aboutsummaryrefslogtreecommitdiffstats
path: root/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td
diff options
context:
space:
mode:
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td')
-rw-r--r--capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td1150
1 files changed, 1150 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td b/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td
new file mode 100644
index 000000000..fcc9a296d
--- /dev/null
+++ b/capstone/suite/synctools/tablegen/X86/back/X86CallingConv.td
@@ -0,0 +1,1150 @@
+//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the X86-32 and X86-64
+// architectures.
+//
+//===----------------------------------------------------------------------===//
+
+/// CCIfSubtarget - Match if the current subtarget has a feature F.
+class CCIfSubtarget<string F, CCAction A>
+ : CCIf<!strconcat("static_cast<const X86Subtarget&>"
+ "(State.getMachineFunction().getSubtarget()).", F),
+ A>;
+
+/// CCIfNotSubtarget - Match if the current subtarget doesn't has a feature F.
+class CCIfNotSubtarget<string F, CCAction A>
+ : CCIf<!strconcat("!static_cast<const X86Subtarget&>"
+ "(State.getMachineFunction().getSubtarget()).", F),
+ A>;
+
+// Register classes for RegCall
+class RC_X86_RegCall {
+ list<Register> GPR_8 = [];
+ list<Register> GPR_16 = [];
+ list<Register> GPR_32 = [];
+ list<Register> GPR_64 = [];
+ list<Register> FP_CALL = [FP0];
+ list<Register> FP_RET = [FP0, FP1];
+ list<Register> XMM = [];
+ list<Register> YMM = [];
+ list<Register> ZMM = [];
+}
+
+// RegCall register classes for 32 bits
+def RC_X86_32_RegCall : RC_X86_RegCall {
+ let GPR_8 = [AL, CL, DL, DIL, SIL];
+ let GPR_16 = [AX, CX, DX, DI, SI];
+ let GPR_32 = [EAX, ECX, EDX, EDI, ESI];
+ let GPR_64 = [RAX]; ///< Not actually used, but AssignToReg can't handle []
+ ///< \todo Fix AssignToReg to enable empty lists
+ let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7];
+ let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7];
+ let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7];
+}
+
+class RC_X86_64_RegCall : RC_X86_RegCall {
+ let XMM = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15];
+ let YMM = [YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
+ YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15];
+ let ZMM = [ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7,
+ ZMM8, ZMM9, ZMM10, ZMM11, ZMM12, ZMM13, ZMM14, ZMM15];
+}
+
+def RC_X86_64_RegCall_Win : RC_X86_64_RegCall {
+ let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R10B, R11B, R12B, R14B, R15B];
+ let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R10W, R11W, R12W, R14W, R15W];
+ let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R10D, R11D, R12D, R14D, R15D];
+ let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R10, R11, R12, R14, R15];
+}
+
+def RC_X86_64_RegCall_SysV : RC_X86_64_RegCall {
+ let GPR_8 = [AL, CL, DL, DIL, SIL, R8B, R9B, R12B, R13B, R14B, R15B];
+ let GPR_16 = [AX, CX, DX, DI, SI, R8W, R9W, R12W, R13W, R14W, R15W];
+ let GPR_32 = [EAX, ECX, EDX, EDI, ESI, R8D, R9D, R12D, R13D, R14D, R15D];
+ let GPR_64 = [RAX, RCX, RDX, RDI, RSI, R8, R9, R12, R13, R14, R15];
+}
+
+// X86-64 Intel regcall calling convention.
+multiclass X86_RegCall_base<RC_X86_RegCall RC> {
+def CC_#NAME : CallingConv<[
+ // Handles byval parameters.
+ CCIfSubtarget<"is64Bit()", CCIfByVal<CCPassByVal<8, 8>>>,
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ // Promote v8i1/v16i1/v32i1 arguments to i32.
