrcMem, (outs DstRC:$dst), (ins memop:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set DstRC:$dst, (Int mem_cpat:$src))]>,
+ Sched<[sched.Folded]>;
+}
+
+multiclass sse12_cvt_sint_3addr<bits<8> opc, RegisterClass SrcRC,
+ RegisterClass DstRC, X86MemOperand x86memop,
+ string asm, X86FoldableSchedWrite sched,
+ bit Is2Addr = 1> {
+let hasSideEffects = 0 in {
+ def rr_Int : SI<opc, MRMSrcReg, (outs DstRC:$dst), (ins DstRC:$src1, SrcRC:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ []>, Sched<[sched]>;
+ let mayLoad = 1 in
+ def rm_Int : SI<opc, MRMSrcMem, (outs DstRC:$dst),
+ (ins DstRC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(asm, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ []>, Sched<[sched.Folded, ReadAfterLd]>;
+}
+}
+
+let Predicates = [UseAVX] in {
+defm VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32,
+ int_x86_sse2_cvtsd2si, sdmem, sse_load_f64, "cvtsd2si",
+ WriteCvtSD2I>, XD, VEX, VEX_LIG;
+defm VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64,
+ int_x86_sse2_cvtsd2si64, sdmem, sse_load_f64, "cvtsd2si",
+ WriteCvtSD2I>, XD, VEX, VEX_W, VEX_LIG;
+}
+defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si,
+ sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I>, XD;
+defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64,
+ sdmem, sse_load_f64, "cvtsd2si", WriteCvtSD2I>, XD, REX_W;
+
+
+let isCodeGenOnly = 1 in {
+ let Predicates = [UseAVX] in {
+ defm VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ i32mem, "cvtsi2ss{l}", WriteCvtI2SS, 0>, XS, VEX_4V;
+ defm VCVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ i64mem, "cvtsi2ss{q}", WriteCvtI2SS, 0>, XS, VEX_4V, VEX_W;
+ defm VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ i32mem, "cvtsi2sd{l}", WriteCvtI2SD, 0>, XD, VEX_4V;
+ defm VCVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ i64mem, "cvtsi2sd{q}", WriteCvtI2SD, 0>, XD, VEX_4V, VEX_W;
+ }
+ let Constraints = "$src1 = $dst" in {
+ defm CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ i32mem, "cvtsi2ss{l}", WriteCvtI2SS>, XS;
+ defm CVTSI642SS : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ i64mem, "cvtsi2ss{q}", WriteCvtI2SS>, XS, REX_W;
+ defm CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128,
+ i32mem, "cvtsi2sd{l}", WriteCvtI2SD>, XD;
+ defm CVTSI642SD : sse12_cvt_sint_3addr<0x2A, GR64, VR128,
+ i64mem, "cvtsi2sd{q}", WriteCvtI2SD>, XD, REX_W;
+ }
+} // isCodeGenOnly = 1
+
+/// SSE 1 Only
+
+// Aliases for intrinsics
+let isCodeGenOnly = 1 in {
+let Predicates = [UseAVX] in {
+defm VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
+ ssmem, sse_load_f32, "cvttss2si",
+ WriteCvtSS2I>, XS, VEX;
+defm VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
+ "cvttss2si", WriteCvtSS2I>,
+ XS, VEX, VEX_W;
+defm VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
+ sdmem, sse_load_f64, "cvttsd2si",
+ WriteCvtSS2I>, XD, VEX;
+defm VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
+ "cvttsd2si", WriteCvtSS2I>,
+ XD, VEX, VEX_W;
+}
+defm CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si,
+ ssmem, sse_load_f32, "cvttss2si",
+ WriteCvtSS2I>, XS;
+defm CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse_cvttss2si64, ssmem, sse_load_f32,
+ "cvttss2si", WriteCvtSS2I>, XS, REX_W;
+defm CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si,
+ sdmem, sse_load_f64, "cvttsd2si",
+ WriteCvtSD2I>, XD;
+defm CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64,
+ int_x86_sse2_cvttsd2si64, sdmem, sse_load_f64,
+ "cvttsd2si", WriteCvtSD2I>, XD, REX_W;
+} // isCodeGenOnly = 1
+
+let Predicates = [UseAVX] in {
+defm VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
+ ssmem, sse_load_f32, "cvtss2si",
+ WriteCvtSS2I>, XS, VEX, VEX_LIG;
+defm VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
+ ssmem, sse_load_f32, "cvtss2si",
+ WriteCvtSS2I>, XS, VEX, VEX_W, VEX_LIG;
+}
+defm CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si,
+ ssmem, sse_load_f32, "cvtss2si",
+ WriteCvtSS2I>, XS;
+defm CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64,
+ ssmem, sse_load_f32, "cvtss2si",
+ WriteCvtSS2I>, XS, REX_W;
+
+defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, loadv2i64,
+ "vcvtdq2ps\t{$src, $dst|$dst, $src}",
+ SSEPackedSingle, WriteCvtI2PS>,
+ PS, VEX, Requires<[HasAVX, NoVLX]>, VEX_WIG;
+defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, i256mem, v8f32, v8i32, loadv4i64,
+ "vcvtdq2ps\t{$src, $dst|$dst, $src}",
+ SSEPackedSingle, WriteCvtI2PSY>,
+ PS, VEX, VEX_L, Requires<[HasAVX, NoVLX]>, VEX_WIG;
+
+defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, i128mem, v4f32, v4i32, memopv2i64,
+ "cvtdq2ps\t{$src, $dst|$dst, $src}",
+ SSEPackedSingle, WriteCvtI2PS>,
+ PS, Requires<[UseSSE2]>;
+
+let Predicates = [UseAVX] in {
+// def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"vcvtss2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">;
+// def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"vcvtsd2si{l}\t{$src, $dst|$dst, $src}",
+// (VCVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">;
+// def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"vcvtss2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">;
+// def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"vcvtsd2si{q}\t{$src, $dst|$dst, $src}",
+// (VCVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">;
+}
+
+// def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTSS2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"cvtss2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTSS2SIrm_Int GR32:$dst, ssmem:$src), 0, "att">;
+// def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTSD2SIrr_Int GR32:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"cvtsd2si{l}\t{$src, $dst|$dst, $src}",
+// (CVTSD2SIrm_Int GR32:$dst, sdmem:$src), 0, "att">;
+// def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTSS2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"cvtss2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTSS2SI64rm_Int GR64:$dst, ssmem:$src), 0, "att">;
+// def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTSD2SI64rr_Int GR64:$dst, VR128:$src), 0, "att">;
+// def : InstAlias<"cvtsd2si{q}\t{$src, $dst|$dst, $src}",
+// (CVTSD2SI64rm_Int GR64:$dst, sdmem:$src), 0, "att">;
+
+/// SSE 2 Only
+
+// Convert scalar double to scalar single
+let hasSideEffects = 0, Predicates = [UseAVX] in {
+def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst),
+ (ins FR32:$src1, FR64:$src2),
+ "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ VEX_4V, VEX_LIG, VEX_WIG,
+ Sched<[WriteCvtSD2SS]>;
+let mayLoad = 1 in
+def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst),
+ (ins FR32:$src1, f64mem:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ XD, VEX_4V, VEX_LIG, VEX_WIG,
+ Sched<[WriteCvtSD2SS.Folded, ReadAfterLd]>;
+}
+
+def : Pat<(f32 (fpround FR64:$src)),
+ (VCVTSD2SSrr (f32 (IMPLICIT_DEF)), FR64:$src)>,
+ Requires<[UseAVX]>;
+
+def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src),
+ "cvtsd2ss\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (fpround FR64:$src))]>,
+ Sched<[WriteCvtSD2SS]>;
+def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src),
+ "cvtsd2ss\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (fpround (loadf64 addr:$src)))]>,
+ XD, Requires<[UseSSE2, OptForSize]>,
+ Sched<[WriteCvtSD2SS.Folded]>;
+
+let isCodeGenOnly = 1 in {
+def VCVTSD2SSrr_Int: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>,
+ XD, VEX_4V, VEX_WIG, Requires<[HasAVX]>,
+ Sched<[WriteCvtSD2SS]>;
+def VCVTSD2SSrm_Int: I<0x5A, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
+ "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst, (int_x86_sse2_cvtsd2ss
+ VR128:$src1, sse_load_f64:$src2))]>,
+ XD, VEX_4V, VEX_WIG, Requires<[HasAVX]>,
+ Sched<[WriteCvtSD2SS.Folded, ReadAfterLd]>;
+let Constraints = "$src1 = $dst" in {
+def CVTSD2SSrr_Int: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst,
+ (int_x86_sse2_cvtsd2ss VR128:$src1, VR128:$src2))]>,
+ XD, Requires<[UseSSE2]>, Sched<[WriteCvtSD2SS]>;
+def CVTSD2SSrm_Int: I<0x5A, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2),
+ "cvtsd2ss\t{$src2, $dst|$dst, $src2}",
+ [(set VR128:$dst, (int_x86_sse2_cvtsd2ss
+ VR128:$src1, sse_load_f64:$src2))]>,
+ XD, Requires<[UseSSE2]>,
+ Sched<[WriteCvtSD2SS.Folded, ReadAfterLd]>;
+}
+} // isCodeGenOnly = 1
+
+// Convert scalar single to scalar double
+// SSE2 instructions with XS prefix
+let hasSideEffects = 0 in {
+def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst),
+ (ins FR64:$src1, FR32:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ XS, VEX_4V, VEX_LIG, VEX_WIG,
+ Sched<[WriteCvtSS2SD]>, Requires<[UseAVX]>;
+let mayLoad = 1 in
+def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst),
+ (ins FR64:$src1, f32mem:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ XS, VEX_4V, VEX_LIG, VEX_WIG,
+ Sched<[WriteCvtSS2SD.Folded, ReadAfterLd]>,
+ Requires<[UseAVX, OptForSize]>;
+}
+
+def : Pat<(f64 (fpextend FR32:$src)),
+ (VCVTSS2SDrr (f64 (IMPLICIT_DEF)), FR32:$src)>, Requires<[UseAVX]>;
+def : Pat<(fpextend (loadf32 addr:$src)),
+ (VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[UseAVX, OptForSize]>;
+
+def : Pat<(extloadf32 addr:$src),
+ (VCVTSS2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>,
+ Requires<[UseAVX, OptForSize]>;
+def : Pat<(extloadf32 addr:$src),
+ (VCVTSS2SDrr (f64 (IMPLICIT_DEF)), (VMOVSSrm addr:$src))>,
+ Requires<[UseAVX, OptForSpeed]>;
+
+def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src),
+ "cvtss2sd\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (fpextend FR32:$src))]>,
+ XS, Requires<[UseSSE2]>, Sched<[WriteCvtSS2SD]>;
+def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src),
+ "cvtss2sd\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (extloadf32 addr:$src))]>,
+ XS, Requires<[UseSSE2, OptForSize]>,
+ Sched<[WriteCvtSS2SD.Folded]>;
+
+// extload f32 -> f64. This matches load+fpextend because we have a hack in
+// the isel (PreprocessForFPConvert) that can introduce loads after dag
+// combine.
+// Since these loads aren't folded into the fpextend, we have to match it
+// explicitly here.
+def : Pat<(fpextend (loadf32 addr:$src)),
+ (CVTSS2SDrm addr:$src)>, Requires<[UseSSE2, OptForSize]>;
+def : Pat<(extloadf32 addr:$src),
+ (CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[UseSSE2, OptForSpeed]>;
+
+let isCodeGenOnly = 1, hasSideEffects = 0 in {
+def VCVTSS2SDrr_Int: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, XS, VEX_4V, VEX_WIG,
+ Requires<[HasAVX]>, Sched<[WriteCvtSS2SD]>;
+let mayLoad = 1 in
+def VCVTSS2SDrm_Int: I<0x5A, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
+ "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, XS, VEX_4V, VEX_WIG, Requires<[HasAVX]>,
+ Sched<[WriteCvtSS2SD.Folded, ReadAfterLd]>;
+let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix
+def CVTSS2SDrr_Int: I<0x5A, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ "cvtss2sd\t{$src2, $dst|$dst, $src2}",
+ []>, XS, Requires<[UseSSE2]>,
+ Sched<[WriteCvtSS2SD]>;
+let mayLoad = 1 in
+def CVTSS2SDrm_Int: I<0x5A, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2),
+ "cvtss2sd\t{$src2, $dst|$dst, $src2}",
+ []>, XS, Requires<[UseSSE2]>,
+ Sched<[WriteCvtSS2SD.Folded, ReadAfterLd]>;
+}
+} // isCodeGenOnly = 1
+
+// Patterns used for matching (v)cvtsi2ss, (v)cvtsi2sd, (v)cvtsd2ss and
+// (v)cvtss2sd intrinsic sequences from clang which produce unnecessary
+// vmovs{s,d} instructions
+let Predicates = [UseAVX] in {
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector
+ (f32 (fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))),
+ (VCVTSD2SSrr_Int VR128:$dst, VR128:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector
+ (f64 (fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))),
+ (VCVTSS2SDrr_Int VR128:$dst, VR128:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))),
+ (VCVTSI642SSrr_Int VR128:$dst, GR64:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi64 addr:$src))))))),
+ (VCVTSI642SSrm_Int VR128:$dst, addr:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))),
+ (VCVTSI2SSrr_Int VR128:$dst, GR32:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi32 addr:$src))))))),
+ (VCVTSI2SSrm_Int VR128:$dst, addr:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))),
+ (VCVTSI642SDrr_Int VR128:$dst, GR64:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi64 addr:$src))))))),
+ (VCVTSI642SDrm_Int VR128:$dst, addr:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))),
+ (VCVTSI2SDrr_Int VR128:$dst, GR32:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi32 addr:$src))))))),
+ (VCVTSI2SDrm_Int VR128:$dst, addr:$src)>;
+} // Predicates = [UseAVX]
+
+let Predicates = [UseSSE2] in {
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector
+ (f32 (fpround (f64 (extractelt VR128:$src, (iPTR 0))))))))),
+ (CVTSD2SSrr_Int VR128:$dst, VR128:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector
+ (f64 (fpextend (f32 (extractelt VR128:$src, (iPTR 0))))))))),
+ (CVTSS2SDrr_Int VR128:$dst, VR128:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp GR64:$src)))))),
+ (CVTSI642SDrr_Int VR128:$dst, GR64:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi64 addr:$src))))))),
+ (CVTSI642SDrm_Int VR128:$dst, addr:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp GR32:$src)))))),
+ (CVTSI2SDrr_Int VR128:$dst, GR32:$src)>;
+
+def : Pat<(v2f64 (X86Movsd
+ (v2f64 VR128:$dst),
+ (v2f64 (scalar_to_vector (f64 (sint_to_fp (loadi32 addr:$src))))))),
+ (CVTSI2SDrm_Int VR128:$dst, addr:$src)>;
+} // Predicates = [UseSSE2]
+
+let Predicates = [UseSSE1] in {
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp GR64:$src)))))),
+ (CVTSI642SSrr_Int VR128:$dst, GR64:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi64 addr:$src))))))),
+ (CVTSI642SSrm_Int VR128:$dst, addr:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp GR32:$src)))))),
+ (CVTSI2SSrr_Int VR128:$dst, GR32:$src)>;
+
+def : Pat<(v4f32 (X86Movss
+ (v4f32 VR128:$dst),
+ (v4f32 (scalar_to_vector (f32 (sint_to_fp (loadi32 addr:$src))))))),
+ (CVTSI2SSrm_Int VR128:$dst, addr:$src)>;
+} // Predicates = [UseSSE1]
+
+let Predicates = [HasAVX, NoVLX] in {
+// Convert packed single/double fp to doubleword
+def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>,
+ VEX, Sched<[WriteCvtPS2I]>, VEX_WIG;
+def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (loadv4f32 addr:$src))))]>,
+ VEX, Sched<[WriteCvtPS2ILd]>, VEX_WIG;
+def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (v8i32 (X86cvtp2Int (v8f32 VR256:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPS2IY]>, VEX_WIG;
+def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (v8i32 (X86cvtp2Int (loadv8f32 addr:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPS2IYLd]>, VEX_WIG;
+}
+def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v4i32 (X86cvtp2Int (v4f32 VR128:$src))))]>,
+ Sched<[WriteCvtPS2I]>;
+def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (memopv4f32 addr:$src))))]>,
+ Sched<[WriteCvtPS2ILd]>;
+
+
+// Convert Packed Double FP to Packed DW Integers
+let Predicates = [HasAVX, NoVLX] in {
+// The assembler can recognize rr 256-bit instructions by seeing a ymm
+// register, but the same isn't true when using memory operands instead.
+// Provide other assembly rr and rm forms to address this explicitly.
+def VCVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vcvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>,
+ VEX, Sched<[WriteCvtPD2I]>, VEX_WIG;
+
+// XMM only
+// def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
+// (VCVTPD2DQrr VR128:$dst, VR128:$src), 0>;
+def VCVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "vcvtpd2dq{x}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (loadv2f64 addr:$src))))]>, VEX,
+ Sched<[WriteCvtPD2ILd]>, VEX_WIG;
+// def : InstAlias<"vcvtpd2dqx\t{$src, $dst|$dst, $src}",
+// (VCVTPD2DQrm VR128:$dst, f128mem:$src), 0, "intel">;
+
+// YMM only
+def VCVTPD2DQYrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
+ "vcvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (v4f64 VR256:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPD2IY]>, VEX_WIG;
+def VCVTPD2DQYrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
+ "vcvtpd2dq{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (loadv4f64 addr:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPD2IYLd]>, VEX_WIG;
+// def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}",
+// (VCVTPD2DQYrr VR128:$dst, VR256:$src), 0>;
+// def : InstAlias<"vcvtpd2dqy\t{$src, $dst|$dst, $src}",
+// (VCVTPD2DQYrm VR128:$dst, f256mem:$src), 0, "intel">;
+}
+
+def CVTPD2DQrm : SDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (memopv2f64 addr:$src))))]>,
+ Sched<[WriteCvtPD2ILd]>;
+def CVTPD2DQrr : SDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvtp2Int (v2f64 VR128:$src))))]>,
+ Sched<[WriteCvtPD2I]>;
+
+// Convert with truncation packed single/double fp to doubleword
+// SSE2 packed instructions with XS prefix
+let Predicates = [HasAVX, NoVLX] in {
+def VCVTTPS2DQrr : VS2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (v4f32 VR128:$src))))]>,
+ VEX, Sched<[WriteCvtPS2I]>, VEX_WIG;
+def VCVTTPS2DQrm : VS2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (loadv4f32 addr:$src))))]>,
+ VEX, Sched<[WriteCvtPS2ILd]>, VEX_WIG;
+def VCVTTPS2DQYrr : VS2SI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (v8i32 (X86cvttp2si (v8f32 VR256:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPS2IY]>, VEX_WIG;
+def VCVTTPS2DQYrm : VS2SI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (v8i32 (X86cvttp2si (loadv8f32 addr:$src))))]>,
+ VEX, VEX_L,
+ Sched<[WriteCvtPS2IYLd]>, VEX_WIG;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
+ (VCVTTPS2DQrr VR128:$src)>;
+ def : Pat<(v4i32 (fp_to_sint (loadv4f32 addr:$src))),
+ (VCVTTPS2DQrm addr:$src)>;
+ def : Pat<(v8i32 (fp_to_sint (v8f32 VR256:$src))),
+ (VCVTTPS2DQYrr VR256:$src)>;
+ def : Pat<(v8i32 (fp_to_sint (loadv8f32 addr:$src))),
+ (VCVTTPS2DQYrm addr:$src)>;
+}
+
+def CVTTPS2DQrr : S2SI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (v4f32 VR128:$src))))]>,
+ Sched<[WriteCvtPS2I]>;
+def CVTTPS2DQrm : S2SI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvttps2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (memopv4f32 addr:$src))))]>,
+ Sched<[WriteCvtPS2ILd]>;
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))),
+ (CVTTPS2DQrr VR128:$src)>;
+ def : Pat<(v4i32 (fp_to_sint (memopv4f32 addr:$src))),
+ (CVTTPS2DQrm addr:$src)>;
+}
+
+let Predicates = [HasAVX, NoVLX] in
+def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (v2f64 VR128:$src))))]>,
+ VEX, Sched<[WriteCvtPD2I]>, VEX_WIG;
+
+// The assembler can recognize rr 256-bit instructions by seeing a ymm
+// register, but the same isn't true when using memory operands instead.
+// Provide other assembly rr and rm forms to address this explicitly.
+
+// XMM only
+// def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
+// (VCVTTPD2DQrr VR128:$dst, VR128:$src), 0>;
+
+let Predicates = [HasAVX, NoVLX] in
+def VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvttpd2dq{x}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (loadv2f64 addr:$src))))]>,
+ VEX, Sched<[WriteCvtPD2ILd]>, VEX_WIG;
+// def : InstAlias<"vcvttpd2dqx\t{$src, $dst|$dst, $src}",
+// (VCVTTPD2DQrm VR128:$dst, f128mem:$src), 0, "intel">;
+
+// YMM only
+let Predicates = [HasAVX, NoVLX] in {
+def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (v4f64 VR256:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPD2IY]>, VEX_WIG;
+def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
+ "cvttpd2dq{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (loadv4f64 addr:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtPD2IYLd]>, VEX_WIG;
+}
+// def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}",
+// (VCVTTPD2DQYrr VR128:$dst, VR256:$src), 0>;
+// def : InstAlias<"vcvttpd2dqy\t{$src, $dst|$dst, $src}",
+// (VCVTTPD2DQYrm VR128:$dst, f256mem:$src), 0, "intel">;
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4i32 (fp_to_sint (v4f64 VR256:$src))),
+ (VCVTTPD2DQYrr VR256:$src)>;
+ def : Pat<(v4i32 (fp_to_sint (loadv4f64 addr:$src))),
+ (VCVTTPD2DQYrm addr:$src)>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvtp2Int (v2f64 VR128:$src)))))),
+ (VCVTPD2DQrr VR128:$src)>;
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvtp2Int (loadv2f64 addr:$src)))))),
+ (VCVTPD2DQrm addr:$src)>;
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvttp2si (v2f64 VR128:$src)))))),
+ (VCVTTPD2DQrr VR128:$src)>;
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvttp2si (loadv2f64 addr:$src)))))),
+ (VCVTTPD2DQrm addr:$src)>;
+} // Predicates = [HasAVX, NoVLX]
+
+def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (v2f64 VR128:$src))))]>,
+ Sched<[WriteCvtPD2I]>;
+def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src),
+ "cvttpd2dq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (X86cvttp2si (memopv2f64 addr:$src))))]>,
+ Sched<[WriteCvtPD2ILd]>;
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvtp2Int (v2f64 VR128:$src)))))),
+ (CVTPD2DQrr VR128:$src)>;
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvtp2Int (memopv2f64 addr:$src)))))),
+ (CVTPD2DQrm addr:$src)>;
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvttp2si (v2f64 VR128:$src)))))),
+ (CVTTPD2DQrr VR128:$src)>;
+ def : Pat<(X86vzmovl (v2i64 (bitconvert
+ (v4i32 (X86cvttp2si (memopv2f64 addr:$src)))))),
+ (CVTTPD2DQrm addr:$src)>;
+} // Predicates = [UseSSE2]
+
+// Convert packed single to packed double
+let Predicates = [HasAVX, NoVLX] in {
+ // SSE2 instructions without OpSize prefix
+def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2f64 (X86vfpext (v4f32 VR128:$src))))]>,
+ PS, VEX, Sched<[WriteCvtPS2PD]>, VEX_WIG;
+def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>,
+ PS, VEX, Sched<[WriteCvtPS2PD.Folded]>, VEX_WIG;
+def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst, (v4f64 (fpextend (v4f32 VR128:$src))))]>,
+ PS, VEX, VEX_L, Sched<[WriteCvtPS2PDY]>, VEX_WIG;
+def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src),
+ "vcvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst, (v4f64 (extloadv4f32 addr:$src)))]>,
+ PS, VEX, VEX_L, Sched<[WriteCvtPS2PDY.Folded]>, VEX_WIG;
+}
+
+let Predicates = [UseSSE2] in {
+def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2f64 (X86vfpext (v4f32 VR128:$src))))]>,
+ PS, Sched<[WriteCvtPS2PD]>;
+def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
+ "cvtps2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2f64 (extloadv2f32 addr:$src)))]>,
+ PS, Sched<[WriteCvtPS2PD.Folded]>;
+}
+
+// Convert Packed DW Integers to Packed Double FP
+let Predicates = [HasAVX, NoVLX] in {
+let hasSideEffects = 0, mayLoad = 1 in
+def VCVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2f64 (X86VSintToFP (bc_v4i32 (loadv2i64 addr:$src)))))]>,
+ VEX, Sched<[WriteCvtI2PDLd]>, VEX_WIG;
+def VCVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2f64 (X86VSintToFP (v4i32 VR128:$src))))]>,
+ VEX, Sched<[WriteCvtI2PD]>, VEX_WIG;
+def VCVTDQ2PDYrm : S2SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins i128mem:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (v4f64 (sint_to_fp (bc_v4i32 (loadv2i64 addr:$src)))))]>,
+ VEX, VEX_L, Sched<[WriteCvtI2PDYLd]>,
+ VEX_WIG;
+def VCVTDQ2PDYrr : S2SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ "vcvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst,
+ (v4f64 (sint_to_fp (v4i32 VR128:$src))))]>,
+ VEX, VEX_L, Sched<[WriteCvtI2PDY]>, VEX_WIG;
+}
+
+let hasSideEffects = 0, mayLoad = 1 in
+def CVTDQ2PDrm : S2SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "cvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2f64 (X86VSintToFP (bc_v4i32 (loadv2i64 addr:$src)))))]>,
+ Sched<[WriteCvtI2PDLd]>;
+def CVTDQ2PDrr : S2SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtdq2pd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2f64 (X86VSintToFP (v4i32 VR128:$src))))]>,
+ Sched<[WriteCvtI2PD]>;
+
+// AVX register conversion intrinsics
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (VCVTDQ2PDrm addr:$src)>;
+ def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))),
+ (VCVTDQ2PDrm addr:$src)>;
+} // Predicates = [HasAVX, NoVLX]
+
+// SSE2 register conversion intrinsics
+let Predicates = [UseSSE2] in {
+ def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (CVTDQ2PDrm addr:$src)>;
+ def : Pat<(v2f64 (X86VSintToFP (bc_v4i32 (v2i64 (X86vzload addr:$src))))),
+ (CVTDQ2PDrm addr:$src)>;
+} // Predicates = [UseSSE2]
+
+// Convert packed double to packed single
+// The assembler can recognize rr 256-bit instructions by seeing a ymm
+// register, but the same isn't true when using memory operands instead.
+// Provide other assembly rr and rm forms to address this explicitly.
+let Predicates = [HasAVX, NoVLX] in
+def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (X86vfpround (v2f64 VR128:$src)))]>,
+ VEX, Sched<[WriteCvtPD2PS]>, VEX_WIG;
+
+// XMM only
+// def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
+// (VCVTPD2PSrr VR128:$dst, VR128:$src), 0>;
+let Predicates = [HasAVX, NoVLX] in
+def VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2ps{x}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (X86vfpround (loadv2f64 addr:$src)))]>,
+ VEX, Sched<[WriteCvtPD2PS.Folded]>, VEX_WIG;
+// def : InstAlias<"vcvtpd2psx\t{$src, $dst|$dst, $src}",
+// (VCVTPD2PSrm VR128:$dst, f128mem:$src), 0, "intel">;
+
+// YMM only
+let Predicates = [HasAVX, NoVLX] in {
+def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (fpround VR256:$src))]>,
+ VEX, VEX_L, Sched<[WriteCvtPD2PSY]>, VEX_WIG;
+def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src),
+ "cvtpd2ps{y}\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (fpround (loadv4f64 addr:$src)))]>,
+ VEX, VEX_L, Sched<[WriteCvtPD2PSY.Folded]>, VEX_WIG;
+}
+// def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}",
+// (VCVTPD2PSYrr VR128:$dst, VR256:$src), 0>;
+// def : InstAlias<"vcvtpd2psy\t{$src, $dst|$dst, $src}",
+// (VCVTPD2PSYrm VR128:$dst, f256mem:$src), 0, "intel">;
+
+def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (X86vfpround (v2f64 VR128:$src)))]>,
+ Sched<[WriteCvtPD2PS]>;
+def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ "cvtpd2ps\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (X86vfpround (memopv2f64 addr:$src)))]>,
+ Sched<[WriteCvtPD2PS.Folded]>;
+
+// AVX 256-bit register conversion intrinsics
+// FIXME: Migrate SSE conversion intrinsics matching to use patterns as below
+// whenever possible to avoid declaring two versions of each one.
+
+let Predicates = [HasAVX, NoVLX] in {
+ // Match fpround and fpextend for 128/256-bit conversions
+ def : Pat<(X86vzmovl (v2f64 (bitconvert
+ (v4f32 (X86vfpround (v2f64 VR128:$src)))))),
+ (VCVTPD2PSrr VR128:$src)>;
+ def : Pat<(X86vzmovl (v2f64 (bitconvert
+ (v4f32 (X86vfpround (loadv2f64 addr:$src)))))),
+ (VCVTPD2PSrm addr:$src)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // Match fpround and fpextend for 128 conversions
+ def : Pat<(X86vzmovl (v2f64 (bitconvert
+ (v4f32 (X86vfpround (v2f64 VR128:$src)))))),
+ (CVTPD2PSrr VR128:$src)>;
+ def : Pat<(X86vzmovl (v2f64 (bitconvert
+ (v4f32 (X86vfpround (memopv2f64 addr:$src)))))),
+ (CVTPD2PSrm addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Compare Instructions
+//===----------------------------------------------------------------------===//
+
+// sse12_cmp_scalar - sse 1 & 2 compare scalar instructions
+multiclass sse12_cmp_scalar<RegisterClass RC, X86MemOperand x86memop,
+ Operand CC, SDNode OpNode, ValueType VT,
+ PatFrag ld_frag, string asm, string asm_alt,
+ X86FoldableSchedWrite sched> {
+ let isCommutable = 1 in
+ def rr : SIi8<0xC2, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
+ [(set RC:$dst, (OpNode (VT RC:$src1), RC:$src2, imm:$cc))]>,
+ Sched<[sched]>;
+ def rm : SIi8<0xC2, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
+ [(set RC:$dst, (OpNode (VT RC:$src1),
+ (ld_frag addr:$src2), imm:$cc))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$cc), asm_alt, []>,
+ Sched<[sched]>, NotMemoryFoldable;
+ let mayLoad = 1 in
+ def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$cc), asm_alt, []>,
+ Sched<[sched.Folded, ReadAfterLd]>, NotMemoryFoldable;
+ }
+}
+
+let ExeDomain = SSEPackedSingle in
+defm VCMPSS : sse12_cmp_scalar<FR32, f32mem, AVXCC, X86cmps, f32, loadf32,
+ "cmp${cc}ss\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpss\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SchedWriteFCmpSizes.PS.Scl>, XS, VEX_4V, VEX_LIG, VEX_WIG;
+let ExeDomain = SSEPackedDouble in
+defm VCMPSD : sse12_cmp_scalar<FR64, f64mem, AVXCC, X86cmps, f64, loadf64,
+ "cmp${cc}sd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpsd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SchedWriteFCmpSizes.PD.Scl>,
+ XD, VEX_4V, VEX_LIG, VEX_WIG;
+
+let Constraints = "$src1 = $dst" in {
+ let ExeDomain = SSEPackedSingle in
+ defm CMPSS : sse12_cmp_scalar<FR32, f32mem, SSECC, X86cmps, f32, loadf32,
+ "cmp${cc}ss\t{$src2, $dst|$dst, $src2}",
+ "cmpss\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SchedWriteFCmpSizes.PS.Scl>, XS;
+ let ExeDomain = SSEPackedDouble in
+ defm CMPSD : sse12_cmp_scalar<FR64, f64mem, SSECC, X86cmps, f64, loadf64,
+ "cmp${cc}sd\t{$src2, $dst|$dst, $src2}",
+ "cmpsd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SchedWriteFCmpSizes.PD.Scl>, XD;
+}
+
+multiclass sse12_cmp_scalar_int<Operand memop, Operand CC,
+ Intrinsic Int, string asm, X86FoldableSchedWrite sched,
+ ComplexPattern mem_cpat> {
+ def rr_Int : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src, CC:$cc), asm,
+ [(set VR128:$dst, (Int VR128:$src1,
+ VR128:$src, imm:$cc))]>,
+ Sched<[sched]>;
+let mayLoad = 1 in
+ def rm_Int : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, memop:$src, CC:$cc), asm,
+ [(set VR128:$dst, (Int VR128:$src1,
+ mem_cpat:$src, imm:$cc))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let isCodeGenOnly = 1 in {
+ // Aliases to match intrinsics which expect XMM operand(s).
+ let ExeDomain = SSEPackedSingle in
+ defm VCMPSS : sse12_cmp_scalar_int<ssmem, AVXCC, int_x86_sse_cmp_ss,
+ "cmp${cc}ss\t{$src, $src1, $dst|$dst, $src1, $src}",
+ SchedWriteFCmpSizes.PS.Scl, sse_load_f32>, XS, VEX_4V;
+ let ExeDomain = SSEPackedDouble in
+ defm VCMPSD : sse12_cmp_scalar_int<sdmem, AVXCC, int_x86_sse2_cmp_sd,
+ "cmp${cc}sd\t{$src, $src1, $dst|$dst, $src1, $src}",
+ SchedWriteFCmpSizes.PD.Scl, sse_load_f64>,
+ XD, VEX_4V;
+ let Constraints = "$src1 = $dst" in {
+ let ExeDomain = SSEPackedSingle in
+ defm CMPSS : sse12_cmp_scalar_int<ssmem, SSECC, int_x86_sse_cmp_ss,
+ "cmp${cc}ss\t{$src, $dst|$dst, $src}",
+ SchedWriteFCmpSizes.PS.Scl, sse_load_f32>, XS;
+ let ExeDomain = SSEPackedDouble in
+ defm CMPSD : sse12_cmp_scalar_int<sdmem, SSECC, int_x86_sse2_cmp_sd,
+ "cmp${cc}sd\t{$src, $dst|$dst, $src}",
+ SchedWriteFCmpSizes.PD.Scl, sse_load_f64>, XD;
+}
+}
+
+
+// sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS
+multiclass sse12_ord_cmp<bits<8> opc, RegisterClass RC, SDNode OpNode,
+ ValueType vt, X86MemOperand x86memop,
+ PatFrag ld_frag, string OpcodeStr,
+ X86FoldableSchedWrite sched> {
+let hasSideEffects = 0 in {
+ def rr: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))]>,
+ Sched<[sched]>;
+let mayLoad = 1 in
+ def rm: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode (vt RC:$src1),
+ (ld_frag addr:$src2)))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+}
+
+// sse12_ord_cmp_int - Intrinsic version of sse12_ord_cmp
+multiclass sse12_ord_cmp_int<bits<8> opc, RegisterClass RC, SDNode OpNode,
+ ValueType vt, Operand memop,
+ ComplexPattern mem_cpat, string OpcodeStr,
+ X86FoldableSchedWrite sched> {
+ def rr_Int: SI<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode (vt RC:$src1), RC:$src2))]>,
+ Sched<[sched]>;
+let mayLoad = 1 in
+ def rm_Int: SI<opc, MRMSrcMem, (outs), (ins RC:$src1, memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (OpNode (vt RC:$src1),
+ mem_cpat:$src2))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Defs = [EFLAGS] in {
+ defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
+ "ucomiss", WriteFCom>, PS, VEX, VEX_LIG, VEX_WIG;
+ defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
+ "ucomisd", WriteFCom>, PD, VEX, VEX_LIG, VEX_WIG;
+ let Pattern = []<dag> in {
+ defm VCOMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32,
+ "comiss", WriteFCom>, PS, VEX, VEX_LIG, VEX_WIG;
+ defm VCOMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64,
+ "comisd", WriteFCom>, PD, VEX, VEX_LIG, VEX_WIG;
+ }
+
+ let isCodeGenOnly = 1 in {
+ defm VUCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem,
+ sse_load_f32, "ucomiss", WriteFCom>, PS, VEX, VEX_WIG;
+ defm VUCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem,
+ sse_load_f64, "ucomisd", WriteFCom>, PD, VEX, VEX_WIG;
+
+ defm VCOMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem,
+ sse_load_f32, "comiss", WriteFCom>, PS, VEX, VEX_WIG;
+ defm VCOMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem,
+ sse_load_f64, "comisd", WriteFCom>, PD, VEX, VEX_WIG;
+ }
+ defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32,
+ "ucomiss", WriteFCom>, PS;
+ defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64,
+ "ucomisd", WriteFCom>, PD;
+
+ let Pattern = []<dag> in {
+ defm COMISS : sse12_ord_cmp<0x2F, FR32, undef, f32, f32mem, loadf32,
+ "comiss", WriteFCom>, PS;
+ defm COMISD : sse12_ord_cmp<0x2F, FR64, undef, f64, f64mem, loadf64,
+ "comisd", WriteFCom>, PD;
+ }
+
+ let isCodeGenOnly = 1 in {
+ defm UCOMISS : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v4f32, ssmem,
+ sse_load_f32, "ucomiss", WriteFCom>, PS;
+ defm UCOMISD : sse12_ord_cmp_int<0x2E, VR128, X86ucomi, v2f64, sdmem,
+ sse_load_f64, "ucomisd", WriteFCom>, PD;
+
+ defm COMISS : sse12_ord_cmp_int<0x2F, VR128, X86comi, v4f32, ssmem,
+ sse_load_f32, "comiss", WriteFCom>, PS;
+ defm COMISD : sse12_ord_cmp_int<0x2F, VR128, X86comi, v2f64, sdmem,
+ sse_load_f64, "comisd", WriteFCom>, PD;
+ }
+} // Defs = [EFLAGS]
+
+// sse12_cmp_packed - sse 1 & 2 compare packed instructions
+multiclass sse12_cmp_packed<RegisterClass RC, X86MemOperand x86memop,
+ Operand CC, ValueType VT, string asm,
+ string asm_alt, X86FoldableSchedWrite sched,
+ Domain d, PatFrag ld_frag> {
+ let isCommutable = 1 in
+ def rri : PIi8<0xC2, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, CC:$cc), asm,
+ [(set RC:$dst, (VT (X86cmpp RC:$src1, RC:$src2, imm:$cc)))], d>,
+ Sched<[sched]>;
+ def rmi : PIi8<0xC2, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, CC:$cc), asm,
+ [(set RC:$dst,
+ (VT (X86cmpp RC:$src1, (ld_frag addr:$src2), imm:$cc)))], d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+
+ // Accept explicit immediate argument form instead of comparison code.
