diff options
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td')
-rw-r--r-- | capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td | 1150 |
1 files changed, 1150 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td b/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td new file mode 100644 index 000000000..fcc9a296d --- /dev/null +++ b/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td @@ -0,0 +1,1150 @@ +//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This describes the calling conventions for the X86-32 and X86-64 +// architectures. +// +//===----------------------------------------------------------------------===// + +/// CCIfSubtarget - Match if the current subtarget has a feature F. +class CCIfSubtarget<string F, CCAction A> + : CCIf<!strconcat("static_cast<const X86Subtarget&>" + "(State.getMachineFunction().getSubtarget()).", F), + A>; + +/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F. +class CCIfNotSubtarget<string F, CCAction A> + : CCIf<!strconcat("!static_cast<const X86Subtarget&>" + "(State.getMachineFunction().getSubtarget()).", F), + A>; + +// Register classes for RegCall +class RC_X86_RegCall { + list<Register> GPR_8 = []; + list<Register> GPR_16 = []; + list<Register> GPR_32 = []; + list<Register> GPR_64 = []; + list<Register> FP_CALL = [FP0]; + list<Register> FP_RET = [FP0, FP1]; + list<Register> XMM = []; + list<Register> YMM = []; + list<Register> ZMM = []; +} + +// RegCall register classes for 32 bits +def RC_X86_32_RegCall : RC_X86_RegCall { + let GPR_8 = [AL, CL, DL, DIL, SIL]; + let GPR_16 = [AX, CX, DX, DI, SI]; + let GPR_32 = [EAX, ECX, EDX, EDI, ESI]; + let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle [] + ///< \todo Fix AssignToReg to enable empty lists + let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]; + let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]; + let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]; +} + +class RC_X86_64_RegCall : RC_X86_RegCall { + let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, + XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15]; + let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7, + YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15]; + let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7, + ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15]; +} + +def RC_X86_64_RegCall_Win : RC_X86_64_RegCall { + let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B]; + let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W]; + let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D]; + let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15]; +} + +def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall { + let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B]; + let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W]; + let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D]; + let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15]; +} + +// X86-64 Intel regcall calling convention. +multiclass X86_RegCall_base<RC_X86_RegCall RC> { +def CC_#NAME : CallingConv<[ + // Handles byval parameters. + CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>, + CCIfByVal<CCPassByVal<4, 4>>, + + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + // Promote v8i1/v16i1/v32i1 arguments to i32. + CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>, + + // bool, char, int, enum, long, pointer --> GPR + CCIfType<[i32], CCAssignToReg<RC.GPR_32>>, + + // long long, __int64 --> GPR + CCIfType<[i64], CCAssignToReg<RC.GPR_64>>, + + // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) + CCIfType<[v64i1], CCPromoteToType<i64>>, + CCIfSubtarget<"is64Bit()", CCIfType<[i64], + CCAssignToReg<RC.GPR_64>>>, + CCIfSubtarget<"is32Bit()", CCIfType<[i64], + CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, + + // float, double, float128 --> XMM + // In the case of SSE disabled --> save to stack + CCIfType<[f32, f64, f128], + CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, + + // long double --> FP + CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>, + + // __m128, __m128i, __m128d --> XMM + // In the case of SSE disabled --> save to stack + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, + + // __m256, __m256i, __m256d --> YMM + // In the case of SSE disabled --> save to stack + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>, + + // __m512, __m512i, __m512d --> ZMM + // In the case of SSE disabled --> save to stack + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>, + + // If no register was found -> assign to stack + + // In 64 bit, assign 64/32 bit values to 8 byte stack + CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64], + CCAssignToStack<8, 8>>>, + + // In 32 bit, assign 64/32 bit values to 8/4 byte stack + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + CCIfType<[i64, f64], CCAssignToStack<8, 4>>, + + // MMX type gets 8 byte slot in stack , while alignment depends on target + CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>, + CCIfType<[x86mmx], CCAssignToStack<8, 4>>, + + // float 128 get stack slots whose size and alignment depends + // on the subtarget. + CCIfType<[f80, f128], CCAssignToStack<0, 0>>, + + // Vectors get 16-byte stack slots that are 16-byte aligned. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToStack<16, 16>>, + + // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToStack<32, 32>>, + + // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. + CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>> +]>; + +def RetCC_#NAME : CallingConv<[ + // Promote i1, v1i1, v8i1 arguments to i8. + CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>, + + // Promote v16i1 arguments to i16. + CCIfType<[v16i1], CCPromoteToType<i16>>, + + // Promote v32i1 arguments to i32. + CCIfType<[v32i1], CCPromoteToType<i32>>, + + // bool, char, int, enum, long, pointer --> GPR + CCIfType<[i8], CCAssignToReg<RC.GPR_8>>, + CCIfType<[i16], CCAssignToReg<RC.GPR_16>>, + CCIfType<[i32], CCAssignToReg<RC.GPR_32>>, + + // long long, __int64 --> GPR + CCIfType<[i64], CCAssignToReg<RC.GPR_64>>, + + // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32) + CCIfType<[v64i1], CCPromoteToType<i64>>, + CCIfSubtarget<"is64Bit()", CCIfType<[i64], + CCAssignToReg<RC.GPR_64>>>, + CCIfSubtarget<"is32Bit()", CCIfType<[i64], + CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>, + + // long double --> FP + CCIfType<[f80], CCAssignToReg<RC.FP_RET>>, + + // float, double, float128 --> XMM + CCIfType<[f32, f64, f128], + CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, + + // __m128, __m128i, __m128d --> XMM + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>, + + // __m256, __m256i, __m256d --> YMM + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>, + + // __m512, __m512i, __m512d --> ZMM + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>> +]>; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Conventions +//===----------------------------------------------------------------------===// + +// Return-value conventions common to all X86 CC's. +def RetCC_X86Common : CallingConv<[ + // Scalar values are returned in AX first, then DX. For i8, the ABI + // requires the values to be in AL and AH, however this code uses AL and DL + // instead. This is because using AH for the second register conflicts with + // the way LLVM does multiple return values -- a return of {i16,i8} would end + // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI + // for functions that return two i8 values are currently expected to pack the + // values into an i16 (which uses AX, and thus AL:AH). + // + // For code that doesn't care about the ABI, we allow returning more than two + // integer values in registers. + CCIfType<[v1i1], CCPromoteToType<i8>>, + CCIfType<[i1], CCPromoteToType<i8>>, + CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>, + CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, + CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, + CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>, + + // Boolean vectors of AVX-512 are returned in SIMD registers. + // The call from AVX to AVX-512 function should work, + // since the boolean types in AVX/AVX2 are promoted by default. + CCIfType<[v2i1], CCPromoteToType<v2i64>>, + CCIfType<[v4i1], CCPromoteToType<v4i32>>, + CCIfType<[v8i1], CCPromoteToType<v8i16>>, + CCIfType<[v16i1], CCPromoteToType<v16i8>>, + CCIfType<[v32i1], CCPromoteToType<v32i8>>, + CCIfType<[v64i1], CCPromoteToType<v64i8>>, + + // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3 + // can only be used by ABI non-compliant code. If the target doesn't have XMM + // registers, it won't have vector types. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3 + // can only be used by ABI non-compliant code. This vector type is only + // supported while using the AVX target feature. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + + // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3 + // can only be used by ABI non-compliant code. This vector type is only + // supported while using the AVX-512 target feature. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + + // MMX vector types are always returned in MM0. If the target doesn't have + // MM0, it doesn't support these vector types. + CCIfType<[x86mmx], CCAssignToReg<[MM0]>>, + + // Long double types are always returned in FP0 (even with SSE), + // except on Win64. + CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>> +]>; + +// X86-32 C return-value convention. +def RetCC_X86_32_C : CallingConv<[ + // The X86-32 calling convention returns FP values in FP0, unless marked + // with "inreg" (used here to distinguish one kind of reg from another, + // weirdly; this is really the sse-regparm calling convention) in which + // case they use XMM0, otherwise it is the same as the common X86 calling + // conv. + CCIfInReg<CCIfSubtarget<"hasSSE2()", + CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, + CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>, + CCDelegateTo<RetCC_X86Common> +]>; + +// X86-32 FastCC return-value convention. +def