+ CCIfType<[v8i1, v16i1, v32i1], CCPromoteToType<i32>>,
+
+ // bool, char, int, enum, long, pointer --> GPR
+ CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
+
+ // long long, __int64 --> GPR
+ CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
+
+ // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
+ CCIfType<[v64i1], CCPromoteToType<i64>>,
+ CCIfSubtarget<"is64Bit()", CCIfType<[i64],
+ CCAssignToReg<RC.GPR_64>>>,
+ CCIfSubtarget<"is32Bit()", CCIfType<[i64],
+ CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
+
+ // float, double, float128 --> XMM
+ // In the case of SSE disabled --> save to stack
+ CCIfType<[f32, f64, f128],
+ CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
+
+ // long double --> FP
+ CCIfType<[f80], CCAssignToReg<RC.FP_CALL>>,
+
+ // __m128, __m128i, __m128d --> XMM
+ // In the case of SSE disabled --> save to stack
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
+
+ // __m256, __m256i, __m256d --> YMM
+ // In the case of SSE disabled --> save to stack
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
+
+ // __m512, __m512i, __m512d --> ZMM
+ // In the case of SSE disabled --> save to stack
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCIfSubtarget<"hasAVX512()",CCAssignToReg<RC.ZMM>>>,
+
+ // If no register was found -> assign to stack
+
+ // In 64 bit, assign 64/32 bit values to 8 byte stack
+ CCIfSubtarget<"is64Bit()", CCIfType<[i32, i64, f32, f64],
+ CCAssignToStack<8, 8>>>,
+
+ // In 32 bit, assign 64/32 bit values to 8/4 byte stack
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+ CCIfType<[i64, f64], CCAssignToStack<8, 4>>,
+
+ // MMX type gets 8 byte slot in stack , while alignment depends on target
+ CCIfSubtarget<"is64Bit()", CCIfType<[x86mmx], CCAssignToStack<8, 8>>>,
+ CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
+
+ // float 128 get stack slots whose size and alignment depends
+ // on the subtarget.
+ CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
+
+ // Vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToStack<16, 16>>,
+
+ // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>,
+
+ // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
+ CCIfType<[v16i32, v8i64, v16f32, v8f64], CCAssignToStack<64, 64>>
+]>;
+
+def RetCC_#NAME : CallingConv<[
+ // Promote i1, v1i1, v8i1 arguments to i8.
+ CCIfType<[i1, v1i1, v8i1], CCPromoteToType<i8>>,
+
+ // Promote v16i1 arguments to i16.
+ CCIfType<[v16i1], CCPromoteToType<i16>>,
+
+ // Promote v32i1 arguments to i32.
+ CCIfType<[v32i1], CCPromoteToType<i32>>,
+
+ // bool, char, int, enum, long, pointer --> GPR
+ CCIfType<[i8], CCAssignToReg<RC.GPR_8>>,
+ CCIfType<[i16], CCAssignToReg<RC.GPR_16>>,
+ CCIfType<[i32], CCAssignToReg<RC.GPR_32>>,
+
+ // long long, __int64 --> GPR
+ CCIfType<[i64], CCAssignToReg<RC.GPR_64>>,
+
+ // __mmask64 (v64i1) --> GPR64 (for x64) or 2 x GPR32 (for IA32)
+ CCIfType<[v64i1], CCPromoteToType<i64>>,
+ CCIfSubtarget<"is64Bit()", CCIfType<[i64],
+ CCAssignToReg<RC.GPR_64>>>,
+ CCIfSubtarget<"is32Bit()", CCIfType<[i64],
+ CCCustom<"CC_X86_32_RegCall_Assign2Regs">>>,
+
+ // long double --> FP
+ CCIfType<[f80], CCAssignToReg<RC.FP_RET>>,
+
+ // float, double, float128 --> XMM
+ CCIfType<[f32, f64, f128],
+ CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
+
+ // __m128, __m128i, __m128d --> XMM
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()", CCAssignToReg<RC.XMM>>>,
+
+ // __m256, __m256i, __m256d --> YMM
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()", CCAssignToReg<RC.YMM>>>,
+
+ // __m512, __m512i, __m512d --> ZMM
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCIfSubtarget<"hasAVX512()", CCAssignToReg<RC.ZMM>>>
+]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// Return-value conventions common to all X86 CC's.
+def RetCC_X86Common : CallingConv<[
+ // Scalar values are returned in AX first, then DX. For i8, the ABI
+ // requires the values to be in AL and AH, however this code uses AL and DL
+ // instead. This is because using AH for the second register conflicts with
+ // the way LLVM does multiple return values -- a return of {i16,i8} would end
+ // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
+ // for functions that return two i8 values are currently expected to pack the
+ // values into an i16 (which uses AX, and thus AL:AH).
+ //
+ // For code that doesn't care about the ABI, we allow returning more than two
+ // integer values in registers.
+ CCIfType<[v1i1], CCPromoteToType<i8>>,
+ CCIfType<[i1], CCPromoteToType<i8>>,
+ CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
+ CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
+
+ // Boolean vectors of AVX-512 are returned in SIMD registers.
+ // The call from AVX to AVX-512 function should work,
+ // since the boolean types in AVX/AVX2 are promoted by default.