+ let isAsmParserOnly = 1, hasSideEffects = 0 in {
+ def rri_alt : PIi8<0xC2, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2, u8imm:$cc),
+ asm_alt, [], d>, Sched<[sched]>, NotMemoryFoldable;
+ let mayLoad = 1 in
+ def rmi_alt : PIi8<0xC2, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2, u8imm:$cc),
+ asm_alt, [], d>, Sched<[sched.Folded, ReadAfterLd]>,
+ NotMemoryFoldable;
+ }
+}
+
+defm VCMPPS : sse12_cmp_packed<VR128, f128mem, AVXCC, v4f32,
+ "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SchedWriteFCmpSizes.PS.XMM, SSEPackedSingle, loadv4f32>, PS, VEX_4V, VEX_WIG;
+defm VCMPPD : sse12_cmp_packed<VR128, f128mem, AVXCC, v2f64,
+ "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SchedWriteFCmpSizes.PD.XMM, SSEPackedDouble, loadv2f64>, PD, VEX_4V, VEX_WIG;
+defm VCMPPSY : sse12_cmp_packed<VR256, f256mem, AVXCC, v8f32,
+ "cmp${cc}ps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmpps\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SchedWriteFCmpSizes.PS.YMM, SSEPackedSingle, loadv8f32>, PS, VEX_4V, VEX_L, VEX_WIG;
+defm VCMPPDY : sse12_cmp_packed<VR256, f256mem, AVXCC, v4f64,
+ "cmp${cc}pd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ "cmppd\t{$cc, $src2, $src1, $dst|$dst, $src1, $src2, $cc}",
+ SchedWriteFCmpSizes.PD.YMM, SSEPackedDouble, loadv4f64>, PD, VEX_4V, VEX_L, VEX_WIG;
+let Constraints = "$src1 = $dst" in {
+ defm CMPPS : sse12_cmp_packed<VR128, f128mem, SSECC, v4f32,
+ "cmp${cc}ps\t{$src2, $dst|$dst, $src2}",
+ "cmpps\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SchedWriteFCmpSizes.PS.XMM, SSEPackedSingle, memopv4f32>, PS;
+ defm CMPPD : sse12_cmp_packed<VR128, f128mem, SSECC, v2f64,
+ "cmp${cc}pd\t{$src2, $dst|$dst, $src2}",
+ "cmppd\t{$cc, $src2, $dst|$dst, $src2, $cc}",
+ SchedWriteFCmpSizes.PD.XMM, SSEPackedDouble, memopv2f64>, PD;
+}
+
+def CommutableCMPCC : PatLeaf<(imm), [{
+ uint64_t Imm = N->getZExtValue() & 0x7;
+ return (Imm == 0x00 || Imm == 0x03 || Imm == 0x04 || Imm == 0x07);
+}]>;
+
+// Patterns to select compares with loads in first operand.
+let Predicates = [HasAVX] in {
+ def : Pat<(v4f64 (X86cmpp (loadv4f64 addr:$src2), VR256:$src1,
+ CommutableCMPCC:$cc)),
+ (VCMPPDYrmi VR256:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(v8f32 (X86cmpp (loadv8f32 addr:$src2), VR256:$src1,
+ CommutableCMPCC:$cc)),
+ (VCMPPSYrmi VR256:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(v2f64 (X86cmpp (loadv2f64 addr:$src2), VR128:$src1,
+ CommutableCMPCC:$cc)),
+ (VCMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(v4f32 (X86cmpp (loadv4f32 addr:$src2), VR128:$src1,
+ CommutableCMPCC:$cc)),
+ (VCMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1,
+ CommutableCMPCC:$cc)),
+ (VCMPSDrm FR64:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1,
+ CommutableCMPCC:$cc)),
+ (VCMPSSrm FR32:$src1, addr:$src2, imm:$cc)>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(v2f64 (X86cmpp (memopv2f64 addr:$src2), VR128:$src1,
+ CommutableCMPCC:$cc)),
+ (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(f64 (X86cmps (loadf64 addr:$src2), FR64:$src1,
+ CommutableCMPCC:$cc)),
+ (CMPSDrm FR64:$src1, addr:$src2, imm:$cc)>;
+}
+
+let Predicates = [UseSSE1] in {
+ def : Pat<(v4f32 (X86cmpp (memopv4f32 addr:$src2), VR128:$src1,
+ CommutableCMPCC:$cc)),
+ (CMPPSrmi VR128:$src1, addr:$src2, imm:$cc)>;
+
+ def : Pat<(f32 (X86cmps (loadf32 addr:$src2), FR32:$src1,
+ CommutableCMPCC:$cc)),
+ (CMPSSrm FR32:$src1, addr:$src2, imm:$cc)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Shuffle Instructions
+//===----------------------------------------------------------------------===//
+
+/// sse12_shuffle - sse 1 & 2 fp shuffle instructions
+multiclass sse12_shuffle<RegisterClass RC, X86MemOperand x86memop,
+ ValueType vt, string asm, PatFrag mem_frag,
+ X86FoldableSchedWrite sched, Domain d> {
+ def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$src3), asm,
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, (mem_frag addr:$src2),
+ (i8 imm:$src3))))], d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+ def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3), asm,
+ [(set RC:$dst, (vt (X86Shufp RC:$src1, RC:$src2,
+ (i8 imm:$src3))))], d>,
+ Sched<[sched]>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ defm VSHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
+ "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv4f32, SchedWriteFShuffle.XMM, SSEPackedSingle>,
+ PS, VEX_4V, VEX_WIG;
+ defm VSHUFPSY : sse12_shuffle<VR256, f256mem, v8f32,
+ "shufps\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv8f32, SchedWriteFShuffle.YMM, SSEPackedSingle>,
+ PS, VEX_4V, VEX_L, VEX_WIG;
+ defm VSHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
+ "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv2f64, SchedWriteFShuffle.XMM, SSEPackedDouble>,
+ PD, VEX_4V, VEX_WIG;
+ defm VSHUFPDY : sse12_shuffle<VR256, f256mem, v4f64,
+ "shufpd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ loadv4f64, SchedWriteFShuffle.YMM, SSEPackedDouble>,
+ PD, VEX_4V, VEX_L, VEX_WIG;
+}
+let Constraints = "$src1 = $dst" in {
+ defm SHUFPS : sse12_shuffle<VR128, f128mem, v4f32,
+ "shufps\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ memopv4f32, SchedWriteFShuffle.XMM, SSEPackedSingle>, PS;
+ defm SHUFPD : sse12_shuffle<VR128, f128mem, v2f64,
+ "shufpd\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ memopv2f64, SchedWriteFShuffle.XMM, SSEPackedDouble>, PD;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Unpack FP Instructions
+//===----------------------------------------------------------------------===//
+
+/// sse12_unpack_interleave - sse 1 & 2 fp unpack and interleave
+multiclass sse12_unpack_interleave<bits<8> opc, SDNode OpNode, ValueType vt,
+ PatFrag mem_frag, RegisterClass RC,
+ X86MemOperand x86memop, string asm,
+ X86FoldableSchedWrite sched, Domain d,
+ bit IsCommutable = 0> {
+ let isCommutable = IsCommutable in
+ def rr : PI<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ asm, [(set RC:$dst,
+ (vt (OpNode RC:$src1, RC:$src2)))], d>,
+ Sched<[sched]>;
+ def rm : PI<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ asm, [(set RC:$dst,
+ (vt (OpNode RC:$src1,
+ (mem_frag addr:$src2))))], d>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+defm VUNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, loadv4f32,
+ VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG;
+defm VUNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, loadv2f64,
+ VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD, VEX_4V, VEX_WIG;
+defm VUNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, loadv4f32,
+ VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedSingle>, PS, VEX_4V, VEX_WIG;
+defm VUNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, loadv2f64,
+ VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedDouble>, PD, VEX_4V, VEX_WIG;
+
+defm VUNPCKHPSY: sse12_unpack_interleave<0x15, X86Unpckh, v8f32, loadv8f32,
+ VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG;
+defm VUNPCKHPDY: sse12_unpack_interleave<0x15, X86Unpckh, v4f64, loadv4f64,
+ VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG;
+defm VUNPCKLPSY: sse12_unpack_interleave<0x14, X86Unpckl, v8f32, loadv8f32,
+ VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.YMM, SSEPackedSingle>, PS, VEX_4V, VEX_L, VEX_WIG;
+defm VUNPCKLPDY: sse12_unpack_interleave<0x14, X86Unpckl, v4f64, loadv4f64,
+ VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ SchedWriteFShuffle.YMM, SSEPackedDouble>, PD, VEX_4V, VEX_L, VEX_WIG;
+}// Predicates = [HasAVX, NoVLX]
+
+let Constraints = "$src1 = $dst" in {
+ defm UNPCKHPS: sse12_unpack_interleave<0x15, X86Unpckh, v4f32, memopv4f32,
+ VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedSingle>, PS;
+ defm UNPCKHPD: sse12_unpack_interleave<0x15, X86Unpckh, v2f64, memopv2f64,
+ VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedDouble, 1>, PD;
+ defm UNPCKLPS: sse12_unpack_interleave<0x14, X86Unpckl, v4f32, memopv4f32,
+ VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedSingle>, PS;
+ defm UNPCKLPD: sse12_unpack_interleave<0x14, X86Unpckl, v2f64, memopv2f64,
+ VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}",
+ SchedWriteFShuffle.XMM, SSEPackedDouble>, PD;
+} // Constraints = "$src1 = $dst"
+
+let Predicates = [HasAVX1Only] in {
+ def : Pat<(v8i32 (X86Unpckl VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
+ (VUNPCKLPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86Unpckl VR256:$src1, VR256:$src2)),
+ (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v8i32 (X86Unpckh VR256:$src1, (bc_v8i32 (loadv4i64 addr:$src2)))),
+ (VUNPCKHPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86Unpckh VR256:$src1, VR256:$src2)),
+ (VUNPCKHPSYrr VR256:$src1, VR256:$src2)>;
+
+ def : Pat<(v4i64 (X86Unpckl VR256:$src1, (loadv4i64 addr:$src2))),
+ (VUNPCKLPDYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v4i64 (X86Unpckl VR256:$src1, VR256:$src2)),
+ (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v4i64 (X86Unpckh VR256:$src1, (loadv4i64 addr:$src2))),
+ (VUNPCKHPDYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(v4i64 (X86Unpckh VR256:$src1, VR256:$src2)),
+ (VUNPCKHPDYrr VR256:$src1, VR256:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Extract Floating-Point Sign mask
+//===----------------------------------------------------------------------===//
+
+/// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave
+multiclass sse12_extr_sign_mask<RegisterClass RC, ValueType vt,
+ string asm, Domain d> {
+ def rr : PI<0x50, MRMSrcReg, (outs GR32orGR64:$dst), (ins RC:$src),
+ !strconcat(asm, "\t{$src, $dst|$dst, $src}"),
+ [(set GR32orGR64:$dst, (X86movmsk (vt RC:$src)))], d>,
+ Sched<[WriteFMOVMSK]>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VMOVMSKPS : sse12_extr_sign_mask<VR128, v4f32, "movmskps",
+ SSEPackedSingle>, PS, VEX, VEX_WIG;
+ defm VMOVMSKPD : sse12_extr_sign_mask<VR128, v2f64, "movmskpd",
+ SSEPackedDouble>, PD, VEX, VEX_WIG;
+ defm VMOVMSKPSY : sse12_extr_sign_mask<VR256, v8f32, "movmskps",
+ SSEPackedSingle>, PS, VEX, VEX_L, VEX_WIG;
+ defm VMOVMSKPDY : sse12_extr_sign_mask<VR256, v4f64, "movmskpd",
+ SSEPackedDouble>, PD, VEX, VEX_L, VEX_WIG;
+}
+
+defm MOVMSKPS : sse12_extr_sign_mask<VR128, v4f32, "movmskps",
+ SSEPackedSingle>, PS;
+defm MOVMSKPD : sse12_extr_sign_mask<VR128, v2f64, "movmskpd",
+ SSEPackedDouble>, PD;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Logical Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in { // SSE integer instructions
+
+/// PDI_binop_rm - Simple SSE2 binary operator.
+multiclass PDI_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched,
+ bit IsCommutable, bit Is2Addr> {
+ let isCommutable = IsCommutable in
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1,
+ (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+} // ExeDomain = SSEPackedInt
+
+multiclass PDI_binop_all<bits<8> opc, string OpcodeStr, SDNode Opcode,
+ ValueType OpVT128, ValueType OpVT256,
+ X86SchedWriteWidths sched, bit IsCommutable,
+ Predicate prd> {
+let Predicates = [HasAVX, prd] in
+ defm V#NAME : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode, OpVT128,
+ VR128, loadv2i64, i128mem, sched.XMM,
+ IsCommutable, 0>, VEX_4V, VEX_WIG;
+
+let Constraints = "$src1 = $dst" in
+ defm NAME : PDI_binop_rm<opc, OpcodeStr, Opcode, OpVT128, VR128,
+ memopv2i64, i128mem, sched.XMM, IsCommutable, 1>;
+
+let Predicates = [HasAVX2, prd] in
+ defm V#NAME#Y : PDI_binop_rm<opc, !strconcat("v", OpcodeStr), Opcode,
+ OpVT256, VR256, loadv4i64, i256mem, sched.YMM,
+ IsCommutable, 0>, VEX_4V, VEX_L, VEX_WIG;
+}
+
+// These are ordered here for pattern ordering requirements with the fp versions
+
+defm PAND : PDI_binop_all<0xDB, "pand", and, v2i64, v4i64,
+ SchedWriteVecLogic, 1, NoVLX>;
+defm POR : PDI_binop_all<0xEB, "por", or, v2i64, v4i64,
+ SchedWriteVecLogic, 1, NoVLX>;
+defm PXOR : PDI_binop_all<0xEF, "pxor", xor, v2i64, v4i64,
+ SchedWriteVecLogic, 1, NoVLX>;
+defm PANDN : PDI_binop_all<0xDF, "pandn", X86andnp, v2i64, v4i64,
+ SchedWriteVecLogic, 0, NoVLX>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Logical Instructions
+//===----------------------------------------------------------------------===//
+
+/// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops
+///
+/// There are no patterns here because isel prefers integer versions for SSE2
+/// and later. There are SSE1 v4f32 patterns later.
+multiclass sse12_fp_packed_logical<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, X86SchedWriteWidths sched> {
+ let Predicates = [HasAVX, NoVLX] in {
+ defm V#NAME#PSY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedSingle,
+ !strconcat(OpcodeStr, "ps"), f256mem, sched.YMM,
+ [], [], 0>, PS, VEX_4V, VEX_L, VEX_WIG;
+
+ defm V#NAME#PDY : sse12_fp_packed_logical_rm<opc, VR256, SSEPackedDouble,
+ !strconcat(OpcodeStr, "pd"), f256mem, sched.YMM,
+ [], [], 0>, PD, VEX_4V, VEX_L, VEX_WIG;
+
+ defm V#NAME#PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
+ !strconcat(OpcodeStr, "ps"), f128mem, sched.XMM,
+ [], [], 0>, PS, VEX_4V, VEX_WIG;
+
+ defm V#NAME#PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
+ !strconcat(OpcodeStr, "pd"), f128mem, sched.XMM,
+ [], [], 0>, PD, VEX_4V, VEX_WIG;
+ }
+
+ let Constraints = "$src1 = $dst" in {
+ defm PS : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedSingle,
+ !strconcat(OpcodeStr, "ps"), f128mem, sched.XMM,
+ [], []>, PS;
+
+ defm PD : sse12_fp_packed_logical_rm<opc, VR128, SSEPackedDouble,
+ !strconcat(OpcodeStr, "pd"), f128mem, sched.XMM,
+ [], []>, PD;
+ }
+}
+
+defm AND : sse12_fp_packed_logical<0x54, "and", and, SchedWriteFLogic>;
+defm OR : sse12_fp_packed_logical<0x56, "or", or, SchedWriteFLogic>;
+defm XOR : sse12_fp_packed_logical<0x57, "xor", xor, SchedWriteFLogic>;
+let isCommutable = 0 in
+ defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp, SchedWriteFLogic>;
+
+// If only AVX1 is supported, we need to handle integer operations with
+// floating point instructions since the integer versions aren't available.
+let Predicates = [HasAVX1Only] in {
+ def : Pat<(v4i64 (and VR256:$src1, VR256:$src2)),
+ (VANDPSYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v4i64 (or VR256:$src1, VR256:$src2)),
+ (VORPSYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v4i64 (xor VR256:$src1, VR256:$src2)),
+ (VXORPSYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v4i64 (X86andnp VR256:$src1, VR256:$src2)),
+ (VANDNPSYrr VR256:$src1, VR256:$src2)>;
+
+ def : Pat<(and VR256:$src1, (loadv4i64 addr:$src2)),
+ (VANDPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(or VR256:$src1, (loadv4i64 addr:$src2)),
+ (VORPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(xor VR256:$src1, (loadv4i64 addr:$src2)),
+ (VXORPSYrm VR256:$src1, addr:$src2)>;
+ def : Pat<(X86andnp VR256:$src1, (loadv4i64 addr:$src2)),
+ (VANDNPSYrm VR256:$src1, addr:$src2)>;
+}
+
+let Predicates = [HasAVX, NoVLX_Or_NoDQI] in {
+ // Use packed logical operations for scalar ops.
+ def : Pat<(f64 (X86fand FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (VANDPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+ def : Pat<(f64 (X86for FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (VORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+ def : Pat<(f64 (X86fxor FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (VXORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+ def : Pat<(f64 (X86fandn FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (VANDNPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+
+ def : Pat<(f32 (X86fand FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (VANDPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+ def : Pat<(f32 (X86for FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (VORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+ def : Pat<(f32 (X86fxor FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (VXORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+ def : Pat<(f32 (X86fandn FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (VANDNPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+}
+
+let Predicates = [UseSSE1] in {
+ // Use packed logical operations for scalar ops.
+ def : Pat<(f32 (X86fand FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (ANDPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+ def : Pat<(f32 (X86for FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (ORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+ def : Pat<(f32 (X86fxor FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (XORPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+ def : Pat<(f32 (X86fandn FR32:$src1, FR32:$src2)),
+ (COPY_TO_REGCLASS
+ (v4f32 (ANDNPSrr (v4f32 (COPY_TO_REGCLASS FR32:$src1, VR128)),
+ (v4f32 (COPY_TO_REGCLASS FR32:$src2, VR128)))),
+ FR32)>;
+}
+
+let Predicates = [UseSSE2] in {
+ // Use packed logical operations for scalar ops.
+ def : Pat<(f64 (X86fand FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (ANDPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+ def : Pat<(f64 (X86for FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (ORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+ def : Pat<(f64 (X86fxor FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (XORPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+ def : Pat<(f64 (X86fandn FR64:$src1, FR64:$src2)),
+ (COPY_TO_REGCLASS
+ (v2f64 (ANDNPDrr (v2f64 (COPY_TO_REGCLASS FR64:$src1, VR128)),
+ (v2f64 (COPY_TO_REGCLASS FR64:$src2, VR128)))),
+ FR64)>;
+}
+
+// Patterns for packed operations when we don't have integer type available.
+def : Pat<(v4f32 (X86fand VR128:$src1, VR128:$src2)),
+ (ANDPSrr VR128:$src1, VR128:$src2)>;
+def : Pat<(v4f32 (X86for VR128:$src1, VR128:$src2)),
+ (ORPSrr VR128:$src1, VR128:$src2)>;
+def : Pat<(v4f32 (X86fxor VR128:$src1, VR128:$src2)),
+ (XORPSrr VR128:$src1, VR128:$src2)>;
+def : Pat<(v4f32 (X86fandn VR128:$src1, VR128:$src2)),
+ (ANDNPSrr VR128:$src1, VR128:$src2)>;
+
+def : Pat<(X86fand VR128:$src1, (memopv4f32 addr:$src2)),
+ (ANDPSrm VR128:$src1, addr:$src2)>;
+def : Pat<(X86for VR128:$src1, (memopv4f32 addr:$src2)),
+ (ORPSrm VR128:$src1, addr:$src2)>;
+def : Pat<(X86fxor VR128:$src1, (memopv4f32 addr:$src2)),
+ (XORPSrm VR128:$src1, addr:$src2)>;
+def : Pat<(X86fandn VR128:$src1, (memopv4f32 addr:$src2)),
+ (ANDNPSrm VR128:$src1, addr:$src2)>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Arithmetic Instructions
+//===----------------------------------------------------------------------===//
+
+/// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and
+/// vector forms.
+///
+/// In addition, we also have a special variant of the scalar form here to
+/// represent the associated intrinsic operation. This form is unlike the
+/// plain scalar form, in that it takes an entire vector (instead of a scalar)
+/// and leaves the top elements unmodified (therefore these cannot be commuted).
+///
+/// These three forms can each be reg+reg or reg+mem.
+///
+
+/// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those
+/// classes below
+multiclass basic_sse12_fp_binop_p<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, X86SchedWriteSizes sched> {
+ let Predicates = [HasAVX, NoVLX] in {
+ defm V#NAME#PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode,
+ VR128, v4f32, f128mem, loadv4f32,
+ SSEPackedSingle, sched.PS.XMM, 0>, PS, VEX_4V, VEX_WIG;
+ defm V#NAME#PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode,
+ VR128, v2f64, f128mem, loadv2f64,
+ SSEPackedDouble, sched.PD.XMM, 0>, PD, VEX_4V, VEX_WIG;
+
+ defm V#NAME#PSY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"),
+ OpNode, VR256, v8f32, f256mem, loadv8f32,
+ SSEPackedSingle, sched.PS.YMM, 0>, PS, VEX_4V, VEX_L, VEX_WIG;
+ defm V#NAME#PDY : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"),
+ OpNode, VR256, v4f64, f256mem, loadv4f64,
+ SSEPackedDouble, sched.PD.YMM, 0>, PD, VEX_4V, VEX_L, VEX_WIG;
+ }
+
+ let Constraints = "$src1 = $dst" in {
+ defm PS : sse12_fp_packed<opc, !strconcat(OpcodeStr, "ps"), OpNode, VR128,
+ v4f32, f128mem, memopv4f32, SSEPackedSingle,
+ sched.PS.XMM>, PS;
+ defm PD : sse12_fp_packed<opc, !strconcat(OpcodeStr, "pd"), OpNode, VR128,
+ v2f64, f128mem, memopv2f64, SSEPackedDouble,
+ sched.PD.XMM>, PD;
+ }
+}
+
+multiclass basic_sse12_fp_binop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86SchedWriteSizes sched> {
+ defm V#NAME#SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
+ OpNode, FR32, f32mem, SSEPackedSingle, sched.PS.Scl, 0>,
+ XS, VEX_4V, VEX_LIG, VEX_WIG;
+ defm V#NAME#SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
+ OpNode, FR64, f64mem, SSEPackedDouble, sched.PD.Scl, 0>,
+ XD, VEX_4V, VEX_LIG, VEX_WIG;
+
+ let Constraints = "$src1 = $dst" in {
+ defm SS : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "ss"),
+ OpNode, FR32, f32mem, SSEPackedSingle,
+ sched.PS.Scl>, XS;
+ defm SD : sse12_fp_scalar<opc, !strconcat(OpcodeStr, "sd"),
+ OpNode, FR64, f64mem, SSEPackedDouble,
+ sched.PD.Scl>, XD;
+ }
+}
+
+multiclass basic_sse12_fp_binop_s_int<bits<8> opc, string OpcodeStr,
+ SDPatternOperator OpNode,
+ X86SchedWriteSizes sched> {
+ defm V#NAME#SS : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v4f32,
+ !strconcat(OpcodeStr, "ss"), ssmem, sse_load_f32,
+ SSEPackedSingle, sched.PS.Scl, 0>, XS, VEX_4V, VEX_LIG, VEX_WIG;
+ defm V#NAME#SD : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v2f64,
+ !strconcat(OpcodeStr, "sd"), sdmem, sse_load_f64,
+ SSEPackedDouble, sched.PD.Scl, 0>, XD, VEX_4V, VEX_LIG, VEX_WIG;
+
+ let Constraints = "$src1 = $dst" in {
+ defm SS : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v4f32,
+ !strconcat(OpcodeStr, "ss"), ssmem, sse_load_f32,
+ SSEPackedSingle, sched.PS.Scl>, XS;
+ defm SD : sse12_fp_scalar_int<opc, OpcodeStr, OpNode, VR128, v2f64,
+ !strconcat(OpcodeStr, "sd"), sdmem, sse_load_f64,
+ SSEPackedDouble, sched.PD.Scl>, XD;
+ }
+}
+
+// Binary Arithmetic instructions
+defm ADD : basic_sse12_fp_binop_p<0x58, "add", fadd, SchedWriteFAddSizes>,
+ basic_sse12_fp_binop_s<0x58, "add", fadd, SchedWriteFAddSizes>,
+ basic_sse12_fp_binop_s_int<0x58, "add", null_frag, SchedWriteFAddSizes>;
+defm MUL : basic_sse12_fp_binop_p<0x59, "mul", fmul, SchedWriteFMulSizes>,
+ basic_sse12_fp_binop_s<0x59, "mul", fmul, SchedWriteFMulSizes>,
+ basic_sse12_fp_binop_s_int<0x59, "mul", null_frag, SchedWriteFMulSizes>;
+let isCommutable = 0 in {
+ defm SUB : basic_sse12_fp_binop_p<0x5C, "sub", fsub, SchedWriteFAddSizes>,
+ basic_sse12_fp_binop_s<0x5C, "sub", fsub, SchedWriteFAddSizes>,
+ basic_sse12_fp_binop_s_int<0x5C, "sub", null_frag, SchedWriteFAddSizes>;
+ defm DIV : basic_sse12_fp_binop_p<0x5E, "div", fdiv, SchedWriteFDivSizes>,
+ basic_sse12_fp_binop_s<0x5E, "div", fdiv, SchedWriteFDivSizes>,
+ basic_sse12_fp_binop_s_int<0x5E, "div", null_frag, SchedWriteFDivSizes>;
+ defm MAX : basic_sse12_fp_binop_p<0x5F, "max", X86fmax, SchedWriteFCmpSizes>,
+ basic_sse12_fp_binop_s<0x5F, "max", X86fmax, SchedWriteFCmpSizes>,
+ basic_sse12_fp_binop_s_int<0x5F, "max", X86fmaxs, SchedWriteFCmpSizes>;
+ defm MIN : basic_sse12_fp_binop_p<0x5D, "min", X86fmin, SchedWriteFCmpSizes>,
+ basic_sse12_fp_binop_s<0x5D, "min", X86fmin, SchedWriteFCmpSizes>,
+ basic_sse12_fp_binop_s_int<0x5D, "min", X86fmins, SchedWriteFCmpSizes>;
+}
+
+let isCodeGenOnly = 1 in {
+ defm MAXC: basic_sse12_fp_binop_p<0x5F, "max", X86fmaxc, SchedWriteFCmpSizes>,
+ basic_sse12_fp_binop_s<0x5F, "max", X86fmaxc, SchedWriteFCmpSizes>;
+ defm MINC: basic_sse12_fp_binop_p<0x5D, "min", X86fminc, SchedWriteFCmpSizes>,
+ basic_sse12_fp_binop_s<0x5D, "min", X86fminc, SchedWriteFCmpSizes>;
+}
+
+// Patterns used to select SSE scalar fp arithmetic instructions from
+// either:
+//
+// (1) a scalar fp operation followed by a blend
+//
+// The effect is that the backend no longer emits unnecessary vector
+// insert instructions immediately after SSE scalar fp instructions
+// like addss or mulss.
+//
+// For example, given the following code:
+// __m128 foo(__m128 A, __m128 B) {
+// A[0] += B[0];
+// return A;
+// }
+//
+// Previously we generated:
+// addss %xmm0, %xmm1
+// movss %xmm1, %xmm0
+//
+// We now generate:
+// addss %xmm1, %xmm0
+//
+// (2) a vector packed single/double fp operation followed by a vector insert
+//
+// The effect is that the backend converts the packed fp instruction
+// followed by a vector insert into a single SSE scalar fp instruction.
+//
+// For example, given the following code:
+// __m128 foo(__m128 A, __m128 B) {
+// __m128 C = A + B;
+// return (__m128) {c[0], a[1], a[2], a[3]};
+// }
+//
+// Previously we generated:
+// addps %xmm0, %xmm1
+// movss %xmm1, %xmm0
+//
+// We now generate:
+// addss %xmm1, %xmm0
+
+// TODO: Some canonicalization in lowering would simplify the number of
+// patterns we have to try to match.
+multiclass scalar_math_patterns<SDNode Op, string OpcPrefix, SDNode Move,
+ ValueType VT, ValueType EltTy,
+ RegisterClass RC, Predicate BasePredicate> {
+ let Predicates = [BasePredicate] in {
+ // extracted scalar math op with insert via movss/movsd
+ def : Pat<(VT (Move (VT VR128:$dst),
+ (VT (scalar_to_vector
+ (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))),
+ RC:$src))))),
+ (!cast<Instruction>(OpcPrefix#rr_Int) VT:$dst,
+ (VT (COPY_TO_REGCLASS RC:$src, VR128)))>;
+ }
+
+ // Repeat for AVX versions of the instructions.
+ let Predicates = [UseAVX] in {
+ // extracted scalar math op with insert via movss/movsd
+ def : Pat<(VT (Move (VT VR128:$dst),
+ (VT (scalar_to_vector
+ (Op (EltTy (extractelt (VT VR128:$dst), (iPTR 0))),
+ RC:$src))))),
+ (!cast<Instruction>("V"#OpcPrefix#rr_Int) VT:$dst,
+ (VT (COPY_TO_REGCLASS RC:$src, VR128)))>;
+ }
+}
+
+defm : scalar_math_patterns<fadd, "ADDSS", X86Movss, v4f32, f32, FR32, UseSSE1>;
+defm : scalar_math_patterns<fsub, "SUBSS", X86Movss, v4f32, f32, FR32, UseSSE1>;
+defm : scalar_math_patterns<fmul, "MULSS", X86Movss, v4f32, f32, FR32, UseSSE1>;
+defm : scalar_math_patterns<fdiv, "DIVSS", X86Movss, v4f32, f32, FR32, UseSSE1>;
+
+defm : scalar_math_patterns<fadd, "ADDSD", X86Movsd, v2f64, f64, FR64, UseSSE2>;
+defm : scalar_math_patterns<fsub, "SUBSD", X86Movsd, v2f64, f64, FR64, UseSSE2>;
+defm : scalar_math_patterns<fmul, "MULSD", X86Movsd, v2f64, f64, FR64, UseSSE2>;
+defm : scalar_math_patterns<fdiv, "DIVSD", X86Movsd, v2f64, f64, FR64, UseSSE2>;
+
+/// Unop Arithmetic
+/// In addition, we also have a special variant of the scalar form here to
+/// represent the associated intrinsic operation. This form is unlike the
+/// plain scalar form, in that it takes an entire vector (instead of a
+/// scalar) and leaves the top elements undefined.
+///
+/// And, we have a special variant form for a full-vector intrinsic form.
+
+/// sse_fp_unop_s - SSE1 unops in scalar form
+/// For the non-AVX defs, we need $src1 to be tied to $dst because
+/// the HW instructions are 2 operand / destructive.
+multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ ValueType ScalarVT, X86MemOperand x86memop,
+ Operand intmemop, SDNode OpNode, Domain d,
+ X86FoldableSchedWrite sched, Predicate target> {
+ let hasSideEffects = 0 in {
+ def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1),
+ !strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"),
+ [(set RC:$dst, (OpNode RC:$src1))], d>, Sched<[sched]>,
+ Requires<[target]>;
+ let mayLoad = 1 in
+ def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src1),
+ !strconcat(OpcodeStr, "\t{$src1, $dst|$dst, $src1}"),
+ [(set RC:$dst, (OpNode (load addr:$src1)))], d>,
+ Sched<[sched.Folded, ReadAfterLd]>,
+ Requires<[target, OptForSize]>;
+
+ let isCodeGenOnly = 1, Constraints = "$src1 = $dst", ExeDomain = d in {
+ def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), []>,
+ Sched<[sched]>;
+ let mayLoad = 1 in
+ def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, intmemop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), []>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+ }
+ }
+
+}
+
+multiclass sse_fp_unop_s_intr<RegisterClass RC, ValueType vt,
+ ComplexPattern int_cpat, Intrinsic Intr,
+ Predicate target, string Suffix> {
+ let Predicates = [target] in {
+ // These are unary operations, but they are modeled as having 2 source operands
+ // because the high elements of the destination are unchanged in SSE.
+ def : Pat<(Intr VR128:$src),
+ (!cast<Instruction>(NAME#r_Int) VR128:$src, VR128:$src)>;
+ }
+ // We don't want to fold scalar loads into these instructions unless
+ // optimizing for size. This is because the folded instruction will have a
+ // partial register update, while the unfolded sequence will not, e.g.
+ // movss mem, %xmm0
+ // rcpss %xmm0, %xmm0
+ // which has a clobber before the rcp, vs.
+ // rcpss mem, %xmm0
+ let Predicates = [target, OptForSize] in {
+ def : Pat<(Intr int_cpat:$src2),
+ (!cast<Instruction>(NAME#m_Int)
+ (vt (IMPLICIT_DEF)), addr:$src2)>;
+ }
+}
+
+multiclass avx_fp_unop_s_intr<RegisterClass RC, ValueType vt, ComplexPattern int_cpat,
+ Intrinsic Intr, Predicate target> {
+ let Predicates = [target] in {
+ def : Pat<(Intr VR128:$src),
+ (!cast<Instruction>(NAME#r_Int) VR128:$src,
+ VR128:$src)>;
+ }
+ let Predicates = [target, OptForSize] in {
+ def : Pat<(Intr int_cpat:$src2),
+ (!cast<Instruction>(NAME#m_Int)
+ (vt (IMPLICIT_DEF)), addr:$src2)>;
+ }
+}
+
+multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ ValueType ScalarVT, X86MemOperand x86memop,
+ Operand intmemop, SDNode OpNode, Domain d,
+ X86FoldableSchedWrite sched, Predicate target> {
+ let hasSideEffects = 0 in {
+ def r : I<opc, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [], d>, Sched<[sched]>;
+ let mayLoad = 1 in
+ def m : I<opc, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [], d>, Sched<[sched.Folded, ReadAfterLd]>;
+ let isCodeGenOnly = 1, ExeDomain = d in {
+ def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[sched]>;
+ let mayLoad = 1 in
+ def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, intmemop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[sched.Folded, ReadAfterLd]>;
+ }
+ }
+
+ // We don't want to fold scalar loads into these instructions unless
+ // optimizing for size. This is because the folded instruction will have a
+ // partial register update, while the unfolded sequence will not, e.g.