RetCC_X86_32_Fast : CallingConv<[ + // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has + // SSE2. + // This can happen when a float, 2 x float, or 3 x float vector is split by + // target lowering, and is returned in 1-3 sse regs. + CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, + CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>, + + // For integers, ECX can be used as an extra return register + CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>, + CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>, + CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>, + + // Otherwise, it is the same as the common X86 calling convention. + CCDelegateTo<RetCC_X86Common> +]>; + +// Intel_OCL_BI return-value convention. +def RetCC_Intel_OCL_BI : CallingConv<[ + // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3. + CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // 256-bit FP vectors + // No more than 4 registers + CCIfType<[v8f32, v4f64, v8i32, v4i64], + CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>, + + // 512-bit FP vectors + CCIfType<[v16f32, v8f64, v16i32, v8i64], + CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>, + + // i32, i64 in the standard way + CCDelegateTo<RetCC_X86Common> +]>; + +// X86-32 HiPE return-value convention. +def RetCC_X86_32_HiPE : CallingConv<[ + // Promote all types to i32 + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Return: HP, P, VAL1, VAL2 + CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>> +]>; + +// X86-32 Vectorcall return-value convention. +def RetCC_X86_32_VectorCall : CallingConv<[ + // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3. + CCIfType<[f32, f64, f128], + CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>, + + // Return integers in the standard way. + CCDelegateTo<RetCC_X86Common> +]>; + +// X86-64 C return-value convention. +def RetCC_X86_64_C : CallingConv<[ + // The X86-64 calling convention always returns FP values in XMM0. + CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>, + CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>, + CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>, + + // MMX vector types are always returned in XMM0. + CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>, + + CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, + + CCDelegateTo<RetCC_X86Common> +]>; + +// X86-Win64 C return-value convention. +def RetCC_X86_Win64_C : CallingConv<[ + // The X86-Win64 calling convention always returns __m64 values in RAX. + CCIfType<[x86mmx], CCBitConvertToType<i64>>, + + // Otherwise, everything is the same as 'normal' X86-64 C CC. + CCDelegateTo<RetCC_X86_64_C> +]>; + +// X86-64 vectorcall return-value convention. +def RetCC_X86_64_Vectorcall : CallingConv<[ + // Vectorcall calling convention always returns FP values in XMMs. + CCIfType<[f32, f64, f128], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + + // Otherwise, everything is the same as Windows X86-64 C CC. + CCDelegateTo<RetCC_X86_Win64_C> +]>; + +// X86-64 HiPE return-value convention. +def RetCC_X86_64_HiPE : CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Return: HP, P, VAL1, VAL2 + CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>> +]>; + +// X86-64 WebKit_JS return-value convention. +def RetCC_X86_64_WebKit_JS : CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Return: RAX + CCIfType<[i64], CCAssignToReg<[RAX]>> +]>; + +def RetCC_X86_64_Swift : CallingConv<[ + + CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, + + // For integers, ECX, R8D can be used as extra return registers. + CCIfType<[v1i1], CCPromoteToType<i8>>, + CCIfType<[i1], CCPromoteToType<i8>>, + CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>, + CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>, + CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>, + CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>, + + // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values. + CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + + // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3. + CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + CCDelegateTo<RetCC_X86Common> +]>; + +// X86-64 AnyReg return-value convention. No explicit register is specified for +// the return-value. The register allocator is allowed and expected to choose +// any free register. +// +// This calling convention is currently only supported by the stackmap and +// patchpoint intrinsics. All other uses will result in an assert on Debug +// builds. On Release builds we fallback to the X86 C calling convention. +def RetCC_X86_64_AnyReg : CallingConv<[ + CCCustom<"CC_X86_AnyReg_Error"> +]>; + +// X86-64 HHVM return-value convention. +def RetCC_X86_64_HHVM: CallingConv<[ + // Promote all types to i64 + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Return: could return in any GP register save RSP and R12. + CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9, + RAX, R10, R11, R13, R14, R15]>> +]>; + + +defm X86_32_RegCall : + X86_RegCall_base<RC_X86_32_RegCall>; +defm