+ CCIfType<[v2i1], CCPromoteToType<v2i64>>,
+ CCIfType<[v4i1], CCPromoteToType<v4i32>>,
+ CCIfType<[v8i1], CCPromoteToType<v8i16>>,
+ CCIfType<[v16i1], CCPromoteToType<v16i8>>,
+ CCIfType<[v32i1], CCPromoteToType<v32i8>>,
+ CCIfType<[v64i1], CCPromoteToType<v64i8>>,
+
+ // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
+ // can only be used by ABI non-compliant code. If the target doesn't have XMM
+ // registers, it won't have vector types.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
+ // can only be used by ABI non-compliant code. This vector type is only
+ // supported while using the AVX target feature.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
+
+ // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
+ // can only be used by ABI non-compliant code. This vector type is only
+ // supported while using the AVX-512 target feature.
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
+
+ // MMX vector types are always returned in MM0. If the target doesn't have
+ // MM0, it doesn't support these vector types.
+ CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
+
+ // Long double types are always returned in FP0 (even with SSE),
+ // except on Win64.
+ CCIfNotSubtarget<"isTargetWin64()", CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>>
+]>;
+
+// X86-32 C return-value convention.
+def RetCC_X86_32_C : CallingConv<[
+ // The X86-32 calling convention returns FP values in FP0, unless marked
+ // with "inreg" (used here to distinguish one kind of reg from another,
+ // weirdly; this is really the sse-regparm calling convention) in which
+ // case they use XMM0, otherwise it is the same as the common X86 calling
+ // conv.
+ CCIfInReg<CCIfSubtarget<"hasSSE2()",
+ CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+ CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-32 FastCC return-value convention.
+def RetCC_X86_32_Fast : CallingConv<[
+ // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
+ // SSE2.
+ // This can happen when a float, 2 x float, or 3 x float vector is split by
+ // target lowering, and is returned in 1-3 sse regs.
+ CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
+ CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
+
+ // For integers, ECX can be used as an extra return register
+ CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
+
+ // Otherwise, it is the same as the common X86 calling convention.
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// Intel_OCL_BI return-value convention.
+def RetCC_Intel_OCL_BI : CallingConv<[
+ // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
+ CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // 256-bit FP vectors
+ // No more than 4 registers
+ CCIfType<[v8f32, v4f64, v8i32, v4i64],
+ CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
+
+ // 512-bit FP vectors
+ CCIfType<[v16f32, v8f64, v16i32, v8i64],
+ CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
+
+ // i32, i64 in the standard way
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-32 HiPE return-value convention.
+def RetCC_X86_32_HiPE : CallingConv<[
+ // Promote all types to i32
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Return: HP, P, VAL1, VAL2
+ CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
+]>;
+
+// X86-32 Vectorcall return-value convention.
+def RetCC_X86_32_VectorCall : CallingConv<[
+ // Floating Point types are returned in XMM0,XMM1,XMMM2 and XMM3.
+ CCIfType<[f32, f64, f128],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // Return integers in the standard way.
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-64 C return-value convention.
+def RetCC_X86_64_C : CallingConv<[
+ // The X86-64 calling convention always returns FP values in XMM0.
+ CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
+ CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
+ CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
+
+ // MMX vector types are always returned in XMM0.
+ CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
+
+ CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
+
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-Win64 C return-value convention.
+def RetCC_X86_Win64_C : CallingConv<[
+ // The X86-Win64 calling convention always returns __m64 values in RAX.
+ CCIfType<[x86mmx], CCBitConvertToType<i64>>,
+
+ // Otherwise, everything is the same as 'normal' X86-64 C CC.
+ CCDelegateTo<RetCC_X86_64_C>
+]>;
+
+// X86-64 vectorcall return-value convention.
+def RetCC_X86_64_Vectorcall : CallingConv<[
+ // Vectorcall calling convention always returns FP values in XMMs.
+ CCIfType<[f32, f64, f128],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+
+ // Otherwise, everything is the same as Windows X86-64 C CC.
+ CCDelegateTo<RetCC_X86_Win64_C>
+]>;
+
+// X86-64 HiPE return-value convention.
+def RetCC_X86_64_HiPE : CallingConv<[
+ // Promote all types to i64
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Return: HP, P, VAL1, VAL2
+ CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
+]>;
+
+// X86-64 WebKit_JS return-value convention.
+def RetCC_X86_64_WebKit_JS : CallingConv<[
+ // Promote all types to i64
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Return: RAX
+ CCIfType<[i64], CCAssignToReg<[RAX]>>
+]>;
+
+def RetCC_X86_64_Swift : CallingConv<[
+
+ CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
+
+ // For integers, ECX, R8D can be used as extra return registers.