+ // vmovss mem, %xmm0
+ // vrcpss %xmm0, %xmm0, %xmm0
+ // which has a clobber before the rcp, vs.
+ // vrcpss mem, %xmm0, %xmm0
+ // TODO: In theory, we could fold the load, and avoid the stall caused by
+ // the partial register store, either in BreakFalseDeps or with smarter RA.
+ let Predicates = [target] in {
+ def : Pat<(OpNode RC:$src), (!cast<Instruction>(NAME#r)
+ (ScalarVT (IMPLICIT_DEF)), RC:$src)>;
+ }
+ let Predicates = [target, OptForSize] in {
+ def : Pat<(ScalarVT (OpNode (load addr:$src))),
+ (!cast<Instruction>(NAME#m) (ScalarVT (IMPLICIT_DEF)),
+ addr:$src)>;
+ }
+}
+
+/// sse1_fp_unop_p - SSE1 unops in packed form.
+multiclass sse1_fp_unop_p<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86SchedWriteWidths sched, list<Predicate> prds> {
+let Predicates = prds in {
+ def V#NAME#PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>,
+ VEX, Sched<[sched.XMM]>, VEX_WIG;
+ def V#NAME#PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (loadv4f32 addr:$src)))]>,
+ VEX, Sched<[sched.XMM.Folded]>, VEX_WIG;
+ def V#NAME#PSYr : PSI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (v8f32 (OpNode VR256:$src)))]>,
+ VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG;
+ def V#NAME#PSYm : PSI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat("v", OpcodeStr,
+ "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (OpNode (loadv8f32 addr:$src)))]>,
+ VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG;
+}
+
+ def PSr : PSI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v4f32 (OpNode VR128:$src)))]>,
+ Sched<[sched.XMM]>;
+ def PSm : PSI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat(OpcodeStr, "ps\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (memopv4f32 addr:$src)))]>,
+ Sched<[sched.XMM.Folded]>;
+}
+
+/// sse2_fp_unop_p - SSE2 unops in vector forms.
+multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, X86SchedWriteWidths sched> {
+let Predicates = [HasAVX, NoVLX] in {
+ def V#NAME#PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>,
+ VEX, Sched<[sched.XMM]>, VEX_WIG;
+ def V#NAME#PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (loadv2f64 addr:$src)))]>,
+ VEX, Sched<[sched.XMM.Folded]>, VEX_WIG;
+ def V#NAME#PDYr : PDI<opc, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (v4f64 (OpNode VR256:$src)))]>,
+ VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG;
+ def V#NAME#PDYm : PDI<opc, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat("v", OpcodeStr,
+ "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (OpNode (loadv4f64 addr:$src)))]>,
+ VEX, VEX_L, Sched<[sched.YMM.Folded]>, VEX_WIG;
+}
+
+ def PDr : PDI<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v2f64 (OpNode VR128:$src)))]>,
+ Sched<[sched.XMM]>;
+ def PDm : PDI<opc, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src),
+ !strconcat(OpcodeStr, "pd\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))]>,
+ Sched<[sched.XMM.Folded]>;
+}
+
+multiclass sse1_fp_unop_s_intr<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86SchedWriteWidths sched, Predicate AVXTarget> {
+ defm SS : sse_fp_unop_s_intr<FR32, v4f32, sse_load_f32,
+ !cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss),
+ UseSSE1, "SS">, XS;
+ defm V#NAME#SS : avx_fp_unop_s_intr<FR32, v4f32, sse_load_f32,
+ !cast<Intrinsic>("int_x86_sse_"##OpcodeStr##_ss),
+ AVXTarget>,
+ XS, VEX_4V, VEX_LIG, VEX_WIG, NotMemoryFoldable;
+}
+
+multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86SchedWriteWidths sched, Predicate AVXTarget> {
+ defm SS : sse_fp_unop_s<opc, OpcodeStr##ss, FR32, f32, f32mem,
+ ssmem, OpNode, SSEPackedSingle, sched.Scl, UseSSE1>, XS;
+ defm V#NAME#SS : avx_fp_unop_s<opc, "v"#OpcodeStr##ss, FR32, f32,
+ f32mem, ssmem, OpNode, SSEPackedSingle, sched.Scl, AVXTarget>,
+ XS, VEX_4V, VEX_LIG, VEX_WIG;
+}
+
+multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ X86SchedWriteWidths sched, Predicate AVXTarget> {
+ defm SD : sse_fp_unop_s<opc, OpcodeStr##sd, FR64, f64, f64mem,
+ sdmem, OpNode, SSEPackedDouble, sched.Scl, UseSSE2>, XD;
+ defm V#NAME#SD : avx_fp_unop_s<opc, "v"#OpcodeStr##sd, FR64, f64,
+ f64mem, sdmem, OpNode, SSEPackedDouble, sched.Scl, AVXTarget>,
+ XD, VEX_4V, VEX_LIG, VEX_WIG;
+}
+
+// Square root.
+defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, SchedWriteFSqrt, UseAVX>,
+ sse1_fp_unop_p<0x51, "sqrt", fsqrt, SchedWriteFSqrt, [HasAVX, NoVLX]>,
+ sse2_fp_unop_s<0x51, "sqrt", fsqrt, SchedWriteFSqrt64, UseAVX>,
+ sse2_fp_unop_p<0x51, "sqrt", fsqrt, SchedWriteFSqrt64>;
+
+// Reciprocal approximations. Note that these typically require refinement
+// in order to obtain suitable precision.
+defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>,
+ sse1_fp_unop_s_intr<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, HasAVX>,
+ sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SchedWriteFRsqrt, [HasAVX]>;
+defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>,
+ sse1_fp_unop_s_intr<0x53, "rcp", X86frcp, SchedWriteFRcp, HasAVX>,
+ sse1_fp_unop_p<0x53, "rcp", X86frcp, SchedWriteFRcp, [HasAVX]>;
+
+// There is no f64 version of the reciprocal approximation instructions.
+
+multiclass scalar_unary_math_patterns<SDNode OpNode, string OpcPrefix, SDNode Move,
+ ValueType VT, Predicate BasePredicate> {
+ let Predicates = [BasePredicate] in {
+ def : Pat<(VT (Move VT:$dst, (scalar_to_vector
+ (OpNode (extractelt VT:$src, 0))))),
+ (!cast<Instruction>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+
+ // Repeat for AVX versions of the instructions.
+ let Predicates = [UseAVX] in {
+ def : Pat<(VT (Move VT:$dst, (scalar_to_vector
+ (OpNode (extractelt VT:$src, 0))))),
+ (!cast<Instruction>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+}
+
+multiclass scalar_unary_math_imm_patterns<SDNode OpNode, string OpcPrefix, SDNode Move,
+ ValueType VT, bits<8> ImmV,
+ Predicate BasePredicate> {
+ let Predicates = [BasePredicate] in {
+ def : Pat<(VT (Move VT:$dst, (scalar_to_vector
+ (OpNode (extractelt VT:$src, 0))))),
+ (!cast<Instruction>(OpcPrefix#r_Int) VT:$dst, VT:$src, (i32 ImmV))>;
+ }
+
+ // Repeat for AVX versions of the instructions.
+ let Predicates = [UseAVX] in {
+ def : Pat<(VT (Move VT:$dst, (scalar_to_vector
+ (OpNode (extractelt VT:$src, 0))))),
+ (!cast<Instruction>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src, (i32 ImmV))>;
+ }
+}
+
+defm : scalar_unary_math_patterns<fsqrt, "SQRTSS", X86Movss, v4f32, UseSSE1>;
+defm : scalar_unary_math_patterns<fsqrt, "SQRTSD", X86Movsd, v2f64, UseSSE2>;
+
+multiclass scalar_unary_math_intr_patterns<Intrinsic Intr, string OpcPrefix,
+ SDNode Move, ValueType VT,
+ Predicate BasePredicate> {
+ let Predicates = [BasePredicate] in {
+ def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
+ (!cast<Instruction>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+
+ // Repeat for AVX versions of the instructions.
+ let Predicates = [HasAVX] in {
+ def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
+ (!cast<Instruction>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+}
+
+defm : scalar_unary_math_intr_patterns<int_x86_sse_rcp_ss, "RCPSS", X86Movss,
+ v4f32, UseSSE1>;
+defm : scalar_unary_math_intr_patterns<int_x86_sse_rsqrt_ss, "RSQRTSS", X86Movss,
+ v4f32, UseSSE1>;
+
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Non-temporal stores
+//===----------------------------------------------------------------------===//
+
+let AddedComplexity = 400 in { // Prefer non-temporal versions
+let Predicates = [HasAVX, NoVLX] in {
+let SchedRW = [SchedWriteFMoveLSNT.XMM.MR] in {
+def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src),
+ "movntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4f32 VR128:$src),
+ addr:$dst)]>, VEX, VEX_WIG;
+def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src),
+ "movntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v2f64 VR128:$src),
+ addr:$dst)]>, VEX, VEX_WIG;
+} // SchedRW
+
+let SchedRW = [SchedWriteFMoveLSNT.YMM.MR] in {
+def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src),
+ "movntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v8f32 VR256:$src),
+ addr:$dst)]>, VEX, VEX_L, VEX_WIG;
+def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src),
+ "movntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4f64 VR256:$src),
+ addr:$dst)]>, VEX, VEX_L, VEX_WIG;
+} // SchedRW
+
+let ExeDomain = SSEPackedInt in {
+def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR128:$src),
+ "movntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v2i64 VR128:$src),
+ addr:$dst)]>, VEX, VEX_WIG,
+ Sched<[SchedWriteVecMoveLSNT.XMM.MR]>;
+def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs),
+ (ins i256mem:$dst, VR256:$src),
+ "movntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4i64 VR256:$src),
+ addr:$dst)]>, VEX, VEX_L, VEX_WIG,
+ Sched<[SchedWriteVecMoveLSNT.YMM.MR]>;
+} // ExeDomain
+} // Predicates
+
+let SchedRW = [SchedWriteFMoveLSNT.XMM.MR] in {
+def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movntps\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>;
+def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movntpd\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>;
+} // SchedRW
+
+let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecMoveLSNT.XMM.MR] in
+def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src),
+ "movntdq\t{$src, $dst|$dst, $src}",
+ [(alignednontemporalstore (v2i64 VR128:$src), addr:$dst)]>;
+
+let SchedRW = [WriteStoreNT] in {
+// There is no AVX form for instructions below this point
+def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src),
+ "movnti{l}\t{$src, $dst|$dst, $src}",
+ [(nontemporalstore (i32 GR32:$src), addr:$dst)]>,
+ PS, Requires<[HasSSE2]>;
+def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
+ "movnti{q}\t{$src, $dst|$dst, $src}",
+ [(nontemporalstore (i64 GR64:$src), addr:$dst)]>,
+ PS, Requires<[HasSSE2]>;
+} // SchedRW = [WriteStoreNT]
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(alignednontemporalstore (v8i32 VR256:$src), addr:$dst),
+ (VMOVNTDQYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignednontemporalstore (v16i16 VR256:$src), addr:$dst),
+ (VMOVNTDQYmr addr:$dst, VR256:$src)>;
+ def : Pat<(alignednontemporalstore (v32i8 VR256:$src), addr:$dst),
+ (VMOVNTDQYmr addr:$dst, VR256:$src)>;
+
+ def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst),
+ (VMOVNTDQmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst),
+ (VMOVNTDQmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst),
+ (VMOVNTDQmr addr:$dst, VR128:$src)>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(alignednontemporalstore (v4i32 VR128:$src), addr:$dst),
+ (MOVNTDQmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignednontemporalstore (v8i16 VR128:$src), addr:$dst),
+ (MOVNTDQmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignednontemporalstore (v16i8 VR128:$src), addr:$dst),
+ (MOVNTDQmr addr:$dst, VR128:$src)>;
+}
+
+} // AddedComplexity
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Prefetch and memory fence
+//===----------------------------------------------------------------------===//
+
+// Prefetch intrinsic.
+let Predicates = [HasSSEPrefetch], SchedRW = [WriteLoad] in {
+def PREFETCHT0 : I<0x18, MRM1m, (outs), (ins i8mem:$src),
+ "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))]>, TB;
+def PREFETCHT1 : I<0x18, MRM2m, (outs), (ins i8mem:$src),
+ "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))]>, TB;
+def PREFETCHT2 : I<0x18, MRM3m, (outs), (ins i8mem:$src),
+ "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))]>, TB;
+def PREFETCHNTA : I<0x18, MRM0m, (outs), (ins i8mem:$src),
+ "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))]>, TB;
+}
+
+// FIXME: How should flush instruction be modeled?
+let SchedRW = [WriteLoad] in {
+// Flush cache
+def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src),
+ "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>,
+ PS, Requires<[HasSSE2]>;
+}
+
+let SchedRW = [WriteNop] in {
+// Pause. This "instruction" is encoded as "rep; nop", so even though it
+// was introduced with SSE2, it's backward compatible.
+def PAUSE : I<0x90, RawFrm, (outs), (ins),
+ "pause", [(int_x86_sse2_pause)]>, OBXS;
+}
+
+let SchedRW = [WriteFence] in {
+// Load, store, and memory fence
+// TODO: As with mfence, we may want to ease the availablity of sfence/lfence
+// to include any 64-bit target.
+def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>,
+ PS, Requires<[HasSSE1]>;
+def LFENCE : I<0xAE, MRM_E8, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>,
+ PS, Requires<[HasSSE2]>;
+def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>,
+ PS, Requires<[HasMFence]>;
+} // SchedRW
+
+def : Pat<(X86MFence), (MFENCE)>;
+
+//===----------------------------------------------------------------------===//
+// SSE 1 & 2 - Load/Store XCSR register
+//===----------------------------------------------------------------------===//
+
+def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src),
+ "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>,
+ VEX, Sched<[WriteLDMXCSR]>, VEX_WIG;
+def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst),
+ "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>,
+ VEX, Sched<[WriteSTMXCSR]>, VEX_WIG;
+
+def LDMXCSR : I<0xAE, MRM2m, (outs), (ins i32mem:$src),
+ "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>,
+ TB, Sched<[WriteLDMXCSR]>;
+def STMXCSR : I<0xAE, MRM3m, (outs), (ins i32mem:$dst),
+ "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>,
+ TB, Sched<[WriteSTMXCSR]>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Move Aligned/Unaligned Packed Integer Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in { // SSE integer instructions
+
+let hasSideEffects = 0 in {
+def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG;
+def VMOVDQUrr : VSSI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.XMM.RR]>, VEX, VEX_WIG;
+def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG;
+def VMOVDQUYrr : VSSI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.RR]>, VEX, VEX_L, VEX_WIG;
+}
+
+// For Disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+def VMOVDQArr_REV : VPDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.XMM.RR]>,
+ VEX, VEX_WIG, FoldGenData<"VMOVDQArr">;
+def VMOVDQAYrr_REV : VPDI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.RR]>,
+ VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQAYrr">;
+def VMOVDQUrr_REV : VSSI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.XMM.RR]>,
+ VEX, VEX_WIG, FoldGenData<"VMOVDQUrr">;
+def VMOVDQUYrr_REV : VSSI<0x7F, MRMDestReg, (outs VR256:$dst), (ins VR256:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.RR]>,
+ VEX, VEX_L, VEX_WIG, FoldGenData<"VMOVDQUYrr">;
+}
+
+let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
+ hasSideEffects = 0, Predicates = [HasAVX,NoVLX] in {
+def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movdqa\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (alignedloadv2i64 addr:$src))]>,
+ Sched<[SchedWriteVecMoveLS.XMM.RM]>, VEX, VEX_WIG;
+def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.RM]>,
+ VEX, VEX_L, VEX_WIG;
+def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (loadv2i64 addr:$src))]>,
+ Sched<[SchedWriteVecMoveLS.XMM.RM]>,
+ XS, VEX, VEX_WIG;
+def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.RM]>,
+ XS, VEX, VEX_L, VEX_WIG;
+}
+
+let mayStore = 1, hasSideEffects = 0, Predicates = [HasAVX,NoVLX] in {
+def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}",
+ [(alignedstore (v2i64 VR128:$src), addr:$dst)]>,
+ Sched<[SchedWriteVecMoveLS.XMM.MR]>, VEX, VEX_WIG;
+def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs),
+ (ins i256mem:$dst, VR256:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLS.YMM.MR]>, VEX, VEX_L, VEX_WIG;
+def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",
+ [(store (v2i64 VR128:$src), addr:$dst)]>,
+ Sched<[SchedWriteVecMoveLS.XMM.MR]>, XS, VEX, VEX_WIG;
+def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src),
+ "vmovdqu\t{$src, $dst|$dst, $src}",[]>,
+ Sched<[SchedWriteVecMoveLS.YMM.MR]>, XS, VEX, VEX_L, VEX_WIG;
+}
+
+let SchedRW = [SchedWriteVecMoveLS.XMM.RR] in {
+let hasSideEffects = 0 in {
+def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>;
+
+def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", []>,
+ XS, Requires<[UseSSE2]>;
+}
+
+// For Disassembler
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
+def MOVDQArr_REV : PDI<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}", []>,
+ FoldGenData<"MOVDQArr">;
+
+def MOVDQUrr_REV : I<0x7F, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}", []>,
+ XS, Requires<[UseSSE2]>, FoldGenData<"MOVDQUrr">;
+}
+} // SchedRW
+
+let canFoldAsLoad = 1, mayLoad = 1, isReMaterializable = 1,
+ hasSideEffects = 0, SchedRW = [SchedWriteVecMoveLS.XMM.RM] in {
+def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movdqa\t{$src, $dst|$dst, $src}",
+ [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>;
+def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movdqu\t{$src, $dst|$dst, $src}",
+ [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>,
+ XS, Requires<[UseSSE2]>;
+}
+
+let mayStore = 1, hasSideEffects = 0,
+ SchedRW = [SchedWriteVecMoveLS.XMM.MR] in {
+def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
+ "movdqa\t{$src, $dst|$dst, $src}",
+ [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>;
+def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src),
+ "movdqu\t{$src, $dst|$dst, $src}",
+ [/*(store (v2i64 VR128:$src), addr:$dst)*/]>,
+ XS, Requires<[UseSSE2]>;
+}
+
+} // ExeDomain = SSEPackedInt
+
+// Aliases to help the assembler pick two byte VEX encodings by swapping the
+// operands relative to the normal instructions to use VEX.R instead of VEX.B.
+// def : InstAlias<"vmovdqa\t{$src, $dst|$dst, $src}",
+// (VMOVDQArr_REV VR128L:$dst, VR128H:$src), 0>;
+// def : InstAlias<"vmovdqa\t{$src, $dst|$dst, $src}",
+// (VMOVDQAYrr_REV VR256L:$dst, VR256H:$src), 0>;
+// def : InstAlias<"vmovdqu\t{$src, $dst|$dst, $src}",
+// (VMOVDQUrr_REV VR128L:$dst, VR128H:$src), 0>;
+// def : InstAlias<"vmovdqu\t{$src, $dst|$dst, $src}",
+// (VMOVDQUYrr_REV VR256L:$dst, VR256H:$src), 0>;
+
+// Reversed version with ".s" suffix for GAS compatibility.
+// def : InstAlias<"vmovdqa.s\t{$src, $dst|$dst, $src}",
+// (VMOVDQArr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"vmovdqa.s\t{$src, $dst|$dst, $src}",
+// (VMOVDQAYrr_REV VR256:$dst, VR256:$src), 0>;
+// def : InstAlias<"vmovdqu.s\t{$src, $dst|$dst, $src}",
+// (VMOVDQUrr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"vmovdqu.s\t{$src, $dst|$dst, $src}",
+// (VMOVDQUYrr_REV VR256:$dst, VR256:$src), 0>;
+
+// Reversed version with ".s" suffix for GAS compatibility.
+// def : InstAlias<"movdqa.s\t{$src, $dst|$dst, $src}",
+// (MOVDQArr_REV VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"movdqu.s\t{$src, $dst|$dst, $src}",
+// (MOVDQUrr_REV VR128:$dst, VR128:$src), 0>;
+
+let Predicates = [HasAVX, NoVLX] in {
+ // Additional patterns for other integer sizes.
+ def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst),
+ (VMOVDQAmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst),
+ (VMOVDQAmr addr:$dst, VR128:$src)>;
+ def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst),
+ (VMOVDQAmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v4i32 VR128:$src), addr:$dst),
+ (VMOVDQUmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v8i16 VR128:$src), addr:$dst),
+ (VMOVDQUmr addr:$dst, VR128:$src)>;
+ def : Pat<(store (v16i8 VR128:$src), addr:$dst),
+ (VMOVDQUmr addr:$dst, VR128:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Arithmetic Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in { // SSE integer instructions
+
+/// PDI_binop_rm2 - Simple SSE2 binary operator with different src and dst types
+multiclass PDI_binop_rm2<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType DstVT, ValueType SrcVT, RegisterClass RC,
+ PatFrag memop_frag, X86MemOperand x86memop,
+ X86FoldableSchedWrite sched, bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1), RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (SrcVT RC:$src1),
+ (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+} // ExeDomain = SSEPackedInt
+
+defm PADDB : PDI_binop_all<0xFC, "paddb", add, v16i8, v32i8,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PADDW : PDI_binop_all<0xFD, "paddw", add, v8i16, v16i16,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PADDD : PDI_binop_all<0xFE, "paddd", add, v4i32, v8i32,
+ SchedWriteVecALU, 1, NoVLX>;
+defm PADDQ : PDI_binop_all<0xD4, "paddq", add, v2i64, v4i64,
+ SchedWriteVecALU, 1, NoVLX>;
+defm PADDSB : PDI_binop_all<0xEC, "paddsb", X86adds, v16i8, v32i8,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PADDSW : PDI_binop_all<0xED, "paddsw", X86adds, v8i16, v16i16,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PADDUSB : PDI_binop_all<0xDC, "paddusb", X86addus, v16i8, v32i8,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PADDUSW : PDI_binop_all<0xDD, "paddusw", X86addus, v8i16, v16i16,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PMULLW : PDI_binop_all<0xD5, "pmullw", mul, v8i16, v16i16,
+ SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>;
+defm PMULHUW : PDI_binop_all<0xE4, "pmulhuw", mulhu, v8i16, v16i16,
+ SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>;
+defm PMULHW : PDI_binop_all<0xE5, "pmulhw", mulhs, v8i16, v16i16,
+ SchedWriteVecIMul, 1, NoVLX_Or_NoBWI>;
+defm PSUBB : PDI_binop_all<0xF8, "psubb", sub, v16i8, v32i8,
+ SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
+defm PSUBW : PDI_binop_all<0xF9, "psubw", sub, v8i16, v16i16,
+ SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
+defm PSUBD : PDI_binop_all<0xFA, "psubd", sub, v4i32, v8i32,
+ SchedWriteVecALU, 0, NoVLX>;
+defm PSUBQ : PDI_binop_all<0xFB, "psubq", sub, v2i64, v4i64,
+ SchedWriteVecALU, 0, NoVLX>;
+defm PSUBSB : PDI_binop_all<0xE8, "psubsb", X86subs, v16i8, v32i8,
+ SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
+defm PSUBSW : PDI_binop_all<0xE9, "psubsw", X86subs, v8i16, v16i16,
+ SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
+defm PSUBUSB : PDI_binop_all<0xD8, "psubusb", X86subus, v16i8, v32i8,
+ SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
+defm PSUBUSW : PDI_binop_all<0xD9, "psubusw", X86subus, v8i16, v16i16,
+ SchedWriteVecALU, 0, NoVLX_Or_NoBWI>;
+defm PMINUB : PDI_binop_all<0xDA, "pminub", umin, v16i8, v32i8,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PMINSW : PDI_binop_all<0xEA, "pminsw", smin, v8i16, v16i16,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PMAXUB : PDI_binop_all<0xDE, "pmaxub", umax, v16i8, v32i8,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PMAXSW : PDI_binop_all<0xEE, "pmaxsw", smax, v8i16, v16i16,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PAVGB : PDI_binop_all<0xE0, "pavgb", X86avg, v16i8, v32i8,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PAVGW : PDI_binop_all<0xE3, "pavgw", X86avg, v8i16, v16i16,
+ SchedWriteVecALU, 1, NoVLX_Or_NoBWI>;
+defm PMULUDQ : PDI_binop_all<0xF4, "pmuludq", X86pmuludq, v2i64, v4i64,
+ SchedWriteVecIMul, 1, NoVLX>;
+
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
+defm VPMADDWD : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v4i32, v8i16, VR128,
+ loadv2i64, i128mem, SchedWriteVecIMul.XMM, 0>,
+ VEX_4V, VEX_WIG;
+
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
+defm VPMADDWDY : PDI_binop_rm2<0xF5, "vpmaddwd", X86vpmaddwd, v8i32, v16i16,
+ VR256, loadv4i64, i256mem, SchedWriteVecIMul.YMM,
+ 0>, VEX_4V, VEX_L, VEX_WIG;
+let Constraints = "$src1 = $dst" in
+defm PMADDWD : PDI_binop_rm2<0xF5, "pmaddwd", X86vpmaddwd, v4i32, v8i16, VR128,
+ memopv2i64, i128mem, SchedWriteVecIMul.XMM>;
+
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
+defm VPSADBW : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v2i64, v16i8, VR128,
+ loadv2i64, i128mem, SchedWritePSADBW.XMM, 0>,
+ VEX_4V, VEX_WIG;
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
+defm VPSADBWY : PDI_binop_rm2<0xF6, "vpsadbw", X86psadbw, v4i64, v32i8, VR256,
+ loadv4i64, i256mem, SchedWritePSADBW.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+let Constraints = "$src1 = $dst" in
+defm PSADBW : PDI_binop_rm2<0xF6, "psadbw", X86psadbw, v2i64, v16i8, VR128,
+ memopv2i64, i128mem, SchedWritePSADBW.XMM>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Logical Instructions
+//===---------------------------------------------------------------------===//
+
+multiclass PDI_binop_rmi<bits<8> opc, bits<8> opc2, Format ImmForm,
+ string OpcodeStr, SDNode OpNode,
+ SDNode OpNode2, RegisterClass RC,
+ X86FoldableSchedWrite sched,
+ X86FoldableSchedWrite schedImm,
+ ValueType DstVT, ValueType SrcVT,
+ PatFrag ld_frag, bit Is2Addr = 1> {
+ // src2 is always 128-bit
+ def rr : PDI<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode RC:$src1, (SrcVT VR128:$src2))))]>,
+ Sched<[sched]>;
+ def rm : PDI<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode RC:$src1,
+ (SrcVT (bitconvert (ld_frag addr:$src2))))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+ def ri : PDIi8<opc2, ImmForm, (outs RC:$dst),
+ (ins RC:$src1, u8imm:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode2 RC:$src1, (i8 imm:$src2))))]>,
+ Sched<[schedImm]>;
+}
+
+multiclass PDI_binop_rmi_all<bits<8> opc, bits<8> opc2, Format ImmForm,
+ string OpcodeStr, SDNode OpNode,
+ SDNode OpNode2, ValueType DstVT128,
+ ValueType DstVT256, ValueType SrcVT,
+ X86SchedWriteWidths sched,
+ X86SchedWriteWidths schedImm, Predicate prd> {
+let Predicates = [HasAVX, prd] in
+ defm V#NAME : PDI_binop_rmi<opc, opc2, ImmForm, !strconcat("v", OpcodeStr),
+ OpNode, OpNode2, VR128, sched.XMM, schedImm.XMM,
+ DstVT128, SrcVT, loadv2i64, 0>, VEX_4V, VEX_WIG;
+let Predicates = [HasAVX2, prd] in
+ defm V#NAME#Y : PDI_binop_rmi<opc, opc2, ImmForm, !strconcat("v", OpcodeStr),
+ OpNode, OpNode2, VR256, sched.YMM, schedImm.YMM,
+ DstVT256, SrcVT, loadv2i64, 0>, VEX_4V, VEX_L,
+ VEX_WIG;
+let Constraints = "$src1 = $dst" in
+ defm NAME : PDI_binop_rmi<opc, opc2, ImmForm, OpcodeStr, OpNode, OpNode2,
+ VR128, sched.XMM, schedImm.XMM, DstVT128, SrcVT,
+ memopv2i64>;
+}
+
+multiclass PDI_binop_ri<bits<8> opc, Format ImmForm, string OpcodeStr,
+ SDNode OpNode, RegisterClass RC, ValueType VT,
+ X86FoldableSchedWrite sched, bit Is2Addr = 1> {
+ def ri : PDIi8<opc, ImmForm, (outs RC:$dst), (ins RC:$src1, u8imm:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (VT (OpNode RC:$src1, (i8 imm:$src2))))]>,
+ Sched<[sched]>;
+}
+
+multiclass PDI_binop_ri_all<bits<8> opc, Format ImmForm, string OpcodeStr,
+ SDNode OpNode, X86SchedWriteWidths sched> {
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
+ defm V#NAME : PDI_binop_ri<opc, ImmForm, !strconcat("v", OpcodeStr), OpNode,
+ VR128, v16i8, sched.XMM, 0>, VEX_4V, VEX_WIG;
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
+ defm V#NAME#Y : PDI_binop_ri<opc, ImmForm, !strconcat("v", OpcodeStr), OpNode,
+ VR256, v32i8, sched.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+let Constraints = "$src1 = $dst" in
+ defm NAME : PDI_binop_ri<opc, ImmForm, OpcodeStr, OpNode, VR128, v16i8,
+ sched.XMM>;
+}
+
+let ExeDomain = SSEPackedInt in {
+ defm PSLLW : PDI_binop_rmi_all<0xF1, 0x71, MRM6r, "psllw", X86vshl, X86vshli,
+ v8i16, v16i16, v8i16, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX_Or_NoBWI>;
+ defm PSLLD : PDI_binop_rmi_all<0xF2, 0x72, MRM6r, "pslld", X86vshl, X86vshli,
+ v4i32, v8i32, v4i32, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX>;
+ defm PSLLQ : PDI_binop_rmi_all<0xF3, 0x73, MRM6r, "psllq", X86vshl, X86vshli,
+ v2i64, v4i64, v2i64, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX>;
+
+ defm PSRLW : PDI_binop_rmi_all<0xD1, 0x71, MRM2r, "psrlw", X86vsrl, X86vsrli,
+ v8i16, v16i16, v8i16, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX_Or_NoBWI>;
+ defm PSRLD : PDI_binop_rmi_all<0xD2, 0x72, MRM2r, "psrld", X86vsrl, X86vsrli,
+ v4i32, v8i32, v4i32, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX>;
+ defm PSRLQ : PDI_binop_rmi_all<0xD3, 0x73, MRM2r, "psrlq", X86vsrl, X86vsrli,
+ v2i64, v4i64, v2i64, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX>;
+
+ defm PSRAW : PDI_binop_rmi_all<0xE1, 0x71, MRM4r, "psraw", X86vsra, X86vsrai,
+ v8i16, v16i16, v8i16, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX_Or_NoBWI>;
+ defm PSRAD : PDI_binop_rmi_all<0xE2, 0x72, MRM4r, "psrad", X86vsra, X86vsrai,
+ v4i32, v8i32, v4i32, SchedWriteVecShift,
+ SchedWriteVecShiftImm, NoVLX>;
+
+ defm PSLLDQ : PDI_binop_ri_all<0x73, MRM7r, "pslldq", X86vshldq,
+ SchedWriteShuffle>;
+ defm PSRLDQ : PDI_binop_ri_all<0x73, MRM3r, "psrldq", X86vshrdq,
+ SchedWriteShuffle>;
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Comparison Instructions
+//===---------------------------------------------------------------------===//
+
+defm PCMPEQB : PDI_binop_all<0x74, "pcmpeqb", X86pcmpeq, v16i8, v32i8,
+ SchedWriteVecALU, 1, TruePredicate>;
+defm PCMPEQW : PDI_binop_all<0x75, "pcmpeqw", X86pcmpeq, v8i16, v16i16,
+ SchedWriteVecALU, 1, TruePredicate>;
+defm PCMPEQD : PDI_binop_all<0x76, "pcmpeqd", X86pcmpeq, v4i32, v8i32,
+ SchedWriteVecALU, 1, TruePredicate>;
+defm PCMPGTB : PDI_binop_all<0x64, "pcmpgtb", X86pcmpgt, v16i8, v32i8,
+ SchedWriteVecALU, 0, TruePredicate>;
+defm PCMPGTW : PDI_binop_all<0x65, "pcmpgtw", X86pcmpgt, v8i16, v16i16,
+ SchedWriteVecALU, 0, TruePredicate>;
+defm PCMPGTD : PDI_binop_all<0x66, "pcmpgtd", X86pcmpgt, v4i32, v8i32,
+ SchedWriteVecALU, 0, TruePredicate>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Shuffle Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_pshuffle<string OpcodeStr, ValueType vt128, ValueType vt256,
+ SDNode OpNode, X86SchedWriteWidths sched,
+ Predicate prd> {
+let Predicates = [HasAVX, prd] in {
+ def V#NAME#ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))]>,
+ VEX, Sched<[sched.XMM]>, VEX_WIG;
+ def V#NAME#mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, u8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode (bitconvert (loadv2i64 addr:$src1)),
+ (i8 imm:$src2))))]>, VEX,
+ Sched<[sched.XMM.Folded]>, VEX_WIG;
+}
+
+let Predicates = [HasAVX2, prd] in {
+ def V#NAME#Yri : Ii8<0x70, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, u8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode VR256:$src1, (i8 imm:$src2))))]>,
+ VEX, VEX_L, Sched<[sched.YMM]>, VEX_WIG;
+ def V#NAME#Ymi : Ii8<0x70, MRMSrcMem, (outs VR256:$dst),
+ (ins i256mem:$src1, u8imm:$src2),
+ !strconcat("v", OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode (bitconvert (loadv4i64 addr:$src1)),
+ (i8 imm:$src2))))]>, VEX, VEX_L,
+ Sched<[sched.YMM.Folded]>, VEX_WIG;
+}
+
+let Predicates = [UseSSE2] in {
+ def ri : Ii8<0x70, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1, (i8 imm:$src2))))]>,
+ Sched<[sched.XMM]>;
+ def mi : Ii8<0x70, MRMSrcMem,
+ (outs VR128:$dst), (ins i128mem:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode (bitconvert (memopv2i64 addr:$src1)),
+ (i8 imm:$src2))))]>,
+ Sched<[sched.XMM.Folded]>;
+}
+}
+} // ExeDomain = SSEPackedInt
+
+defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, v8i32, X86PShufd,
+ SchedWriteShuffle, NoVLX>, PD;
+defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, v16i16, X86PShufhw,
+ SchedWriteShuffle, NoVLX_Or_NoBWI>, XS;
+defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, v16i16, X86PShuflw,
+ SchedWriteShuffle, NoVLX_Or_NoBWI>, XD;
+
+//===---------------------------------------------------------------------===//
+// Packed Integer Pack Instructions (SSE & AVX)
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
+ ValueType ArgVT, SDNode OpNode, RegisterClass RC,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched,
+ PatFrag ld_frag, bit Is2Addr = 1> {
+ def rr : PDI<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OutVT (OpNode (ArgVT RC:$src1), RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : PDI<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OutVT (OpNode (ArgVT RC:$src1),
+ (bitconvert (ld_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+multiclass sse4_pack<bits<8> opc, string OpcodeStr, ValueType OutVT,
+ ValueType ArgVT, SDNode OpNode, RegisterClass RC,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched,
+ PatFrag ld_frag, bit Is2Addr = 1> {
+ def rr : SS48I<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OutVT (OpNode (ArgVT RC:$src1), RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : SS48I<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OutVT (OpNode (ArgVT RC:$src1),
+ (bitconvert (ld_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ defm VPACKSSWB : sse2_pack<0x63, "vpacksswb", v16i8, v8i16, X86Packss, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPACKSSDW : sse2_pack<0x6B, "vpackssdw", v8i16, v4i32, X86Packss, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+
+ defm VPACKUSWB : sse2_pack<0x67, "vpackuswb", v16i8, v8i16, X86Packus, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPACKUSDW : sse4_pack<0x2B, "vpackusdw", v8i16, v4i32, X86Packus, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V;
+}
+
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+ defm VPACKSSWBY : sse2_pack<0x63, "vpacksswb", v32i8, v16i16, X86Packss, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPACKSSDWY : sse2_pack<0x6B, "vpackssdw", v16i16, v8i32, X86Packss, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+
+ defm VPACKUSWBY : sse2_pack<0x67, "vpackuswb", v32i8, v16i16, X86Packus, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPACKUSDWY : sse4_pack<0x2B, "vpackusdw", v16i16, v8i32, X86Packus, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm PACKSSWB : sse2_pack<0x63, "packsswb", v16i8, v8i16, X86Packss, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PACKSSDW : sse2_pack<0x6B, "packssdw", v8i16, v4i32, X86Packss, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+
+ defm PACKUSWB : sse2_pack<0x67, "packuswb", v16i8, v8i16, X86Packus, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+
+ defm PACKUSDW : sse4_pack<0x2B, "packusdw", v8i16, v4i32, X86Packus, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+}
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Unpack Instructions
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_unpack<bits<8> opc, string OpcodeStr, ValueType vt,
