diff options
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/back/X86InstrArithmetic.td')
-rw-r--r-- | capstone/suite/synctools/tablegen/X86/back/X86InstrArithmetic.td | 1338 |
1 files changed, 1338 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/back/X86InstrArithmetic.td b/capstone/suite/synctools/tablegen/X86/back/X86InstrArithmetic.td new file mode 100644 index 000000000..c444fa761 --- /dev/null +++ b/capstone/suite/synctools/tablegen/X86/back/X86InstrArithmetic.td @@ -0,0 +1,1338 @@ +//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the integer arithmetic instructions in the X86 +// architecture. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// LEA - Load Effective Address +let SchedRW = [WriteLEA] in { +let hasSideEffects = 0 in +def LEA16r : I<0x8D, MRMSrcMem, + (outs GR16:$dst), (ins anymem:$src), + "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16; +let isReMaterializable = 1 in +def LEA32r : I<0x8D, MRMSrcMem, + (outs GR32:$dst), (ins anymem:$src), + "lea{l}\t{$src|$dst}, {$dst|$src}", + [(set GR32:$dst, lea32addr:$src)]>, + OpSize32, Requires<[Not64BitMode]>; + +def LEA64_32r : I<0x8D, MRMSrcMem, + (outs GR32:$dst), (ins lea64_32mem:$src), + "lea{l}\t{$src|$dst}, {$dst|$src}", + [(set GR32:$dst, lea64_32addr:$src)]>, + OpSize32, Requires<[In64BitMode]>; + +let isReMaterializable = 1 in +def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), + "lea{q}\t{$src|$dst}, {$dst|$src}", + [(set GR64:$dst, lea64addr:$src)]>; +} // SchedRW + +//===----------------------------------------------------------------------===// +// Fixed-Register Multiplication and Division Instructions. +// + +// SchedModel info for instruction that loads one value and gets the second +// (and possibly third) value from a register. +// This is used for instructions that put the memory operands before other +// uses. +class SchedLoadReg<SchedWrite SW> : Sched<[SW, + // Memory operand. + ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, + // Register reads (implicit or explicit). + ReadAfterLd, ReadAfterLd]>; + +// Extra precision multiplication + +// AL is really implied by AX, but the registers in Defs must match the +// SDNode results (i8, i32). +// AL,AH = AL*GR8 +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", + // FIXME: Used for 8-bit mul, ignore result upper 8 bits. + // This probably ought to be moved to a def : Pat<> if the + // syntax can be accepted. + [(set AL, (mul AL, GR8:$src)), + (implicit EFLAGS)]>, Sched<[WriteIMul]>; +// AX,DX = AX*GR16 +let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in +def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), + "mul{w}\t$src", + []>, OpSize16, Sched<[WriteIMul]>; +// EAX,EDX = EAX*GR32 +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in +def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), + "mul{l}\t$src", + [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>, + OpSize32, Sched<[WriteIMul]>; +// RAX,RDX = RAX*GR64 +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in +def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), + "mul{q}\t$src", + [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>, + Sched<[WriteIMul64]>; +// AL,AH = AL*[mem8] +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), + "mul{b}\t$src", + // FIXME: Used for 8-bit mul, ignore result upper 8 bits. + // This probably ought to be moved to a def : Pat<> if the + // syntax can be accepted. + [(set AL, (mul AL, (loadi8 addr:$src))), + (implicit EFLAGS)]>, SchedLoadReg<WriteIMul.Folded>; +// AX,DX = AX*[mem16] +let mayLoad = 1, hasSideEffects = 0 in { +let Defs = [AX,DX,EFLAGS], Uses = [AX] in +def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), + "mul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul.Folded>; +// EAX,EDX = EAX*[mem32] +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in +def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), + "mul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul.Folded>; +// RAX,RDX = RAX*[mem64] +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in +def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), + "mul{q}\t$src", []>, SchedLoadReg<WriteIMul64.Folded>, + Requires<[In64BitMode]>; +} + +let hasSideEffects = 0 in { +// AL,AH = AL*GR8 +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>, + Sched<[WriteIMul]>; +// AX,DX = AX*GR16 +let Defs = [AX,DX,EFLAGS], Uses = [AX] in +def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>, + OpSize16, Sched<[WriteIMul]>; +// EAX,EDX = EAX*GR32 +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in +def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>, + OpSize32, Sched<[WriteIMul]>; +// RAX,RDX = RAX*GR64 +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in +def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>, + Sched<[WriteIMul64]>; + +let mayLoad = 1 in { +// AL,AH = AL*[mem8] +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), + "imul{b}\t$src", []>, SchedLoadReg<WriteIMul.Folded>; +// AX,DX = AX*[mem16] +let Defs = [AX,DX,EFLAGS], Uses = [AX] in +def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), + "imul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul.Folded>; +// EAX,EDX = EAX*[mem32] +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in +def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), + "imul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul.Folded>; +// RAX,RDX = RAX*[mem64] +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in +def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), + "imul{q}\t$src", []>, SchedLoadReg<WriteIMul64.Folded>, + Requires<[In64BitMode]>; +} +} // hasSideEffects + + +let Defs = [EFLAGS] in { +let Constraints = "$src1 = $dst" in { + +let isCommutable = 1 in { +// X = IMUL Y, Z --> X = IMUL Z, Y +// Register-Register Signed Integer Multiply +def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), + "imul{w}\t{$src2, $dst|$dst, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, GR16:$src2))]>, + Sched<[WriteIMul]>, TB, OpSize16; +def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), + "imul{l}\t{$src2, $dst|$dst, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, GR32:$src2))]>, + Sched<[WriteIMul]>, TB, OpSize32; +def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), + (ins