+ CCIfType<[v1i1], CCPromoteToType<i8>>,
+ CCIfType<[i1], CCPromoteToType<i8>>,
+ CCIfType<[i8] , CCAssignToReg<[AL, DL, CL, R8B]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX, R8W]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX, R8D]>>,
+ CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX, R8]>>,
+
+ // XMM0, XMM1, XMM2 and XMM3 can be used to return FP values.
+ CCIfType<[f32], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+ CCIfType<[f64], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+ CCIfType<[f128], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+
+ // MMX vector types are returned in XMM0, XMM1, XMM2 and XMM3.
+ CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-64 AnyReg return-value convention. No explicit register is specified for
+// the return-value. The register allocator is allowed and expected to choose
+// any free register.
+//
+// This calling convention is currently only supported by the stackmap and
+// patchpoint intrinsics. All other uses will result in an assert on Debug
+// builds. On Release builds we fallback to the X86 C calling convention.
+def RetCC_X86_64_AnyReg : CallingConv<[
+ CCCustom<"CC_X86_AnyReg_Error">
+]>;
+
+// X86-64 HHVM return-value convention.
+def RetCC_X86_64_HHVM: CallingConv<[
+ // Promote all types to i64
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Return: could return in any GP register save RSP and R12.
+ CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
+ RAX, R10, R11, R13, R14, R15]>>
+]>;
+
+
+defm X86_32_RegCall :
+ X86_RegCall_base<RC_X86_32_RegCall>;
+defm X86_Win64_RegCall :
+ X86_RegCall_base<RC_X86_64_RegCall_Win>;
+defm X86_SysV64_RegCall :
+ X86_RegCall_base<RC_X86_64_RegCall_SysV>;
+
+// This is the root return-value convention for the X86-32 backend.
+def RetCC_X86_32 : CallingConv<[
+ // If FastCC, use RetCC_X86_32_Fast.
+ CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
+ // If HiPE, use RetCC_X86_32_HiPE.
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
+ CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_32_RegCall>>,
+
+ // Otherwise, use RetCC_X86_32_C.
+ CCDelegateTo<RetCC_X86_32_C>
+]>;
+
+// This is the root return-value convention for the X86-64 backend.
+def RetCC_X86_64 : CallingConv<[
+ // HiPE uses RetCC_X86_64_HiPE
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
+
+ // Handle JavaScript calls.
+ CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
+
+ // Handle Swift calls.
+ CCIfCC<"CallingConv::Swift", CCDelegateTo<RetCC_X86_64_Swift>>,
+
+ // Handle explicit CC selection
+ CCIfCC<"CallingConv::Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
+ CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
+
+ // Handle Vectorcall CC
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_64_Vectorcall>>,
+
+ // Handle HHVM calls.
+ CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
+
+ CCIfCC<"CallingConv::X86_RegCall",
+ CCIfSubtarget<"isTargetWin64()",
+ CCDelegateTo<RetCC_X86_Win64_RegCall>>>,
+ CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<RetCC_X86_SysV64_RegCall>>,
+
+ // Mingw64 and native Win64 use Win64 CC
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
+
+ // Otherwise, drop to normal X86-64 CC
+ CCDelegateTo<RetCC_X86_64_C>
+]>;
+
+// This is the return-value convention used for the entire X86 backend.
+def RetCC_X86 : CallingConv<[
+
+ // Check if this is the Intel OpenCL built-ins calling convention
+ CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
+
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
+ CCDelegateTo<RetCC_X86_32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86-64 Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+
+def CC_X86_64_C : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<8, 8>>,
+
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
+ CCIfNest<CCAssignToReg<[R10]>>,
+
+ // Pass SwiftSelf in a callee saved register.
+ CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R13]>>>,
+
+ // A SwiftError is passed in R12.
+ CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
+
+ // For Swift Calling Convention, pass sret in %rax.
+ CCIfCC<"CallingConv::Swift",
+ CCIfSRet<CCIfType<[i64], CCAssignToReg<[RAX]>>>>,
+
+ // The first 6 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
+ CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
+
+ // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
+ CCIfType<[x86mmx],
+ CCIfSubtarget<"isTargetDarwin()",
+ CCIfSubtarget<"hasSSE2()",
+ CCPromoteToType<v2i64>>>>,
+
+ // Boolean vectors of AVX-512 are passed in SIMD registers.
+ // The call from AVX to AVX-512 function should work,
+ // since the boolean types in AVX/AVX2 are promoted by default.