+ SDNode OpNode, RegisterClass RC, X86MemOperand x86memop,
+ X86FoldableSchedWrite sched, PatFrag ld_frag,
+ bit Is2Addr = 1> {
+ def rr : PDI<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : PDI<opc, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,"\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr,"\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1,
+ (bitconvert (ld_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPUNPCKLQDQ : sse2_unpack<0x6C, "vpunpcklqdq", v2i64, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPUNPCKHQDQ : sse2_unpack<0x6D, "vpunpckhqdq", v2i64, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, loadv2i64, 0>,
+ VEX_4V, VEX_WIG;
+}
+
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+ defm VPUNPCKLBWY : sse2_unpack<0x60, "vpunpcklbw", v32i8, X86Unpckl, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPUNPCKLWDY : sse2_unpack<0x61, "vpunpcklwd", v16i16, X86Unpckl, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPUNPCKHBWY : sse2_unpack<0x68, "vpunpckhbw", v32i8, X86Unpckh, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPUNPCKHWDY : sse2_unpack<0x69, "vpunpckhwd", v16i16, X86Unpckh, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+}
+
+let Predicates = [HasAVX2, NoVLX] in {
+ defm VPUNPCKLDQY : sse2_unpack<0x62, "vpunpckldq", v8i32, X86Unpckl, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPUNPCKLQDQY : sse2_unpack<0x6C, "vpunpcklqdq", v4i64, X86Unpckl, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPUNPCKHDQY : sse2_unpack<0x6A, "vpunpckhdq", v8i32, X86Unpckh, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPUNPCKHQDQY : sse2_unpack<0x6D, "vpunpckhqdq", v4i64, X86Unpckh, VR256,
+ i256mem, SchedWriteShuffle.YMM, loadv4i64, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PUNPCKLQDQ : sse2_unpack<0x6C, "punpcklqdq", v2i64, X86Unpckl, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+
+ defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+ defm PUNPCKHQDQ : sse2_unpack<0x6D, "punpckhqdq", v2i64, X86Unpckh, VR128,
+ i128mem, SchedWriteShuffle.XMM, memopv2i64>;
+}
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Integer Extract and Insert
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+multiclass sse2_pinsrw<bit Is2Addr = 1> {
+ def rr : Ii8<0xC4, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1,
+ GR32orGR64:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (X86pinsrw VR128:$src1, GR32orGR64:$src2, imm:$src3))]>,
+ Sched<[WriteVecInsert]>;
+ def rm : Ii8<0xC4, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1,
+ i16mem:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set VR128:$dst,
+ (X86pinsrw VR128:$src1, (extloadi16 addr:$src2),
+ imm:$src3))]>,
+ Sched<[WriteVecInsertLd, ReadAfterLd]>;
+}
+
+// Extract
+let Predicates = [HasAVX, NoBWI] in
+def VPEXTRWrr : Ii8<0xC5, MRMSrcReg,
+ (outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2),
+ "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
+ imm:$src2))]>,
+ PD, VEX, Sched<[WriteVecExtract]>;
+def PEXTRWrr : PDIi8<0xC5, MRMSrcReg,
+ (outs GR32orGR64:$dst), (ins VR128:$src1, u8imm:$src2),
+ "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32orGR64:$dst, (X86pextrw (v8i16 VR128:$src1),
+ imm:$src2))]>,
+ Sched<[WriteVecExtract]>;
+
+// Insert
+let Predicates = [HasAVX, NoBWI] in
+defm VPINSRW : sse2_pinsrw<0>, PD, VEX_4V;
+
+let Predicates = [UseSSE2], Constraints = "$src1 = $dst" in
+defm PINSRW : sse2_pinsrw, PD;
+
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Packed Mask Creation
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt in {
+
+def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>,
+ Sched<[WriteVecMOVMSK]>, VEX, VEX_WIG;
+
+let Predicates = [HasAVX2] in {
+def VPMOVMSKBYrr : VPDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst),
+ (ins VR256:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst, (X86movmsk (v32i8 VR256:$src)))]>,
+ Sched<[WriteVecMOVMSKY]>, VEX, VEX_L, VEX_WIG;
+}
+
+def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32orGR64:$dst), (ins VR128:$src),
+ "pmovmskb\t{$src, $dst|$dst, $src}",
+ [(set GR32orGR64:$dst, (X86movmsk (v16i8 VR128:$src)))]>,
+ Sched<[WriteVecMOVMSK]>;
+
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Conditional Store
+//===---------------------------------------------------------------------===//
+
+let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecMoveLS.XMM.MR] in {
+let Uses = [EDI], Predicates = [HasAVX,Not64BitMode] in
+def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs),
+ (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>,
+ VEX, VEX_WIG;
+let Uses = [RDI], Predicates = [HasAVX,In64BitMode] in
+def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs),
+ (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>,
+ VEX, VEX_WIG;
+
+let Uses = [EDI], Predicates = [UseSSE2,Not64BitMode] in
+def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>;
+let Uses = [RDI], Predicates = [UseSSE2,In64BitMode] in
+def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask),
+ "maskmovdqu\t{$mask, $src|$src, $mask}",
+ [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>;
+
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Move Doubleword/Quadword
+//===---------------------------------------------------------------------===//
+
+//===---------------------------------------------------------------------===//
+// Move Int Doubleword to Packed Double Int
+//
+let ExeDomain = SSEPackedInt in {
+def VMOVDI2PDIrr : VS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector GR32:$src)))]>,
+ VEX, Sched<[WriteVecMoveFromGpr]>;
+def VMOVDI2PDIrm : VS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>,
+ VEX, Sched<[WriteVecLoad]>;
+def VMOV64toPQIrr : VRS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector GR64:$src)))]>,
+ VEX, Sched<[WriteVecMoveFromGpr]>;
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in
+def VMOV64toPQIrm : VRS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}", []>,
+ VEX, Sched<[WriteVecLoad]>;
+let isCodeGenOnly = 1 in
+def VMOV64toSDrr : VRS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert GR64:$src))]>,
+ VEX, Sched<[WriteVecMoveFromGpr]>;
+
+def MOVDI2PDIrr : S2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector GR32:$src)))]>,
+ Sched<[WriteVecMoveFromGpr]>;
+def MOVDI2PDIrm : S2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>,
+ Sched<[WriteVecLoad]>;
+def MOV64toPQIrr : RS2I<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector GR64:$src)))]>,
+ Sched<[WriteVecMoveFromGpr]>;
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayLoad = 1 in
+def MOV64toPQIrm : RS2I<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}", []>,
+ Sched<[WriteVecLoad]>;
+let isCodeGenOnly = 1 in
+def MOV64toSDrr : RS2I<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert GR64:$src))]>,
+ Sched<[WriteVecMoveFromGpr]>;
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// Move Int Doubleword to Single Scalar
+//
+let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
+ def VMOVDI2SSrr : VS2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert GR32:$src))]>,
+ VEX, Sched<[WriteVecMoveFromGpr]>;
+
+ def VMOVDI2SSrm : VS2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>,
+ VEX, Sched<[WriteVecLoad]>;
+ def MOVDI2SSrr : S2I<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert GR32:$src))]>,
+ Sched<[WriteVecMoveFromGpr]>;
+
+ def MOVDI2SSrm : S2I<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>,
+ Sched<[WriteVecLoad]>;
+} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
+
+//===---------------------------------------------------------------------===//
+// Move Packed Doubleword Int to Packed Double Int
+//
+let ExeDomain = SSEPackedInt in {
+def VMOVPDI2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (extractelt (v4i32 VR128:$src),
+ (iPTR 0)))]>, VEX,
+ Sched<[WriteVecMoveToGpr]>;
+def VMOVPDI2DImr : VS2I<0x7E, MRMDestMem, (outs),
+ (ins i32mem:$dst, VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (extractelt (v4i32 VR128:$src),
+ (iPTR 0))), addr:$dst)]>,
+ VEX, Sched<[WriteVecStore]>;
+def MOVPDI2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (extractelt (v4i32 VR128:$src),
+ (iPTR 0)))]>,
+ Sched<[WriteVecMoveToGpr]>;
+def MOVPDI2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (extractelt (v4i32 VR128:$src),
+ (iPTR 0))), addr:$dst)]>,
+ Sched<[WriteVecStore]>;
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// Move Packed Doubleword Int first element to Doubleword Int
+//
+let ExeDomain = SSEPackedInt in {
+let SchedRW = [WriteVecMoveToGpr] in {
+def VMOVPQIto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (extractelt (v2i64 VR128:$src),
+ (iPTR 0)))]>,
+ VEX;
+
+def MOVPQIto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (extractelt (v2i64 VR128:$src),
+ (iPTR 0)))]>;
+} //SchedRW
+
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in
+def VMOVPQIto64mr : VRS2I<0x7E, MRMDestMem, (outs),
+ (ins i64mem:$dst, VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}", []>,
+ VEX, Sched<[WriteVecStore]>;
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0, mayStore = 1 in
+def MOVPQIto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}", []>,
+ Sched<[WriteVecStore]>;
+} // ExeDomain = SSEPackedInt
+
+//===---------------------------------------------------------------------===//
+// Bitcast FR64 <-> GR64
+//
+let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
+ let Predicates = [UseAVX] in
+ def VMOV64toSDrm : VS2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>,
+ VEX, Sched<[WriteVecLoad]>;
+ def VMOVSDto64rr : VRS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (bitconvert FR64:$src))]>,
+ VEX, Sched<[WriteVecMoveToGpr]>;
+ def VMOVSDto64mr : VRS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>,
+ VEX, Sched<[WriteVecStore]>;
+
+ def MOV64toSDrm : S2SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>,
+ Sched<[WriteVecLoad]>;
+ def MOVSDto64rr : RS2I<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (bitconvert FR64:$src))]>,
+ Sched<[WriteVecMoveToGpr]>;
+ def MOVSDto64mr : RS2I<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>,
+ Sched<[WriteVecStore]>;
+} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
+
+//===---------------------------------------------------------------------===//
+// Move Scalar Single to Double Int
+//
+let ExeDomain = SSEPackedInt, isCodeGenOnly = 1 in {
+ def VMOVSS2DIrr : VS2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (bitconvert FR32:$src))]>,
+ VEX, Sched<[WriteVecMoveToGpr]>;
+ def VMOVSS2DImr : VS2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>,
+ VEX, Sched<[WriteVecStore]>;
+ def MOVSS2DIrr : S2I<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (bitconvert FR32:$src))]>,
+ Sched<[WriteVecMoveToGpr]>;
+ def MOVSS2DImr : S2I<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src),
+ "movd\t{$src, $dst|$dst, $src}",
+ [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>,
+ Sched<[WriteVecStore]>;
+} // ExeDomain = SSEPackedInt, isCodeGenOnly = 1
+
+let Predicates = [UseAVX] in {
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
+ (VMOVDI2PDIrr GR32:$src)>;
+
+ def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))),
+ (VMOV64toPQIrr GR64:$src)>;
+
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector GR64:$src)),(iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (v2i64 (VMOV64toPQIrr GR64:$src)), sub_xmm)>;
+ // AVX 128-bit movd/movq instructions write zeros in the high 128-bit part.
+ // These instructions also write zeros in the high part of a 256-bit register.
+ def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))),
+ (VMOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (VMOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzload addr:$src)),
+ (VMOVDI2PDIrm addr:$src)>;
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector (loadi32 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIrm addr:$src)), sub_xmm)>;
+ def : Pat<(v8i32 (X86vzload addr:$src)),
+ (SUBREG_TO_REG (i64 0), (v4i32 (VMOVDI2PDIrm addr:$src)), sub_xmm)>;
+ // Use regular 128-bit instructions to match 256-bit scalar_to_vec+zext.
+ def : Pat<(v8i32 (X86vzmovl (insert_subvector undef,
+ (v4i32 (scalar_to_vector GR32:$src)),(iPTR 0)))),
+ (SUBREG_TO_REG (i32 0), (v4i32 (VMOVDI2PDIrr GR32:$src)), sub_xmm)>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))),
+ (MOVDI2PDIrr GR32:$src)>;
+
+ def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))),
+ (MOV64toPQIrr GR64:$src)>;
+ def : Pat<(v2i64 (X86vzmovl (v2i64 (scalar_to_vector (zextloadi64i32 addr:$src))))),
+ (MOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (MOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))),
+ (MOVDI2PDIrm addr:$src)>;
+ def : Pat<(v4i32 (X86vzload addr:$src)),
+ (MOVDI2PDIrm addr:$src)>;
+}
+
+// Before the MC layer of LLVM existed, clang emitted "movd" assembly instead of
+// "movq" due to MacOS parsing limitation. In order to parse old assembly, we add
+// these aliases.
+// def : InstAlias<"movd\t{$src, $dst|$dst, $src}",
+// (MOV64toPQIrr VR128:$dst, GR64:$src), 0>;
+// def : InstAlias<"movd\t{$src, $dst|$dst, $src}",
+// (MOVPQIto64rr GR64:$dst, VR128:$src), 0>;
+// Allow "vmovd" but print "vmovq" since we don't need compatibility for AVX.
+// def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
+// (VMOV64toPQIrr VR128:$dst, GR64:$src), 0>;
+// def : InstAlias<"vmovd\t{$src, $dst|$dst, $src}",
+// (VMOVPQIto64rr GR64:$dst, VR128:$src), 0>;
+
+//===---------------------------------------------------------------------===//
+// SSE2 - Move Quadword
+//===---------------------------------------------------------------------===//
+
+//===---------------------------------------------------------------------===//
+// Move Quadword Int to Packed Quadword Int
+//
+
+let ExeDomain = SSEPackedInt, SchedRW = [WriteVecLoad] in {
+def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS,
+ VEX, Requires<[UseAVX]>, VEX_WIG;
+def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>,
+ XS, Requires<[UseSSE2]>; // SSE2 instruction with XS Prefix
+} // ExeDomain, SchedRW
+
+//===---------------------------------------------------------------------===//
+// Move Packed Quadword Int to Quadword Int
+//
+let ExeDomain = SSEPackedInt, SchedRW = [WriteVecStore] in {
+def VMOVPQI2QImr : VS2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (extractelt (v2i64 VR128:$src),
+ (iPTR 0))), addr:$dst)]>,
+ VEX, VEX_WIG;
+def MOVPQI2QImr : S2I<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(store (i64 (extractelt (v2i64 VR128:$src),
+ (iPTR 0))), addr:$dst)]>;
+} // ExeDomain, SchedRW
+
+// For disassembler only
+let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0,
+ SchedRW = [SchedWriteVecLogic.XMM] in {
+def VMOVPQI2QIrr : VS2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_WIG;
+def MOVPQI2QIrr : S2I<0xD6, MRMDestReg, (outs VR128:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}", []>;
+}
+
+// Aliases to help the assembler pick two byte VEX encodings by swapping the
+// operands relative to the normal instructions to use VEX.R instead of VEX.B.
+// def : InstAlias<"vmovq\t{$src, $dst|$dst, $src}",
+// (VMOVPQI2QIrr VR128L:$dst, VR128H:$src), 0>;
+
+// def : InstAlias<"vmovq.s\t{$src, $dst|$dst, $src}",
+// (VMOVPQI2QIrr VR128:$dst, VR128:$src), 0>;
+// def : InstAlias<"movq.s\t{$src, $dst|$dst, $src}",
+// (MOVPQI2QIrr VR128:$dst, VR128:$src), 0>;
+
+let Predicates = [UseAVX] in {
+ def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
+ (VMOVQI2PQIrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzload addr:$src)),
+ (VMOVQI2PQIrm addr:$src)>;
+ def : Pat<(v4i64 (X86vzmovl (insert_subvector undef,
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))), (iPTR 0)))),
+ (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIrm addr:$src)), sub_xmm)>;
+ def : Pat<(v4i64 (X86vzload addr:$src)),
+ (SUBREG_TO_REG (i64 0), (v2i64 (VMOVQI2PQIrm addr:$src)), sub_xmm)>;
+}
+
+let Predicates = [UseSSE2] in {
+ def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))),
+ (MOVQI2PQIrm addr:$src)>;
+ def : Pat<(v2i64 (X86vzload addr:$src)), (MOVQI2PQIrm addr:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in
+// IA32 document. movq xmm1, xmm2 does clear the high bits.
+//
+let ExeDomain = SSEPackedInt, SchedRW = [SchedWriteVecLogic.XMM] in {
+def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "vmovq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
+ XS, VEX, Requires<[UseAVX]>, VEX_WIG;
+def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ "movq\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>,
+ XS, Requires<[UseSSE2]>;
+} // ExeDomain, SchedRW
+
+let Predicates = [UseAVX] in {
+ def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
+ (VMOVZPQILo2PQIrr VR128:$src)>;
+}
+let Predicates = [UseSSE2] in {
+ def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))),
+ (MOVZPQILo2PQIrr VR128:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Replicate Single FP - MOVSHDUP and MOVSLDUP
+//===---------------------------------------------------------------------===//
+
+multiclass sse3_replicate_sfp<bits<8> op, SDNode OpNode, string OpcodeStr,
+ ValueType vt, RegisterClass RC, PatFrag mem_frag,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched> {
+def rr : S3SI<op, MRMSrcReg, (outs RC:$dst), (ins RC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (vt (OpNode RC:$src)))]>,
+ Sched<[sched]>;
+def rm : S3SI<op, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (OpNode (mem_frag addr:$src)))]>,
+ Sched<[sched.Folded]>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ defm VMOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
+ v4f32, VR128, loadv4f32, f128mem,
+ SchedWriteFShuffle.XMM>, VEX, VEX_WIG;
+ defm VMOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
+ v4f32, VR128, loadv4f32, f128mem,
+ SchedWriteFShuffle.XMM>, VEX, VEX_WIG;
+ defm VMOVSHDUPY : sse3_replicate_sfp<0x16, X86Movshdup, "vmovshdup",
+ v8f32, VR256, loadv8f32, f256mem,
+ SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG;
+ defm VMOVSLDUPY : sse3_replicate_sfp<0x12, X86Movsldup, "vmovsldup",
+ v8f32, VR256, loadv8f32, f256mem,
+ SchedWriteFShuffle.YMM>, VEX, VEX_L, VEX_WIG;
+}
+defm MOVSHDUP : sse3_replicate_sfp<0x16, X86Movshdup, "movshdup", v4f32, VR128,
+ memopv4f32, f128mem, SchedWriteFShuffle.XMM>;
+defm MOVSLDUP : sse3_replicate_sfp<0x12, X86Movsldup, "movsldup", v4f32, VR128,
+ memopv4f32, f128mem, SchedWriteFShuffle.XMM>;
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4i32 (X86Movshdup VR128:$src)),
+ (VMOVSHDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVSHDUPrm addr:$src)>;
+ def : Pat<(v4i32 (X86Movsldup VR128:$src)),
+ (VMOVSLDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VMOVSLDUPrm addr:$src)>;
+ def : Pat<(v8i32 (X86Movshdup VR256:$src)),
+ (VMOVSHDUPYrr VR256:$src)>;
+ def : Pat<(v8i32 (X86Movshdup (bc_v8i32 (loadv4i64 addr:$src)))),
+ (VMOVSHDUPYrm addr:$src)>;
+ def : Pat<(v8i32 (X86Movsldup VR256:$src)),
+ (VMOVSLDUPYrr VR256:$src)>;
+ def : Pat<(v8i32 (X86Movsldup (bc_v8i32 (loadv4i64 addr:$src)))),
+ (VMOVSLDUPYrm addr:$src)>;
+}
+
+let Predicates = [UseSSE3] in {
+ def : Pat<(v4i32 (X86Movshdup VR128:$src)),
+ (MOVSHDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movshdup (bc_v4i32 (memopv2i64 addr:$src)))),
+ (MOVSHDUPrm addr:$src)>;
+ def : Pat<(v4i32 (X86Movsldup VR128:$src)),
+ (MOVSLDUPrr VR128:$src)>;
+ def : Pat<(v4i32 (X86Movsldup (bc_v4i32 (memopv2i64 addr:$src)))),
+ (MOVSLDUPrm addr:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Replicate Double FP - MOVDDUP
+//===---------------------------------------------------------------------===//
+
+multiclass sse3_replicate_dfp<string OpcodeStr, X86SchedWriteWidths sched> {
+def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v2f64 (X86Movddup VR128:$src)))]>,
+ Sched<[sched.XMM]>;
+def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (v2f64 (X86Movddup
+ (scalar_to_vector (loadf64 addr:$src)))))]>,
+ Sched<[sched.XMM.Folded]>;
+}
+
+// FIXME: Merge with above classes when there are patterns for the ymm version
+multiclass sse3_replicate_dfp_y<string OpcodeStr, X86SchedWriteWidths sched> {
+def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (v4f64 (X86Movddup VR256:$src)))]>,
+ Sched<[sched.YMM]>;
+def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (v4f64 (X86Movddup (loadv4f64 addr:$src))))]>,
+ Sched<[sched.YMM.Folded]>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ defm VMOVDDUP : sse3_replicate_dfp<"vmovddup", SchedWriteFShuffle>,
+ VEX, VEX_WIG;
+ defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup", SchedWriteFShuffle>,
+ VEX, VEX_L, VEX_WIG;
+}
+
+defm MOVDDUP : sse3_replicate_dfp<"movddup", SchedWriteFShuffle>;
+
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(X86Movddup (loadv2f64 addr:$src)),
+ (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>;
+}
+
+let Predicates = [UseSSE3] in {
+ // No need for aligned memory as this only loads 64-bits.
+ def : Pat<(X86Movddup (loadv2f64 addr:$src)),
+ (MOVDDUPrm addr:$src)>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Move Unaligned Integer
+//===---------------------------------------------------------------------===//
+
+let Predicates = [HasAVX] in {
+ def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vlddqu\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>,
+ Sched<[SchedWriteVecMoveLS.XMM.RM]>, VEX, VEX_WIG;
+ def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "vlddqu\t{$src, $dst|$dst, $src}",
+ [(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>,
+ Sched<[SchedWriteVecMoveLS.YMM.RM]>, VEX, VEX_L, VEX_WIG;
+} // Predicates
+
+def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "lddqu\t{$src, $dst|$dst, $src}",
+ [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>,
+ Sched<[SchedWriteVecMoveLS.XMM.RM]>;
+
+//===---------------------------------------------------------------------===//
+// SSE3 - Arithmetic
+//===---------------------------------------------------------------------===//
+
+multiclass sse3_addsub<string OpcodeStr, ValueType vt, RegisterClass RC,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched,
+ PatFrag ld_frag, bit Is2Addr = 1> {
+ def rr : I<0xD0, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (X86Addsub RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : I<0xD0, MRMSrcMem,
+ (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (X86Addsub RC:$src1, (ld_frag addr:$src2))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ let ExeDomain = SSEPackedSingle in {
+ defm VADDSUBPS : sse3_addsub<"vaddsubps", v4f32, VR128, f128mem,
+ SchedWriteFAddSizes.PS.XMM, loadv4f32, 0>,
+ XD, VEX_4V, VEX_WIG;
+ defm VADDSUBPSY : sse3_addsub<"vaddsubps", v8f32, VR256, f256mem,
+ SchedWriteFAddSizes.PS.YMM, loadv8f32, 0>,
+ XD, VEX_4V, VEX_L, VEX_WIG;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm VADDSUBPD : sse3_addsub<"vaddsubpd", v2f64, VR128, f128mem,
+ SchedWriteFAddSizes.PD.XMM, loadv2f64, 0>,
+ PD, VEX_4V, VEX_WIG;
+ defm VADDSUBPDY : sse3_addsub<"vaddsubpd", v4f64, VR256, f256mem,
+ SchedWriteFAddSizes.PD.YMM, loadv4f64, 0>,
+ PD, VEX_4V, VEX_L, VEX_WIG;
+ }
+}
+let Constraints = "$src1 = $dst", Predicates = [UseSSE3] in {
+ let ExeDomain = SSEPackedSingle in
+ defm ADDSUBPS : sse3_addsub<"addsubps", v4f32, VR128, f128mem,
+ SchedWriteFAddSizes.PS.XMM, memopv4f32>, XD;
+ let ExeDomain = SSEPackedDouble in
+ defm ADDSUBPD : sse3_addsub<"addsubpd", v2f64, VR128, f128mem,
+ SchedWriteFAddSizes.PD.XMM, memopv2f64>, PD;
+}
+
+//===---------------------------------------------------------------------===//
+// SSE3 Instructions
+//===---------------------------------------------------------------------===//
+
+// Horizontal ops
+multiclass S3D_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
+ X86MemOperand x86memop, SDNode OpNode,
+ X86FoldableSchedWrite sched, PatFrag ld_frag,
+ bit Is2Addr = 1> {
+ def rr : S3DI<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+
+ def rm : S3DI<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, (ld_frag addr:$src2))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+multiclass S3_Int<bits<8> o, string OpcodeStr, ValueType vt, RegisterClass RC,
+ X86MemOperand x86memop, SDNode OpNode,
+ X86FoldableSchedWrite sched, PatFrag ld_frag,
+ bit Is2Addr = 1> {
+ def rr : S3I<o, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+
+ def rm : S3I<o, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (vt (OpNode RC:$src1, (ld_frag addr:$src2))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+ let ExeDomain = SSEPackedSingle in {
+ defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem,
+ X86fhadd, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG;
+ defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem,
+ X86fhsub, WriteFHAdd, loadv4f32, 0>, VEX_4V, VEX_WIG;
+ defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem,
+ X86fhadd, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG;
+ defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem,
+ X86fhsub, WriteFHAddY, loadv8f32, 0>, VEX_4V, VEX_L, VEX_WIG;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm VHADDPD : S3_Int<0x7C, "vhaddpd", v2f64, VR128, f128mem,
+ X86fhadd, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG;
+ defm VHSUBPD : S3_Int<0x7D, "vhsubpd", v2f64, VR128, f128mem,
+ X86fhsub, WriteFHAdd, loadv2f64, 0>, VEX_4V, VEX_WIG;
+ defm VHADDPDY : S3_Int<0x7C, "vhaddpd", v4f64, VR256, f256mem,
+ X86fhadd, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG;
+ defm VHSUBPDY : S3_Int<0x7D, "vhsubpd", v4f64, VR256, f256mem,
+ X86fhsub, WriteFHAddY, loadv4f64, 0>, VEX_4V, VEX_L, VEX_WIG;
+ }
+}
+
+let Constraints = "$src1 = $dst" in {
+ let ExeDomain = SSEPackedSingle in {
+ defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, X86fhadd,
+ WriteFHAdd, memopv4f32>;
+ defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, X86fhsub,
+ WriteFHAdd, memopv4f32>;
+ }
+ let ExeDomain = SSEPackedDouble in {
+ defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, X86fhadd,
+ WriteFHAdd, memopv2f64>;
+ defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, X86fhsub,
+ WriteFHAdd, memopv2f64>;
+ }
+}
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Packed Absolute Instructions
+//===---------------------------------------------------------------------===//
+
+/// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
+multiclass SS3I_unop_rm<bits<8> opc, string OpcodeStr, ValueType vt,
+ SDNode OpNode, X86SchedWriteWidths sched, PatFrag ld_frag> {
+ def rr : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (vt (OpNode VR128:$src)))]>,
+ Sched<[sched.XMM]>;
+
+ def rm : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (vt (OpNode (bitconvert (ld_frag addr:$src)))))]>,
+ Sched<[sched.XMM.Folded]>;
+}
+
+/// SS3I_unop_rm_int_y - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}.
+multiclass SS3I_unop_rm_y<bits<8> opc, string OpcodeStr, ValueType vt,
+ SDNode OpNode, X86SchedWriteWidths sched> {
+ def Yrr : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst, (vt (OpNode VR256:$src)))]>,
+ Sched<[sched.YMM]>;
+
+ def Yrm : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins i256mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (vt (OpNode (bitconvert (loadv4i64 addr:$src)))))]>,
+ Sched<[sched.YMM.Folded]>;
+}
+
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ defm VPABSB : SS3I_unop_rm<0x1C, "vpabsb", v16i8, abs, SchedWriteVecALU,
+ loadv2i64>, VEX, VEX_WIG;
+ defm VPABSW : SS3I_unop_rm<0x1D, "vpabsw", v8i16, abs, SchedWriteVecALU,
+ loadv2i64>, VEX, VEX_WIG;
+}
+let Predicates = [HasAVX, NoVLX] in {
+ defm VPABSD : SS3I_unop_rm<0x1E, "vpabsd", v4i32, abs, SchedWriteVecALU,
+ loadv2i64>, VEX, VEX_WIG;
+}
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+ defm VPABSB : SS3I_unop_rm_y<0x1C, "vpabsb", v32i8, abs, SchedWriteVecALU>,
+ VEX, VEX_L, VEX_WIG;
+ defm VPABSW : SS3I_unop_rm_y<0x1D, "vpabsw", v16i16, abs, SchedWriteVecALU>,
+ VEX, VEX_L, VEX_WIG;
+}
+let Predicates = [HasAVX2, NoVLX] in {
+ defm VPABSD : SS3I_unop_rm_y<0x1E, "vpabsd", v8i32, abs, SchedWriteVecALU>,
+ VEX, VEX_L, VEX_WIG;
+}
+
+defm PABSB : SS3I_unop_rm<0x1C, "pabsb", v16i8, abs, SchedWriteVecALU,
+ memopv2i64>;
+defm PABSW : SS3I_unop_rm<0x1D, "pabsw", v8i16, abs, SchedWriteVecALU,
+ memopv2i64>;
+defm PABSD : SS3I_unop_rm<0x1E, "pabsd", v4i32, abs, SchedWriteVecALU,
+ memopv2i64>;
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Packed Binary Operator Instructions
+//===---------------------------------------------------------------------===//
+
+/// SS3I_binop_rm - Simple SSSE3 bin op
+multiclass SS3I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType DstVT, ValueType OpVT, RegisterClass RC,
+ PatFrag memop_frag, X86MemOperand x86memop,
+ X86FoldableSchedWrite sched, bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : SS38I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (DstVT (OpNode (OpVT RC:$src1), RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : SS38I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (DstVT (OpNode (OpVT RC:$src1),
+ (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+/// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}.
+multiclass SS3I_binop_rm_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId128, X86FoldableSchedWrite sched,
+ PatFrag ld_frag, bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : SS38I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst, (IntId128 VR128:$src1, VR128:$src2))]>,
+ Sched<[sched]>;
+ def rm : SS38I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set VR128:$dst,
+ (IntId128 VR128:$src1,
+ (bitconvert (ld_frag addr:$src2))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+multiclass SS3I_binop_rm_int_y<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId256,
+ X86FoldableSchedWrite sched> {
+ let isCommutable = 1 in
+ def Yrr : SS38I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntId256 VR256:$src1, VR256:$src2))]>,
+ Sched<[sched]>;
+ def Yrm : SS38I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (IntId256 VR256:$src1, (bitconvert (loadv4i64 addr:$src2))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let ImmT = NoImm, Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+let isCommutable = 0 in {
+ defm VPSHUFB : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v16i8, v16i8,
+ VR128, loadv2i64, i128mem,
+ SchedWriteVarShuffle.XMM, 0>, VEX_4V, VEX_WIG;
+ defm VPMADDUBSW : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v8i16,
+ v16i8, VR128, loadv2i64, i128mem,
+ SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG;
+}
+defm VPMULHRSW : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v8i16, v8i16,
+ VR128, loadv2i64, i128mem,
+ SchedWriteVecIMul.XMM, 0>, VEX_4V, VEX_WIG;
+}
+
+let ImmT = NoImm, Predicates = [HasAVX] in {
+let isCommutable = 0 in {
+ defm VPHADDW : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v8i16, v8i16, VR128,
+ loadv2i64, i128mem,
+ SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG;
+ defm VPHADDD : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v4i32, v4i32, VR128,
+ loadv2i64, i128mem,
+ SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG;
+ defm VPHSUBW : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v8i16, v8i16, VR128,
+ loadv2i64, i128mem,
+ SchedWritePHAdd.XMM, 0>, VEX_4V, VEX_WIG;
+ defm VPHSUBD : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v4i32, v4i32, VR128,
+ loadv2i64, i128mem,
+ SchedWritePHAdd.XMM, 0>, VEX_4V;
+ defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb",
+ int_x86_ssse3_psign_b_128,
+ SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
+ defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw",
+ int_x86_ssse3_psign_w_128,
+ SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
+ defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd",
+ int_x86_ssse3_psign_d_128,
+ SchedWriteVecALU.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
+ defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw",
+ int_x86_ssse3_phadd_sw_128,
+ SchedWritePHAdd.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
+ defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw",
+ int_x86_ssse3_phsub_sw_128,
+ SchedWritePHAdd.XMM, loadv2i64, 0>, VEX_4V, VEX_WIG;
+}
+}
+
+let ImmT = NoImm, Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+let isCommutable = 0 in {
+ defm VPSHUFBY : SS3I_binop_rm<0x00, "vpshufb", X86pshufb, v32i8, v32i8,
+ VR256, loadv4i64, i256mem,
+ SchedWriteVarShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPMADDUBSWY : SS3I_binop_rm<0x04, "vpmaddubsw", X86vpmaddubsw, v16i16,
+ v32i8, VR256, loadv4i64, i256mem,
+ SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+}
+defm VPMULHRSWY : SS3I_binop_rm<0x0B, "vpmulhrsw", X86mulhrs, v16i16, v16i16,
+ VR256, loadv4i64, i256mem,
+ SchedWriteVecIMul.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+}
+
+let ImmT = NoImm, Predicates = [HasAVX2] in {
+let isCommutable = 0 in {
+ defm VPHADDWY : SS3I_binop_rm<0x01, "vphaddw", X86hadd, v16i16, v16i16,
+ VR256, loadv4i64, i256mem,
+ SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPHADDDY : SS3I_binop_rm<0x02, "vphaddd", X86hadd, v8i32, v8i32, VR256,
+ loadv4i64, i256mem,
+ SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPHSUBWY : SS3I_binop_rm<0x05, "vphsubw", X86hsub, v16i16, v16i16,
+ VR256, loadv4i64, i256mem,
+ SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPHSUBDY : SS3I_binop_rm<0x06, "vphsubd", X86hsub, v8i32, v8i32, VR256,
+ loadv4i64, i256mem,
+ SchedWritePHAdd.YMM, 0>, VEX_4V, VEX_L;
+ defm VPSIGNB : SS3I_binop_rm_int_y<0x08, "vpsignb", int_x86_avx2_psign_b,
+ SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPSIGNW : SS3I_binop_rm_int_y<0x09, "vpsignw", int_x86_avx2_psign_w,
+ SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPSIGND : SS3I_binop_rm_int_y<0x0A, "vpsignd", int_x86_avx2_psign_d,
+ SchedWriteVecALU.YMM>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPHADDSW : SS3I_binop_rm_int_y<0x03, "vphaddsw",
+ int_x86_avx2_phadd_sw,
+ SchedWritePHAdd.YMM>, VEX_4V, VEX_L, VEX_WIG;
+ defm VPHSUBSW : SS3I_binop_rm_int_y<0x07, "vphsubsw",
+ int_x86_avx2_phsub_sw,
+ SchedWritePHAdd.YMM>, VEX_4V, VEX_L, VEX_WIG;
+}
+}
+
+// None of these have i8 immediate fields.