X86_Win64_RegCall : + X86_RegCall_base<RC_X86_64_RegCall_Win>; +defm X86_SysV64_RegCall : + X86_RegCall_base<RC_X86_64_RegCall_SysV>; + +// This is the root return-value convention for the X86-32 backend. +def RetCC_X86_32 : CallingConv<[ + // If FastCC, use RetCC_X86_32_Fast. + CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, + // If HiPE, use RetCC_X86_32_HiPE. + CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>, + CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>, + + // Otherwise, use RetCC_X86_32_C. + CCDelegateTo<RetCC_X86_32_C> +]>; + +// This is the root return-value convention for the X86-64 backend. +def RetCC_X86_64 : CallingConv<[ + // HiPE uses RetCC_X86_64_HiPE + CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>, + + // Handle JavaScript calls. + CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>, + CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>, + + // Handle Swift calls. + CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>, + + // Handle explicit CC selection + CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>, + CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>, + + // Handle Vectorcall CC + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>, + + // Handle HHVM calls. + CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>, + + CCIfCC<"CallingConv::X86_RegCall", + CCIfSubtarget<"isTargetWin64()", + CCDelegateTo<RetCC_X86_Win64_RegCall>>>, + CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>, + + // Mingw64 and native Win64 use Win64 CC + CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>, + + // Otherwise, drop to normal X86-64 CC + CCDelegateTo<RetCC_X86_64_C> +]>; + +// This is the return-value convention used for the entire X86 backend. +def RetCC_X86 : CallingConv<[ + + // Check if this is the Intel OpenCL built-ins calling convention + CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>, + + CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>, + CCDelegateTo<RetCC_X86_32> +]>; + +//===----------------------------------------------------------------------===// +// X86-64 Argument Calling Conventions +//===----------------------------------------------------------------------===// + +def CC_X86_64_C : CallingConv<[ + // Handles byval parameters. + CCIfByVal<CCPassByVal<8, 8>>, + + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + // The 'nest' parameter, if any, is passed in R10. + CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>, + CCIfNest<CCAssignToReg<[R10]>>, + + // Pass SwiftSelf in a callee saved register. + CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>, + + // A SwiftError is passed in R12. + CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, + + // For Swift Calling Convention, pass sret in %rax. + CCIfCC<"CallingConv::Swift", + CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>, + + // The first 6 integer arguments are passed in integer registers. + CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>, + CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>, + + // The first 8 MMX vector arguments are passed in XMM registers on Darwin. + CCIfType<[x86mmx], + CCIfSubtarget<"isTargetDarwin()", + CCIfSubtarget<"hasSSE2()", + CCPromoteToType<v2i64>>>>, + + // Boolean vectors of AVX-512 are passed in SIMD registers. + // The call from AVX to AVX-512 function should work, + // since the boolean types in AVX/AVX2 are promoted by default. + CCIfType<[v2i1], CCPromoteToType<v2i64>>, + CCIfType<[v4i1], CCPromoteToType<v4i32>>, + CCIfType<[v8i1], CCPromoteToType<v8i16>>, + CCIfType<[v16i1], CCPromoteToType<v16i8>>, + CCIfType<[v32i1], CCPromoteToType<v32i8>>, + CCIfType<[v64i1], CCPromoteToType<v64i8>>, + + // The first 8 FP/Vector arguments are passed in XMM registers. + CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCIfSubtarget<"hasSSE1()", + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>, + + // The first 8 256-bit vector arguments are passed in YMM registers, unless + // this is a vararg function. + // FIXME: This isn't precisely correct; the x86-64 ABI document says that + // fixed arguments to vararg functions are supposed to be passed in + // registers. Actually modeling that would be a lot of work, though. + CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCIfSubtarget<"hasAVX()", + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, + YMM4, YMM5, YMM6, YMM7]>>>>, + + // The first 8 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCIfSubtarget<"hasAVX512()", + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>, + + // Integer/FP values get stored in stack slots that are 8 bytes in size and + // 8-byte aligned if there are no more registers to hold them. + CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>, + + // Long doubles get stack slots whose size and alignment depends on the + // subtarget. + CCIfType<[f80, f128], CCAssignToStack<0, 0>>, + + // Vectors get 16-byte stack slots that are 16-byte aligned. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, + + // 256-bit vectors get 32-byte stack slots that are 32-byte aligned. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToStack<32, 32>>, + + // 512-bit vectors get 64-byte stack slots that are 64-byte aligned. + CCIfType<[v16i32, v8i64, v16f32, v8f64], + CCAssignToStack<64, 64>> +]>; + +// Calling convention for X86-64 HHVM. +def CC_X86_64_HHVM : CallingConv<[ + // Use all/any GP registers for args, except RSP. + CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15, + RDI, RSI, RDX, RCX, R8, R9, + RAX, R10, R11, R13, R14]>> +]>; + +// Calling convention for helper functions in HHVM. +def CC_X86_64_HHVM_C : CallingConv<[ + // Pass the first argument in RBP. + CCIfType<[i64], CCAssignToReg<[RBP]>>, + + // Otherwise it's the same as the regular C calling convention. + CCDelegateTo<CC_X86_64_C> +]>; + +// Calling convention used on Win64 +def CC_X86_Win64_C : CallingConv<[ + // FIXME: Handle byval stuff. + // FIXME: Handle varargs. + + // Promote i1/v1i1 arguments to i8. + CCIfType<[i1, v1i1], CCPromoteToType<i8>>, + + // The 'nest' parameter, if any, is passed in R10. + CCIfNest<CCAssignToReg<[R10]>>, + + // A SwiftError is passed in R12. + CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>, + + // 128 bit vectors are passed by pointer + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>, + + + // 256 bit vectors are passed by pointer + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>, + + // 512 bit vectors are passed by pointer + CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>, + + // Long doubles are passed by pointer + CCIfType<[f80], CCPassIndirect<i64>>, + + // The first 4 MMX vector arguments are passed in GPRs. + CCIfType<[x86mmx], CCBitConvertToType<i64>>, + + // The first 4 integer arguments are passed in integer registers. + CCIfType<[i8 ], CCAssignToRegWithShadow<[CL , DL , R8B , R9B ], + [XMM0, XMM1, XMM2, XMM3]>>, + CCIfType<[i16], CCAssignToRegWithShadow<[CX , DX , R8W , R9W ], + [XMM0, XMM1, XMM2, XMM3]>>, + CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ], + [XMM0, XMM1, XMM2, XMM3]>>, + + // Do not pass the sret argument in RCX, the Win64 thiscall calling + // convention requires "this" to be passed in RCX. + CCIfCC<"CallingConv::X86_ThisCall", + CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ], + [XMM1, XMM2, XMM3]>>>>, + + CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ], + [XMM0, XMM1, XMM2, XMM3]>>, + + // The first 4 FP/Vector arguments are passed in XMM registers. + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3], + [RCX , RDX , R8 , R9 ]>>, + + // Integer/FP values get stored in stack slots that are 8 bytes in size and + // 8-byte aligned if there are no more registers to hold them. + CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>> +]>; + +def CC_X86_Win64_VectorCall : CallingConv<[ + CCCustom<"CC_X86_64_VectorCall">, + + // Delegate to fastcall to handle integer types. + CCDelegateTo<CC_X86_Win64_C> +]>; + + +def CC_X86_64_GHC : CallingConv<[ + // Promote i8/i16/i32 arguments to i64. + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim + CCIfType<[i64], + CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>, + + // Pass in STG registers: F1, F2, F3, F4, D1, D2 + CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCIfSubtarget<"hasSSE1()", + CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>, + // AVX + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCIfSubtarget<"hasAVX()", + CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>, + // AVX-512 + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCIfSubtarget<"hasAVX512()", + CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>> +]>; + +def CC_X86_64_HiPE : CallingConv<[ + // Promote i8/i16/i32 arguments to i64. + CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, + + // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3 + CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>, + + // Integer/FP values get stored in stack slots that are 8 bytes in size and + // 8-byte aligned if there are no more registers to hold them. + CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>> +]>; + +def CC_X86_64_WebKit_JS : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Only the first integer argument is passed in register. + CCIfType<[i32], CCAssignToReg<[EAX]>>, + CCIfType<[i64], CCAssignToReg<[RAX]>>, + + // The remaining integer arguments are passed on the stack. 