GR64:$src1, GR64:$src2), + "imul{q}\t{$src2, $dst|$dst, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, GR64:$src2))]>, + Sched<[WriteIMul64]>, TB; +} // isCommutable + +// Register-Memory Signed Integer Multiply +def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), + (ins GR16:$src1, i16mem:$src2), + "imul{w}\t{$src2, $dst|$dst, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, (loadi16 addr:$src2)))]>, + Sched<[WriteIMul.Folded, ReadAfterLd]>, TB, OpSize16; +def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$src1, i32mem:$src2), + "imul{l}\t{$src2, $dst|$dst, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, (loadi32 addr:$src2)))]>, + Sched<[WriteIMul.Folded, ReadAfterLd]>, TB, OpSize32; +def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$src1, i64mem:$src2), + "imul{q}\t{$src2, $dst|$dst, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, (loadi64 addr:$src2)))]>, + Sched<[WriteIMul64.Folded, ReadAfterLd]>, TB; +} // Constraints = "$src1 = $dst" + +} // Defs = [EFLAGS] + +// Surprisingly enough, these are not two address instructions! +let Defs = [EFLAGS] in { +// Register-Integer Signed Integer Multiply +def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 + (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, imm:$src2))]>, + Sched<[WriteIMul]>, OpSize16; +def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 + (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>, + Sched<[WriteIMul]>, OpSize16; +def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 + (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, imm:$src2))]>, + Sched<[WriteIMul]>, OpSize32; +def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 + (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>, + Sched<[WriteIMul]>, OpSize32; +def IMUL64rri32 : RIi32S<0x69, MRMSrcReg, // GR64 = GR64*I32 + (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>, + Sched<[WriteIMul64]>; +def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 + (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>, + Sched<[WriteIMul64]>; + +// Memory-Integer Signed Integer Multiply +def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 + (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag (loadi16 addr:$src1), imm:$src2))]>, + Sched<[WriteIMul.Folded]>, OpSize16; +def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 + (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag (loadi16 addr:$src1), + i16immSExt8:$src2))]>, + Sched<[WriteIMul.Folded]>, OpSize16; +def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 + (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag (loadi32 addr:$src1), imm:$src2))]>, + Sched<[WriteIMul.Folded]>, OpSize32; +def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 + (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag (loadi32 addr:$src1), + i32immSExt8:$src2))]>, + Sched<[WriteIMul.Folded]>, OpSize32; +def IMUL64rmi32 : RIi32S<0x69, MRMSrcMem, // GR64 = [mem64]*I32 + (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag (loadi64 addr:$src1), + i64immSExt32:$src2))]>, + Sched<[WriteIMul64.Folded]>; +def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 + (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag (loadi64 addr:$src1), + i64immSExt8:$src2))]>, + Sched<[WriteIMul64.Folded]>; +} // Defs = [EFLAGS] + +// unsigned division/remainder +let hasSideEffects = 1 in { // so that we don't speculatively execute +let Defs = [AL,AH,EFLAGS], Uses = [AX] in +def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH + "div{b}\t$src", []>, Sched<[WriteDiv8]>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX + "div{w}\t$src", []>, Sched<[WriteDiv16]>, OpSize16; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in +def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX + "div{l}\t$src", []>, Sched<[WriteDiv32]>, OpSize32; +// RDX:RAX/r64 = RAX,RDX +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in +def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), + "div{q}\t$src", []>, Sched<[WriteDiv64]>; + +let mayLoad = 1 in { +let Defs = [AL,AH,EFLAGS], Uses = [AX] in +def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH + "div{b}\t$src", []>, SchedLoadReg<WriteDiv8.Folded>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX + "div{w}\t$src", []>, OpSize16, SchedLoadReg<WriteDiv16.Folded>; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX +def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), + "div{l}\t$src", []>, SchedLoadReg<WriteDiv32.Folded>, OpSize32; +// RDX:RAX/[mem64] = RAX,RDX +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in +def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), + "div{q}\t$src", []>, SchedLoadReg<WriteDiv64.Folded>, + Requires<[In64BitMode]>; +} + +// Signed division/remainder. +let Defs = [AL,AH,EFLAGS], Uses = [AX] in +def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH + "idiv{b}\t$src", []>, Sched<[WriteIDiv8]>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX + "idiv{w}\t$src", []>, Sched<[WriteIDiv16]>, OpSize16; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in +def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX + "idiv{l}\t$src", []>, Sched<[WriteIDiv32]>, OpSize32; +// RDX:RAX/r64 = RAX,RDX +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in +def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), + "idiv{q}\t$src", []>, Sched<[WriteIDiv64]>; + +let mayLoad = 1 in { +let Defs = [AL,AH,EFLAGS], Uses = [AX] in +def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH + "idiv{b}\t$src", []>, SchedLoadReg<WriteIDiv8.Folded>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX + "idiv{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIDiv16.Folded>; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX +def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), + "idiv{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIDiv32.Folded>; +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX +def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), + "idiv{q}\t$src", []>, SchedLoadReg<WriteIDiv64.Folded>, + Requires<[In64BitMode]>; +} +} // hasSideEffects = 0 + +//===----------------------------------------------------------------------===// +// Two address Instructions. +// + +// unary instructions +let CodeSize = 2 in { +let Defs = [EFLAGS] in { +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { +def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), + "neg{b}\t$dst", + [(set GR8:$dst, (ineg GR8:$src1)), + (implicit EFLAGS)]>; +def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), + "neg{w}\t$dst", + [(set GR16:$dst, (ineg GR16:$src1)), + (implicit EFLAGS)]>, OpSize16; +def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), + "neg{l}\t$dst", + [(set GR32:$dst, (ineg GR32:$src1)), + (implicit EFLAGS)]>, OpSize32; +def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", + [(set GR64:$dst, (ineg GR64:$src1)), + (implicit EFLAGS)]>; +} // Constraints = "$src1 = $dst", SchedRW + +// Read-modify-write negate. +let SchedRW = [WriteALURMW] in { +def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), + "neg{b}\t$dst", + [(store (ineg (loadi8 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>; +def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), + "neg{w}\t$dst", + [(store (ineg (loadi16 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>, OpSize16; +def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), + "neg{l}\t$dst", + [(store (ineg (loadi32 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>, OpSize32; +def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", + [(store (ineg (loadi64 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In64BitMode]>; +} // SchedRW +} // Defs = [EFLAGS] + + +// Note: NOT does not set EFLAGS! + +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { +def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), + "not{b}\t$dst", + [(set GR8:$dst, (not GR8:$src1))]>; +def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), + "not{w}\t$dst", + [(set GR16:$dst, (not GR16:$src1))]>, OpSize16; +def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), + "not{l}\t$dst", + [(set GR32:$dst, (not GR32:$src1))]>, OpSize32; +def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", + [(set GR64:$dst, (not GR64:$src1))]>; +} // Constraints = "$src1 = $dst", SchedRW + +let SchedRW = [WriteALURMW] in { +def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), + "not{b}\t$dst", + [(store (not (loadi8 addr:$dst)), addr:$dst)]>; +def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), + "not{w}\t$dst", + [(store (not (loadi16 addr:$dst)), addr:$dst)]>, + OpSize16; +def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), + "not{l}\t$dst", + [(store (not (loadi32 addr:$dst)), addr:$dst)]>, + OpSize32; +def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", + [(store (not (loadi64 addr:$dst)), addr:$dst)]>, + Requires<[In64BitMode]>; +} // SchedRW +} // CodeSize + +// TODO: inc/dec is slow for P4, but fast for Pentium-M. +let Defs = [EFLAGS] in { +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { +let CodeSize = 2 in +def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), + "inc{b}\t$dst", + [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>; +let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA. +def INC16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), + "inc{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>, OpSize16; +def INC32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), + "inc{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>, OpSize32; +def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", + [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>; +} // isConvertibleToThreeAddress = 1, CodeSize = 2 + +// Short forms only valid in 32-bit mode. Selected during MCInst lowering. +let CodeSize = 1, hasSideEffects = 0 in { +def INC16r_alt : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), + "inc{w}\t$dst", []>, + OpSize16, Requires<[Not64BitMode]>; +def INC32r_alt : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), + "inc{l}\t$dst", []>, + OpSize32, Requires<[Not64BitMode]>; +} // CodeSize = 1, hasSideEffects = 0 +} // Constraints = "$src1 = $dst", SchedRW + +let CodeSize = 2, SchedRW = [WriteALURMW] in { +let Predicates = [UseIncDec] in { + def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", + [(store (add (loadi8 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>; + def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", + [(store (add (loadi16 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, OpSize16; + def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", + [(store (add (loadi32 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, OpSize32; +} // Predicates +let Predicates = [UseIncDec, In64BitMode] in { + def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", + [(store (add (loadi64 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>; +} // Predicates +} // CodeSize = 2, SchedRW + +let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { +let CodeSize = 2 in +def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), + "dec{b}\t$dst", + [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>; +let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA. +def DEC16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), + "dec{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>, OpSize16; +def DEC32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), + "dec{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>, OpSize32; +def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", + [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>; +} // isConvertibleToThreeAddress = 1, CodeSize = 2 + +// Short forms only valid in 32-bit mode. Selected during MCInst lowering. +let CodeSize = 1, hasSideEffects = 0 in { +def DEC16r_alt : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), + "dec{w}\t$dst", []>, + OpSize16, Requires<[Not64BitMode]>; +def