+let ImmT = NoImm, Constraints = "$src1 = $dst" in {
+let isCommutable = 0 in {
+ defm PHADDW : SS3I_binop_rm<0x01, "phaddw", X86hadd, v8i16, v8i16, VR128,
+ memopv2i64, i128mem, SchedWritePHAdd.XMM>;
+ defm PHADDD : SS3I_binop_rm<0x02, "phaddd", X86hadd, v4i32, v4i32, VR128,
+ memopv2i64, i128mem, SchedWritePHAdd.XMM>;
+ defm PHSUBW : SS3I_binop_rm<0x05, "phsubw", X86hsub, v8i16, v8i16, VR128,
+ memopv2i64, i128mem, SchedWritePHAdd.XMM>;
+ defm PHSUBD : SS3I_binop_rm<0x06, "phsubd", X86hsub, v4i32, v4i32, VR128,
+ memopv2i64, i128mem, SchedWritePHAdd.XMM>;
+ defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", int_x86_ssse3_psign_b_128,
+ SchedWriteVecALU.XMM, memopv2i64>;
+ defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", int_x86_ssse3_psign_w_128,
+ SchedWriteVecALU.XMM, memopv2i64>;
+ defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", int_x86_ssse3_psign_d_128,
+ SchedWriteVecALU.XMM, memopv2i64>;
+ defm PSHUFB : SS3I_binop_rm<0x00, "pshufb", X86pshufb, v16i8, v16i8, VR128,
+ memopv2i64, i128mem, SchedWriteVarShuffle.XMM>;
+ defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw",
+ int_x86_ssse3_phadd_sw_128,
+ SchedWritePHAdd.XMM, memopv2i64>;
+ defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw",
+ int_x86_ssse3_phsub_sw_128,
+ SchedWritePHAdd.XMM, memopv2i64>;
+ defm PMADDUBSW : SS3I_binop_rm<0x04, "pmaddubsw", X86vpmaddubsw, v8i16,
+ v16i8, VR128, memopv2i64, i128mem,
+ SchedWriteVecIMul.XMM>;
+}
+defm PMULHRSW : SS3I_binop_rm<0x0B, "pmulhrsw", X86mulhrs, v8i16, v8i16,
+ VR128, memopv2i64, i128mem, SchedWriteVecIMul.XMM>;
+}
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Packed Align Instruction Patterns
+//===---------------------------------------------------------------------===//
+
+multiclass ssse3_palignr<string asm, ValueType VT, RegisterClass RC,
+ PatFrag memop_frag, X86MemOperand x86memop,
+ X86FoldableSchedWrite sched, bit Is2Addr = 1> {
+ let hasSideEffects = 0 in {
+ def rri : SS3AI<0x0F, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst, (VT (X86PAlignr RC:$src1, RC:$src2, (i8 imm:$src3))))]>,
+ Sched<[sched]>;
+ let mayLoad = 1 in
+ def rmi : SS3AI<0x0F, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst, (VT (X86PAlignr RC:$src1,
+ (bitconvert (memop_frag addr:$src2)),
+ (i8 imm:$src3))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+ }
+}
+
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in
+ defm VPALIGNR : ssse3_palignr<"vpalignr", v16i8, VR128, loadv2i64, i128mem,
+ SchedWriteShuffle.XMM, 0>, VEX_4V, VEX_WIG;
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in
+ defm VPALIGNRY : ssse3_palignr<"vpalignr", v32i8, VR256, loadv4i64, i256mem,
+ SchedWriteShuffle.YMM, 0>, VEX_4V, VEX_L, VEX_WIG;
+let Constraints = "$src1 = $dst", Predicates = [UseSSSE3] in
+ defm PALIGNR : ssse3_palignr<"palignr", v16i8, VR128, memopv2i64, i128mem,
+ SchedWriteShuffle.XMM>;
+
+//===---------------------------------------------------------------------===//
+// SSSE3 - Thread synchronization
+//===---------------------------------------------------------------------===//
+
+let SchedRW = [WriteSystem] in {
+/*
+let usesCustomInserter = 1 in {
+def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3),
+ [(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>,
+ Requires<[HasSSE3]>;
+}
+*/
+
+let Uses = [EAX, ECX, EDX] in
+def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>,
+ TB, Requires<[HasSSE3]>;
+
+let Uses = [ECX, EAX] in
+def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait",
+ [(int_x86_sse3_mwait ECX, EAX)]>, TB, Requires<[HasSSE3]>;
+} // SchedRW
+
+// def : InstAlias<"mwait\t{%eax, %ecx|ecx, eax}", (MWAITrr)>, Requires<[Not64BitMode]>;
+// def : InstAlias<"mwait\t{%rax, %rcx|rcx, rax}", (MWAITrr)>, Requires<[In64BitMode]>;
+
+// def : InstAlias<"monitor\t{%eax, %ecx, %edx|edx, ecx, eax}", (MONITORrrr)>,
+// Requires<[Not64BitMode]>;
+// def : InstAlias<"monitor\t{%rax, %rcx, %rdx|rdx, rcx, rax}", (MONITORrrr)>,
+// Requires<[In64BitMode]>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Packed Move with Sign/Zero Extend
+//===----------------------------------------------------------------------===//
+
+multiclass SS41I_pmovx_rrrm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp,
+ RegisterClass OutRC, RegisterClass InRC,
+ X86FoldableSchedWrite sched> {
+ def rr : SS48I<opc, MRMSrcReg, (outs OutRC:$dst), (ins InRC:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
+ Sched<[sched]>;
+
+ def rm : SS48I<opc, MRMSrcMem, (outs OutRC:$dst), (ins MemOp:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>,
+ Sched<[sched.Folded]>;
+}
+
+multiclass SS41I_pmovx_rm_all<bits<8> opc, string OpcodeStr,
+ X86MemOperand MemOp, X86MemOperand MemYOp,
+ Predicate prd> {
+ defm NAME : SS41I_pmovx_rrrm<opc, OpcodeStr, MemOp, VR128, VR128,
+ SchedWriteShuffle.XMM>;
+ let Predicates = [HasAVX, prd] in
+ defm V#NAME : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemOp,
+ VR128, VR128, SchedWriteShuffle.XMM>,
+ VEX, VEX_WIG;
+ let Predicates = [HasAVX2, prd] in
+ defm V#NAME#Y : SS41I_pmovx_rrrm<opc, !strconcat("v", OpcodeStr), MemYOp,
+ VR256, VR128, WriteShuffle256>,
+ VEX, VEX_L, VEX_WIG;
+}
+
+multiclass SS41I_pmovx_rm<bits<8> opc, string OpcodeStr, X86MemOperand MemOp,
+ X86MemOperand MemYOp, Predicate prd> {
+ defm PMOVSX#NAME : SS41I_pmovx_rm_all<opc, !strconcat("pmovsx", OpcodeStr),
+ MemOp, MemYOp, prd>;
+ defm PMOVZX#NAME : SS41I_pmovx_rm_all<!add(opc, 0x10),
+ !strconcat("pmovzx", OpcodeStr),
+ MemOp, MemYOp, prd>;
+}
+
+defm BW : SS41I_pmovx_rm<0x20, "bw", i64mem, i128mem, NoVLX_Or_NoBWI>;
+defm WD : SS41I_pmovx_rm<0x23, "wd", i64mem, i128mem, NoVLX>;
+defm DQ : SS41I_pmovx_rm<0x25, "dq", i64mem, i128mem, NoVLX>;
+
+defm BD : SS41I_pmovx_rm<0x21, "bd", i32mem, i64mem, NoVLX>;
+defm WQ : SS41I_pmovx_rm<0x24, "wq", i32mem, i64mem, NoVLX>;
+
+defm BQ : SS41I_pmovx_rm<0x22, "bq", i16mem, i32mem, NoVLX>;
+
+// AVX2 Patterns
+multiclass SS41I_pmovx_avx2_patterns<string OpcPrefix, string ExtTy, SDNode ExtOp> {
+ // Register-Register patterns
+ let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ def : Pat<(v16i16 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BWYrr) VR128:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v8i32 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BDYrr) VR128:$src)>;
+ def : Pat<(v4i64 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BQYrr) VR128:$src)>;
+
+ def : Pat<(v8i32 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WDYrr) VR128:$src)>;
+ def : Pat<(v4i64 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WQYrr) VR128:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (v4i32 VR128:$src))),
+ (!cast<I>(OpcPrefix#DQYrr) VR128:$src)>;
+ }
+
+ // Simple Register-Memory patterns
+ let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ def : Pat<(v16i16 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v8i32 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+
+ def : Pat<(v8i32 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+ def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (!cast<PatFrag>(ExtTy#"extloadvi32") addr:$src)),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ }
+
+ // AVX2 Register-Memory patterns
+ let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ def : Pat<(v16i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ def : Pat<(v16i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ def : Pat<(v16i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWYrm) addr:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v8i32 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQYrm) addr:$src)>;
+
+ def : Pat<(v8i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+ def : Pat<(v8i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQYrm) addr:$src)>;
+
+ def : Pat<(v4i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ def : Pat<(v4i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQYrm) addr:$src)>;
+ }
+}
+
+defm : SS41I_pmovx_avx2_patterns<"VPMOVSX", "s", X86vsext>;
+defm : SS41I_pmovx_avx2_patterns<"VPMOVZX", "z", X86vzext>;
+
+// SSE4.1/AVX patterns.
+multiclass SS41I_pmovx_patterns<string OpcPrefix, string ExtTy,
+ SDNode ExtOp> {
+ let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ def : Pat<(v8i16 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BWrr) VR128:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4i32 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BDrr) VR128:$src)>;
+ def : Pat<(v2i64 (ExtOp (v16i8 VR128:$src))),
+ (!cast<I>(OpcPrefix#BQrr) VR128:$src)>;
+
+ def : Pat<(v4i32 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WDrr) VR128:$src)>;
+ def : Pat<(v2i64 (ExtOp (v8i16 VR128:$src))),
+ (!cast<I>(OpcPrefix#WQrr) VR128:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (v4i32 VR128:$src))),
+ (!cast<I>(OpcPrefix#DQrr) VR128:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ def : Pat<(v8i16 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4i32 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi8") addr:$src)),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+
+ def : Pat<(v4i32 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi16") addr:$src)),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+
+ def : Pat<(v2i64 (!cast<PatFrag>(ExtTy#"extloadvi32") addr:$src)),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (bc_v16i8 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (v16i8 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ def : Pat<(v8i16 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BWrm) addr:$src)>;
+ }
+ let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4i32 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BDrm) addr:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (bc_v16i8 (v4i32 (scalar_to_vector (extloadi32i16 addr:$src)))))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v16i8 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v16i8 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v16i8 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#BQrm) addr:$src)>;
+
+ def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (bc_v8i16 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+ def : Pat<(v4i32 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WDrm) addr:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (bc_v8i16 (v4i32 (scalar_to_vector (loadi32 addr:$src)))))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v8i16 (vzmovl_v4i32 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v8i16 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v8i16 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#WQrm) addr:$src)>;
+
+ def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2i64 (scalar_to_vector (loadi64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v4i32 (v2f64 (scalar_to_vector (loadf64 addr:$src)))))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v4i32 (vzmovl_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (v4i32 (vzload_v2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ def : Pat<(v2i64 (ExtOp (bc_v4i32 (loadv2i64 addr:$src)))),
+ (!cast<I>(OpcPrefix#DQrm) addr:$src)>;
+ }
+}
+
+defm : SS41I_pmovx_patterns<"VPMOVSX", "s", sext_invec>;
+defm : SS41I_pmovx_patterns<"VPMOVZX", "z", zext_invec>;
+
+let Predicates = [UseSSE41] in {
+ defm : SS41I_pmovx_patterns<"PMOVSX", "s", sext_invec>;
+ defm : SS41I_pmovx_patterns<"PMOVZX", "z", zext_invec>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Extract Instructions
+//===----------------------------------------------------------------------===//
+
+/// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem
+multiclass SS41I_extract8<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR32orGR64:$dst, (X86pextrb (v16i8 VR128:$src1),
+ imm:$src2))]>,
+ Sched<[WriteVecExtract]>;
+ let hasSideEffects = 0, mayStore = 1 in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i8mem:$dst, VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))),
+ addr:$dst)]>, Sched<[WriteVecExtractSt]>;
+}
+
+let Predicates = [HasAVX, NoBWI] in
+ defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX;
+
+defm PEXTRB : SS41I_extract8<0x14, "pextrb">;
+
+
+/// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination
+multiclass SS41I_extract16<bits<8> opc, string OpcodeStr> {
+ let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in
+ def rr_REV : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>,
+ Sched<[WriteVecExtract]>, FoldGenData<NAME#rr>;
+
+ let hasSideEffects = 0, mayStore = 1 in
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i16mem:$dst, VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (i16 (trunc (X86pextrw (v8i16 VR128:$src1), imm:$src2))),
+ addr:$dst)]>, Sched<[WriteVecExtractSt]>;
+}
+
+let Predicates = [HasAVX, NoBWI] in
+ defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX;
+
+defm PEXTRW : SS41I_extract16<0x15, "pextrw">;
+
+
+/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
+multiclass SS41I_extract32<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR32:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR32:$dst,
+ (extractelt (v4i32 VR128:$src1), imm:$src2))]>,
+ Sched<[WriteVecExtract]>;
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i32mem:$dst, VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (extractelt (v4i32 VR128:$src1), imm:$src2),
+ addr:$dst)]>, Sched<[WriteVecExtractSt]>;
+}
+
+let Predicates = [HasAVX, NoDQI] in
+ defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX;
+
+defm PEXTRD : SS41I_extract32<0x16, "pextrd">;
+
+/// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
+multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR64:$dst,
+ (extractelt (v2i64 VR128:$src1), imm:$src2))]>,
+ Sched<[WriteVecExtract]>;
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins i64mem:$dst, VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (extractelt (v2i64 VR128:$src1), imm:$src2),
+ addr:$dst)]>, Sched<[WriteVecExtractSt]>;
+}
+
+let Predicates = [HasAVX, NoDQI] in
+ defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W;
+
+defm PEXTRQ : SS41I_extract64<0x16, "pextrq">, REX_W;
+
+/// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory
+/// destination
+multiclass SS41I_extractf32<bits<8> opc, string OpcodeStr> {
+ def rr : SS4AIi8<opc, MRMDestReg, (outs GR32orGR64:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set GR32orGR64:$dst,
+ (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))]>,
+ Sched<[WriteVecExtract]>;
+ def mr : SS4AIi8<opc, MRMDestMem, (outs),
+ (ins f32mem:$dst, VR128:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(store (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2),
+ addr:$dst)]>, Sched<[WriteVecExtractSt]>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+ let Predicates = [UseAVX] in
+ defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX, VEX_WIG;
+ defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">;
+}
+
+// Also match an EXTRACTPS store when the store is done as f32 instead of i32.
+def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
+ imm:$src2))),
+ addr:$dst),
+ (VEXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
+ Requires<[HasAVX]>;
+def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)),
+ imm:$src2))),
+ addr:$dst),
+ (EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>,
+ Requires<[UseSSE41]>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Insert Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass SS41I_insert8<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, GR32orGR64:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86pinsrb VR128:$src1, GR32orGR64:$src2, imm:$src3))]>,
+ Sched<[WriteVecInsert]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i8mem:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86pinsrb VR128:$src1, (extloadi8 addr:$src2),
+ imm:$src3))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoBWI] in
+ defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V;
+let Constraints = "$src1 = $dst" in
+ defm PINSRB : SS41I_insert8<0x20, "pinsrb">;
+
+multiclass SS41I_insert32<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, GR32:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v4i32 (insertelt VR128:$src1, GR32:$src2, imm:$src3)))]>,
+ Sched<[WriteVecInsert]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i32mem:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v4i32 (insertelt VR128:$src1, (loadi32 addr:$src2),
+ imm:$src3)))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoDQI] in
+ defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V;
+let Constraints = "$src1 = $dst" in
+ defm PINSRD : SS41I_insert32<0x22, "pinsrd">;
+
+multiclass SS41I_insert64<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, GR64:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
+ Sched<[WriteVecInsert]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i64mem:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
+ imm:$src3)))]>, Sched<[WriteVecInsertLd, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoDQI] in
+ defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W;
+let Constraints = "$src1 = $dst" in
+ defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W;
+
+// insertps has a few different modes, there's the first two here below which
+// are optimized inserts that won't zero arbitrary elements in the destination
+// vector. The next one matches the intrinsic and could zero arbitrary elements
+// in the target vector.
+multiclass SS41I_insertf32<bits<8> opc, string asm, bit Is2Addr = 1> {
+ def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86insertps VR128:$src1, VR128:$src2, imm:$src3))]>,
+ Sched<[SchedWriteFShuffle.XMM]>;
+ def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f32mem:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(asm,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (X86insertps VR128:$src1,
+ (v4f32 (scalar_to_vector (loadf32 addr:$src2))),
+ imm:$src3))]>,
+ Sched<[SchedWriteFShuffle.XMM.Folded, ReadAfterLd]>;
+}
+
+let ExeDomain = SSEPackedSingle in {
+ let Predicates = [UseAVX] in
+ defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>,
+ VEX_4V, VEX_WIG;
+ let Constraints = "$src1 = $dst" in
+ defm INSERTPS : SS41I_insertf32<0x21, "insertps", 1>;
+}
+
+let Predicates = [UseAVX] in {
+ // If we're inserting an element from a vbroadcast of a load, fold the
+ // load into the X86insertps instruction.
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
+ (X86VBroadcast (loadf32 addr:$src2)), imm:$src3)),
+ (VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
+ def : Pat<(v4f32 (X86insertps (v4f32 VR128:$src1),
+ (X86VBroadcast (loadv4f32 addr:$src2)), imm:$src3)),
+ (VINSERTPSrm VR128:$src1, addr:$src2, imm:$src3)>;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Round Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass sse41_fp_unop_p<bits<8> opc, string OpcodeStr,
+ X86MemOperand x86memop, RegisterClass RC,
+ ValueType VT, PatFrag mem_frag, SDNode OpNode,
+ X86FoldableSchedWrite sched> {
+ // Intrinsic operation, reg.
+ // Vector intrinsic operation, reg
+ def r : SS4AIi8<opc, MRMSrcReg,
+ (outs RC:$dst), (ins RC:$src1, i32u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (VT (OpNode RC:$src1, imm:$src2)))]>,
+ Sched<[sched]>;
+
+ // Vector intrinsic operation, mem
+ def m : SS4AIi8<opc, MRMSrcMem,
+ (outs RC:$dst), (ins x86memop:$src1, i32u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (VT (OpNode (mem_frag addr:$src1),imm:$src2)))]>,
+ Sched<[sched.Folded]>;
+}
+
+multiclass avx_fp_unop_rm<bits<8> opcss, bits<8> opcsd,
+ string OpcodeStr, X86FoldableSchedWrite sched> {
+let ExeDomain = SSEPackedSingle, hasSideEffects = 0 in {
+ def SSr : SS4AIi8<opcss, MRMSrcReg,
+ (outs FR32:$dst), (ins FR32:$src1, FR32:$src2, i32u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, Sched<[sched]>;
+
+ let mayLoad = 1 in
+ def SSm : SS4AIi8<opcss, MRMSrcMem,
+ (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2, i32u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, Sched<[sched.Folded, ReadAfterLd]>;
+} // ExeDomain = SSEPackedSingle, hasSideEffects = 0
+
+let ExeDomain = SSEPackedDouble, hasSideEffects = 0 in {
+ def SDr : SS4AIi8<opcsd, MRMSrcReg,
+ (outs FR64:$dst), (ins FR64:$src1, FR64:$src2, i32u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, Sched<[sched]>;
+
+ let mayLoad = 1 in
+ def SDm : SS4AIi8<opcsd, MRMSrcMem,
+ (outs FR64:$dst), (ins FR64:$src1, f64mem:$src2, i32u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ []>, Sched<[sched.Folded, ReadAfterLd]>;
+} // ExeDomain = SSEPackedDouble, hasSideEffects = 0
+}
+
+multiclass sse41_fp_unop_s<bits<8> opcss, bits<8> opcsd,
+ string OpcodeStr, X86FoldableSchedWrite sched> {
+let ExeDomain = SSEPackedSingle, hasSideEffects = 0 in {
+ def SSr : SS4AIi8<opcss, MRMSrcReg,
+ (outs FR32:$dst), (ins FR32:$src1, i32u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[sched]>;
+
+ let mayLoad = 1 in
+ def SSm : SS4AIi8<opcss, MRMSrcMem,
+ (outs FR32:$dst), (ins f32mem:$src1, i32u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[sched.Folded, ReadAfterLd]>;
+} // ExeDomain = SSEPackedSingle, hasSideEffects = 0
+
+let ExeDomain = SSEPackedDouble, hasSideEffects = 0 in {
+ def SDr : SS4AIi8<opcsd, MRMSrcReg,
+ (outs FR64:$dst), (ins FR64:$src1, i32u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[sched]>;
+
+ let mayLoad = 1 in
+ def SDm : SS4AIi8<opcsd, MRMSrcMem,
+ (outs FR64:$dst), (ins f64mem:$src1, i32u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[sched.Folded, ReadAfterLd]>;
+} // ExeDomain = SSEPackedDouble, hasSideEffects = 0
+}
+
+multiclass sse41_fp_binop_s<bits<8> opcss, bits<8> opcsd,
+ string OpcodeStr, X86FoldableSchedWrite sched,
+ ValueType VT32, ValueType VT64,
+ SDNode OpNode, bit Is2Addr = 1> {
+let ExeDomain = SSEPackedSingle, isCodeGenOnly = 1 in {
+ def SSr_Int : SS4AIi8<opcss, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst, (VT32 (OpNode VR128:$src1, VR128:$src2, imm:$src3)))]>,
+ Sched<[sched]>;
+
+ def SSm_Int : SS4AIi8<opcss, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, ssmem:$src2, i32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "ss\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (OpNode VR128:$src1, sse_load_f32:$src2, imm:$src3))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+} // ExeDomain = SSEPackedSingle, isCodeGenOnly = 1
+
+let ExeDomain = SSEPackedDouble, isCodeGenOnly = 1 in {
+ def SDr_Int : SS4AIi8<opcsd, MRMSrcReg,
+ (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst, (VT64 (OpNode VR128:$src1, VR128:$src2, imm:$src3)))]>,
+ Sched<[sched]>;
+
+ def SDm_Int : SS4AIi8<opcsd, MRMSrcMem,
+ (outs VR128:$dst), (ins VR128:$src1, sdmem:$src2, i32u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "sd\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set VR128:$dst,
+ (OpNode VR128:$src1, sse_load_f64:$src2, imm:$src3))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+} // ExeDomain = SSEPackedDouble, isCodeGenOnly = 1
+}
+
+// FP round - roundss, roundps, roundsd, roundpd
+let Predicates = [HasAVX, NoVLX] in {
+ let ExeDomain = SSEPackedSingle in {
+ // Intrinsic form
+ defm VROUNDPS : sse41_fp_unop_p<0x08, "vroundps", f128mem, VR128, v4f32,
+ loadv4f32, X86VRndScale, SchedWriteFRnd.XMM>,
+ VEX, VEX_WIG;
+ defm VROUNDPSY : sse41_fp_unop_p<0x08, "vroundps", f256mem, VR256, v8f32,
+ loadv8f32, X86VRndScale, SchedWriteFRnd.YMM>,
+ VEX, VEX_L, VEX_WIG;
+ }
+
+ let ExeDomain = SSEPackedDouble in {
+ defm VROUNDPD : sse41_fp_unop_p<0x09, "vroundpd", f128mem, VR128, v2f64,
+ loadv2f64, X86VRndScale, SchedWriteFRnd.XMM>,
+ VEX, VEX_WIG;
+ defm VROUNDPDY : sse41_fp_unop_p<0x09, "vroundpd", f256mem, VR256, v4f64,
+ loadv4f64, X86VRndScale, SchedWriteFRnd.YMM>,
+ VEX, VEX_L, VEX_WIG;
+ }
+}
+let Predicates = [HasAVX, NoAVX512] in {
+ defm VROUND : sse41_fp_binop_s<0x0A, 0x0B, "vround", SchedWriteFRnd.Scl,
+ v4f32, v2f64, X86RndScales, 0>,
+ VEX_4V, VEX_LIG, VEX_WIG;
+ defm VROUND : avx_fp_unop_rm<0x0A, 0x0B, "vround", SchedWriteFRnd.Scl>,
+ VEX_4V, VEX_LIG, VEX_WIG;
+}
+
+let Predicates = [UseAVX] in {
+ def : Pat<(ffloor FR32:$src),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x9))>;
+ def : Pat<(f32 (fnearbyint FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xA))>;
+ def : Pat<(f32 (frint FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc FR32:$src)),
+ (VROUNDSSr (f32 (IMPLICIT_DEF)), FR32:$src, (i32 0xB))>;
+
+ def : Pat<(f64 (ffloor FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x9))>;
+ def : Pat<(f64 (fnearbyint FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xC))>;
+ def : Pat<(f64 (fceil FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xA))>;
+ def : Pat<(f64 (frint FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0x4))>;
+ def : Pat<(f64 (ftrunc FR64:$src)),
+ (VROUNDSDr (f64 (IMPLICIT_DEF)), FR64:$src, (i32 0xB))>;
+}
+
+let Predicates = [UseAVX, OptForSize] in {
+ def : Pat<(ffloor (loadf32 addr:$src)),
+ (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0x9))>;
+ def : Pat<(f32 (fnearbyint (loadf32 addr:$src))),
+ (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil (loadf32 addr:$src))),
+ (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0xA))>;
+ def : Pat<(f32 (frint (loadf32 addr:$src))),
+ (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc (loadf32 addr:$src))),
+ (VROUNDSSm (f32 (IMPLICIT_DEF)), addr:$src, (i32 0xB))>;
+
+ def : Pat<(f64 (ffloor (loadf64 addr:$src))),
+ (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0x9))>;
+ def : Pat<(f64 (fnearbyint (loadf64 addr:$src))),
+ (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0xC))>;
+ def : Pat<(f64 (fceil (loadf64 addr:$src))),
+ (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0xA))>;
+ def : Pat<(f64 (frint (loadf64 addr:$src))),
+ (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0x4))>;
+ def : Pat<(f64 (ftrunc (loadf64 addr:$src))),
+ (VROUNDSDm (f64 (IMPLICIT_DEF)), addr:$src, (i32 0xB))>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4f32 (ffloor VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0x9))>;
+ def : Pat<(v4f32 (fnearbyint VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0xC))>;
+ def : Pat<(v4f32 (fceil VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0xA))>;
+ def : Pat<(v4f32 (frint VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0x4))>;
+ def : Pat<(v4f32 (ftrunc VR128:$src)),
+ (VROUNDPSr VR128:$src, (i32 0xB))>;
+
+ def : Pat<(v4f32 (ffloor (loadv4f32 addr:$src))),
+ (VROUNDPSm addr:$src, (i32 0x9))>;
+ def : Pat<(v4f32 (fnearbyint (loadv4f32 addr:$src))),
+ (VROUNDPSm addr:$src, (i32 0xC))>;
+ def : Pat<(v4f32 (fceil (loadv4f32 addr:$src))),
+ (VROUNDPSm addr:$src, (i32 0xA))>;
+ def : Pat<(v4f32 (frint (loadv4f32 addr:$src))),
+ (VROUNDPSm addr:$src, (i32 0x4))>;
+ def : Pat<(v4f32 (ftrunc (loadv4f32 addr:$src))),
+ (VROUNDPSm addr:$src, (i32 0xB))>;
+
+ def : Pat<(v2f64 (ffloor VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0x9))>;
+ def : Pat<(v2f64 (fnearbyint VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0xC))>;
+ def : Pat<(v2f64 (fceil VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0xA))>;
+ def : Pat<(v2f64 (frint VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0x4))>;
+ def : Pat<(v2f64 (ftrunc VR128:$src)),
+ (VROUNDPDr VR128:$src, (i32 0xB))>;
+
+ def : Pat<(v2f64 (ffloor (loadv2f64 addr:$src))),
+ (VROUNDPDm addr:$src, (i32 0x9))>;
+ def : Pat<(v2f64 (fnearbyint (loadv2f64 addr:$src))),
+ (VROUNDPDm addr:$src, (i32 0xC))>;
+ def : Pat<(v2f64 (fceil (loadv2f64 addr:$src))),
+ (VROUNDPDm addr:$src, (i32 0xA))>;
+ def : Pat<(v2f64 (frint (loadv2f64 addr:$src))),
+ (VROUNDPDm addr:$src, (i32 0x4))>;
+ def : Pat<(v2f64 (ftrunc (loadv2f64 addr:$src))),
+ (VROUNDPDm addr:$src, (i32 0xB))>;
+
+ def : Pat<(v8f32 (ffloor VR256:$src)),
+ (VROUNDPSYr VR256:$src, (i32 0x9))>;
+ def : Pat<(v8f32 (fnearbyint VR256:$src)),
+ (VROUNDPSYr VR256:$src, (i32 0xC))>;
+ def : Pat<(v8f32 (fceil VR256:$src)),
+ (VROUNDPSYr VR256:$src, (i32 0xA))>;
+ def : Pat<(v8f32 (frint VR256:$src)),
+ (VROUNDPSYr VR256:$src, (i32 0x4))>;
+ def : Pat<(v8f32 (ftrunc VR256:$src)),
+ (VROUNDPSYr VR256:$src, (i32 0xB))>;
+
+ def : Pat<(v8f32 (ffloor (loadv8f32 addr:$src))),
+ (VROUNDPSYm addr:$src, (i32 0x9))>;
+ def : Pat<(v8f32 (fnearbyint (loadv8f32 addr:$src))),
+ (VROUNDPSYm addr:$src, (i32 0xC))>;
+ def : Pat<(v8f32 (fceil (loadv8f32 addr:$src))),
+ (VROUNDPSYm addr:$src, (i32 0xA))>;
+ def : Pat<(v8f32 (frint (loadv8f32 addr:$src))),
+ (VROUNDPSYm addr:$src, (i32 0x4))>;
+ def : Pat<(v8f32 (ftrunc (loadv8f32 addr:$src))),
+ (VROUNDPSYm addr:$src, (i32 0xB))>;
+
+ def : Pat<(v4f64 (ffloor VR256:$src)),
+ (VROUNDPDYr VR256:$src, (i32 0x9))>;
+ def : Pat<(v4f64 (fnearbyint VR256:$src)),
+ (VROUNDPDYr VR256:$src, (i32 0xC))>;
+ def : Pat<(v4f64 (fceil VR256:$src)),
+ (VROUNDPDYr VR256:$src, (i32 0xA))>;
+ def : Pat<(v4f64 (frint VR256:$src)),
+ (VROUNDPDYr VR256:$src, (i32 0x4))>;
+ def : Pat<(v4f64 (ftrunc VR256:$src)),
+ (VROUNDPDYr VR256:$src, (i32 0xB))>;
+
+ def : Pat<(v4f64 (ffloor (loadv4f64 addr:$src))),
+ (VROUNDPDYm addr:$src, (i32 0x9))>;
+ def : Pat<(v4f64 (fnearbyint (loadv4f64 addr:$src))),
+ (VROUNDPDYm addr:$src, (i32 0xC))>;
+ def : Pat<(v4f64 (fceil (loadv4f64 addr:$src))),
+ (VROUNDPDYm addr:$src, (i32 0xA))>;
+ def : Pat<(v4f64 (frint (loadv4f64 addr:$src))),
+ (VROUNDPDYm addr:$src, (i32 0x4))>;
+ def : Pat<(v4f64 (ftrunc (loadv4f64 addr:$src))),
+ (VROUNDPDYm addr:$src, (i32 0xB))>;
+}
+
+let ExeDomain = SSEPackedSingle in
+defm ROUNDPS : sse41_fp_unop_p<0x08, "roundps", f128mem, VR128, v4f32,
+ memopv4f32, X86VRndScale, SchedWriteFRnd.XMM>;
+let ExeDomain = SSEPackedDouble in
+defm ROUNDPD : sse41_fp_unop_p<0x09, "roundpd", f128mem, VR128, v2f64,
+ memopv2f64, X86VRndScale, SchedWriteFRnd.XMM>;
+
+defm ROUND : sse41_fp_unop_s<0x0A, 0x0B, "round", SchedWriteFRnd.Scl>;
+
+let Constraints = "$src1 = $dst" in
+defm ROUND : sse41_fp_binop_s<0x0A, 0x0B, "round", SchedWriteFRnd.Scl,
+ v4f32, v2f64, X86RndScales>;
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(ffloor FR32:$src),
+ (ROUNDSSr FR32:$src, (i32 0x9))>;
+ def : Pat<(f32 (fnearbyint FR32:$src)),
+ (ROUNDSSr FR32:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil FR32:$src)),
+ (ROUNDSSr FR32:$src, (i32 0xA))>;
+ def : Pat<(f32 (frint FR32:$src)),
+ (ROUNDSSr FR32:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc FR32:$src)),
+ (ROUNDSSr FR32:$src, (i32 0xB))>;
+
+ def : Pat<(f64 (ffloor FR64:$src)),
+ (ROUNDSDr FR64:$src, (i32 0x9))>;
+ def : Pat<(f64 (fnearbyint FR64:$src)),
+ (ROUNDSDr FR64:$src, (i32 0xC))>;
+ def : Pat<(f64 (fceil FR64:$src)),
+ (ROUNDSDr FR64:$src, (i32 0xA))>;
+ def : Pat<(f64 (frint FR64:$src)),
+ (ROUNDSDr FR64:$src, (i32 0x4))>;
+ def : Pat<(f64 (ftrunc FR64:$src)),
+ (ROUNDSDr FR64:$src, (i32 0xB))>;
+}
+
+let Predicates = [UseSSE41, OptForSize] in {
+ def : Pat<(ffloor (loadf32 addr:$src)),
+ (ROUNDSSm addr:$src, (i32 0x9))>;
+ def : Pat<(f32 (fnearbyint (loadf32 addr:$src))),
+ (ROUNDSSm addr:$src, (i32 0xC))>;
+ def : Pat<(f32 (fceil (loadf32 addr:$src))),
+ (ROUNDSSm addr:$src, (i32 0xA))>;
+ def : Pat<(f32 (frint (loadf32 addr:$src))),
+ (ROUNDSSm addr:$src, (i32 0x4))>;
+ def : Pat<(f32 (ftrunc (loadf32 addr:$src))),
+ (ROUNDSSm addr:$src, (i32 0xB))>;
+
+ def : Pat<(f64 (ffloor (loadf64 addr:$src))),
+ (ROUNDSDm addr:$src, (i32 0x9))>;
+ def : Pat<(f64 (fnearbyint (loadf64 addr:$src))),
+ (ROUNDSDm addr:$src, (i32 0xC))>;
+ def : Pat<(f64 (fceil (loadf64 addr:$src))),
+ (ROUNDSDm addr:$src, (i32 0xA))>;
+ def : Pat<(f64 (frint (loadf64 addr:$src))),
+ (ROUNDSDm addr:$src, (i32 0x4))>;
+ def : Pat<(f64 (ftrunc (loadf64 addr:$src))),
+ (ROUNDSDm addr:$src, (i32 0xB))>;
+}
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(v4f32 (ffloor VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0x9))>;
+ def : Pat<(v4f32 (fnearbyint VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0xC))>;
+ def : Pat<(v4f32 (fceil VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0xA))>;
+ def : Pat<(v4f32 (frint VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0x4))>;
+ def : Pat<(v4f32 (ftrunc VR128:$src)),
+ (ROUNDPSr VR128:$src, (i32 0xB))>;
+
+ def : Pat<(v4f32 (ffloor (memopv4f32 addr:$src))),
+ (ROUNDPSm addr:$src, (i32 0x9))>;
+ def : Pat<(v4f32 (fnearbyint (memopv4f32 addr:$src))),
+ (ROUNDPSm addr:$src, (i32 0xC))>;
+ def : Pat<(v4f32 (fceil (memopv4f32 addr:$src))),
+ (ROUNDPSm addr:$src, (i32 0xA))>;
+ def : Pat<(v4f32 (frint (memopv4f32 addr:$src))),
+ (ROUNDPSm addr:$src, (i32 0x4))>;
+ def : Pat<(v4f32 (ftrunc (memopv4f32 addr:$src))),
+ (ROUNDPSm addr:$src, (i32 0xB))>;
+
+ def : Pat<(v2f64 (ffloor VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0x9))>;
+ def : Pat<(v2f64 (fnearbyint VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0xC))>;
+ def : Pat<(v2f64 (fceil VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0xA))>;
+ def : Pat<(v2f64 (frint VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0x4))>;
+ def : Pat<(v2f64 (ftrunc VR128:$src)),
+ (ROUNDPDr VR128:$src, (i32 0xB))>;
+
+ def : Pat<(v2f64 (ffloor (memopv2f64 addr:$src))),
+ (ROUNDPDm addr:$src, (i32 0x9))>;
+ def : Pat<(v2f64 (fnearbyint (memopv2f64 addr:$src))),
+ (ROUNDPDm addr:$src, (i32 0xC))>;
+ def : Pat<(v2f64 (fceil (memopv2f64 addr:$src))),
+ (ROUNDPDm addr:$src, (i32 0xA))>;
+ def : Pat<(v2f64 (frint (memopv2f64 addr:$src))),
+ (ROUNDPDm addr:$src, (i32 0x4))>;
+ def : Pat<(v2f64 (ftrunc (memopv2f64 addr:$src))),
+ (ROUNDPDm addr:$src, (i32 0xB))>;
+}
+
+defm : scalar_unary_math_imm_patterns<ffloor, "ROUNDSS", X86Movss,
+ v4f32, 0x01, UseSSE41>;
+defm : scalar_unary_math_imm_patterns<fceil, "ROUNDSS", X86Movss,
+ v4f32, 0x02, UseSSE41>;
+defm : scalar_unary_math_imm_patterns<ffloor, "ROUNDSD", X86Movsd,
+ v2f64, 0x01, UseSSE41>;
+defm : scalar_unary_math_imm_patterns<fceil, "ROUNDSD", X86Movsd,
+ v2f64, 0x02, UseSSE41>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Packed Bit Test
+//===----------------------------------------------------------------------===//
+
+// ptest instruction we'll lower to this in X86ISelLowering primarily from
+// the intel intrinsic that corresponds to this.