+ CCIfType<[v2i1], CCPromoteToType<v2i64>>,
+ CCIfType<[v4i1], CCPromoteToType<v4i32>>,
+ CCIfType<[v8i1], CCPromoteToType<v8i16>>,
+ CCIfType<[v16i1], CCPromoteToType<v16i8>>,
+ CCIfType<[v32i1], CCPromoteToType<v32i8>>,
+ CCIfType<[v64i1], CCPromoteToType<v64i8>>,
+
+ // The first 8 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
+
+ // The first 8 256-bit vector arguments are passed in YMM registers, unless
+ // this is a vararg function.
+ // FIXME: This isn't precisely correct; the x86-64 ABI document says that
+ // fixed arguments to vararg functions are supposed to be passed in
+ // registers. Actually modeling that would be a lot of work, though.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
+ YMM4, YMM5, YMM6, YMM7]>>>>,
+
+ // The first 8 512-bit vector arguments are passed in ZMM registers.
+ CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCIfSubtarget<"hasAVX512()",
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
+
+ // Long doubles get stack slots whose size and alignment depends on the
+ // subtarget.
+ CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
+
+ // Vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
+
+ // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>,
+
+ // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
+ CCIfType<[v16i32, v8i64, v16f32, v8f64],
+ CCAssignToStack<64, 64>>
+]>;
+
+// Calling convention for X86-64 HHVM.
+def CC_X86_64_HHVM : CallingConv<[
+ // Use all/any GP registers for args, except RSP.
+ CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
+ RDI, RSI, RDX, RCX, R8, R9,
+ RAX, R10, R11, R13, R14]>>
+]>;
+
+// Calling convention for helper functions in HHVM.
+def CC_X86_64_HHVM_C : CallingConv<[
+ // Pass the first argument in RBP.
+ CCIfType<[i64], CCAssignToReg<[RBP]>>,
+
+ // Otherwise it's the same as the regular C calling convention.
+ CCDelegateTo<CC_X86_64_C>
+]>;
+
+// Calling convention used on Win64
+def CC_X86_Win64_C : CallingConv<[
+ // FIXME: Handle byval stuff.
+ // FIXME: Handle varargs.
+
+ // Promote i1/v1i1 arguments to i8.
+ CCIfType<[i1, v1i1], CCPromoteToType<i8>>,
+
+ // The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCAssignToReg<[R10]>>,
+
+ // A SwiftError is passed in R12.
+ CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R12]>>>,
+
+ // 128 bit vectors are passed by pointer
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
+
+
+ // 256 bit vectors are passed by pointer
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
+
+ // 512 bit vectors are passed by pointer
+ CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
+
+ // Long doubles are passed by pointer
+ CCIfType<[f80], CCPassIndirect<i64>>,
+
+ // The first 4 MMX vector arguments are passed in GPRs.
+ CCIfType<[x86mmx], CCBitConvertToType<i64>>,
+
+ // The first 4 integer arguments are passed in integer registers.
+ CCIfType<[i8 ], CCAssignToRegWithShadow<[CL , DL , R8B , R9B ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+ CCIfType<[i16], CCAssignToRegWithShadow<[CX , DX , R8W , R9W ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+ CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+
+ // Do not pass the sret argument in RCX, the Win64 thiscall calling
+ // convention requires "this" to be passed in RCX.
+ CCIfCC<"CallingConv::X86_ThisCall",
+ CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
+ [XMM1, XMM2, XMM3]>>>>,
+
+ CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+
+ // The first 4 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
+ [RCX , RDX , R8 , R9 ]>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i8, i16, i32, i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
+
+def CC_X86_Win64_VectorCall : CallingConv<[
+ CCCustom<"CC_X86_64_VectorCall">,
+
+ // Delegate to fastcall to handle integer types.
+ CCDelegateTo<CC_X86_Win64_C>
+]>;
+
+
+def CC_X86_64_GHC : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
+ CCIfType<[i64],
+ CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
+
+ // Pass in STG registers: F1, F2, F3, F4, D1, D2
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>,
+ // AVX
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM1, YMM2, YMM3, YMM4, YMM5, YMM6]>>>,
+ // AVX-512
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCIfSubtarget<"hasAVX512()",
+ CCAssignToReg<[ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6]>>>
+]>;
+
+def CC_X86_64_HiPE : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
+ CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
+]>;
+
+def CC_X86_64_WebKit_JS : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Only the first integer argument is passed in register.
+ CCIfType<[i32], CCAssignToReg<[EAX]>>,
+ CCIfType<[i64], CCAssignToReg<[RAX]>>,
+
+ // The remaining integer arguments are passed on the stack. 32bit integer and
+ // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
+ // 64bit integer and floating-point arguments are aligned to 8 byte and stored
+ // in 8 byte stack slots.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+ CCIfType<[i64, f64], CCAssignToStack<8, 8>>
+]>;
+
+// No explicit register is specified for the AnyReg calling convention. The
+// register allocator may assign the arguments to any free register.