32bit integer and + // floating-point arguments are aligned to 4 byte and stored in 4 byte slots. + // 64bit integer and floating-point arguments are aligned to 8 byte and stored + // in 8 byte stack slots. + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + CCIfType<[i64, f64], CCAssignToStack<8, 8>> +]>; + +// No explicit register is specified for the AnyReg calling convention. The +// register allocator may assign the arguments to any free register. +// +// This calling convention is currently only supported by the stackmap and +// patchpoint intrinsics. All other uses will result in an assert on Debug +// builds. On Release builds we fallback to the X86 C calling convention. +def CC_X86_64_AnyReg : CallingConv<[ + CCCustom<"CC_X86_AnyReg_Error"> +]>; + +//===----------------------------------------------------------------------===// +// X86 C Calling Convention +//===----------------------------------------------------------------------===// + +/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector +/// values are spilled on the stack. +def CC_X86_32_Vector_Common : CallingConv<[ + // Other SSE vectors get 16-byte stack slots that are 16-byte aligned. + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>, + + // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned. + CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCAssignToStack<32, 32>>, + + // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned. + CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToStack<64, 64>> +]>; + +// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in +// vector registers +def CC_X86_32_Vector_Standard : CallingConv<[ + // SSE vector arguments are passed in XMM registers. + CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2]>>>, + + // AVX 256-bit vector arguments are passed in YMM registers. + CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCIfSubtarget<"hasAVX()", + CCAssignToReg<[YMM0, YMM1, YMM2]>>>>, + + // AVX 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>, + + CCDelegateTo<CC_X86_32_Vector_Common> +]>; + +// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in +// vector registers. +def CC_X86_32_Vector_Darwin : CallingConv<[ + // SSE vector arguments are passed in XMM registers. + CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>, + + // AVX 256-bit vector arguments are passed in YMM registers. + CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], + CCIfSubtarget<"hasAVX()", + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>, + + // AVX 512-bit vector arguments are passed in ZMM registers. + CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>, + + CCDelegateTo<CC_X86_32_Vector_Common> +]>; + +/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP +/// values are spilled on the stack. +def CC_X86_32_Common : CallingConv<[ + // Handles byval parameters. + CCIfByVal<CCPassByVal<4, 4>>, + + // The first 3 float or double arguments, if marked 'inreg' and if the call + // is not a vararg call and if SSE2 is available, are passed in SSE registers. + CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], + CCIfSubtarget<"hasSSE2()", + CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>, + + // The first 3 __m64 vector arguments are passed in mmx registers if the + // call is not a vararg call. + CCIfNotVarArg<CCIfType<[x86mmx], + CCAssignToReg<[MM0, MM1, MM2]>>>, + + // Integer/Float values get stored in stack slots that are 4 bytes in + // size and 4-byte aligned. + CCIfType<[i32, f32], CCAssignToStack<4, 4>>, + + // Doubles get 8-byte slots that are 4-byte aligned. + CCIfType<[f64], CCAssignToStack<8, 4>>, + + // Long doubles get slots whose size depends on the subtarget. + CCIfType<[f80], CCAssignToStack<0, 4>>, + + // Boolean vectors of AVX-512 are passed in SIMD registers. + // The call from AVX to AVX-512 function should work, + // since the boolean types in AVX/AVX2 are promoted by default. + CCIfType<[v2i1], CCPromoteToType<v2i64>>, + CCIfType<[v4i1], CCPromoteToType<v4i32>>, + CCIfType<[v8i1], CCPromoteToType<v8i16>>, + CCIfType<[v16i1], CCPromoteToType<v16i8>>, + CCIfType<[v32i1], CCPromoteToType<v32i8>>, + CCIfType<[v64i1], CCPromoteToType<v64i8>>, + + // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are + // passed in the parameter area. + CCIfType<[x86mmx], CCAssignToStack<8, 4>>, + + // Darwin passes vectors in a form that differs from the i386 psABI + CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>, + + // Otherwise, drop to 'normal' X86-32 CC + CCDelegateTo<CC_X86_32_Vector_Standard> +]>; + +def CC_X86_32_C : CallingConv<[ + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + // The 'nest' parameter, if any, is passed in ECX. + CCIfNest<CCAssignToReg<[ECX]>>, + + // The first 3 integer arguments, if marked 'inreg' and if the call is not + // a vararg call, are passed in integer registers. + CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>, + + // Otherwise, same as everything else. + CCDelegateTo<CC_X86_32_Common> +]>; + +def CC_X86_32_MCU : CallingConv<[ + // Handles byval parameters. Note that, like FastCC, we can't rely on + // the delegation to CC_X86_32_Common because that happens after code that + // puts arguments in registers. + CCIfByVal<CCPassByVal<4, 4>>, + + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + // If the call is not a vararg call, some arguments may be passed + // in integer registers. + CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>, + + // Otherwise, same as everything else. + CCDelegateTo<CC_X86_32_Common> +]>; + +def CC_X86_32_FastCall : CallingConv<[ + // Promote i1 to i8. + CCIfType<[i1], CCPromoteToType<i8>>, + + // The 'nest' parameter, if any, is passed in EAX. + CCIfNest<CCAssignToReg<[EAX]>>, + + // The first 2 integer arguments are