DEC32r_alt : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), + "dec{l}\t$dst", []>, + OpSize32, Requires<[Not64BitMode]>; +} // CodeSize = 1, hasSideEffects = 0 +} // Constraints = "$src1 = $dst", SchedRW + + +let CodeSize = 2, SchedRW = [WriteALURMW] in { +let Predicates = [UseIncDec] in { + def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", + [(store (add (loadi8 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>; + def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", + [(store (add (loadi16 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, OpSize16; + def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", + [(store (add (loadi32 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, OpSize32; +} // Predicates +let Predicates = [UseIncDec, In64BitMode] in { + def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", + [(store (add (loadi64 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>; +} // Predicates +} // CodeSize = 2, SchedRW +} // Defs = [EFLAGS] + +/// X86TypeInfo - This is a bunch of information that describes relevant X86 +/// information about value types. For example, it can tell you what the +/// register class and preferred load to use. +class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, + PatFrag loadnode, X86MemOperand memoperand, ImmType immkind, + Operand immoperand, SDPatternOperator immoperator, + Operand imm8operand, SDPatternOperator imm8operator, + bit hasOddOpcode, OperandSize opSize, + bit hasREX_WPrefix> { + /// VT - This is the value type itself. + ValueType VT = vt; + + /// InstrSuffix - This is the suffix used on instructions with this type. For + /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". + string InstrSuffix = instrsuffix; + + /// RegClass - This is the register class associated with this type. For + /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. + RegisterClass RegClass = regclass; + + /// LoadNode - This is the load node associated with this type. For + /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. + PatFrag LoadNode = loadnode; + + /// MemOperand - This is the memory operand associated with this type. For + /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. + X86MemOperand MemOperand = memoperand; + + /// ImmEncoding - This is the encoding of an immediate of this type. For + /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 + /// since the immediate fields of i64 instructions is a 32-bit sign extended + /// value. + ImmType ImmEncoding = immkind; + + /// ImmOperand - This is the operand kind of an immediate of this type. For + /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> + /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign + /// extended value. + Operand ImmOperand = immoperand; + + /// ImmOperator - This is the operator that should be used to match an + /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). + SDPatternOperator ImmOperator = immoperator; + + /// Imm8Operand - This is the operand kind to use for an imm8 of this type. + /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is + /// only used for instructions that have a sign-extended imm8 field form. + Operand Imm8Operand = imm8operand; + + /// Imm8Operator - This is the operator that should be used to match an 8-bit + /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). + SDPatternOperator Imm8Operator = imm8operator; + + /// HasOddOpcode - This bit is true if the instruction should have an odd (as + /// opposed to even) opcode. Operations on i8 are usually even, operations on + /// other datatypes are odd. + bit HasOddOpcode = hasOddOpcode; + + /// OpSize - Selects whether the instruction needs a 0x66 prefix based on + /// 16-bit vs 32-bit mode. i8/i64 set this to OpSizeFixed. i16 sets this + /// to Opsize16. i32 sets this to OpSize32. + OperandSize OpSize = opSize; + + /// HasREX_WPrefix - This bit is set to true if the instruction should have + /// the 0x40 REX prefix. This is set for i64 types. + bit HasREX_WPrefix = hasREX_WPrefix; +} + +def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">; + + +def Xi8 : X86TypeInfo<i8, "b", GR8, loadi8, i8mem, + Imm8, i8imm, imm8_su, i8imm, invalid_node, + 0, OpSizeFixed, 0>; +def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, + Imm16, i16imm, imm16_su, i16i8imm, i16immSExt8_su, + 1, OpSize16, 0>; +def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, + Imm32, i32imm, imm32_su, i32i8imm, i32immSExt8_su, + 1, OpSize32, 0>; +def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, + Imm32S, i64i32imm, i64immSExt32_su, i64i8imm, i64immSExt8_su, + 1, OpSizeFixed, 1>; + +/// ITy - This instruction base class takes the type info for the instruction. +/// Using this, it: +/// 1. Concatenates together the instruction mnemonic with the appropriate +/// suffix letter, a tab, and the arguments. +/// 2. Infers whether the instruction should have a 0x66 prefix byte. +/// 3. Infers whether the instruction should have a 0x40 REX_W prefix. +/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) +/// or 1 (for i16,i32,i64 operations). +class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, + string mnemonic, string args, list<dag> pattern> + : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, + opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, + f, outs, ins, + !