+//
+// This calling convention is currently only supported by the stackmap and
+// patchpoint intrinsics. All other uses will result in an assert on Debug
+// builds. On Release builds we fallback to the X86 C calling convention.
+def CC_X86_64_AnyReg : CallingConv<[
+ CCCustom<"CC_X86_AnyReg_Error">
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86 C Calling Convention
+//===----------------------------------------------------------------------===//
+
+/// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
+/// values are spilled on the stack.
+def CC_X86_32_Vector_Common : CallingConv<[
+ // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
+
+ // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>,
+
+ // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
+ CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToStack<64, 64>>
+]>;
+
+// CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
+// vector registers
+def CC_X86_32_Vector_Standard : CallingConv<[
+ // SSE vector arguments are passed in XMM registers.
+ CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
+
+ // AVX 256-bit vector arguments are passed in YMM registers.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
+
+ // AVX 512-bit vector arguments are passed in ZMM registers.
+ CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
+
+ CCDelegateTo<CC_X86_32_Vector_Common>
+]>;
+
+// CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
+// vector registers.
+def CC_X86_32_Vector_Darwin : CallingConv<[
+ // SSE vector arguments are passed in XMM registers.
+ CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
+
+ // AVX 256-bit vector arguments are passed in YMM registers.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
+
+ // AVX 512-bit vector arguments are passed in ZMM registers.
+ CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
+
+ CCDelegateTo<CC_X86_32_Vector_Common>
+]>;
+
+/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
+/// values are spilled on the stack.
+def CC_X86_32_Common : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // The first 3 float or double arguments, if marked 'inreg' and if the call
+ // is not a vararg call and if SSE2 is available, are passed in SSE registers.
+ CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
+ CCIfSubtarget<"hasSSE2()",
+ CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
+
+ // The first 3 __m64 vector arguments are passed in mmx registers if the
+ // call is not a vararg call.
+ CCIfNotVarArg<CCIfType<[x86mmx],
+ CCAssignToReg<[MM0, MM1, MM2]>>>,
+
+ // Integer/Float values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+
+ // Doubles get 8-byte slots that are 4-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 4>>,
+
+ // Long doubles get slots whose size depends on the subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 4>>,
+
+ // Boolean vectors of AVX-512 are passed in SIMD registers.
+ // The call from AVX to AVX-512 function should work,
+ // since the boolean types in AVX/AVX2 are promoted by default.
+ CCIfType<[v2i1], CCPromoteToType<v2i64>>,
+ CCIfType<[v4i1], CCPromoteToType<v4i32>>,
+ CCIfType<[v8i1], CCPromoteToType<v8i16>>,
+ CCIfType<[v16i1], CCPromoteToType<v16i8>>,
+ CCIfType<[v32i1], CCPromoteToType<v32i8>>,
+ CCIfType<[v64i1], CCPromoteToType<v64i8>>,
+
+ // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
+ // passed in the parameter area.
+ CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
+
+ // Darwin passes vectors in a form that differs from the i386 psABI
+ CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
+
+ // Otherwise, drop to 'normal' X86-32 CC
+ CCDelegateTo<CC_X86_32_Vector_Standard>
+]>;
+
+def CC_X86_32_C : CallingConv<[
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in ECX.
+ CCIfNest<CCAssignToReg<[ECX]>>,
+
+ // The first 3 integer arguments, if marked 'inreg' and if the call is not
+ // a vararg call, are passed in integer registers.
+ CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_MCU : CallingConv<[
+ // Handles byval parameters. Note that, like FastCC, we can't rely on
+ // the delegation to CC_X86_32_Common because that happens after code that
+ // puts arguments in registers.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ // If the call is not a vararg call, some arguments may be passed
+ // in integer registers.
+ CCIfNotVarArg<CCIfType<[i32], CCCustom<"CC_X86_32_MCUInReg">>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_FastCall : CallingConv<[
+ // Promote i1 to i8.
+ CCIfType<[i1], CCPromoteToType<i8>>,
+
+ // The 'nest' parameter, if any, is passed in EAX.
+ CCIfNest<CCAssignToReg<[EAX]>>,
+
+ // The first 2 integer arguments are passed in ECX/EDX
+ CCIfInReg<CCIfType<[ i8], CCAssignToReg<[ CL, DL]>>>,
+ CCIfInReg<CCIfType<[i16], CCAssignToReg<[ CX, DX]>>>,
+ CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_Win32_VectorCall : CallingConv<[
+ // Pass floating point in XMMs
+ CCCustom<"CC_X86_32_VectorCall">,
+
+ // Delegate to fastcall to handle integer types.