+let Defs = [EFLAGS], Predicates = [HasAVX] in {
+def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
+ Sched<[SchedWriteVecTest.XMM]>, VEX, VEX_WIG;
+def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS,(X86ptest VR128:$src1, (loadv2i64 addr:$src2)))]>,
+ Sched<[SchedWriteVecTest.XMM.Folded, ReadAfterLd]>,
+ VEX, VEX_WIG;
+
+def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>,
+ Sched<[SchedWriteVecTest.YMM]>, VEX, VEX_L, VEX_WIG;
+def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2),
+ "vptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS,(X86ptest VR256:$src1, (loadv4i64 addr:$src2)))]>,
+ Sched<[SchedWriteVecTest.YMM.Folded, ReadAfterLd]>,
+ VEX, VEX_L, VEX_WIG;
+}
+
+let Defs = [EFLAGS] in {
+def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2),
+ "ptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR128:$src1, (v2i64 VR128:$src2)))]>,
+ Sched<[SchedWriteVecTest.XMM]>;
+def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2),
+ "ptest\t{$src2, $src1|$src1, $src2}",
+ [(set EFLAGS, (X86ptest VR128:$src1, (memopv2i64 addr:$src2)))]>,
+ Sched<[SchedWriteVecTest.XMM.Folded, ReadAfterLd]>;
+}
+
+// The bit test instructions below are AVX only
+multiclass avx_bittest<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, PatFrag mem_frag, ValueType vt,
+ X86FoldableSchedWrite sched> {
+ def rr : SS48I<opc, MRMSrcReg, (outs), (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (X86testp RC:$src1, (vt RC:$src2)))]>,
+ Sched<[sched]>, VEX;
+ def rm : SS48I<opc, MRMSrcMem, (outs), (ins RC:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1|$src1, $src2}"),
+ [(set EFLAGS, (X86testp RC:$src1, (mem_frag addr:$src2)))]>,
+ Sched<[sched.Folded, ReadAfterLd]>, VEX;
+}
+
+let Defs = [EFLAGS], Predicates = [HasAVX] in {
+let ExeDomain = SSEPackedSingle in {
+defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, loadv4f32, v4f32,
+ SchedWriteFTest.XMM>;
+defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, loadv8f32, v8f32,
+ SchedWriteFTest.YMM>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble in {
+defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, loadv2f64, v2f64,
+ SchedWriteFTest.XMM>;
+defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, loadv4f64, v4f64,
+ SchedWriteFTest.YMM>, VEX_L;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.1 - Misc Instructions
+//===----------------------------------------------------------------------===//
+
+let Defs = [EFLAGS], Predicates = [HasPOPCNT] in {
+ def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
+ "popcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (ctpop GR16:$src)), (implicit EFLAGS)]>,
+ Sched<[WritePOPCNT]>, OpSize16, XS;
+ def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
+ "popcnt{w}\t{$src, $dst|$dst, $src}",
+ [(set GR16:$dst, (ctpop (loadi16 addr:$src))),
+ (implicit EFLAGS)]>,
+ Sched<[WritePOPCNT.Folded]>, OpSize16, XS;
+
+ def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
+ "popcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (ctpop GR32:$src)), (implicit EFLAGS)]>,
+ Sched<[WritePOPCNT]>, OpSize32, XS;
+
+ def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
+ "popcnt{l}\t{$src, $dst|$dst, $src}",
+ [(set GR32:$dst, (ctpop (loadi32 addr:$src))),
+ (implicit EFLAGS)]>,
+ Sched<[WritePOPCNT.Folded]>, OpSize32, XS;
+
+ def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
+ "popcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (ctpop GR64:$src)), (implicit EFLAGS)]>,
+ Sched<[WritePOPCNT]>, XS;
+ def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "popcnt{q}\t{$src, $dst|$dst, $src}",
+ [(set GR64:$dst, (ctpop (loadi64 addr:$src))),
+ (implicit EFLAGS)]>,
+ Sched<[WritePOPCNT.Folded]>, XS;
+}
+
+// SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16.
+multiclass SS41I_unop_rm_int_v16<bits<8> opc, string OpcodeStr,
+ SDNode OpNode, PatFrag ld_frag,
+ X86FoldableSchedWrite Sched> {
+ def rr : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst, (v8i16 (OpNode (v8i16 VR128:$src))))]>,
+ Sched<[Sched]>;
+ def rm : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (v8i16 (OpNode (v8i16 (bitconvert (ld_frag addr:$src))))))]>,
+ Sched<[Sched.Folded]>;
+}
+
+// PHMIN has the same profile as PSAD, thus we use the same scheduling
+// model, although the naming is misleading.
+let Predicates = [HasAVX] in
+defm VPHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "vphminposuw",
+ X86phminpos, loadv2i64,
+ WritePHMINPOS>, VEX, VEX_WIG;
+defm PHMINPOSUW : SS41I_unop_rm_int_v16<0x41, "phminposuw",
+ X86phminpos, memopv2i64,
+ WritePHMINPOS>;
+
+/// SS48I_binop_rm - Simple SSE41 binary operator.
+multiclass SS48I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched,
+ bit Is2Addr = 1> {
+ let isCommutable = 1 in
+ def rr : SS48I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : SS48I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, (bitconvert (memop_frag addr:$src2)))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ defm VPMINSD : SS48I_binop_rm<0x39, "vpminsd", smin, v4i32, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMINUD : SS48I_binop_rm<0x3B, "vpminud", umin, v4i32, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMAXSD : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v4i32, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMAXUD : SS48I_binop_rm<0x3F, "vpmaxud", umax, v4i32, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMULDQ : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v2i64, VR128,
+ loadv2i64, i128mem, SchedWriteVecIMul.XMM, 0>,
+ VEX_4V, VEX_WIG;
+}
+let Predicates = [HasAVX, NoVLX_Or_NoBWI] in {
+ defm VPMINSB : SS48I_binop_rm<0x38, "vpminsb", smin, v16i8, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMINUW : SS48I_binop_rm<0x3A, "vpminuw", umin, v8i16, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMAXSB : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v16i8, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+ defm VPMAXUW : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v8i16, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+}
+
+let Predicates = [HasAVX2, NoVLX] in {
+ defm VPMINSDY : SS48I_binop_rm<0x39, "vpminsd", smin, v8i32, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMINUDY : SS48I_binop_rm<0x3B, "vpminud", umin, v8i32, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMAXSDY : SS48I_binop_rm<0x3D, "vpmaxsd", smax, v8i32, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMAXUDY : SS48I_binop_rm<0x3F, "vpmaxud", umax, v8i32, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMULDQY : SS48I_binop_rm<0x28, "vpmuldq", X86pmuldq, v4i64, VR256,
+ loadv4i64, i256mem, SchedWriteVecIMul.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+}
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+ defm VPMINSBY : SS48I_binop_rm<0x38, "vpminsb", smin, v32i8, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMINUWY : SS48I_binop_rm<0x3A, "vpminuw", umin, v16i16, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMAXSBY : SS48I_binop_rm<0x3C, "vpmaxsb", smax, v32i8, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPMAXUWY : SS48I_binop_rm<0x3E, "vpmaxuw", umax, v16i16, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm PMINSB : SS48I_binop_rm<0x38, "pminsb", smin, v16i8, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMINSD : SS48I_binop_rm<0x39, "pminsd", smin, v4i32, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMINUD : SS48I_binop_rm<0x3B, "pminud", umin, v4i32, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMINUW : SS48I_binop_rm<0x3A, "pminuw", umin, v8i16, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMAXSB : SS48I_binop_rm<0x3C, "pmaxsb", smax, v16i8, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMAXSD : SS48I_binop_rm<0x3D, "pmaxsd", smax, v4i32, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMAXUD : SS48I_binop_rm<0x3F, "pmaxud", umax, v4i32, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMAXUW : SS48I_binop_rm<0x3E, "pmaxuw", umax, v8i16, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+ defm PMULDQ : SS48I_binop_rm<0x28, "pmuldq", X86pmuldq, v2i64, VR128,
+ memopv2i64, i128mem, SchedWriteVecIMul.XMM, 1>;
+}
+
+let Predicates = [HasAVX, NoVLX] in
+ defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, VR128,
+ loadv2i64, i128mem, SchedWritePMULLD.XMM, 0>,
+ VEX_4V, VEX_WIG;
+let Predicates = [HasAVX] in
+ defm VPCMPEQQ : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v2i64, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+
+let Predicates = [HasAVX2, NoVLX] in
+ defm VPMULLDY : SS48I_binop_rm<0x40, "vpmulld", mul, v8i32, VR256,
+ loadv4i64, i256mem, SchedWritePMULLD.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+let Predicates = [HasAVX2] in
+ defm VPCMPEQQY : SS48I_binop_rm<0x29, "vpcmpeqq", X86pcmpeq, v4i64, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+
+let Constraints = "$src1 = $dst" in {
+ defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32, VR128,
+ memopv2i64, i128mem, SchedWritePMULLD.XMM, 1>;
+ defm PCMPEQQ : SS48I_binop_rm<0x29, "pcmpeqq", X86pcmpeq, v2i64, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM, 1>;
+}
+
+/// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate
+multiclass SS41I_binop_rmi_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, bit Is2Addr,
+ X86FoldableSchedWrite sched> {
+ let isCommutable = 1 in
+ def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2, imm:$src3))]>,
+ Sched<[sched]>;
+ def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst,
+ (IntId RC:$src1,
+ (bitconvert (memop_frag addr:$src2)), imm:$src3))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+/// SS41I_binop_rmi - SSE 4.1 binary operator with 8-bit immediate
+multiclass SS41I_binop_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, bit Is2Addr,
+ X86FoldableSchedWrite sched> {
+ let isCommutable = 1 in
+ def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>,
+ Sched<[sched]>;
+ def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1,
+ (bitconvert (memop_frag addr:$src2)), imm:$src3)))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+def BlendCommuteImm2 : SDNodeXForm<imm, [{
+ uint8_t Imm = N->getZExtValue() & 0x03;
+ return getI8Imm(Imm ^ 0x03, SDLoc(N));
+}]>;
+
+def BlendCommuteImm4 : SDNodeXForm<imm, [{
+ uint8_t Imm = N->getZExtValue() & 0x0f;
+ return getI8Imm(Imm ^ 0x0f, SDLoc(N));
+}]>;
+
+def BlendCommuteImm8 : SDNodeXForm<imm, [{
+ uint8_t Imm = N->getZExtValue() & 0xff;
+ return getI8Imm(Imm ^ 0xff, SDLoc(N));
+}]>;
+
+let Predicates = [HasAVX] in {
+ let isCommutable = 0 in {
+ defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw,
+ VR128, loadv2i64, i128mem, 0,
+ SchedWriteMPSAD.XMM>, VEX_4V, VEX_WIG;
+ }
+
+ let ExeDomain = SSEPackedSingle in
+ defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps,
+ VR128, loadv4f32, f128mem, 0,
+ SchedWriteDPPS.XMM>, VEX_4V, VEX_WIG;
+ let ExeDomain = SSEPackedDouble in
+ defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd,
+ VR128, loadv2f64, f128mem, 0,
+ SchedWriteDPPD.XMM>, VEX_4V, VEX_WIG;
+ let ExeDomain = SSEPackedSingle in
+ defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256,
+ VR256, loadv8f32, i256mem, 0,
+ SchedWriteDPPS.YMM>, VEX_4V, VEX_L, VEX_WIG;
+}
+
+let Predicates = [HasAVX2] in {
+ let isCommutable = 0 in {
+ defm VMPSADBWY : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_avx2_mpsadbw,
+ VR256, loadv4i64, i256mem, 0,
+ SchedWriteMPSAD.YMM>, VEX_4V, VEX_L, VEX_WIG;
+ }
+}
+
+let Constraints = "$src1 = $dst" in {
+ let isCommutable = 0 in {
+ defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw,
+ VR128, memopv2i64, i128mem, 1,
+ SchedWriteMPSAD.XMM>;
+ }
+
+ let ExeDomain = SSEPackedSingle in
+ defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps,
+ VR128, memopv4f32, f128mem, 1,
+ SchedWriteDPPS.XMM>;
+ let ExeDomain = SSEPackedDouble in
+ defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd,
+ VR128, memopv2f64, f128mem, 1,
+ SchedWriteDPPD.XMM>;
+}
+
+/// SS41I_blend_rmi - SSE 4.1 blend with 8-bit immediate
+multiclass SS41I_blend_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, bit Is2Addr, Domain d,
+ X86FoldableSchedWrite sched, SDNodeXForm commuteXForm> {
+let ExeDomain = d, Constraints = !if(Is2Addr, "$src1 = $dst", "") in {
+ let isCommutable = 1 in
+ def rri : SS4AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>,
+ Sched<[sched]>;
+ def rmi : SS4AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$src3),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1,
+ (bitconvert (memop_frag addr:$src2)), imm:$src3)))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+ // Pattern to commute if load is in first source.
+ def : Pat<(OpVT (OpNode (bitconvert (memop_frag addr:$src2)),
+ RC:$src1, imm:$src3)),
+ (!cast<Instruction>(NAME#"rmi") RC:$src1, addr:$src2,
+ (commuteXForm imm:$src3))>;
+}
+
+let Predicates = [HasAVX] in {
+ defm VBLENDPS : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v4f32,
+ VR128, loadv4f32, f128mem, 0, SSEPackedSingle,
+ SchedWriteFBlend.XMM, BlendCommuteImm4>,
+ VEX_4V, VEX_WIG;
+ defm VBLENDPSY : SS41I_blend_rmi<0x0C, "vblendps", X86Blendi, v8f32,
+ VR256, loadv8f32, f256mem, 0, SSEPackedSingle,
+ SchedWriteFBlend.YMM, BlendCommuteImm8>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VBLENDPD : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v2f64,
+ VR128, loadv2f64, f128mem, 0, SSEPackedDouble,
+ SchedWriteFBlend.XMM, BlendCommuteImm2>,
+ VEX_4V, VEX_WIG;
+ defm VBLENDPDY : SS41I_blend_rmi<0x0D, "vblendpd", X86Blendi, v4f64,
+ VR256, loadv4f64, f256mem, 0, SSEPackedDouble,
+ SchedWriteFBlend.YMM, BlendCommuteImm4>,
+ VEX_4V, VEX_L, VEX_WIG;
+ defm VPBLENDW : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v8i16,
+ VR128, loadv2i64, i128mem, 0, SSEPackedInt,
+ SchedWriteBlend.XMM, BlendCommuteImm8>,
+ VEX_4V, VEX_WIG;
+}
+
+let Predicates = [HasAVX2] in {
+ defm VPBLENDWY : SS41I_blend_rmi<0x0E, "vpblendw", X86Blendi, v16i16,
+ VR256, loadv4i64, i256mem, 0, SSEPackedInt,
+ SchedWriteBlend.YMM, BlendCommuteImm8>,
+ VEX_4V, VEX_L, VEX_WIG;
+}
+
+defm BLENDPS : SS41I_blend_rmi<0x0C, "blendps", X86Blendi, v4f32,
+ VR128, memopv4f32, f128mem, 1, SSEPackedSingle,
+ SchedWriteFBlend.XMM, BlendCommuteImm4>;
+defm BLENDPD : SS41I_blend_rmi<0x0D, "blendpd", X86Blendi, v2f64,
+ VR128, memopv2f64, f128mem, 1, SSEPackedDouble,
+ SchedWriteFBlend.XMM, BlendCommuteImm2>;
+defm PBLENDW : SS41I_blend_rmi<0x0E, "pblendw", X86Blendi, v8i16,
+ VR128, memopv2i64, i128mem, 1, SSEPackedInt,
+ SchedWriteBlend.XMM, BlendCommuteImm8>;
+
+// For insertion into the zero index (low half) of a 256-bit vector, it is
+// more efficient to generate a blend with immediate instead of an insert*128.
+let Predicates = [HasAVX] in {
+def : Pat<(insert_subvector (v4f64 VR256:$src1), (v2f64 VR128:$src2), (iPTR 0)),
+ (VBLENDPDYrri VR256:$src1,
+ (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0x3)>;
+def : Pat<(insert_subvector (v8f32 VR256:$src1), (v4f32 VR128:$src2), (iPTR 0)),
+ (VBLENDPSYrri VR256:$src1,
+ (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+}
+
+/// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators
+multiclass SS41I_quaternary_int_avx<bits<8> opc, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop,
+ PatFrag mem_frag, Intrinsic IntId,
+ X86FoldableSchedWrite sched> {
+ def rr : Ii8Reg<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2, RC:$src3))],
+ SSEPackedInt>, TAPD, VEX_4V,
+ Sched<[sched]>;
+
+ def rm : Ii8Reg<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, RC:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst,
+ (IntId RC:$src1, (bitconvert (mem_frag addr:$src2)),
+ RC:$src3))], SSEPackedInt>, TAPD, VEX_4V,
+ Sched<[sched.Folded, ReadAfterLd,
+ // x86memop:$src2
+ ReadDefault, ReadDefault, ReadDefault, ReadDefault,
+ ReadDefault,
+ // RC::$src3
+ ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in {
+let ExeDomain = SSEPackedDouble in {
+defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, f128mem,
+ loadv2f64, int_x86_sse41_blendvpd,
+ SchedWriteFVarBlend.XMM>;
+defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, f256mem,
+ loadv4f64, int_x86_avx_blendv_pd_256,
+ SchedWriteFVarBlend.YMM>, VEX_L;
+} // ExeDomain = SSEPackedDouble
+let ExeDomain = SSEPackedSingle in {
+defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, f128mem,
+ loadv4f32, int_x86_sse41_blendvps,
+ SchedWriteFVarBlend.XMM>;
+defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, f256mem,
+ loadv8f32, int_x86_avx_blendv_ps_256,
+ SchedWriteFVarBlend.YMM>, VEX_L;
+} // ExeDomain = SSEPackedSingle
+defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem,
+ loadv2i64, int_x86_sse41_pblendvb,
+ SchedWriteVarBlend.XMM>;
+}
+
+let Predicates = [HasAVX2] in {
+defm VPBLENDVBY : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR256, i256mem,
+ loadv4i64, int_x86_avx2_pblendvb,
+ SchedWriteVarBlend.YMM>, VEX_L;
+}
+
+let Predicates = [HasAVX] in {
+ def : Pat<(v16i8 (vselect (v16i8 VR128:$mask), (v16i8 VR128:$src1),
+ (v16i8 VR128:$src2))),
+ (VPBLENDVBrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v4i32 (vselect (v4i32 VR128:$mask), (v4i32 VR128:$src1),
+ (v4i32 VR128:$src2))),
+ (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v4f32 (vselect (v4i32 VR128:$mask), (v4f32 VR128:$src1),
+ (v4f32 VR128:$src2))),
+ (VBLENDVPSrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v2i64 (vselect (v2i64 VR128:$mask), (v2i64 VR128:$src1),
+ (v2i64 VR128:$src2))),
+ (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v2f64 (vselect (v2i64 VR128:$mask), (v2f64 VR128:$src1),
+ (v2f64 VR128:$src2))),
+ (VBLENDVPDrr VR128:$src2, VR128:$src1, VR128:$mask)>;
+ def : Pat<(v8i32 (vselect (v8i32 VR256:$mask), (v8i32 VR256:$src1),
+ (v8i32 VR256:$src2))),
+ (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v8f32 (vselect (v8i32 VR256:$mask), (v8f32 VR256:$src1),
+ (v8f32 VR256:$src2))),
+ (VBLENDVPSYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v4i64 (vselect (v4i64 VR256:$mask), (v4i64 VR256:$src1),
+ (v4i64 VR256:$src2))),
+ (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+ def : Pat<(v4f64 (vselect (v4i64 VR256:$mask), (v4f64 VR256:$src1),
+ (v4f64 VR256:$src2))),
+ (VBLENDVPDYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+}
+
+let Predicates = [HasAVX2] in {
+ def : Pat<(v32i8 (vselect (v32i8 VR256:$mask), (v32i8 VR256:$src1),
+ (v32i8 VR256:$src2))),
+ (VPBLENDVBYrr VR256:$src2, VR256:$src1, VR256:$mask)>;
+}
+
+// Prefer a movss or movsd over a blendps when optimizing for size. these were
+// changed to use blends because blends have better throughput on sandybridge
+// and haswell, but movs[s/d] are 1-2 byte shorter instructions.
+let Predicates = [HasAVX, OptForSpeed] in {
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (VBLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (VPBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>;
+
+ def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
+ (VBLENDPSrri VR128:$src1, VR128:$src2, (i8 1))>;
+ def : Pat<(v4f32 (X86Movss VR128:$src1, (loadv4f32 addr:$src2))),
+ (VBLENDPSrmi VR128:$src1, addr:$src2, (i8 1))>;
+ def : Pat<(v4f32 (X86Movss (loadv4f32 addr:$src2), VR128:$src1)),
+ (VBLENDPSrmi VR128:$src1, addr:$src2, (i8 0xe))>;
+
+ def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
+ (VBLENDPDrri VR128:$src1, VR128:$src2, (i8 1))>;
+ def : Pat<(v2f64 (X86Movsd VR128:$src1, (loadv2f64 addr:$src2))),
+ (VBLENDPDrmi VR128:$src1, addr:$src2, (i8 1))>;
+ def : Pat<(v2f64 (X86Movsd (loadv2f64 addr:$src2), VR128:$src1)),
+ (VBLENDPDrmi VR128:$src1, addr:$src2, (i8 2))>;
+
+ // Move low f32 and clear high bits.
+ def : Pat<(v8f32 (X86vzmovl (v8f32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v4f32 (VBLENDPSrri (v4f32 (V_SET0)),
+ (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src), sub_xmm)),
+ (i8 1))), sub_xmm)>;
+ def : Pat<(v8i32 (X86vzmovl (v8i32 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v4i32 (VPBLENDWrri (v4i32 (V_SET0)),
+ (v4i32 (EXTRACT_SUBREG (v8i32 VR256:$src), sub_xmm)),
+ (i8 3))), sub_xmm)>;
+
+ def : Pat<(v4f64 (X86vzmovl (v4f64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v2f64 (VBLENDPDrri (v2f64 (V_SET0)),
+ (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src), sub_xmm)),
+ (i8 1))), sub_xmm)>;
+ def : Pat<(v4i64 (X86vzmovl (v4i64 VR256:$src))),
+ (SUBREG_TO_REG (i32 0),
+ (v2i64 (VPBLENDWrri (v2i64 (V_SET0)),
+ (v2i64 (EXTRACT_SUBREG (v4i64 VR256:$src), sub_xmm)),
+ (i8 0xf))), sub_xmm)>;
+}
+
+// Prefer a movss or movsd over a blendps when optimizing for size. these were
+// changed to use blends because blends have better throughput on sandybridge
+// and haswell, but movs[s/d] are 1-2 byte shorter instructions.
+let Predicates = [UseSSE41, OptForSpeed] in {
+ // With SSE41 we can use blends for these patterns.
+ def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))),
+ (BLENDPSrri (v4f32 (V_SET0)), VR128:$src, (i8 1))>;
+ def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))),
+ (PBLENDWrri (v4i32 (V_SET0)), VR128:$src, (i8 3))>;
+
+ def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)),
+ (BLENDPSrri VR128:$src1, VR128:$src2, (i8 1))>;
+ def : Pat<(v4f32 (X86Movss VR128:$src1, (memopv4f32 addr:$src2))),
+ (BLENDPSrmi VR128:$src1, addr:$src2, (i8 1))>;
+ def : Pat<(v4f32 (X86Movss (memopv4f32 addr:$src2), VR128:$src1)),
+ (BLENDPSrmi VR128:$src1, addr:$src2, (i8 0xe))>;
+
+ def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)),
+ (BLENDPDrri VR128:$src1, VR128:$src2, (i8 1))>;
+ def : Pat<(v2f64 (X86Movsd VR128:$src1, (memopv2f64 addr:$src2))),
+ (BLENDPDrmi VR128:$src1, addr:$src2, (i8 1))>;
+ def : Pat<(v2f64 (X86Movsd (memopv2f64 addr:$src2), VR128:$src1)),
+ (BLENDPDrmi VR128:$src1, addr:$src2, (i8 2))>;
+}
+
+
+/// SS41I_ternary_int - SSE 4.1 ternary operator
+let Uses = [XMM0], Constraints = "$src1 = $dst" in {
+ multiclass SS41I_ternary_int<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ X86MemOperand x86memop, Intrinsic IntId,
+ X86FoldableSchedWrite sched> {
+ def rr0 : SS48I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr,
+ "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
+ [(set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0))]>,
+ Sched<[sched]>;
+
+ def rm0 : SS48I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, x86memop:$src2),
+ !strconcat(OpcodeStr,
+ "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
+ [(set VR128:$dst,
+ (IntId VR128:$src1,
+ (bitconvert (mem_frag addr:$src2)), XMM0))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+ }
+}
+
+let ExeDomain = SSEPackedDouble in
+defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", memopv2f64, f128mem,
+ int_x86_sse41_blendvpd, SchedWriteFVarBlend.XMM>;
+let ExeDomain = SSEPackedSingle in
+defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", memopv4f32, f128mem,
+ int_x86_sse41_blendvps, SchedWriteFVarBlend.XMM>;
+defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", memopv2i64, i128mem,
+ int_x86_sse41_pblendvb, SchedWriteVarBlend.XMM>;
+
+// Aliases with the implicit xmm0 argument
+// def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}",
+// (BLENDVPDrr0 VR128:$dst, VR128:$src2), 0>;
+// def : InstAlias<"blendvpd\t{$src2, $dst|$dst, $src2}",
+// (BLENDVPDrm0 VR128:$dst, f128mem:$src2), 0>;
+// def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}",
+// (BLENDVPSrr0 VR128:$dst, VR128:$src2), 0>;
+// def : InstAlias<"blendvps\t{$src2, $dst|$dst, $src2}",
+// (BLENDVPSrm0 VR128:$dst, f128mem:$src2), 0>;
+// def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}",
+// (PBLENDVBrr0 VR128:$dst, VR128:$src2), 0>;
+// def : InstAlias<"pblendvb\t{$src2, $dst|$dst, $src2}",
+// (PBLENDVBrm0 VR128:$dst, i128mem:$src2), 0>;
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(v16i8 (vselect (v16i8 XMM0), (v16i8 VR128:$src1),
+ (v16i8 VR128:$src2))),
+ (PBLENDVBrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v4i32 (vselect (v4i32 XMM0), (v4i32 VR128:$src1),
+ (v4i32 VR128:$src2))),
+ (BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v4f32 (vselect (v4i32 XMM0), (v4f32 VR128:$src1),
+ (v4f32 VR128:$src2))),
+ (BLENDVPSrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v2i64 (vselect (v2i64 XMM0), (v2i64 VR128:$src1),
+ (v2i64 VR128:$src2))),
+ (BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
+ def : Pat<(v2f64 (vselect (v2i64 XMM0), (v2f64 VR128:$src1),
+ (v2f64 VR128:$src2))),
+ (BLENDVPDrr0 VR128:$src2, VR128:$src1)>;
+}
+
+let AddedComplexity = 400 in { // Prefer non-temporal versions
+
+let Predicates = [HasAVX, NoVLX] in
+def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLSNT.XMM.RM]>, VEX, VEX_WIG;
+let Predicates = [HasAVX2, NoVLX] in
+def VMOVNTDQAYrm : SS48I<0x2A, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src),
+ "vmovntdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLSNT.YMM.RM]>, VEX, VEX_L, VEX_WIG;
+def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src),
+ "movntdqa\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteVecMoveLSNT.XMM.RM]>;
+
+let Predicates = [HasAVX2, NoVLX] in {
+ def : Pat<(v8f32 (alignednontemporalload addr:$src)),
+ (VMOVNTDQAYrm addr:$src)>;
+ def : Pat<(v4f64 (alignednontemporalload addr:$src)),
+ (VMOVNTDQAYrm addr:$src)>;
+ def : Pat<(v4i64 (alignednontemporalload addr:$src)),
+ (VMOVNTDQAYrm addr:$src)>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4f32 (alignednontemporalload addr:$src)),
+ (VMOVNTDQArm addr:$src)>;
+ def : Pat<(v2f64 (alignednontemporalload addr:$src)),
+ (VMOVNTDQArm addr:$src)>;
+ def : Pat<(v2i64 (alignednontemporalload addr:$src)),
+ (VMOVNTDQArm addr:$src)>;
+}
+
+let Predicates = [UseSSE41] in {
+ def : Pat<(v4f32 (alignednontemporalload addr:$src)),
+ (MOVNTDQArm addr:$src)>;
+ def : Pat<(v2f64 (alignednontemporalload addr:$src)),
+ (MOVNTDQArm addr:$src)>;
+ def : Pat<(v2i64 (alignednontemporalload addr:$src)),
+ (MOVNTDQArm addr:$src)>;
+}
+
+} // AddedComplexity
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 - Compare Instructions
+//===----------------------------------------------------------------------===//
+
+/// SS42I_binop_rm - Simple SSE 4.2 binary operator
+multiclass SS42I_binop_rm<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, X86FoldableSchedWrite sched,
+ bit Is2Addr = 1> {
+ def rr : SS428I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2)))]>,
+ Sched<[sched]>;
+ def rm : SS428I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2),
+ !if(Is2Addr,
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1, (memop_frag addr:$src2))))]>,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX] in
+ defm VPCMPGTQ : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v2i64, VR128,
+ loadv2i64, i128mem, SchedWriteVecALU.XMM, 0>,
+ VEX_4V, VEX_WIG;
+
+let Predicates = [HasAVX2] in
+ defm VPCMPGTQY : SS42I_binop_rm<0x37, "vpcmpgtq", X86pcmpgt, v4i64, VR256,
+ loadv4i64, i256mem, SchedWriteVecALU.YMM, 0>,
+ VEX_4V, VEX_L, VEX_WIG;
+
+let Constraints = "$src1 = $dst" in
+ defm PCMPGTQ : SS42I_binop_rm<0x37, "pcmpgtq", X86pcmpgt, v2i64, VR128,
+ memopv2i64, i128mem, SchedWriteVecALU.XMM>;
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 - String/text Processing Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass pcmpistrm_SS42AI<string asm> {
+ def rr : SS42AI<0x62, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src2, u8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrM]>;
+ let mayLoad = 1 in
+ def rm :SS42AI<0x62, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src2, u8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrM.Folded, ReadAfterLd]>;
+}
+
+let Defs = [XMM0, EFLAGS], hasSideEffects = 0 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPISTRM : pcmpistrm_SS42AI<"vpcmpistrm">, VEX;
+ defm PCMPISTRM : pcmpistrm_SS42AI<"pcmpistrm"> ;
+}
+
+multiclass SS42AI_pcmpestrm<string asm> {
+ def rr : SS42AI<0x60, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src3, u8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrM]>;
+ let mayLoad = 1 in
+ def rm : SS42AI<0x60, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src3, u8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrM.Folded, ReadAfterLd]>;
+}
+
+let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPESTRM : SS42AI_pcmpestrm<"vpcmpestrm">, VEX;
+ defm PCMPESTRM : SS42AI_pcmpestrm<"pcmpestrm">;
+}
+
+multiclass SS42AI_pcmpistri<string asm> {
+ def rr : SS42AI<0x63, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src2, u8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrI]>;
+ let mayLoad = 1 in
+ def rm : SS42AI<0x63, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src2, u8imm:$src3),
+ !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"),
+ []>, Sched<[WritePCmpIStrI.Folded, ReadAfterLd]>;
+}
+
+let Defs = [ECX, EFLAGS], hasSideEffects = 0 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPISTRI : SS42AI_pcmpistri<"vpcmpistri">, VEX;
+ defm PCMPISTRI : SS42AI_pcmpistri<"pcmpistri">;
+}
+
+multiclass SS42AI_pcmpestri<string asm> {
+ def rr : SS42AI<0x61, MRMSrcReg, (outs),
+ (ins VR128:$src1, VR128:$src3, u8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrI]>;
+ let mayLoad = 1 in
+ def rm : SS42AI<0x61, MRMSrcMem, (outs),
+ (ins VR128:$src1, i128mem:$src3, u8imm:$src5),
+ !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"),
+ []>, Sched<[WritePCmpEStrI.Folded, ReadAfterLd]>;
+}
+
+let Defs = [ECX, EFLAGS], Uses = [EAX, EDX], hasSideEffects = 0 in {
+ let Predicates = [HasAVX] in
+ defm VPCMPESTRI : SS42AI_pcmpestri<"vpcmpestri">, VEX;
+ defm PCMPESTRI : SS42AI_pcmpestri<"pcmpestri">;
+}
+
+//===----------------------------------------------------------------------===//
+// SSE4.2 - CRC Instructions
+//===----------------------------------------------------------------------===//
+
+// No CRC instructions have AVX equivalents
+
+// crc intrinsic instruction
+// This set of instructions are only rm, the only difference is the size
+// of r and m.
+class SS42I_crc32r<bits<8> opc, string asm, RegisterClass RCOut,
+ RegisterClass RCIn, SDPatternOperator Int> :
+ SS42FI<opc, MRMSrcReg, (outs RCOut:$dst), (ins RCOut:$src1, RCIn:$src2),
+ !strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
+ [(set RCOut:$dst, (Int RCOut:$src1, RCIn:$src2))]>,
+ Sched<[WriteCRC32]>;
+
+class SS42I_crc32m<bits<8> opc, string asm, RegisterClass RCOut,
+ X86MemOperand x86memop, SDPatternOperator Int> :
+ SS42FI<opc, MRMSrcMem, (outs RCOut:$dst), (ins RCOut:$src1, x86memop:$src2),
+ !strconcat(asm, "\t{$src2, $src1|$src1, $src2}"),
+ [(set RCOut:$dst, (Int RCOut:$src1, (load addr:$src2)))]>,
+ Sched<[WriteCRC32.Folded, ReadAfterLd]>;
+
+let Constraints = "$src1 = $dst" in {
+ def CRC32r32m8 : SS42I_crc32m<0xF0, "crc32{b}", GR32, i8mem,
+ int_x86_sse42_crc32_32_8>;
+ def CRC32r32r8 : SS42I_crc32r<0xF0, "crc32{b}", GR32, GR8,
+ int_x86_sse42_crc32_32_8>;
+ def CRC32r32m16 : SS42I_crc32m<0xF1, "crc32{w}", GR32, i16mem,
+ int_x86_sse42_crc32_32_16>, OpSize16;
+ def CRC32r32r16 : SS42I_crc32r<0xF1, "crc32{w}", GR32, GR16,
+ int_x86_sse42_crc32_32_16>, OpSize16;
+ def CRC32r32m32 : SS42I_crc32m<0xF1, "crc32{l}", GR32, i32mem,
+ int_x86_sse42_crc32_32_32>, OpSize32;
+ def CRC32r32r32 : SS42I_crc32r<0xF1, "crc32{l}", GR32, GR32,
+ int_x86_sse42_crc32_32_32>, OpSize32;
+ def CRC32r64m64 : SS42I_crc32m<0xF1, "crc32{q}", GR64, i64mem,
+ int_x86_sse42_crc32_64_64>, REX_W;
+ def CRC32r64r64 : SS42I_crc32r<0xF1, "crc32{q}", GR64, GR64,
+ int_x86_sse42_crc32_64_64>, REX_W;
+ let hasSideEffects = 0 in {
+ let mayLoad = 1 in
+ def CRC32r64m8 : SS42I_crc32m<0xF0, "crc32{b}", GR64, i8mem,
+ null_frag>, REX_W;
+ def CRC32r64r8 : SS42I_crc32r<0xF0, "crc32{b}", GR64, GR8,
+ null_frag>, REX_W;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// SHA-NI Instructions
+//===----------------------------------------------------------------------===//
+
+// FIXME: Is there a better scheduler class for SHA than WriteVecIMul?