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> { + + // Infer instruction prefixes from type info. + let OpSize = typeinfo.OpSize; + let hasREX_WPrefix = typeinfo.HasREX_WPrefix; +} + +// BinOpRR - Instructions like "add reg, reg, reg". +class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> + : ITy<opcode, MRMDestReg, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, + Sched<[sched]>; + +// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has +// just a EFLAGS as a result. +class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode> + : BinOpRR<opcode, mnemonic, typeinfo, (outs), WriteALU, + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>; + +// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has +// both a regclass and EFLAGS as a result. +class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>; + +// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has +// both a regclass and EFLAGS as a result, and has EFLAGS as input. +class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2, + EFLAGS))]>; + +// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding). +class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + X86FoldableSchedWrite sched = WriteALU> + : ITy<opcode, MRMSrcReg, typeinfo, + (outs typeinfo.RegClass:$dst), + (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), + mnemonic, "{$src2, $dst|$dst, $src2}", []>, + Sched<[sched]> { + // The disassembler should know about this, but not the asmparser. + let isCodeGenOnly = 1; + let ForceDisassemble = 1; + let hasSideEffects = 0; +} + +// BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding). +class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> + : BinOpRR_Rev<opcode, mnemonic, typeinfo, WriteADC>; + +// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding). +class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> + : ITy<opcode, MRMSrcReg, typeinfo, (outs), + (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", []>, + Sched<[WriteALU]> { + // The disassembler should know about this, but not the asmparser. + let isCodeGenOnly = 1; + let ForceDisassemble = 1; + let hasSideEffects = 0; +} + +// BinOpRM - Instructions like "add reg, reg, [mem]". +class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> + : ITy<opcode, MRMSrcMem, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, + Sched<[sched.Folded, ReadAfterLd]>; + +// BinOpRM_F - Instructions like "cmp reg, [mem]". +class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs), WriteALU, + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; + +// BinOpRM_RF - Instructions like "add reg, reg, [mem]". +class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; + +// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]". +class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2), + EFLAGS))]>; + +// BinOpRI - Instructions like "add reg, reg, imm". +class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> + : ITy<opcode, f, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, + Sched<[sched]> { + let ImmT = typeinfo.ImmEncoding; +} + +// BinOpRI_F - Instructions like "cmp reg, imm". +class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), WriteALU, + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; + +// BinOpRI_RF - Instructions like "add reg, reg, imm". +class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; +// BinOpRI_RFF - Instructions like "adc reg, reg, imm". +class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2, + EFLAGS))]>; + +// BinOpRI8 - Instructions like "add reg, reg, imm8". +class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern> + : ITy<opcode, f, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern>, + Sched<[sched]> { + let ImmT = Imm8; // Always 8-bit immediate. +} + +// BinOpRI8_F - Instructions like "cmp reg, imm8". +class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), WriteALU, + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; + +// BinOpRI8_RF - Instructions like "add reg, reg, imm8". +class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; + +// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8". +class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC, + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2, + EFLAGS))]>; + +// BinOpMR - Instructions like "add [mem], reg". +class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + list<dag> pattern> + : ITy<opcode, MRMDestMem, typeinfo, + (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src), + mnemonic, "{$src, $dst|$dst, $src}", pattern>; + +// BinOpMR_RMW - Instructions like "add [mem], reg". +class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpMR<opcode, mnemonic, typeinfo, + [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst), + (implicit EFLAGS)]>, Sched<[WriteALURMW]>; + +// BinOpMR_RMW_FF - Instructions like "adc [mem], reg". +class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpMR<opcode, mnemonic, typeinfo, + [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS), + addr:$dst), + (implicit EFLAGS)]>, Sched<[WriteADCRMW]>; + +// BinOpMR_F - Instructions like "cmp [mem], reg". +class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode> + : BinOpMR<opcode, mnemonic, typeinfo, + [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst), + typeinfo.RegClass:$src))]>, + Sched<[WriteALULd, ReadDefault, ReadDefault, ReadDefault, + ReadDefault, ReadDefault, ReadAfterLd]>; + +// BinOpMI - Instructions like "add [mem], imm". +class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Format f, list<dag> pattern> + : ITy<opcode, f, typeinfo, + (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src), + mnemonic, "{$src, $dst|$dst, $src}", pattern> { + let ImmT = typeinfo.ImmEncoding; +} + +// BinOpMI_RMW - Instructions like "add [mem], imm". +class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI<opcode, mnemonic, typeinfo, f, + [(store (opnode (typeinfo.VT (load addr:$dst)), + typeinfo.ImmOperator:$src), addr:$dst), + (implicit EFLAGS)]>, Sched<[WriteALURMW]>; +// BinOpMI_RMW_FF - Instructions like "adc [mem], imm". +class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI<opcode, mnemonic, typeinfo, f, + [(store (opnode (typeinfo.VT (load addr:$dst)), + typeinfo.ImmOperator:$src, EFLAGS), addr:$dst), + (implicit EFLAGS)]>, Sched<[WriteADCRMW]>; + +// BinOpMI_F - Instructions like "cmp [mem], imm". +class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpMI<opcode, mnemonic, typeinfo, f, + [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst), + typeinfo.ImmOperator:$src))]>, + Sched<[WriteALULd]>; + +// BinOpMI8 - Instructions like "add [mem], imm8". +class BinOpMI8<string mnemonic, X86TypeInfo typeinfo, + Format f, list<dag> pattern> + : ITy<0x82, f, typeinfo, + (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), + mnemonic, "{$src, $dst|$dst, $src}", pattern> { + let