passed in ECX/EDX + CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL, DL]>>>, + CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX, DX]>>>, + CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>, + + // Otherwise, same as everything else. + CCDelegateTo<CC_X86_32_Common> +]>; + +def CC_X86_Win32_VectorCall : CallingConv<[ + // Pass floating point in XMMs + CCCustom<"CC_X86_32_VectorCall">, + + // Delegate to fastcall to handle integer types. + CCDelegateTo<CC_X86_32_FastCall> +]>; + +def CC_X86_32_ThisCall_Common : CallingConv<[ + // The first integer argument is passed in ECX + CCIfType<[i32], CCAssignToReg<[ECX]>>, + + // Otherwise, same as everything else. + CCDelegateTo<CC_X86_32_Common> +]>; + +def CC_X86_32_ThisCall_Mingw : CallingConv<[ + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + CCDelegateTo<CC_X86_32_ThisCall_Common> +]>; + +def CC_X86_32_ThisCall_Win : CallingConv<[ + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + // Pass sret arguments indirectly through stack. + CCIfSRet<CCAssignToStack<4, 4>>, + + CCDelegateTo<CC_X86_32_ThisCall_Common> +]>; + +def CC_X86_32_ThisCall : CallingConv<[ + CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>, + CCDelegateTo<CC_X86_32_ThisCall_Win> +]>; + +def CC_X86_32_FastCC : CallingConv<[ + // Handles byval parameters. Note that we can't rely on the delegation + // to CC_X86_32_Common for this because that happens after code that + // puts arguments in registers. + CCIfByVal<CCPassByVal<4, 4>>, + + // Promote i1/i8/i16/v1i1 arguments to i32. + CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>, + + // The 'nest' parameter, if any, is passed in EAX. + CCIfNest<CCAssignToReg<[EAX]>>, + + // The first 2 integer arguments are passed in ECX/EDX + CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>, + + // The first 3 float or double arguments, if the call is not a vararg + // call and if SSE2 is available, are passed in SSE registers. + CCIfNotVarArg<CCIfType<[f32,f64], + CCIfSubtarget<"hasSSE2()", + CCAssignToReg<[XMM0,XMM1,XMM2]>>>>, + + // Doubles get 8-byte slots that are 8-byte aligned. + CCIfType<[f64], CCAssignToStack<8, 8>>, + + // Otherwise, same as everything else. + CCDelegateTo<CC_X86_32_Common> +]>; + +def CC_X86_32_GHC : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Pass in STG registers: Base, Sp, Hp, R1 + CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>> +]>; + +def CC_X86_32_HiPE : CallingConv<[ + // Promote i8/i16 arguments to i32. + CCIfType<[i8, i16], CCPromoteToType<i32>>, + + // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2 + CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>, + + // Integer/Float values get stored in stack slots that are 4 bytes in + // size and 4-byte aligned. + CCIfType<[i32, f32], CCAssignToStack<4, 4>> +]>; + +// X86-64 Intel OpenCL built-ins calling convention. +def CC_Intel_OCL_BI : CallingConv<[ + + CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>, + CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>, + + CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>, + CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>, + + CCIfType<[i32], CCAssignToStack<4, 4>>, + + // The SSE vector arguments are passed in XMM registers. + CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64], + CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>, + + // The 256-bit vector arguments are passed in YMM registers. + CCIfType<[v8f32, v4f64, v8i32, v4i64], + CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>, + + // The 512-bit vector arguments are passed in ZMM registers. + CCIfType<[v16f32, v8f64, v16i32, v8i64], + CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>, + + // Pass masks in mask registers + CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>, + + CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, + CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>, + CCDelegateTo<CC_X86_32_C> +]>; + +def CC_X86_32_Intr : CallingConv<[ + CCAssignToStack<4, 4> +]>; + +def CC_X86_64_Intr : CallingConv<[ + CCAssignToStack<8, 8> +]>; + +//===----------------------------------------------------------------------===// +// X86 Root Argument Calling Conventions +//===----------------------------------------------------------------------===// + +// This is the root argument convention for the X86-32 backend. +def CC_X86_32 : CallingConv<[ + // X86_INTR calling convention is valid in MCU target and should override the + // MCU calling convention. Thus, this should be checked before isTargetMCU(). + CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>, + CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>, + CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>, + CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>, + CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>, + CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>, + CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>, + CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>, + + // Otherwise, drop to normal X86-32 CC + CCDelegateTo<CC_X86_32_C> +]>; + +// This is the root argument convention for the X86-64 backend. +def CC_X86_64 : CallingConv<[ + CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>, + CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>, + CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>, + CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>, + CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>, + CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>, + CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>, + CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>, + CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>, + CCIfCC<"CallingConv::X86_RegCall", + CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>, + CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>, + CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>, + + // Mingw64 and native Win64 use Win64 CC + CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>, + + // Otherwise, drop to normal X86-64 CC + CCDelegateTo<CC_X86_64_C> +]>; + +// This is the argument convention used for the entire X86 backend. +def CC_X86 : CallingConv<[ + CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>, + CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>, + CCDelegateTo<CC_X86_32> +]>; + +//===----------------------------------------------------------------------===// +// Callee-saved Registers. +//===----------------------------------------------------------------------===// + +def CSR_NoRegs : CalleeSavedRegs<(add)>; + +def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>; +def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>; + +def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>; + +def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>; +def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>; + +def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>; + +def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE, + (sequence "XMM%u", 6, 15))>; + +def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>; + +// The function used by Darwin to obtain the address of a thread-local variable +// uses rdi to pass a single parameter and rax for the return value. All other +// GPRs are preserved. +def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI, + R8, R9, R10, R11)>; + +// CSRs that are handled by prologue, epilogue. +def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>; + +// CSRs that are handled explicitly via copies. +def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>; + +// All GPRs - except r11 +def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI, + R8, R9, R10, RSP)>; + +// All registers - except r11 +def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs, + (sequence "XMM%u", 0, 15))>; +def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs, + (sequence "YMM%u", 0, 15))>; + +def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10, + R11, R12, R13, R14, R15, RBP, + (sequence "XMM%u", 0, 15))>; + +def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI, + EDI)>; +def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs, + (sequence "XMM%u", 0, 7))>; +def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs, + (sequence "YMM%u", 0, 7))>; +def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs, + (sequence "ZMM%u", 0, 7), + (sequence "K%u", 0, 7))>; + +def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>; +def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9, + R10, R11, R12, R13, R14, R15, RBP)>; +def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, + (sequence "YMM%u", 0, 15)), + (sequence "XMM%u", 0, 15))>; +def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, + (sequence "ZMM%u", 0, 31), + (sequence "K%u", 0, 7)), + (sequence "XMM%u", 0, 15))>; + +// Standard C + YMM6-15 +def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, + R13, R14, R15, + (sequence "YMM%u", 6, 15))>; + +def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, + R12, R13, R14, R15, + (sequence "ZMM%u", 6, 21), + K4, K5, K6, K7)>; +//Standard C + XMM 8-15 +def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64, + (sequence "XMM%u", 8, 15))>; + +//Standard C + YMM 8-15 +def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64, + (sequence "YMM%u", 8, 15))>; + +def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15, + (sequence "ZMM%u", 16, 31), + K4, K5, K6, K7)>; + +// Only R12 is preserved for PHP calls in HHVM. +def CSR_64_HHVM : CalleeSavedRegs<(add R12)>; + +// Register calling convention preserves few GPR and XMM8-15 +def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>; +def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE, + (sequence "XMM%u", 4, 7))>; +def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP, + (sequence "R%u", 10, 15))>; +def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE, + (sequence "XMM%u", 8, 15))>; +def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP, + (sequence "R%u", 12, 15))>; +def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE, + (sequence "XMM%u", 8, 15))>; + |