+ CCDelegateTo<CC_X86_32_FastCall>
+]>;
+
+def CC_X86_32_ThisCall_Common : CallingConv<[
+ // The first integer argument is passed in ECX
+ CCIfType<[i32], CCAssignToReg<[ECX]>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_ThisCall_Mingw : CallingConv<[
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ CCDelegateTo<CC_X86_32_ThisCall_Common>
+]>;
+
+def CC_X86_32_ThisCall_Win : CallingConv<[
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ // Pass sret arguments indirectly through stack.
+ CCIfSRet<CCAssignToStack<4, 4>>,
+
+ CCDelegateTo<CC_X86_32_ThisCall_Common>
+]>;
+
+def CC_X86_32_ThisCall : CallingConv<[
+ CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
+ CCDelegateTo<CC_X86_32_ThisCall_Win>
+]>;
+
+def CC_X86_32_FastCC : CallingConv<[
+ // Handles byval parameters. Note that we can't rely on the delegation
+ // to CC_X86_32_Common for this because that happens after code that
+ // puts arguments in registers.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Promote i1/i8/i16/v1i1 arguments to i32.
+ CCIfType<[i1, i8, i16, v1i1], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in EAX.
+ CCIfNest<CCAssignToReg<[EAX]>>,
+
+ // The first 2 integer arguments are passed in ECX/EDX
+ CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
+
+ // The first 3 float or double arguments, if the call is not a vararg
+ // call and if SSE2 is available, are passed in SSE registers.
+ CCIfNotVarArg<CCIfType<[f32,f64],
+ CCIfSubtarget<"hasSSE2()",
+ CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+
+ // Doubles get 8-byte slots that are 8-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 8>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_GHC : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1
+ CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
+]>;
+
+def CC_X86_32_HiPE : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
+ CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
+
+ // Integer/Float values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>
+]>;
+
+// X86-64 Intel OpenCL built-ins calling convention.
+def CC_Intel_OCL_BI : CallingConv<[
+
+ CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
+ CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8, R9 ]>>>,
+
+ CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
+ CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
+
+ CCIfType<[i32], CCAssignToStack<4, 4>>,
+
+ // The SSE vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+
+ // The 256-bit vector arguments are passed in YMM registers.
+ CCIfType<[v8f32, v4f64, v8i32, v4i64],
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
+
+ // The 512-bit vector arguments are passed in ZMM registers.
+ CCIfType<[v16f32, v8f64, v16i32, v8i64],
+ CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
+
+ // Pass masks in mask registers
+ CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
+
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64_C>>,
+ CCDelegateTo<CC_X86_32_C>
+]>;
+
+def CC_X86_32_Intr : CallingConv<[
+ CCAssignToStack<4, 4>
+]>;
+
+def CC_X86_64_Intr : CallingConv<[
+ CCAssignToStack<8, 8>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86 Root Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// This is the root argument convention for the X86-32 backend.
+def CC_X86_32 : CallingConv<[
+ // X86_INTR calling convention is valid in MCU target and should override the
+ // MCU calling convention. Thus, this should be checked before isTargetMCU().
+ CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
+ CCIfSubtarget<"isTargetMCU()", CCDelegateTo<CC_X86_32_MCU>>,
+ CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win32_VectorCall>>,
+ CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
+ CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
+ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
+ CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_32_RegCall>>,
+
+ // Otherwise, drop to normal X86-32 CC
+ CCDelegateTo<CC_X86_32_C>
+]>;
+
+// This is the root argument convention for the X86-64 backend.
+def CC_X86_64 : CallingConv<[
+ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
+ CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
+ CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
+ CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
+ CCIfCC<"CallingConv::Win64", CCDelegateTo<CC_X86_Win64_C>>,
+ CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
+ CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
+ CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
+ CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
+ CCIfCC<"CallingConv::X86_RegCall",
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_RegCall>>>,
+ CCIfCC<"CallingConv::X86_RegCall", CCDelegateTo<CC_X86_SysV64_RegCall>>,
+ CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
+
+ // Mingw64 and native Win64 use Win64 CC
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
+
+ // Otherwise, drop to normal X86-64 CC
+ CCDelegateTo<CC_X86_64_C>
+]>;
+
+// This is the argument convention used for the entire X86 backend.
+def CC_X86 : CallingConv<[
+ CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
+ CCDelegateTo<CC_X86_32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Callee-saved Registers.