ImmT = Imm8; // Always 8-bit immediate. +} + +// BinOpMI8_RMW - Instructions like "add [mem], imm8". +class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpMI8<mnemonic, typeinfo, f, + [(store (opnode (load addr:$dst), + typeinfo.Imm8Operator:$src), addr:$dst), + (implicit EFLAGS)]>, Sched<[WriteALURMW]>; + +// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8". +class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpMI8<mnemonic, typeinfo, f, + [(store (opnode (load addr:$dst), + typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst), + (implicit EFLAGS)]>, Sched<[WriteADCRMW]>; + +// BinOpMI8_F - Instructions like "cmp [mem], imm8". +class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpMI8<mnemonic, typeinfo, f, + [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst), + typeinfo.Imm8Operator:$src))]>, + Sched<[WriteALULd]>; + +// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS. +class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Register areg, string operands, X86FoldableSchedWrite sched = WriteALU> + : ITy<opcode, RawFrm, typeinfo, + (outs), (ins typeinfo.ImmOperand:$src), + mnemonic, operands, []>, Sched<[sched]> { + let ImmT = typeinfo.ImmEncoding; + let Uses = [areg]; + let Defs = [areg, EFLAGS]; + let hasSideEffects = 0; +} + +// BinOpAI_RFF - Instructions like "adc %eax, %eax, imm", that implicitly define +// and use EFLAGS. +class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Register areg, string operands> + : BinOpAI<opcode, mnemonic, typeinfo, areg, operands, WriteADC> { + let Uses = [areg, EFLAGS]; +} + +// BinOpAI_F - Instructions like "cmp %eax, %eax, imm", that imp-def EFLAGS. +class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Register areg, string operands> + : BinOpAI<opcode, mnemonic, typeinfo, areg, operands> { + let Defs = [EFLAGS]; +} + +/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is +/// defined with "(set GPR:$dst, EFLAGS, (...". +/// +/// It would be nice to get rid of the second and third argument here, but +/// tblgen can't handle dependent type references aggressively enough: PR8330 +multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, + string mnemonic, Format RegMRM, Format MemMRM, + SDNode opnodeflag, SDNode opnode, + bit CommutableRR, bit ConvertibleToThreeAddress> { + let Defs = [EFLAGS] in { + let Constraints = "$src1 = $dst" in { + let isCommutable = CommutableRR in { + def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; + def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; + def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; + } // isConvertibleToThreeAddress + } // isCommutable + + def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>; + def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>; + def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>; + def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>; + + def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; + def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; + def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; + def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; + + def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; + + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + // NOTE: These are order specific, we want the ri8 forms to be listed + // first so that they are slightly preferred to the ri forms. + def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; + def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; + def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; + + def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; + def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; + def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; + } + } // Constraints = "$src1 = $dst" + + let mayLoad = 1, mayStore = 1 in { + def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>; + } + + // NOTE: These are order specific, we want the mi8 forms to be listed + // first so that they are slightly preferred to the mi forms. + def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>; + let Predicates = [In64BitMode] in + def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>; + def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>; + let Predicates = [In64BitMode] in + def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>; + + // These are for the disassembler since 0x82 opcode behaves like 0x80, but + // not in 64-bit mode. + let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1, + hasSideEffects = 0 in { + let Constraints = "$src1 = $dst" in + def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, null_frag, RegMRM>; + let mayLoad = 1, mayStore = 1 in + def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, null_frag, MemMRM>; + } + } // Defs = [EFLAGS] + + def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL, + "{$src, %al|al, $src}">; + def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX, + "{$src, %ax|ax, $src}">; + def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX, + "{$src, %eax|eax, $src}">; + def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX, + "{$src, %rax|rax, $src}">; +} + +/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is +/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and +/// SBB. +/// +/// It would be nice to get rid of the second and third argument here, but +/// tblgen can't handle dependent type references aggressively enough: PR8330 +multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, + string mnemonic, Format RegMRM, Format MemMRM, + SDNode opnode, bit CommutableRR, + bit ConvertibleToThreeAddress> { + let Uses = [EFLAGS], Defs = [EFLAGS] in { + let Constraints = "$src1 = $dst" in { + let isCommutable = CommutableRR in { + def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>; + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>; + } // isConvertibleToThreeAddress + } // isCommutable + + def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>; + def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>; + def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>; + def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>; + + def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>; + def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>; + def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>; + def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>; + + def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; + + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + // NOTE: These are order specific, we want the ri8 forms to be listed + // first so that they are slightly preferred to the ri forms. + def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; + + def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; + } + } // Constraints = "$src1 = $dst" + + def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>; + + // NOTE: These are order specific, we want the mi8 forms to be listed + // first so that they are slightly preferred to the mi forms. + def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; + let Predicates = [In64BitMode] in + def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>; + def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>; + let Predicates = [In64BitMode] in + def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>; + + // These are for the disassembler since 0x82 opcode behaves like 0x80, but + // not in 64-bit mode. + let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1, + hasSideEffects = 0 in { + let Constraints = "$src1 = $dst" in + def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, null_frag, RegMRM>; + let mayLoad = 1, mayStore = 1 in + def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, null_frag, MemMRM>; + } + } // Uses = [EFLAGS], Defs = [EFLAGS] + + def NAME#8i8 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL, + "{$src, %al|al, $src}">; + def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX, + "{$src, %ax|ax, $src}">; + def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX, + "{$src, %eax|eax, $src}">; + def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX, + "{$src, %rax|rax, $src}">; +} + +/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is +/// defined with "(set EFLAGS, (...". It would be really nice to find a way +/// to factor this with the other ArithBinOp_*. +/// +multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, + string mnemonic, Format RegMRM, Format MemMRM, + SDNode opnode, + bit CommutableRR, bit ConvertibleToThreeAddress> { + let Defs = [EFLAGS] in { + let isCommutable = CommutableRR in { + def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>; + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>; + } + } // isCommutable + + def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>; + def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>; + def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>; + def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>; + + def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>; + def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>; + def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>; + def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>; + + def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; + + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + // NOTE: These are order specific, we want the ri8 forms to be listed + // first so that they are slightly preferred to the ri forms. + def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; + + def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; + def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; + def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; + } + + def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>; + def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>; + def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>; + def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>; + + // NOTE: These are order specific, we want the mi8 forms to be listed + // first so that they are slightly preferred to the mi forms. + def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>; + let Predicates = [In64BitMode] in + def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>; + + def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>; + def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>; + def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>; + let Predicates = [In64BitMode] in + def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>; + + // These are for the disassembler since 0x82 opcode behaves like 0x80, but + // not in 64-bit mode. + let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1, + hasSideEffects = 0 in { + def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, null_frag, RegMRM>; + let mayLoad = 1 in + def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, null_frag, MemMRM>; + } + } // Defs = [EFLAGS] + + def NAME#8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL, + "{$src, %al|al, $src}">; + def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX, + "{$src, %ax|ax, $src}">; + def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX, + "{$src, %eax|eax, $src}">; + def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX, + "{$src, %rax|rax, $src}">; +} + + +defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m, + X86and_flag, and, 1, 0>; +defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m, + X86or_flag, or, 1, 0>; +defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m, + X86xor_flag, xor, 1, 0>; +defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m, + X86add_flag, add, 1, 1>; +let isCompare = 1 in { +defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m, + X86sub_flag, sub, 0, 0>; +} + +// Arithmetic. +defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag, + 1, 0>; +defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag, + 0, 0>; + +let isCompare = 1 in { +defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>; +} + + +//===----------------------------------------------------------------------===// +// Semantically, test