+multiclass SHAI_binop<bits<8> Opc, string OpcodeStr, Intrinsic IntId,
+ X86FoldableSchedWrite sched, bit UsesXMM0 = 0> {
+ def rr : I<Opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !if(UsesXMM0,
+ !strconcat(OpcodeStr, "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}")),
+ [!if(UsesXMM0,
+ (set VR128:$dst, (IntId VR128:$src1, VR128:$src2, XMM0)),
+ (set VR128:$dst, (IntId VR128:$src1, VR128:$src2)))]>,
+ T8, Sched<[sched]>;
+
+ def rm : I<Opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !if(UsesXMM0,
+ !strconcat(OpcodeStr, "\t{%xmm0, $src2, $dst|$dst, $src2, xmm0}"),
+ !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}")),
+ [!if(UsesXMM0,
+ (set VR128:$dst, (IntId VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)), XMM0)),
+ (set VR128:$dst, (IntId VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)))))]>, T8,
+ Sched<[sched.Folded, ReadAfterLd]>;
+}
+
+let Constraints = "$src1 = $dst", Predicates = [HasSHA] in {
+ def SHA1RNDS4rri : Ii8<0xCC, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, u8imm:$src3),
+ "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_sha1rnds4 VR128:$src1, VR128:$src2,
+ (i8 imm:$src3)))]>, TA,
+ Sched<[SchedWriteVecIMul.XMM]>;
+ def SHA1RNDS4rmi : Ii8<0xCC, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, u8imm:$src3),
+ "sha1rnds4\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_sha1rnds4 VR128:$src1,
+ (bc_v4i32 (memopv2i64 addr:$src2)),
+ (i8 imm:$src3)))]>, TA,
+ Sched<[SchedWriteVecIMul.XMM.Folded, ReadAfterLd]>;
+
+ defm SHA1NEXTE : SHAI_binop<0xC8, "sha1nexte", int_x86_sha1nexte,
+ SchedWriteVecIMul.XMM>;
+ defm SHA1MSG1 : SHAI_binop<0xC9, "sha1msg1", int_x86_sha1msg1,
+ SchedWriteVecIMul.XMM>;
+ defm SHA1MSG2 : SHAI_binop<0xCA, "sha1msg2", int_x86_sha1msg2,
+ SchedWriteVecIMul.XMM>;
+
+ let Uses=[XMM0] in
+ defm SHA256RNDS2 : SHAI_binop<0xCB, "sha256rnds2", int_x86_sha256rnds2,
+ SchedWriteVecIMul.XMM, 1>;
+
+ defm SHA256MSG1 : SHAI_binop<0xCC, "sha256msg1", int_x86_sha256msg1,
+ SchedWriteVecIMul.XMM>;
+ defm SHA256MSG2 : SHAI_binop<0xCD, "sha256msg2", int_x86_sha256msg2,
+ SchedWriteVecIMul.XMM>;
+}
+
+// Aliases with explicit %xmm0
+// def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}",
+// (SHA256RNDS2rr VR128:$dst, VR128:$src2), 0>;
+// def : InstAlias<"sha256rnds2\t{$src2, $dst|$dst, $src2}",
+// (SHA256RNDS2rm VR128:$dst, i128mem:$src2), 0>;
+
+//===----------------------------------------------------------------------===//
+// AES-NI Instructions
+//===----------------------------------------------------------------------===//
+
+multiclass AESI_binop_rm_int<bits<8> opc, string OpcodeStr,
+ Intrinsic IntId, PatFrag ld_frag,
+ bit Is2Addr = 0, RegisterClass RC = VR128,
+ X86MemOperand MemOp = i128mem> {
+ let AsmString = OpcodeStr##
+ !if(Is2Addr, "\t{$src2, $dst|$dst, $src2}",
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}") in {
+ def rr : AES8I<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2), "",
+ [(set RC:$dst, (IntId RC:$src1, RC:$src2))]>,
+ Sched<[WriteAESDecEnc]>;
+ def rm : AES8I<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, MemOp:$src2), "",
+ [(set RC:$dst, (IntId RC:$src1, (ld_frag addr:$src2)))]>,
+ Sched<[WriteAESDecEnc.Folded, ReadAfterLd]>;
+ }
+}
+
+// Perform One Round of an AES Encryption/Decryption Flow
+let Predicates = [HasAVX, NoVLX_Or_NoVAES, HasAES] in {
+ defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc",
+ int_x86_aesni_aesenc, loadv2i64>, VEX_4V, VEX_WIG;
+ defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast",
+ int_x86_aesni_aesenclast, loadv2i64>, VEX_4V, VEX_WIG;
+ defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec",
+ int_x86_aesni_aesdec, loadv2i64>, VEX_4V, VEX_WIG;
+ defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast",
+ int_x86_aesni_aesdeclast, loadv2i64>, VEX_4V, VEX_WIG;
+}
+
+let Predicates = [NoVLX, HasVAES] in {
+ defm VAESENCY : AESI_binop_rm_int<0xDC, "vaesenc",
+ int_x86_aesni_aesenc_256, loadv4i64, 0, VR256,
+ i256mem>, VEX_4V, VEX_L, VEX_WIG;
+ defm VAESENCLASTY : AESI_binop_rm_int<0xDD, "vaesenclast",
+ int_x86_aesni_aesenclast_256, loadv4i64, 0, VR256,
+ i256mem>, VEX_4V, VEX_L, VEX_WIG;
+ defm VAESDECY : AESI_binop_rm_int<0xDE, "vaesdec",
+ int_x86_aesni_aesdec_256, loadv4i64, 0, VR256,
+ i256mem>, VEX_4V, VEX_L, VEX_WIG;
+ defm VAESDECLASTY : AESI_binop_rm_int<0xDF, "vaesdeclast",
+ int_x86_aesni_aesdeclast_256, loadv4i64, 0, VR256,
+ i256mem>, VEX_4V, VEX_L, VEX_WIG;
+}
+
+let Constraints = "$src1 = $dst" in {
+ defm AESENC : AESI_binop_rm_int<0xDC, "aesenc",
+ int_x86_aesni_aesenc, memopv2i64, 1>;
+ defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast",
+ int_x86_aesni_aesenclast, memopv2i64, 1>;
+ defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec",
+ int_x86_aesni_aesdec, memopv2i64, 1>;
+ defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast",
+ int_x86_aesni_aesdeclast, memopv2i64, 1>;
+}
+
+// Perform the AES InvMixColumn Transformation
+let Predicates = [HasAVX, HasAES] in {
+ def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1),
+ "vaesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>,
+ VEX, VEX_WIG;
+ def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1),
+ "vaesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst, (int_x86_aesni_aesimc (loadv2i64 addr:$src1)))]>,
+ Sched<[WriteAESIMC.Folded]>, VEX, VEX_WIG;
+}
+def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1),
+ "aesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aesimc VR128:$src1))]>, Sched<[WriteAESIMC]>;
+def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1),
+ "aesimc\t{$src1, $dst|$dst, $src1}",
+ [(set VR128:$dst, (int_x86_aesni_aesimc (memopv2i64 addr:$src1)))]>,
+ Sched<[WriteAESIMC.Folded]>;
+
+// AES Round Key Generation Assist
+let Predicates = [HasAVX, HasAES] in {
+ def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
+ Sched<[WriteAESKeyGen]>, VEX, VEX_WIG;
+ def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, u8imm:$src2),
+ "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist (loadv2i64 addr:$src1), imm:$src2))]>,
+ Sched<[WriteAESKeyGen.Folded]>, VEX, VEX_WIG;
+}
+def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, u8imm:$src2),
+ "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>,
+ Sched<[WriteAESKeyGen]>;
+def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst),
+ (ins i128mem:$src1, u8imm:$src2),
+ "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst,
+ (int_x86_aesni_aeskeygenassist (memopv2i64 addr:$src1), imm:$src2))]>,
+ Sched<[WriteAESKeyGen.Folded]>;
+
+//===----------------------------------------------------------------------===//
+// PCLMUL Instructions
+//===----------------------------------------------------------------------===//
+
+// Immediate transform to help with commuting.
+def PCLMULCommuteImm : SDNodeXForm<imm, [{
+ uint8_t Imm = N->getZExtValue();
+ return getI8Imm((uint8_t)((Imm >> 4) | (Imm << 4)), SDLoc(N));
+}]>;
+
+// SSE carry-less Multiplication instructions
+let Predicates = [NoAVX, HasPCLMUL] in {
+ let Constraints = "$src1 = $dst" in {
+ let isCommutable = 1 in
+ def PCLMULQDQrr : PCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2, u8imm:$src3),
+ "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_pclmulqdq VR128:$src1, VR128:$src2, imm:$src3))]>,
+ Sched<[WriteCLMul]>;
+
+ def PCLMULQDQrm : PCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2, u8imm:$src3),
+ "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ [(set VR128:$dst,
+ (int_x86_pclmulqdq VR128:$src1, (memopv2i64 addr:$src2),
+ imm:$src3))]>,
+ Sched<[WriteCLMul.Folded, ReadAfterLd]>;
+ } // Constraints = "$src1 = $dst"
+
+ def : Pat<(int_x86_pclmulqdq (memopv2i64 addr:$src2), VR128:$src1,
+ (i8 imm:$src3)),
+ (PCLMULQDQrm VR128:$src1, addr:$src2,
+ (PCLMULCommuteImm imm:$src3))>;
+} // Predicates = [NoAVX, HasPCLMUL]
+
+// SSE aliases
+foreach HI = ["hq","lq"] in
+foreach LO = ["hq","lq"] in {
+ // def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}",
+ // (PCLMULQDQrr VR128:$dst, VR128:$src,
+ // !add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>;
+ // def : InstAlias<"pclmul" # HI # LO # "dq\t{$src, $dst|$dst, $src}",
+ // (PCLMULQDQrm VR128:$dst, i128mem:$src,
+ // !add(!shl(!eq(LO,"hq"),4),!eq(HI,"hq"))), 0>;
+}
+
+// AVX carry-less Multiplication instructions
+multiclass vpclmulqdq<RegisterClass RC, X86MemOperand MemOp,
+ PatFrag LdFrag, Intrinsic IntId> {
+ let isCommutable = 1 in
+ def rr : PCLMULIi8<0x44, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3),
+ "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set RC:$dst,
+ (IntId RC:$src1, RC:$src2, imm:$src3))]>,
+ Sched<[WriteCLMul]>;
+
+ def rm : PCLMULIi8<0x44, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, MemOp:$src2, u8imm:$src3),
+ "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set RC:$dst,
+ (IntId RC:$src1, (LdFrag addr:$src2), imm:$src3))]>,
+ Sched<[WriteCLMul.Folded, ReadAfterLd]>;
+
+ // We can commute a load in the first operand by swapping the sources and
+ // rotating the immediate.
+ def : Pat<(IntId (LdFrag addr:$src2), RC:$src1, (i8 imm:$src3)),
+ (!cast<Instruction>(NAME#"rm") RC:$src1, addr:$src2,
+ (PCLMULCommuteImm imm:$src3))>;
+}
+
+let Predicates = [HasAVX, NoVLX_Or_NoVPCLMULQDQ, HasPCLMUL] in
+defm VPCLMULQDQ : vpclmulqdq<VR128, i128mem, loadv2i64,
+ int_x86_pclmulqdq>, VEX_4V, VEX_WIG;
+
+let Predicates = [NoVLX, HasVPCLMULQDQ] in
+defm VPCLMULQDQY : vpclmulqdq<VR256, i256mem, loadv4i64,
+ int_x86_pclmulqdq_256>, VEX_4V, VEX_L, VEX_WIG;
+
+/*
+multiclass vpclmulqdq_aliases_impl<string InstStr, RegisterClass RC,
+ X86MemOperand MemOp, string Hi, string Lo> {
+ // def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ // (!cast<Instruction>(InstStr # "rr") RC:$dst, RC:$src1, RC:$src2,
+ // !add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>;
+ // def : InstAlias<"vpclmul"##Hi##Lo##"dq\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ // (!cast<Instruction>(InstStr # "rm") RC:$dst, RC:$src1, MemOp:$src2,
+ // !add(!shl(!eq(Lo,"hq"),4),!eq(Hi,"hq"))), 0>;
+}
+
+multiclass vpclmulqdq_aliases<string InstStr, RegisterClass RC,
+ X86MemOperand MemOp> {
+ defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "hq", "hq">;
+ defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "hq", "lq">;
+ defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "lq", "hq">;
+ defm : vpclmulqdq_aliases_impl<InstStr, RC, MemOp, "lq", "lq">;
+}
+
+// AVX aliases
+defm : vpclmulqdq_aliases<"VPCLMULQDQ", VR128, i128mem>;
+defm : vpclmulqdq_aliases<"VPCLMULQDQY", VR256, i256mem>;
+*/
+
+//===----------------------------------------------------------------------===//
+// SSE4A Instructions
+//===----------------------------------------------------------------------===//
+
+let Predicates = [HasSSE4A] in {
+
+let ExeDomain = SSEPackedInt in {
+let Constraints = "$src = $dst" in {
+def EXTRQI : Ii8<0x78, MRMXr, (outs VR128:$dst),
+ (ins VR128:$src, u8imm:$len, u8imm:$idx),
+ "extrq\t{$idx, $len, $src|$src, $len, $idx}",
+ [(set VR128:$dst, (X86extrqi VR128:$src, imm:$len,
+ imm:$idx))]>,
+ PD, Sched<[SchedWriteVecALU.XMM]>;
+def EXTRQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src, VR128:$mask),
+ "extrq\t{$mask, $src|$src, $mask}",
+ [(set VR128:$dst, (int_x86_sse4a_extrq VR128:$src,
+ VR128:$mask))]>,
+ PD, Sched<[SchedWriteVecALU.XMM]>;
+
+def INSERTQI : Ii8<0x78, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src, VR128:$src2, u8imm:$len, u8imm:$idx),
+ "insertq\t{$idx, $len, $src2, $src|$src, $src2, $len, $idx}",
+ [(set VR128:$dst, (X86insertqi VR128:$src, VR128:$src2,
+ imm:$len, imm:$idx))]>,
+ XD, Sched<[SchedWriteVecALU.XMM]>;
+def INSERTQ : I<0x79, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src, VR128:$mask),
+ "insertq\t{$mask, $src|$src, $mask}",
+ [(set VR128:$dst, (int_x86_sse4a_insertq VR128:$src,
+ VR128:$mask))]>,
+ XD, Sched<[SchedWriteVecALU.XMM]>;
+}
+} // ExeDomain = SSEPackedInt
+
+// Non-temporal (unaligned) scalar stores.
+let AddedComplexity = 400 in { // Prefer non-temporal versions
+let hasSideEffects = 0, mayStore = 1, SchedRW = [SchedWriteFMoveLSNT.Scl.MR] in {
+def MOVNTSS : I<0x2B, MRMDestMem, (outs), (ins f32mem:$dst, VR128:$src),
+ "movntss\t{$src, $dst|$dst, $src}", []>, XS;
+
+def MOVNTSD : I<0x2B, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src),
+ "movntsd\t{$src, $dst|$dst, $src}", []>, XD;
+} // SchedRW
+
+def : Pat<(nontemporalstore FR32:$src, addr:$dst),
+ (MOVNTSS addr:$dst, (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>;
+
+def : Pat<(nontemporalstore FR64:$src, addr:$dst),
+ (MOVNTSD addr:$dst, (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>;
+
+} // AddedComplexity
+} // HasSSE4A
+
+//===----------------------------------------------------------------------===//
+// AVX Instructions
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// VBROADCAST - Load from memory and broadcast to all elements of the
+// destination operand
+//
+class avx_broadcast_rm<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ X86MemOperand x86memop, ValueType VT,
+ PatFrag ld_frag, SchedWrite Sched> :
+ AVX8I<opc, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (VT (X86VBroadcast (ld_frag addr:$src))))]>,
+ Sched<[Sched]>, VEX;
+
+// AVX2 adds register forms
+class avx2_broadcast_rr<bits<8> opc, string OpcodeStr, RegisterClass RC,
+ ValueType ResVT, ValueType OpVT, SchedWrite Sched> :
+ AVX28I<opc, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set RC:$dst, (ResVT (X86VBroadcast (OpVT VR128:$src))))]>,
+ Sched<[Sched]>, VEX;
+
+let ExeDomain = SSEPackedSingle, Predicates = [HasAVX, NoVLX] in {
+ def VBROADCASTSSrm : avx_broadcast_rm<0x18, "vbroadcastss", VR128,
+ f32mem, v4f32, loadf32,
+ SchedWriteFShuffle.XMM.Folded>;
+ def VBROADCASTSSYrm : avx_broadcast_rm<0x18, "vbroadcastss", VR256,
+ f32mem, v8f32, loadf32,
+ SchedWriteFShuffle.XMM.Folded>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble, Predicates = [HasAVX, NoVLX] in
+def VBROADCASTSDYrm : avx_broadcast_rm<0x19, "vbroadcastsd", VR256, f64mem,
+ v4f64, loadf64,
+ SchedWriteFShuffle.XMM.Folded>, VEX_L;
+
+let ExeDomain = SSEPackedSingle, Predicates = [HasAVX2, NoVLX] in {
+ def VBROADCASTSSrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR128,
+ v4f32, v4f32, SchedWriteFShuffle.XMM>;
+ def VBROADCASTSSYrr : avx2_broadcast_rr<0x18, "vbroadcastss", VR256,
+ v8f32, v4f32, WriteFShuffle256>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble, Predicates = [HasAVX2, NoVLX] in
+def VBROADCASTSDYrr : avx2_broadcast_rr<0x19, "vbroadcastsd", VR256,
+ v4f64, v2f64, WriteFShuffle256>, VEX_L;
+
+let Predicates = [HasAVX, NoVLX] in {
+ def : Pat<(v4f32 (X86VBroadcast (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (VBROADCASTSSrm addr:$src)>;
+ def : Pat<(v8f32 (X86VBroadcast (v4f32 (scalar_to_vector (loadf32 addr:$src))))),
+ (VBROADCASTSSYrm addr:$src)>;
+ def : Pat<(v4f64 (X86VBroadcast (v2f64 (scalar_to_vector (loadf64 addr:$src))))),
+ (VBROADCASTSDYrm addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VBROADCAST*128 - Load from memory and broadcast 128-bit vector to both
+// halves of a 256-bit vector.
+//
+let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX2] in
+def VBROADCASTI128 : AVX8I<0x5A, MRMSrcMem, (outs VR256:$dst),
+ (ins i128mem:$src),
+ "vbroadcasti128\t{$src, $dst|$dst, $src}", []>,
+ Sched<[WriteShuffleLd]>, VEX, VEX_L;
+
+let mayLoad = 1, hasSideEffects = 0, Predicates = [HasAVX],
+ ExeDomain = SSEPackedSingle in
+def VBROADCASTF128 : AVX8I<0x1A, MRMSrcMem, (outs VR256:$dst),
+ (ins f128mem:$src),
+ "vbroadcastf128\t{$src, $dst|$dst, $src}", []>,
+ Sched<[SchedWriteFShuffle.XMM.Folded]>, VEX, VEX_L;
+
+let Predicates = [HasAVX2, NoVLX] in {
+def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))),
+ (VBROADCASTI128 addr:$src)>;
+def : Pat<(v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VBROADCASTI128 addr:$src)>;
+def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))),
+ (VBROADCASTI128 addr:$src)>;
+def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))),
+ (VBROADCASTI128 addr:$src)>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+def : Pat<(v4f64 (X86SubVBroadcast (loadv2f64 addr:$src))),
+ (VBROADCASTF128 addr:$src)>;
+def : Pat<(v8f32 (X86SubVBroadcast (loadv4f32 addr:$src))),
+ (VBROADCASTF128 addr:$src)>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v4i64 (X86SubVBroadcast (loadv2i64 addr:$src))),
+ (VBROADCASTF128 addr:$src)>;
+def : Pat<(v8i32 (X86SubVBroadcast (bc_v4i32 (loadv2i64 addr:$src)))),
+ (VBROADCASTF128 addr:$src)>;
+def : Pat<(v16i16 (X86SubVBroadcast (bc_v8i16 (loadv2i64 addr:$src)))),
+ (VBROADCASTF128 addr:$src)>;
+def : Pat<(v32i8 (X86SubVBroadcast (bc_v16i8 (loadv2i64 addr:$src)))),
+ (VBROADCASTF128 addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VINSERTF128 - Insert packed floating-point values
+//
+let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
+def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR128:$src2, u8imm:$src3),
+ "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteFShuffle256]>, VEX_4V, VEX_L;
+let mayLoad = 1 in
+def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f128mem:$src2, u8imm:$src3),
+ "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteFShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+}
+
+// To create a 256-bit all ones value, we should produce VCMPTRUEPS
+// with YMM register containing zero.
+// FIXME: Avoid producing vxorps to clear the fake inputs.
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v8i32 immAllOnesV), (VCMPPSYrri (AVX_SET0), (AVX_SET0), 0xf)>;
+}
+
+multiclass vinsert_lowering<string InstrStr, ValueType From, ValueType To,
+ PatFrag memop_frag> {
+ def : Pat<(vinsert128_insert:$ins (To VR256:$src1), (From VR128:$src2),
+ (iPTR imm)),
+ (!cast<Instruction>(InstrStr#rr) VR256:$src1, VR128:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+ def : Pat<(vinsert128_insert:$ins (To VR256:$src1),
+ (From (bitconvert (memop_frag addr:$src2))),
+ (iPTR imm)),
+ (!cast<Instruction>(InstrStr#rm) VR256:$src1, addr:$src2,
+ (INSERT_get_vinsert128_imm VR256:$ins))>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+ defm : vinsert_lowering<"VINSERTF128", v4f32, v8f32, loadv4f32>;
+ defm : vinsert_lowering<"VINSERTF128", v2f64, v4f64, loadv2f64>;
+}
+
+let Predicates = [HasAVX1Only] in {
+ defm : vinsert_lowering<"VINSERTF128", v2i64, v4i64, loadv2i64>;
+ defm : vinsert_lowering<"VINSERTF128", v4i32, v8i32, loadv2i64>;
+ defm : vinsert_lowering<"VINSERTF128", v8i16, v16i16, loadv2i64>;
+ defm : vinsert_lowering<"VINSERTF128", v16i8, v32i8, loadv2i64>;
+}
+
+//===----------------------------------------------------------------------===//
+// VEXTRACTF128 - Extract packed floating-point values
+//
+let hasSideEffects = 0, ExeDomain = SSEPackedSingle in {
+def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst),
+ (ins VR256:$src1, u8imm:$src2),
+ "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, Sched<[WriteFShuffle256]>, VEX, VEX_L;
+let mayStore = 1 in
+def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR256:$src1, u8imm:$src2),
+ "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ []>, Sched<[WriteFStoreX]>, VEX, VEX_L;
+}
+
+multiclass vextract_lowering<string InstrStr, ValueType From, ValueType To> {
+ def : Pat<(vextract128_extract:$ext VR256:$src1, (iPTR imm)),
+ (To (!cast<Instruction>(InstrStr#rr)
+ (From VR256:$src1),
+ (EXTRACT_get_vextract128_imm VR128:$ext)))>;
+ def : Pat<(store (To (vextract128_extract:$ext (From VR256:$src1),
+ (iPTR imm))), addr:$dst),
+ (!cast<Instruction>(InstrStr#mr) addr:$dst, VR256:$src1,
+ (EXTRACT_get_vextract128_imm VR128:$ext))>;
+}
+
+// AVX1 patterns
+let Predicates = [HasAVX, NoVLX] in {
+ defm : vextract_lowering<"VEXTRACTF128", v8f32, v4f32>;
+ defm : vextract_lowering<"VEXTRACTF128", v4f64, v2f64>;
+}
+
+let Predicates = [HasAVX1Only] in {
+ defm : vextract_lowering<"VEXTRACTF128", v4i64, v2i64>;
+ defm : vextract_lowering<"VEXTRACTF128", v8i32, v4i32>;
+ defm : vextract_lowering<"VEXTRACTF128", v16i16, v8i16>;
+ defm : vextract_lowering<"VEXTRACTF128", v32i8, v16i8>;
+}
+
+//===----------------------------------------------------------------------===//
+// VMASKMOV - Conditional SIMD Packed Loads and Stores
+//
+multiclass avx_movmask_rm<bits<8> opc_rm, bits<8> opc_mr, string OpcodeStr,
+ Intrinsic IntLd, Intrinsic IntLd256,
+ Intrinsic IntSt, Intrinsic IntSt256> {
+ def rm : AVX8I<opc_rm, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, f128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst, (IntLd addr:$src2, VR128:$src1))]>,
+ VEX_4V, Sched<[WriteFMaskedLoad]>;
+ def Yrm : AVX8I<opc_rm, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
+ VEX_4V, VEX_L, Sched<[WriteFMaskedLoadY]>;
+ def mr : AVX8I<opc_mr, MRMDestMem, (outs),
+ (ins f128mem:$dst, VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt addr:$dst, VR128:$src1, VR128:$src2)]>,
+ VEX_4V, Sched<[WriteFMaskedStore]>;
+ def Ymr : AVX8I<opc_mr, MRMDestMem, (outs),
+ (ins f256mem:$dst, VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>,
+ VEX_4V, VEX_L, Sched<[WriteFMaskedStoreY]>;
+}
+
+let ExeDomain = SSEPackedSingle in
+defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps",
+ int_x86_avx_maskload_ps,
+ int_x86_avx_maskload_ps_256,
+ int_x86_avx_maskstore_ps,
+ int_x86_avx_maskstore_ps_256>;
+let ExeDomain = SSEPackedDouble in
+defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd",
+ int_x86_avx_maskload_pd,
+ int_x86_avx_maskload_pd_256,
+ int_x86_avx_maskstore_pd,
+ int_x86_avx_maskstore_pd_256>;
+
+//===----------------------------------------------------------------------===//
+// VPERMIL - Permute Single and Double Floating-Point Values
+//
+
+multiclass avx_permil<bits<8> opc_rm, bits<8> opc_rmi, string OpcodeStr,
+ RegisterClass RC, X86MemOperand x86memop_f,
+ X86MemOperand x86memop_i, PatFrag i_frag,
+ ValueType f_vt, ValueType i_vt,
+ X86FoldableSchedWrite sched,
+ X86FoldableSchedWrite varsched> {
+ let Predicates = [HasAVX, NoVLX] in {
+ def rr : AVX8I<opc_rm, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (f_vt (X86VPermilpv RC:$src1, (i_vt RC:$src2))))]>, VEX_4V,
+ Sched<[varsched]>;
+ def rm : AVX8I<opc_rm, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop_i:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (f_vt (X86VPermilpv RC:$src1,
+ (i_vt (bitconvert (i_frag addr:$src2))))))]>, VEX_4V,
+ Sched<[varsched.Folded, ReadAfterLd]>;
+
+ def ri : AVXAIi8<opc_rmi, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst, (f_vt (X86VPermilpi RC:$src1, (i8 imm:$src2))))]>, VEX,
+ Sched<[sched]>;
+ def mi : AVXAIi8<opc_rmi, MRMSrcMem, (outs RC:$dst),
+ (ins x86memop_f:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set RC:$dst,
+ (f_vt (X86VPermilpi (load addr:$src1), (i8 imm:$src2))))]>, VEX,
+ Sched<[sched.Folded]>;
+ }// Predicates = [HasAVX, NoVLX]
+}
+
+let ExeDomain = SSEPackedSingle in {
+ defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem,
+ loadv2i64, v4f32, v4i32, SchedWriteFShuffle.XMM,
+ SchedWriteFVarShuffle.XMM>;
+ defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem,
+ loadv4i64, v8f32, v8i32, SchedWriteFShuffle.YMM,
+ SchedWriteFVarShuffle.YMM>, VEX_L;
+}
+let ExeDomain = SSEPackedDouble in {
+ defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem,
+ loadv2i64, v2f64, v2i64, SchedWriteFShuffle.XMM,
+ SchedWriteFVarShuffle.XMM>;
+ defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem,
+ loadv4i64, v4f64, v4i64, SchedWriteFShuffle.YMM,
+ SchedWriteFVarShuffle.YMM>, VEX_L;
+}
+
+//===----------------------------------------------------------------------===//
+// VPERM2F128 - Permute Floating-Point Values in 128-bit chunks
+//
+
+let ExeDomain = SSEPackedSingle in {
+let isCommutable = 1 in
+def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, u8imm:$src3),
+ "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (v4f64 (X86VPerm2x128 VR256:$src1, VR256:$src2,
+ (i8 imm:$src3))))]>, VEX_4V, VEX_L,
+ Sched<[WriteFShuffle256]>;
+def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, u8imm:$src3),
+ "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4f64 addr:$src2),
+ (i8 imm:$src3)))]>, VEX_4V, VEX_L,
+ Sched<[WriteFShuffle256Ld, ReadAfterLd]>;
+}
+
+// Immediate transform to help with commuting.
+def Perm2XCommuteImm : SDNodeXForm<imm, [{
+ return getI8Imm(N->getZExtValue() ^ 0x22, SDLoc(N));
+}]>;
+
+let Predicates = [HasAVX] in {
+// Pattern with load in other operand.
+def : Pat<(v4f64 (X86VPerm2x128 (loadv4f64 addr:$src2),
+ VR256:$src1, (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2, (i8 imm:$imm))),
+ (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$imm)>;
+def : Pat<(v4i64 (X86VPerm2x128 VR256:$src1,
+ (loadv4i64 addr:$src2), (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, imm:$imm)>;
+// Pattern with load in other operand.
+def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2),
+ VR256:$src1, (i8 imm:$imm))),
+ (VPERM2F128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>;
+}
+
+//===----------------------------------------------------------------------===//
+// VZERO - Zero YMM registers
+// Note: These instruction do not affect the YMM16-YMM31.
+//
+
+let SchedRW = [WriteSystem] in {
+let Defs = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
+ YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15] in {
+ // Zero All YMM registers
+ def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall",
+ [(int_x86_avx_vzeroall)]>, PS, VEX, VEX_L,
+ Requires<[HasAVX]>, VEX_WIG;
+
+ // Zero Upper bits of YMM registers
+ def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper",
+ [(int_x86_avx_vzeroupper)]>, PS, VEX,
+ Requires<[HasAVX]>, VEX_WIG;
+} // Defs
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Half precision conversion instructions
+//
+
+multiclass f16c_ph2ps<RegisterClass RC, X86MemOperand x86memop,
+ X86FoldableSchedWrite sched> {
+ def rr : I<0x13, MRMSrcReg, (outs RC:$dst), (ins VR128:$src),
+ "vcvtph2ps\t{$src, $dst|$dst, $src}",
+ [(set RC:$dst, (X86cvtph2ps VR128:$src))]>,
+ T8PD, VEX, Sched<[sched]>;
+ let hasSideEffects = 0, mayLoad = 1 in
+ def rm : I<0x13, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src),
+ "vcvtph2ps\t{$src, $dst|$dst, $src}",
+ [(set RC:$dst, (X86cvtph2ps (bc_v8i16
+ (loadv2i64 addr:$src))))]>,
+ T8PD, VEX, Sched<[sched.Folded]>;
+}
+
+multiclass f16c_ps2ph<RegisterClass RC, X86MemOperand x86memop,
+ SchedWrite RR, SchedWrite MR> {
+ def rr : Ii8<0x1D, MRMDestReg, (outs VR128:$dst),
+ (ins RC:$src1, i32u8imm:$src2),
+ "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set VR128:$dst, (X86cvtps2ph RC:$src1, imm:$src2))]>,
+ TAPD, VEX, Sched<[RR]>;
+ let hasSideEffects = 0, mayStore = 1 in
+ def mr : Ii8<0x1D, MRMDestMem, (outs),
+ (ins x86memop:$dst, RC:$src1, i32u8imm:$src2),
+ "vcvtps2ph\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ TAPD, VEX, Sched<[MR]>;
+}
+
+let Predicates = [HasF16C, NoVLX] in {
+ defm VCVTPH2PS : f16c_ph2ps<VR128, f64mem, WriteCvtPH2PS>;
+ defm VCVTPH2PSY : f16c_ph2ps<VR256, f128mem, WriteCvtPH2PSY>, VEX_L;
+ defm VCVTPS2PH : f16c_ps2ph<VR128, f64mem, WriteCvtPS2PH,
+ WriteCvtPS2PHSt>;
+ defm VCVTPS2PHY : f16c_ps2ph<VR256, f128mem, WriteCvtPS2PHY,
+ WriteCvtPS2PHYSt>, VEX_L;
+
+ // Pattern match vcvtph2ps of a scalar i64 load.
+ def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzmovl_v2i64 addr:$src)))),
+ (VCVTPH2PSrm addr:$src)>;
+ def : Pat<(v4f32 (X86cvtph2ps (v8i16 (vzload_v2i64 addr:$src)))),
+ (VCVTPH2PSrm addr:$src)>;
+ def : Pat<(v4f32 (X86cvtph2ps (v8i16 (bitconvert
+ (v2i64 (scalar_to_vector (loadi64 addr:$src))))))),
+ (VCVTPH2PSrm addr:$src)>;
+
+ def : Pat<(store (f64 (extractelt
+ (bc_v2f64 (v8i16 (X86cvtps2ph VR128:$src1, i32:$src2))),
+ (iPTR 0))), addr:$dst),
+ (VCVTPS2PHmr addr:$dst, VR128:$src1, imm:$src2)>;
+ def : Pat<(store (i64 (extractelt
+ (bc_v2i64 (v8i16 (X86cvtps2ph VR128:$src1, i32:$src2))),
+ (iPTR 0))), addr:$dst),
+ (VCVTPS2PHmr addr:$dst, VR128:$src1, imm:$src2)>;
+ def : Pat<(store (v8i16 (X86cvtps2ph VR256:$src1, i32:$src2)), addr:$dst),
+ (VCVTPS2PHYmr addr:$dst, VR256:$src1, imm:$src2)>;
+}
+
+// Patterns for matching conversions from float to half-float and vice versa.
+let Predicates = [HasF16C, NoVLX] in {
+ // Use MXCSR.RC for rounding instead of explicitly specifying the default
+ // rounding mode (Nearest-Even, encoded as 0). Both are equivalent in the
+ // configurations we support (the default). However, falling back to MXCSR is
+ // more consistent with other instructions, which are always controlled by it.
+ // It's encoded as 0b100.
+ def : Pat<(fp_to_f16 FR32:$src),
+ (i16 (EXTRACT_SUBREG (VMOVPDI2DIrr (v8i16 (VCVTPS2PHrr
+ (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 4))), sub_16bit))>;
+
+ def : Pat<(f16_to_fp GR16:$src),
+ (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSrr
+ (v4i32 (COPY_TO_REGCLASS (MOVSX32rr16 GR16:$src), VR128)))), FR32)) >;
+
+ def : Pat<(f16_to_fp (i16 (fp_to_f16 FR32:$src))),
+ (f32 (COPY_TO_REGCLASS (v4f32 (VCVTPH2PSrr
+ (v8i16 (VCVTPS2PHrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 4)))), FR32)) >;
+}
+
+//===----------------------------------------------------------------------===//
+// AVX2 Instructions
+//===----------------------------------------------------------------------===//
+
+/// AVX2_blend_rmi - AVX2 blend with 8-bit immediate
+multiclass AVX2_blend_rmi<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType OpVT, X86FoldableSchedWrite sched,
+ RegisterClass RC, PatFrag memop_frag,
+ X86MemOperand x86memop, SDNodeXForm commuteXForm> {
+ let isCommutable = 1 in
+ def rri : AVX2AIi8<opc, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))]>,
+ Sched<[sched]>, VEX_4V;
+ def rmi : AVX2AIi8<opc, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, x86memop:$src2, u8imm:$src3),
+ !strconcat(OpcodeStr,
+ "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"),
+ [(set RC:$dst,
+ (OpVT (OpNode RC:$src1,
+ (bitconvert (memop_frag addr:$src2)), imm:$src3)))]>,
+ Sched<[sched.Folded, ReadAfterLd]>, VEX_4V;
+
+ // Pattern to commute if load is in first source.