+//===----------------------------------------------------------------------===//
+
+def CSR_NoRegs : CalleeSavedRegs<(add)>;
+
+def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
+def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
+
+def CSR_64_SwiftError : CalleeSavedRegs<(sub CSR_64, R12)>;
+
+def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
+def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
+
+def CSR_Win64_NoSSE : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15)>;
+
+def CSR_Win64 : CalleeSavedRegs<(add CSR_Win64_NoSSE,
+ (sequence "XMM%u", 6, 15))>;
+
+def CSR_Win64_SwiftError : CalleeSavedRegs<(sub CSR_Win64, R12)>;
+
+// The function used by Darwin to obtain the address of a thread-local variable
+// uses rdi to pass a single parameter and rax for the return value. All other
+// GPRs are preserved.
+def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
+ R8, R9, R10, R11)>;
+
+// CSRs that are handled by prologue, epilogue.
+def CSR_64_CXX_TLS_Darwin_PE : CalleeSavedRegs<(add RBP)>;
+
+// CSRs that are handled explicitly via copies.
+def CSR_64_CXX_TLS_Darwin_ViaCopy : CalleeSavedRegs<(sub CSR_64_TLS_Darwin, RBP)>;
+
+// All GPRs - except r11
+def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
+ R8, R9, R10, RSP)>;
+
+// All registers - except r11
+def CSR_64_RT_AllRegs : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
+ (sequence "XMM%u", 0, 15))>;
+def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
+ (sequence "YMM%u", 0, 15))>;
+
+def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
+ R11, R12, R13, R14, R15, RBP,
+ (sequence "XMM%u", 0, 15))>;
+
+def CSR_32_AllRegs : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
+ EDI)>;
+def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
+ (sequence "XMM%u", 0, 7))>;
+def CSR_32_AllRegs_AVX : CalleeSavedRegs<(add CSR_32_AllRegs,
+ (sequence "YMM%u", 0, 7))>;
+def CSR_32_AllRegs_AVX512 : CalleeSavedRegs<(add CSR_32_AllRegs,
+ (sequence "ZMM%u", 0, 7),
+ (sequence "K%u", 0, 7))>;
+
+def CSR_64_AllRegs : CalleeSavedRegs<(add CSR_64_MostRegs, RAX)>;
+def CSR_64_AllRegs_NoSSE : CalleeSavedRegs<(add RAX, RBX, RCX, RDX, RSI, RDI, R8, R9,
+ R10, R11, R12, R13, R14, R15, RBP)>;
+def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
+ (sequence "YMM%u", 0, 15)),
+ (sequence "XMM%u", 0, 15))>;
+def CSR_64_AllRegs_AVX512 : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX,
+ (sequence "ZMM%u", 0, 31),
+ (sequence "K%u", 0, 7)),
+ (sequence "XMM%u", 0, 15))>;
+
+// Standard C + YMM6-15
+def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
+ R13, R14, R15,
+ (sequence "YMM%u", 6, 15))>;
+
+def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
+ R12, R13, R14, R15,
+ (sequence "ZMM%u", 6, 21),
+ K4, K5, K6, K7)>;
+//Standard C + XMM 8-15
+def CSR_64_Intel_OCL_BI : CalleeSavedRegs<(add CSR_64,
+ (sequence "XMM%u", 8, 15))>;
+
+//Standard C + YMM 8-15
+def CSR_64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add CSR_64,
+ (sequence "YMM%u", 8, 15))>;
+
+def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
+ (sequence "ZMM%u", 16, 31),
+ K4, K5, K6, K7)>;
+
+// Only R12 is preserved for PHP calls in HHVM.
+def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
+
+// Register calling convention preserves few GPR and XMM8-15
+def CSR_32_RegCall_NoSSE : CalleeSavedRegs<(add ESI, EDI, EBX, EBP, ESP)>;
+def CSR_32_RegCall : CalleeSavedRegs<(add CSR_32_RegCall_NoSSE,
+ (sequence "XMM%u", 4, 7))>;
+def CSR_Win64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
+ (sequence "R%u", 10, 15))>;
+def CSR_Win64_RegCall : CalleeSavedRegs<(add CSR_Win64_RegCall_NoSSE,
+ (sequence "XMM%u", 8, 15))>;
+def CSR_SysV64_RegCall_NoSSE : CalleeSavedRegs<(add RBX, RBP, RSP,
+ (sequence "R%u", 12, 15))>;
+def CSR_SysV64_RegCall : CalleeSavedRegs<(add CSR_SysV64_RegCall_NoSSE,
+ (sequence "XMM%u", 8, 15))>;
+