instructions are similar like AND, except they don't +// generate a result. From an encoding perspective, they are very different: +// they don't have all the usual imm8 and REV forms, and are encoded into a +// different space. +def X86testpat : PatFrag<(ops node:$lhs, node:$rhs), + (X86cmp (and_su node:$lhs, node:$rhs), 0)>; + +let isCompare = 1 in { + let Defs = [EFLAGS] in { + let isCommutable = 1 in { + def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat>; + def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat>; + def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat>; + def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat>; + } // isCommutable + + def TEST8mr : BinOpMR_F<0x84, "test", Xi8 , X86testpat>; + def TEST16mr : BinOpMR_F<0x84, "test", Xi16, X86testpat>; + def TEST32mr : BinOpMR_F<0x84, "test", Xi32, X86testpat>; + def TEST64mr : BinOpMR_F<0x84, "test", Xi64, X86testpat>; + + def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>; + def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>; + def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>; + let Predicates = [In64BitMode] in + def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>; + + def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>; + def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>; + def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>; + let Predicates = [In64BitMode] in + def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>; + } // Defs = [EFLAGS] + + def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL, + "{$src, %al|al, $src}">; + def TEST16i16 : BinOpAI_F<0xA8, "test", Xi16, AX, + "{$src, %ax|ax, $src}">; + def TEST32i32 : BinOpAI_F<0xA8, "test", Xi32, EAX, + "{$src, %eax|eax, $src}">; + def TEST64i32 : BinOpAI_F<0xA8, "test", Xi64, RAX, + "{$src, %rax|rax, $src}">; +} // isCompare + +//===----------------------------------------------------------------------===// +// ANDN Instruction +// +multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop, + PatFrag ld_frag> { + def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), + !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))]>, + Sched<[WriteALU]>; + def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), + !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), + [(set RC:$dst, EFLAGS, + (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))]>, + Sched<[WriteALULd, ReadAfterLd]>; +} + +// Complexity is reduced to give and with immediate a chance to match first. +let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in { + defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8PS, VEX_4V; + defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8PS, VEX_4V, VEX_W; +} + +let Predicates = [HasBMI], AddedComplexity = -6 in { + def : Pat<(and (not GR32:$src1), GR32:$src2), + (ANDN32rr GR32:$src1, GR32:$src2)>; + def : Pat<(and (not GR64:$src1), GR64:$src2), + (ANDN64rr GR64:$src1, GR64:$src2)>; + def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)), + (ANDN32rm GR32:$src1, addr:$src2)>; + def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)), + (ANDN64rm GR64:$src1, addr:$src2)>; +} + +//===----------------------------------------------------------------------===// +// MULX Instruction +// +multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop, + X86FoldableSchedWrite sched> { +let hasSideEffects = 0 in { + let isCommutable = 1 in + def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src), + !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), + []>, T8XD, VEX_4V, Sched<[sched, WriteIMulH]>; + + let mayLoad = 1 in + def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src), + !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"), + []>, T8XD, VEX_4V, Sched<[sched.Folded, WriteIMulH]>; +} +} + +let Predicates = [HasBMI2] in { + let Uses = [EDX] in + defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem, WriteIMul>; + let Uses = [RDX] in + defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem, WriteIMul64>, VEX_W; +} + +//===----------------------------------------------------------------------===// +// ADCX and ADOX Instructions +// +let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS], + Constraints = "$src1 = $dst", AddedComplexity = 10 in { + let SchedRW = [WriteADC] in { + def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), + (ins GR32:$src1, GR32:$src2), + "adcx{l}\t{$src2, $dst|$dst, $src2}", + [(set GR32:$dst, EFLAGS, + (X86adc_flag GR32:$src1, GR32:$src2, EFLAGS))]>, T8PD; + def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), + (ins GR64:$src1, GR64:$src2), + "adcx{q}\t{$src2, $dst|$dst, $src2}", + [(set GR64:$dst, EFLAGS, + (X86adc_flag GR64:$src1, GR64:$src2, EFLAGS))]>, T8PD; + + // We don't have patterns for ADOX yet. + let hasSideEffects = 0 in { + def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst), + (ins GR32:$src1, GR32:$src2), + "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS; + + def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst), + (ins GR64:$src1, GR64:$src2), + "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS; + } // hasSideEffects = 0 + } // SchedRW + + let mayLoad = 1, SchedRW = [WriteADCLd, ReadAfterLd] in { + def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$src1, i32mem:$src2), + "adcx{l}\t{$src2, $dst|$dst, $src2}", + [(set GR32:$dst, EFLAGS, + (X86adc_flag GR32:$src1, (loadi32 addr:$src2), EFLAGS))]>, + T8PD; + + def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$src1, i64mem:$src2), + "adcx{q}\t{$src2, $dst|$dst, $src2}", + [(set GR64:$dst, EFLAGS, + (X86adc_flag GR64:$src1, (loadi64 addr:$src2), EFLAGS))]>, + T8PD; + + // We don't have patterns for ADOX yet. + let hasSideEffects = 0 in { + def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$src1, i32mem:$src2), + "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS; + + def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$src1, i64mem:$src2), + "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS; + } // hasSideEffects = 0 + } // mayLoad = 1, SchedRW = [WriteADCLd] +} |