+ def : Pat<(OpVT (OpNode (bitconvert (memop_frag addr:$src2)),
+ RC:$src1, imm:$src3)),
+ (!cast<Instruction>(NAME#"rmi") RC:$src1, addr:$src2,
+ (commuteXForm imm:$src3))>;
+}
+
+defm VPBLENDD : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v4i32,
+ SchedWriteBlend.XMM, VR128, loadv2i64, i128mem,
+ BlendCommuteImm4>;
+defm VPBLENDDY : AVX2_blend_rmi<0x02, "vpblendd", X86Blendi, v8i32,
+ SchedWriteBlend.YMM, VR256, loadv4i64, i256mem,
+ BlendCommuteImm8>, VEX_L;
+
+// For insertion into the zero index (low half) of a 256-bit vector, it is
+// more efficient to generate a blend with immediate instead of an insert*128.
+let Predicates = [HasAVX2] in {
+def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)),
+ (VPBLENDDYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)),
+ (VPBLENDDYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)),
+ (VPBLENDDYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)),
+ (VPBLENDDYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(insert_subvector (v8i32 VR256:$src1), (v4i32 VR128:$src2), (iPTR 0)),
+ (VBLENDPSYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+def : Pat<(insert_subvector (v4i64 VR256:$src1), (v2i64 VR128:$src2), (iPTR 0)),
+ (VBLENDPSYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+def : Pat<(insert_subvector (v16i16 VR256:$src1), (v8i16 VR128:$src2), (iPTR 0)),
+ (VBLENDPSYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+def : Pat<(insert_subvector (v32i8 VR256:$src1), (v16i8 VR128:$src2), (iPTR 0)),
+ (VBLENDPSYrri VR256:$src1,
+ (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ VR128:$src2, sub_xmm), 0xf)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VPBROADCAST - Load from memory and broadcast to all elements of the
+// destination operand
+//
+multiclass avx2_broadcast<bits<8> opc, string OpcodeStr,
+ X86MemOperand x86memop, PatFrag ld_frag,
+ ValueType OpVT128, ValueType OpVT256, Predicate prd> {
+ let Predicates = [HasAVX2, prd] in {
+ def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (OpVT128 (X86VBroadcast (OpVT128 VR128:$src))))]>,
+ Sched<[SchedWriteShuffle.XMM]>, VEX;
+ def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR128:$dst,
+ (OpVT128 (X86VBroadcast (ld_frag addr:$src))))]>,
+ Sched<[SchedWriteShuffle.XMM.Folded]>, VEX;
+ def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (OpVT256 (X86VBroadcast (OpVT128 VR128:$src))))]>,
+ Sched<[WriteShuffle256]>, VEX, VEX_L;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst), (ins x86memop:$src),
+ !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"),
+ [(set VR256:$dst,
+ (OpVT256 (X86VBroadcast (ld_frag addr:$src))))]>,
+ Sched<[SchedWriteShuffle.XMM.Folded]>, VEX, VEX_L;
+
+ // Provide aliases for broadcast from the same register class that
+ // automatically does the extract.
+ def : Pat<(OpVT256 (X86VBroadcast (OpVT256 VR256:$src))),
+ (!cast<Instruction>(NAME#"Yrr")
+ (OpVT128 (EXTRACT_SUBREG (OpVT256 VR256:$src),sub_xmm)))>;
+ }
+}
+
+defm VPBROADCASTB : avx2_broadcast<0x78, "vpbroadcastb", i8mem, loadi8,
+ v16i8, v32i8, NoVLX_Or_NoBWI>;
+defm VPBROADCASTW : avx2_broadcast<0x79, "vpbroadcastw", i16mem, loadi16,
+ v8i16, v16i16, NoVLX_Or_NoBWI>;
+defm VPBROADCASTD : avx2_broadcast<0x58, "vpbroadcastd", i32mem, loadi32,
+ v4i32, v8i32, NoVLX>;
+defm VPBROADCASTQ : avx2_broadcast<0x59, "vpbroadcastq", i64mem, loadi64,
+ v2i64, v4i64, NoVLX>;
+
+let Predicates = [HasAVX2, NoVLX] in {
+ // 32-bit targets will fail to load a i64 directly but can use ZEXT_LOAD.
+ def : Pat<(v2i64 (X86VBroadcast (v2i64 (X86vzload addr:$src)))),
+ (VPBROADCASTQrm addr:$src)>;
+ def : Pat<(v4i64 (X86VBroadcast (v4i64 (X86vzload addr:$src)))),
+ (VPBROADCASTQYrm addr:$src)>;
+
+ def : Pat<(v4i32 (X86VBroadcast (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (VPBROADCASTDrm addr:$src)>;
+ def : Pat<(v8i32 (X86VBroadcast (v4i32 (scalar_to_vector (loadi32 addr:$src))))),
+ (VPBROADCASTDYrm addr:$src)>;
+ def : Pat<(v2i64 (X86VBroadcast (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
+ (VPBROADCASTQrm addr:$src)>;
+ def : Pat<(v4i64 (X86VBroadcast (v2i64 (scalar_to_vector (loadi64 addr:$src))))),
+ (VPBROADCASTQYrm addr:$src)>;
+}
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+ // loadi16 is tricky to fold, because !isTypeDesirableForOp, justifiably.
+ // This means we'll encounter truncated i32 loads; match that here.
+ def : Pat<(v8i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))),
+ (VPBROADCASTWrm addr:$src)>;
+ def : Pat<(v16i16 (X86VBroadcast (i16 (trunc (i32 (load addr:$src)))))),
+ (VPBROADCASTWYrm addr:$src)>;
+ def : Pat<(v8i16 (X86VBroadcast
+ (i16 (trunc (i32 (zextloadi16 addr:$src)))))),
+ (VPBROADCASTWrm addr:$src)>;
+ def : Pat<(v16i16 (X86VBroadcast
+ (i16 (trunc (i32 (zextloadi16 addr:$src)))))),
+ (VPBROADCASTWYrm addr:$src)>;
+}
+
+let Predicates = [HasAVX2, NoVLX] in {
+ // Provide aliases for broadcast from the same register class that
+ // automatically does the extract.
+ def : Pat<(v8f32 (X86VBroadcast (v8f32 VR256:$src))),
+ (VBROADCASTSSYrr (v4f32 (EXTRACT_SUBREG (v8f32 VR256:$src),
+ sub_xmm)))>;
+ def : Pat<(v4f64 (X86VBroadcast (v4f64 VR256:$src))),
+ (VBROADCASTSDYrr (v2f64 (EXTRACT_SUBREG (v4f64 VR256:$src),
+ sub_xmm)))>;
+}
+
+let Predicates = [HasAVX2, NoVLX] in {
+ // Provide fallback in case the load node that is used in the patterns above
+ // is used by additional users, which prevents the pattern selection.
+ def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
+ (VBROADCASTSSrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>;
+ def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
+ (VBROADCASTSSYrr (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)))>;
+ def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
+ (VBROADCASTSDYrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>;
+}
+
+let Predicates = [HasAVX2, NoVLX_Or_NoBWI] in {
+ def : Pat<(v16i8 (X86VBroadcast GR8:$src)),
+ (VPBROADCASTBrr (v16i8 (COPY_TO_REGCLASS
+ (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ GR8:$src, sub_8bit)),
+ VR128)))>;
+ def : Pat<(v32i8 (X86VBroadcast GR8:$src)),
+ (VPBROADCASTBYrr (v16i8 (COPY_TO_REGCLASS
+ (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ GR8:$src, sub_8bit)),
+ VR128)))>;
+
+ def : Pat<(v8i16 (X86VBroadcast GR16:$src)),
+ (VPBROADCASTWrr (v8i16 (COPY_TO_REGCLASS
+ (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ GR16:$src, sub_16bit)),
+ VR128)))>;
+ def : Pat<(v16i16 (X86VBroadcast GR16:$src)),
+ (VPBROADCASTWYrr (v8i16 (COPY_TO_REGCLASS
+ (i32 (INSERT_SUBREG (i32 (IMPLICIT_DEF)),
+ GR16:$src, sub_16bit)),
+ VR128)))>;
+}
+let Predicates = [HasAVX2, NoVLX] in {
+ def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
+ (VPBROADCASTDrr (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)))>;
+ def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
+ (VPBROADCASTDYrr (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)))>;
+ def : Pat<(v2i64 (X86VBroadcast GR64:$src)),
+ (VPBROADCASTQrr (v2i64 (COPY_TO_REGCLASS GR64:$src, VR128)))>;
+ def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
+ (VPBROADCASTQYrr (v2i64 (COPY_TO_REGCLASS GR64:$src, VR128)))>;
+}
+
+// AVX1 broadcast patterns
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v8i32 (X86VBroadcast (loadi32 addr:$src))),
+ (VBROADCASTSSYrm addr:$src)>;
+def : Pat<(v4i64 (X86VBroadcast (loadi64 addr:$src))),
+ (VBROADCASTSDYrm addr:$src)>;
+def : Pat<(v4i32 (X86VBroadcast (loadi32 addr:$src))),
+ (VBROADCASTSSrm addr:$src)>;
+}
+
+ // Provide fallback in case the load node that is used in the patterns above
+ // is used by additional users, which prevents the pattern selection.
+let Predicates = [HasAVX, NoVLX] in {
+ // 128bit broadcasts:
+ def : Pat<(v2f64 (X86VBroadcast f64:$src)),
+ (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))>;
+ def : Pat<(v2f64 (X86VBroadcast (loadf64 addr:$src))),
+ (VMOVDDUPrm addr:$src)>;
+
+ def : Pat<(v2f64 (X86VBroadcast v2f64:$src)),
+ (VMOVDDUPrr VR128:$src)>;
+ def : Pat<(v2f64 (X86VBroadcast (loadv2f64 addr:$src))),
+ (VMOVDDUPrm addr:$src)>;
+}
+
+let Predicates = [HasAVX1Only] in {
+ def : Pat<(v4f32 (X86VBroadcast FR32:$src)),
+ (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)>;
+ def : Pat<(v8f32 (X86VBroadcast FR32:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)),
+ (v4f32 (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)), sub_xmm),
+ (v4f32 (VPERMILPSri (v4f32 (COPY_TO_REGCLASS FR32:$src, VR128)), 0)), 1)>;
+ def : Pat<(v4f64 (X86VBroadcast FR64:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)),
+ (v2f64 (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))), sub_xmm),
+ (v2f64 (VMOVDDUPrr (v2f64 (COPY_TO_REGCLASS FR64:$src, VR128)))), 1)>;
+
+ def : Pat<(v4i32 (X86VBroadcast GR32:$src)),
+ (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)), 0)>;
+ def : Pat<(v8i32 (X86VBroadcast GR32:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)),
+ (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)), 0)), sub_xmm),
+ (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR32:$src, VR128)), 0)), 1)>;
+ def : Pat<(v4i64 (X86VBroadcast GR64:$src)),
+ (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)),
+ (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR64:$src, VR128)), 0x44)), sub_xmm),
+ (v4i32 (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR64:$src, VR128)), 0x44)), 1)>;
+
+ def : Pat<(v2i64 (X86VBroadcast i64:$src)),
+ (VPSHUFDri (v4i32 (COPY_TO_REGCLASS GR64:$src, VR128)), 0x44)>;
+ def : Pat<(v2i64 (X86VBroadcast (loadi64 addr:$src))),
+ (VMOVDDUPrm addr:$src)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VPERM - Permute instructions
+//
+
+multiclass avx2_perm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ ValueType OpVT, X86FoldableSchedWrite Sched,
+ X86MemOperand memOp> {
+ let Predicates = [HasAVX2, NoVLX] in {
+ def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermv VR256:$src1, VR256:$src2)))]>,
+ Sched<[Sched]>, VEX_4V, VEX_L;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, memOp:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermv VR256:$src1,
+ (bitconvert (mem_frag addr:$src2)))))]>,
+ Sched<[Sched.Folded, ReadAfterLd]>, VEX_4V, VEX_L;
+ }
+}
+
+defm VPERMD : avx2_perm<0x36, "vpermd", loadv4i64, v8i32, WriteVarShuffle256,
+ i256mem>;
+let ExeDomain = SSEPackedSingle in
+defm VPERMPS : avx2_perm<0x16, "vpermps", loadv8f32, v8f32, WriteFVarShuffle256,
+ f256mem>;
+
+multiclass avx2_perm_imm<bits<8> opc, string OpcodeStr, PatFrag mem_frag,
+ ValueType OpVT, X86FoldableSchedWrite Sched,
+ X86MemOperand memOp> {
+ let Predicates = [HasAVX2, NoVLX] in {
+ def Yri : AVX2AIi8<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermi VR256:$src1, (i8 imm:$src2))))]>,
+ Sched<[Sched]>, VEX, VEX_L;
+ def Ymi : AVX2AIi8<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins memOp:$src1, u8imm:$src2),
+ !strconcat(OpcodeStr,
+ "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (OpVT (X86VPermi (mem_frag addr:$src1),
+ (i8 imm:$src2))))]>,
+ Sched<[Sched.Folded, ReadAfterLd]>, VEX, VEX_L;
+ }
+}
+
+defm VPERMQ : avx2_perm_imm<0x00, "vpermq", loadv4i64, v4i64,
+ WriteShuffle256, i256mem>, VEX_W;
+let ExeDomain = SSEPackedDouble in
+defm VPERMPD : avx2_perm_imm<0x01, "vpermpd", loadv4f64, v4f64,
+ WriteFShuffle256, f256mem>, VEX_W;
+
+//===----------------------------------------------------------------------===//
+// VPERM2I128 - Permute Floating-Point Values in 128-bit chunks
+//
+let isCommutable = 1 in
+def VPERM2I128rr : AVX2AIi8<0x46, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2, u8imm:$src3),
+ "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (v4i64 (X86VPerm2x128 VR256:$src1, VR256:$src2,
+ (i8 imm:$src3))))]>, Sched<[WriteShuffle256]>,
+ VEX_4V, VEX_L;
+def VPERM2I128rm : AVX2AIi8<0x46, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, f256mem:$src2, u8imm:$src3),
+ "vperm2i128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ [(set VR256:$dst, (X86VPerm2x128 VR256:$src1, (loadv4i64 addr:$src2),
+ (i8 imm:$src3)))]>,
+ Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+
+let Predicates = [HasAVX2] in
+def : Pat<(v4i64 (X86VPerm2x128 (loadv4i64 addr:$src2),
+ VR256:$src1, (i8 imm:$imm))),
+ (VPERM2I128rm VR256:$src1, addr:$src2, (Perm2XCommuteImm imm:$imm))>;
+
+
+//===----------------------------------------------------------------------===//
+// VINSERTI128 - Insert packed integer values
+//
+let hasSideEffects = 0 in {
+def VINSERTI128rr : AVX2AIi8<0x38, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR128:$src2, u8imm:$src3),
+ "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteShuffle256]>, VEX_4V, VEX_L;
+let mayLoad = 1 in
+def VINSERTI128rm : AVX2AIi8<0x38, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i128mem:$src2, u8imm:$src3),
+ "vinserti128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}",
+ []>, Sched<[WriteShuffle256Ld, ReadAfterLd]>, VEX_4V, VEX_L;
+}
+
+let Predicates = [HasAVX2, NoVLX] in {
+ defm : vinsert_lowering<"VINSERTI128", v2i64, v4i64, loadv2i64>;
+ defm : vinsert_lowering<"VINSERTI128", v4i32, v8i32, loadv2i64>;
+ defm : vinsert_lowering<"VINSERTI128", v8i16, v16i16, loadv2i64>;
+ defm : vinsert_lowering<"VINSERTI128", v16i8, v32i8, loadv2i64>;
+}
+
+//===----------------------------------------------------------------------===//
+// VEXTRACTI128 - Extract packed integer values
+//
+def VEXTRACTI128rr : AVX2AIi8<0x39, MRMDestReg, (outs VR128:$dst),
+ (ins VR256:$src1, u8imm:$src2),
+ "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ Sched<[WriteShuffle256]>, VEX, VEX_L;
+let hasSideEffects = 0, mayStore = 1 in
+def VEXTRACTI128mr : AVX2AIi8<0x39, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR256:$src1, u8imm:$src2),
+ "vextracti128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>,
+ Sched<[SchedWriteVecMoveLS.XMM.MR]>, VEX, VEX_L;
+
+let Predicates = [HasAVX2, NoVLX] in {
+ defm : vextract_lowering<"VEXTRACTI128", v4i64, v2i64>;
+ defm : vextract_lowering<"VEXTRACTI128", v8i32, v4i32>;
+ defm : vextract_lowering<"VEXTRACTI128", v16i16, v8i16>;
+ defm : vextract_lowering<"VEXTRACTI128", v32i8, v16i8>;
+}
+
+//===----------------------------------------------------------------------===//
+// VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores
+//
+multiclass avx2_pmovmask<string OpcodeStr,
+ Intrinsic IntLd128, Intrinsic IntLd256,
+ Intrinsic IntSt128, Intrinsic IntSt256> {
+ def rm : AVX28I<0x8c, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst, (IntLd128 addr:$src2, VR128:$src1))]>,
+ VEX_4V, Sched<[WriteVecMaskedLoad]>;
+ def Yrm : AVX28I<0x8c, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst, (IntLd256 addr:$src2, VR256:$src1))]>,
+ VEX_4V, VEX_L, Sched<[WriteVecMaskedLoadY]>;
+ def mr : AVX28I<0x8e, MRMDestMem, (outs),
+ (ins i128mem:$dst, VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt128 addr:$dst, VR128:$src1, VR128:$src2)]>,
+ VEX_4V, Sched<[WriteVecMaskedStore]>;
+ def Ymr : AVX28I<0x8e, MRMDestMem, (outs),
+ (ins i256mem:$dst, VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(IntSt256 addr:$dst, VR256:$src1, VR256:$src2)]>,
+ VEX_4V, VEX_L, Sched<[WriteVecMaskedStoreY]>;
+}
+
+defm VPMASKMOVD : avx2_pmovmask<"vpmaskmovd",
+ int_x86_avx2_maskload_d,
+ int_x86_avx2_maskload_d_256,
+ int_x86_avx2_maskstore_d,
+ int_x86_avx2_maskstore_d_256>;
+defm VPMASKMOVQ : avx2_pmovmask<"vpmaskmovq",
+ int_x86_avx2_maskload_q,
+ int_x86_avx2_maskload_q_256,
+ int_x86_avx2_maskstore_q,
+ int_x86_avx2_maskstore_q_256>, VEX_W;
+
+multiclass maskmov_lowering<string InstrStr, RegisterClass RC, ValueType VT,
+ ValueType MaskVT, string BlendStr, ValueType ZeroVT> {
+ // masked store
+ def: Pat<(X86mstore addr:$ptr, (MaskVT RC:$mask), (VT RC:$src)),
+ (!cast<Instruction>(InstrStr#"mr") addr:$ptr, RC:$mask, RC:$src)>;
+ // masked load
+ def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), undef)),
+ (!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)>;
+ def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask),
+ (VT (bitconvert (ZeroVT immAllZerosV))))),
+ (!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)>;
+ def: Pat<(VT (X86mload addr:$ptr, (MaskVT RC:$mask), (VT RC:$src0))),
+ (!cast<Instruction>(BlendStr#"rr")
+ RC:$src0,
+ (VT (!cast<Instruction>(InstrStr#"rm") RC:$mask, addr:$ptr)),
+ RC:$mask)>;
+}
+let Predicates = [HasAVX] in {
+ defm : maskmov_lowering<"VMASKMOVPS", VR128, v4f32, v4i32, "VBLENDVPS", v4i32>;
+ defm : maskmov_lowering<"VMASKMOVPD", VR128, v2f64, v2i64, "VBLENDVPD", v4i32>;
+ defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8f32, v8i32, "VBLENDVPSY", v8i32>;
+ defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4f64, v4i64, "VBLENDVPDY", v8i32>;
+}
+let Predicates = [HasAVX1Only] in {
+ // load/store i32/i64 not supported use ps/pd version
+ defm : maskmov_lowering<"VMASKMOVPSY", VR256, v8i32, v8i32, "VBLENDVPSY", v8i32>;
+ defm : maskmov_lowering<"VMASKMOVPDY", VR256, v4i64, v4i64, "VBLENDVPDY", v8i32>;
+ defm : maskmov_lowering<"VMASKMOVPS", VR128, v4i32, v4i32, "VBLENDVPS", v4i32>;
+ defm : maskmov_lowering<"VMASKMOVPD", VR128, v2i64, v2i64, "VBLENDVPD", v4i32>;
+}
+let Predicates = [HasAVX2] in {
+ defm : maskmov_lowering<"VPMASKMOVDY", VR256, v8i32, v8i32, "VBLENDVPSY", v8i32>;
+ defm : maskmov_lowering<"VPMASKMOVQY", VR256, v4i64, v4i64, "VBLENDVPDY", v8i32>;
+ defm : maskmov_lowering<"VPMASKMOVD", VR128, v4i32, v4i32, "VBLENDVPS", v4i32>;
+ defm : maskmov_lowering<"VPMASKMOVQ", VR128, v2i64, v2i64, "VBLENDVPD", v4i32>;
+}
+
+//===----------------------------------------------------------------------===//
+// SubVector Broadcasts
+// Provide fallback in case the load node that is used in the patterns above
+// is used by additional users, which prevents the pattern selection.
+
+let Predicates = [HasAVX2, NoVLX] in {
+def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))),
+ (VINSERTI128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v2i64 VR128:$src), 1)>;
+def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))),
+ (VINSERTI128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v4i32 VR128:$src), 1)>;
+def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))),
+ (VINSERTI128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v8i16 VR128:$src), 1)>;
+def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))),
+ (VINSERTI128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v16i8 VR128:$src), 1)>;
+}
+
+let Predicates = [HasAVX, NoVLX] in {
+def : Pat<(v4f64 (X86SubVBroadcast (v2f64 VR128:$src))),
+ (VINSERTF128rr (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v2f64 VR128:$src), 1)>;
+def : Pat<(v8f32 (X86SubVBroadcast (v4f32 VR128:$src))),
+ (VINSERTF128rr (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v4f32 VR128:$src), 1)>;
+}
+
+let Predicates = [HasAVX1Only] in {
+def : Pat<(v4i64 (X86SubVBroadcast (v2i64 VR128:$src))),
+ (VINSERTF128rr (INSERT_SUBREG (v4i64 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v2i64 VR128:$src), 1)>;
+def : Pat<(v8i32 (X86SubVBroadcast (v4i32 VR128:$src))),
+ (VINSERTF128rr (INSERT_SUBREG (v8i32 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v4i32 VR128:$src), 1)>;
+def : Pat<(v16i16 (X86SubVBroadcast (v8i16 VR128:$src))),
+ (VINSERTF128rr (INSERT_SUBREG (v16i16 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v8i16 VR128:$src), 1)>;
+def : Pat<(v32i8 (X86SubVBroadcast (v16i8 VR128:$src))),
+ (VINSERTF128rr (INSERT_SUBREG (v32i8 (IMPLICIT_DEF)), VR128:$src, sub_xmm),
+ (v16i8 VR128:$src), 1)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Variable Bit Shifts
+//
+multiclass avx2_var_shift<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ ValueType vt128, ValueType vt256> {
+ def rr : AVX28I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1, (vt128 VR128:$src2))))]>,
+ VEX_4V, Sched<[SchedWriteVarVecShift.XMM]>;
+ def rm : AVX28I<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, i128mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR128:$dst,
+ (vt128 (OpNode VR128:$src1,
+ (vt128 (bitconvert (loadv2i64 addr:$src2))))))]>,
+ VEX_4V, Sched<[SchedWriteVarVecShift.XMM.Folded, ReadAfterLd]>;
+ def Yrr : AVX28I<opc, MRMSrcReg, (outs VR256:$dst),
+ (ins VR256:$src1, VR256:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode VR256:$src1, (vt256 VR256:$src2))))]>,
+ VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM]>;
+ def Yrm : AVX28I<opc, MRMSrcMem, (outs VR256:$dst),
+ (ins VR256:$src1, i256mem:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ [(set VR256:$dst,
+ (vt256 (OpNode VR256:$src1,
+ (vt256 (bitconvert (loadv4i64 addr:$src2))))))]>,
+ VEX_4V, VEX_L, Sched<[SchedWriteVarVecShift.YMM.Folded, ReadAfterLd]>;
+}
+
+let Predicates = [HasAVX2, NoVLX] in {
+ defm VPSLLVD : avx2_var_shift<0x47, "vpsllvd", shl, v4i32, v8i32>;
+ defm VPSLLVQ : avx2_var_shift<0x47, "vpsllvq", shl, v2i64, v4i64>, VEX_W;
+ defm VPSRLVD : avx2_var_shift<0x45, "vpsrlvd", srl, v4i32, v8i32>;
+ defm VPSRLVQ : avx2_var_shift<0x45, "vpsrlvq", srl, v2i64, v4i64>, VEX_W;
+ defm VPSRAVD : avx2_var_shift<0x46, "vpsravd", sra, v4i32, v8i32>;
+
+ def : Pat<(v4i32 (X86vsrav VR128:$src1, VR128:$src2)),
+ (VPSRAVDrr VR128:$src1, VR128:$src2)>;
+ def : Pat<(v4i32 (X86vsrav VR128:$src1,
+ (bitconvert (loadv2i64 addr:$src2)))),
+ (VPSRAVDrm VR128:$src1, addr:$src2)>;
+ def : Pat<(v8i32 (X86vsrav VR256:$src1, VR256:$src2)),
+ (VPSRAVDYrr VR256:$src1, VR256:$src2)>;
+ def : Pat<(v8i32 (X86vsrav VR256:$src1,
+ (bitconvert (loadv4i64 addr:$src2)))),
+ (VPSRAVDYrm VR256:$src1, addr:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// VGATHER - GATHER Operations
+
+// FIXME: Improve scheduling of gather instructions.
+multiclass avx2_gather<bits<8> opc, string OpcodeStr, ValueType VTx,
+ ValueType VTy, PatFrag GatherNode128,
+ PatFrag GatherNode256, RegisterClass RC256,
+ X86MemOperand memop128, X86MemOperand memop256,
+ ValueType MTx = VTx, ValueType MTy = VTy> {
+ def rm : AVX28I<opc, MRMSrcMem4VOp3, (outs VR128:$dst, VR128:$mask_wb),
+ (ins VR128:$src1, memop128:$src2, VR128:$mask),
+ !strconcat(OpcodeStr,
+ "\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
+ [(set (VTx VR128:$dst), (MTx VR128:$mask_wb),
+ (GatherNode128 VR128:$src1, VR128:$mask,
+ vectoraddr:$src2))]>,
+ VEX, Sched<[WriteLoad]>;
+ def Yrm : AVX28I<opc, MRMSrcMem4VOp3, (outs RC256:$dst, RC256:$mask_wb),
+ (ins RC256:$src1, memop256:$src2, RC256:$mask),
+ !strconcat(OpcodeStr,
+ "\t{$mask, $src2, $dst|$dst, $src2, $mask}"),
+ [(set (VTy RC256:$dst), (MTy RC256:$mask_wb),
+ (GatherNode256 RC256:$src1, RC256:$mask,
+ vectoraddr:$src2))]>,
+ VEX, VEX_L, Sched<[WriteLoad]>;
+}
+
+let Predicates = [UseAVX2] in {
+ let mayLoad = 1, hasSideEffects = 0, Constraints
+ = "@earlyclobber $dst,@earlyclobber $mask_wb, $src1 = $dst, $mask = $mask_wb"
+ in {
+ defm VPGATHERDQ : avx2_gather<0x90, "vpgatherdq", v2i64, v4i64, mgatherv4i32,
+ mgatherv4i32, VR256, vx128mem, vx256mem>, VEX_W;
+ defm VPGATHERQQ : avx2_gather<0x91, "vpgatherqq", v2i64, v4i64, mgatherv2i64,
+ mgatherv4i64, VR256, vx128mem, vy256mem>, VEX_W;
+ defm VPGATHERDD : avx2_gather<0x90, "vpgatherdd", v4i32, v8i32, mgatherv4i32,
+ mgatherv8i32, VR256, vx128mem, vy256mem>;
+ defm VPGATHERQD : avx2_gather<0x91, "vpgatherqd", v4i32, v4i32, mgatherv2i64,
+ mgatherv4i64, VR128, vx64mem, vy128mem>;
+
+ let ExeDomain = SSEPackedDouble in {
+ defm VGATHERDPD : avx2_gather<0x92, "vgatherdpd", v2f64, v4f64, mgatherv4i32,
+ mgatherv4i32, VR256, vx128mem, vx256mem,
+ v2i64, v4i64>, VEX_W;
+ defm VGATHERQPD : avx2_gather<0x93, "vgatherqpd", v2f64, v4f64, mgatherv2i64,
+ mgatherv4i64, VR256, vx128mem, vy256mem,
+ v2i64, v4i64>, VEX_W;
+ }
+
+ let ExeDomain = SSEPackedSingle in {
+ defm VGATHERDPS : avx2_gather<0x92, "vgatherdps", v4f32, v8f32, mgatherv4i32,
+ mgatherv8i32, VR256, vx128mem, vy256mem,
+ v4i32, v8i32>;
+ defm VGATHERQPS : avx2_gather<0x93, "vgatherqps", v4f32, v4f32, mgatherv2i64,
+ mgatherv4i64, VR128, vx64mem, vy128mem,
+ v4i32, v4i32>;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Extra selection patterns for f128, f128mem
+
+// movaps is shorter than movdqa. movaps is in SSE and movdqa is in SSE2.
+def : Pat<(alignedstore (f128 VR128:$src), addr:$dst),
+ (MOVAPSmr addr:$dst, (COPY_TO_REGCLASS (f128 VR128:$src), VR128))>;
+def : Pat<(store (f128 VR128:$src), addr:$dst),
+ (MOVUPSmr addr:$dst, (COPY_TO_REGCLASS (f128 VR128:$src), VR128))>;
+
+def : Pat<(alignedloadf128 addr:$src),
+ (COPY_TO_REGCLASS (MOVAPSrm addr:$src), VR128)>;
+def : Pat<(loadf128 addr:$src),
+ (COPY_TO_REGCLASS (MOVUPSrm addr:$src), VR128)>;
+
+// andps is shorter than andpd or pand. andps is SSE and andpd/pand are in SSE2
+def : Pat<(f128 (X86fand VR128:$src1, (memopf128 addr:$src2))),
+ (COPY_TO_REGCLASS
+ (ANDPSrm (COPY_TO_REGCLASS VR128:$src1, VR128), f128mem:$src2),
+ VR128)>;
+
+def : Pat<(f128 (X86fand VR128:$src1, VR128:$src2)),
+ (COPY_TO_REGCLASS
+ (ANDPSrr (COPY_TO_REGCLASS VR128:$src1, VR128),
+ (COPY_TO_REGCLASS VR128:$src2, VR128)), VR128)>;
+
+def : Pat<(f128 (X86for VR128:$src1, (memopf128 addr:$src2))),
+ (COPY_TO_REGCLASS
+ (ORPSrm (COPY_TO_REGCLASS VR128:$src1, VR128), f128mem:$src2),
+ VR128)>;
+
+def : Pat<(f128 (X86for VR128:$src1, VR128:$src2)),
+ (COPY_TO_REGCLASS
+ (ORPSrr (COPY_TO_REGCLASS VR128:$src1, VR128),
+ (COPY_TO_REGCLASS VR128:$src2, VR128)), VR128)>;
+
+def : Pat<(f128 (X86fxor VR128:$src1, (memopf128 addr:$src2))),
+ (COPY_TO_REGCLASS
+ (XORPSrm (COPY_TO_REGCLASS VR128:$src1, VR128), f128mem:$src2),
+ VR128)>;
+
+def : Pat<(f128 (X86fxor VR128:$src1, VR128:$src2)),
+ (COPY_TO_REGCLASS
+ (XORPSrr (COPY_TO_REGCLASS VR128:$src1, VR128),
+ (COPY_TO_REGCLASS VR128:$src2, VR128)), VR128)>;
+
+//===----------------------------------------------------------------------===//
+// GFNI instructions
+//===----------------------------------------------------------------------===//
+
+multiclass GF2P8MULB_rm<string OpcodeStr, ValueType OpVT,
+ RegisterClass RC, PatFrag MemOpFrag,
+ X86MemOperand X86MemOp, bit Is2Addr = 0> {
+ let ExeDomain = SSEPackedInt,
+ AsmString = !if(Is2Addr,
+ OpcodeStr##"\t{$src2, $dst|$dst, $src2}",
+ OpcodeStr##"\t{$src2, $src1, $dst|$dst, $src1, $src2}") in {
+ let isCommutable = 1 in
+ def rr : PDI<0xCF, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), "",
+ [(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1, RC:$src2)))]>,
+ Sched<[SchedWriteVecALU.XMM]>, T8PD;
+
+ def rm : PDI<0xCF, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, X86MemOp:$src2), "",
+ [(set RC:$dst, (OpVT (X86GF2P8mulb RC:$src1,
+ (bitconvert (MemOpFrag addr:$src2)))))]>,
+ Sched<[SchedWriteVecALU.XMM.Folded, ReadAfterLd]>, T8PD;
+ }
+}
+
+multiclass GF2P8AFFINE_rmi<bits<8> Op, string OpStr, ValueType OpVT,
+ SDNode OpNode, RegisterClass RC, PatFrag MemOpFrag,
+ X86MemOperand X86MemOp, bit Is2Addr = 0> {
+ let AsmString = !if(Is2Addr,
+ OpStr##"\t{$src3, $src2, $dst|$dst, $src2, $src3}",
+ OpStr##"\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}") in {
+ def rri : Ii8<Op, MRMSrcReg, (outs RC:$dst),
+ (ins RC:$src1, RC:$src2, u8imm:$src3), "",
+ [(set RC:$dst, (OpVT (OpNode RC:$src1, RC:$src2, imm:$src3)))],
+ SSEPackedInt>, Sched<[SchedWriteVecALU.XMM]>;
+ def rmi : Ii8<Op, MRMSrcMem, (outs RC:$dst),
+ (ins RC:$src1, X86MemOp:$src2, u8imm:$src3), "",
+ [(set RC:$dst, (OpVT (OpNode RC:$src1,
+ (bitconvert (MemOpFrag addr:$src2)),
+ imm:$src3)))], SSEPackedInt>,
+ Sched<[SchedWriteVecALU.XMM.Folded, ReadAfterLd]>;
+ }
+}
+
+multiclass GF2P8AFFINE_common<bits<8> Op, string OpStr, SDNode OpNode> {
+ let Constraints = "$src1 = $dst",
+ Predicates = [HasGFNI, UseSSE2] in
+ defm NAME : GF2P8AFFINE_rmi<Op, OpStr, v16i8, OpNode,
+ VR128, loadv2i64, i128mem, 1>;
+ let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in {
+ defm V##NAME : GF2P8AFFINE_rmi<Op, "v"##OpStr, v16i8, OpNode, VR128,
+ loadv2i64, i128mem>, VEX_4V, VEX_W;
+ defm V##NAME##Y : GF2P8AFFINE_rmi<Op, "v"##OpStr, v32i8, OpNode, VR256,
+ loadv4i64, i256mem>, VEX_4V, VEX_L, VEX_W;
+ }
+}
+
+// GF2P8MULB
+let Constraints = "$src1 = $dst",
+ Predicates = [HasGFNI, UseSSE2] in
+defm GF2P8MULB : GF2P8MULB_rm<"gf2p8mulb", v16i8, VR128, memopv2i64,
+ i128mem, 1>;
+let Predicates = [HasGFNI, HasAVX, NoVLX_Or_NoBWI] in {
+ defm VGF2P8MULB : GF2P8MULB_rm<"vgf2p8mulb", v16i8, VR128, loadv2i64,
+ i128mem>, VEX_4V;
+ defm VGF2P8MULBY : GF2P8MULB_rm<"vgf2p8mulb", v32i8, VR256, loadv4i64,
+ i256mem>, VEX_4V, VEX_L;
+}
+// GF2P8AFFINEINVQB, GF2P8AFFINEQB
+let isCommutable = 0 in {
+ defm GF2P8AFFINEINVQB : GF2P8AFFINE_common<0xCF, "gf2p8affineinvqb",
+ X86GF2P8affineinvqb>, TAPD;
+ defm GF2P8AFFINEQB : GF2P8AFFINE_common<0xCE, "gf2p8affineqb",
+ X86GF2P8affineqb>, TAPD;
+}
+