diff options
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td')
-rw-r--r-- | capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td | 2103 |
1 files changed, 2103 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td b/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td new file mode 100644 index 000000000..373f85020 --- /dev/null +++ b/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td @@ -0,0 +1,2103 @@ +//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the various pseudo instructions used by the compiler, +// as well as Pat patterns used during instruction selection. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Pattern Matching Support + +def GetLo32XForm : SDNodeXForm<imm, [{ + // Transformation function: get the low 32 bits. + return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N)); +}]>; + +def GetLo8XForm : SDNodeXForm<imm, [{ + // Transformation function: get the low 8 bits. + return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N)); +}]>; + + +//===----------------------------------------------------------------------===// +// Random Pseudo Instructions. + +// PIC base construction. This expands to code that looks like this: +// call $next_inst +// popl %destreg" +let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP], + SchedRW = [WriteJump] in + def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), + "", []>; + +// 64-bit large code model PIC base construction. +let hasSideEffects = 0, mayLoad = 1, isNotDuplicable = 1, SchedRW = [WriteJump] in + def MOVGOT64r : PseudoI<(outs GR64:$reg), + (ins GR64:$scratch, i64i32imm_pcrel:$got), []>; + +// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into +// a stack adjustment and the codegen must know that they may modify the stack +// pointer before prolog-epilog rewriting occurs. +// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become +// sub / add which can clobber EFLAGS. +let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in { +def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), + (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3), + "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>; +def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), + "#ADJCALLSTACKUP", + [(X86callseq_end timm:$amt1, timm:$amt2)]>, + Requires<[NotLP64]>; +} +def : Pat<(X86callseq_start timm:$amt1, timm:$amt2), + (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>; + + +// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into +// a stack adjustment and the codegen must know that they may modify the stack +// pointer before prolog-epilog rewriting occurs. +// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become +// sub / add which can clobber EFLAGS. +let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in { +def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), + (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3), + "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>; +def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), + "#ADJCALLSTACKUP", + [(X86callseq_end timm:$amt1, timm:$amt2)]>, + Requires<[IsLP64]>; +} +def : Pat<(X86callseq_start timm:$amt1, timm:$amt2), + (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>; + +let SchedRW = [WriteSystem] in { + +// x86-64 va_start lowering magic. +let usesCustomInserter = 1, Defs = [EFLAGS] in { +def VASTART_SAVE_XMM_REGS : I<0, Pseudo, + (outs), + (ins GR8:$al, + i64imm:$regsavefi, i64imm:$offset, + variable_ops), + "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", + [(X86vastart_save_xmm_regs GR8:$al, + imm:$regsavefi, + imm:$offset), + (implicit EFLAGS)]>; + +// The VAARG_64 pseudo-instruction takes the address of the va_list, +// and places the address of the next argument into a register. +let Defs = [EFLAGS] in +def VAARG_64 : I<0, Pseudo, + (outs GR64:$dst), + (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), + "#VAARG_64 $dst, $ap, $size, $mode, $align", + [(set GR64:$dst, + (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), + (implicit EFLAGS)]>; + + +// When using segmented stacks these are lowered into instructions which first +// check if the current stacklet has enough free memory. If it does, memory is +// allocated by bumping the stack pointer. Otherwise memory is allocated from +// the heap. + +let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in +def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), + "# variable sized alloca for segmented stacks", + [(set GR32:$dst, + (X86SegAlloca GR32:$size))]>, + Requires<[NotLP64]>; + +let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in +def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), + "# variable sized alloca for segmented stacks", + [(set GR64:$dst, + (X86SegAlloca GR64:$size))]>, + Requires<[In64BitMode]>; +} + +// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows +// targets. These calls are needed to probe the stack when allocating more than +// 4k bytes in one go. Touching the stack at 4K increments is necessary to +// ensure that the guard pages used by the OS virtual memory manager are +// allocated in correct sequence. +// The main point of having separate instruction are extra unmodelled effects +// (compared to ordinary calls) like stack pointer change. + +let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in +def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size), + "# dynamic stack allocation", + [(X86WinAlloca GR32:$size)]>, + Requires<[NotLP64]>; + +let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in +def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size), + "# dynamic stack allocation", + [(X86WinAlloca GR64:$size)]>, + Requires<[In64BitMode]>; +} // SchedRW + +// These instructions XOR the frame pointer into a GPR. They are used in some +// stack protection schemes. These are post-RA pseudos because we only know the +// frame register after register allocation. +let Constraints = "$src = $dst", isPseudo = 1, Defs = [EFLAGS] in { + def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src), + "xorl\t$$FP, $src", []>, + Requires<[NotLP64]>, Sched<[WriteALU]>; + def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src), + "xorq\t$$FP $src", []>, + Requires<[In64BitMode]>, Sched<[WriteALU]>; +} + +//===----------------------------------------------------------------------===// +// EH Pseudo Instructions +// +let SchedRW = [WriteSystem] in { +let isTerminator = 1, isReturn = 1, isBarrier = 1, + hasCtrlDep = 1, isCodeGenOnly = 1 in { +def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), + "ret\t#eh_return, addr: $addr", + [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>; + +} + +let isTerminator = 1, isReturn = 1, isBarrier = 1, + hasCtrlDep = 1, isCodeGenOnly = 1 in { +def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), + "ret\t#eh_return, addr: $addr", + [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>; + +} + +let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, + isCodeGenOnly = 1, isReturn = 1 in { + def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>; + + // CATCHRET needs a custom inserter for SEH. + let usesCustomInserter = 1 in + def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from), + "# CATCHRET", + [(catchret bb:$dst, bb:$from)]>; +} + +let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1, + usesCustomInserter = 1 in +def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>; + +// This instruction is responsible for re-establishing stack pointers after an +// exception has been caught and we are rejoining normal control flow in the +// parent function or funclet. It generally sets ESP and EBP, and optionally +// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us +// elsewhere. +let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in +def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>; + +let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, + usesCustomInserter = 1 in { + def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), + "#EH_SJLJ_SETJMP32", + [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, + Requires<[Not64BitMode]>; + def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), + "#EH_SJLJ_SETJMP64", + [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, + Requires<[In64BitMode]>; + let isTerminator = 1 in { + def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), + "#EH_SJLJ_LONGJMP32", + [(X86eh_sjlj_longjmp addr:$buf)]>, + Requires<[Not64BitMode]>; + def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), + "#EH_SJLJ_LONGJMP64", + [(X86eh_sjlj_longjmp addr:$buf)]>, + Requires<[In64BitMode]>; + } +} + +let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { + def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), + "#EH_SjLj_Setup\t$dst", []>; +} +} // SchedRW + +//===----------------------------------------------------------------------===// +// Pseudo instructions used by unwind info. +// +let isPseudo = 1, SchedRW = [WriteSystem] in { + def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg), + "#SEH_PushReg $reg", []>; + def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), + "#SEH_SaveReg $reg, $dst", []>; + def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst), + "#SEH_SaveXMM $reg, $dst", []>; + def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size), + "#SEH_StackAlloc $size", []>; + def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset), + "#SEH_SetFrame $reg, $offset", []>; + def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode), + "#SEH_PushFrame $mode", []>; + def SEH_EndPrologue : I<0, Pseudo, (outs), (ins), + "#SEH_EndPrologue", []>; + def SEH_Epilogue : I<0, Pseudo, (outs), (ins), + "#SEH_Epilogue", []>; +} + +//===----------------------------------------------------------------------===// +// Pseudo instructions used by segmented stacks. +// + +// This is lowered into a RET instruction by MCInstLower. We need +// this so that we don't have to have a MachineBasicBlock which ends +// with a RET and also has successors. +let isPseudo = 1, SchedRW = [WriteJumpLd] in { +def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>; + +// This instruction is lowered to a RET followed by a MOV. The two +// instructions are not generated on a higher level since then the +// verifier sees a MachineBasicBlock ending with a non-terminator. +def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>; +} + +//===----------------------------------------------------------------------===// +// Alias Instructions +//===----------------------------------------------------------------------===// + +// Alias instruction mapping movr0 to xor. +// FIXME: remove when we can teach regalloc that xor reg, reg is ok. +let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, + isPseudo = 1, AddedComplexity = 10 in +def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "", + [(set GR32:$dst, 0)]>, Sched<[WriteZero]>; + +// Other widths can also make use of the 32-bit xor, which may have a smaller +// encoding and avoid partial register updates. +let AddedComplexity = 10 in { +def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>; +def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>; +def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>; +} + +let Predicates = [OptForSize, Not64BitMode], + AddedComplexity = 10 in { + let SchedRW = [WriteALU] in { + // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC, + // which only require 3 bytes compared to MOV32ri which requires 5. + let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in { + def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", + [(set GR32:$dst, 1)]>; + def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "", + [(set GR32:$dst, -1)]>; + } + } // SchedRW + + // MOV16ri is 4 bytes, so the instructions above are smaller. + def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>; + def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>; +} + +let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5, + SchedRW = [WriteALU] in { +// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1. +def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "", + [(set GR32:$dst, i32immSExt8:$src)]>, + Requires<[OptForMinSize, NotWin64WithoutFP]>; +def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "", + [(set GR64:$dst, i64immSExt8:$src)]>, + Requires<[OptForMinSize, NotWin64WithoutFP]>; +} + +// Materialize i64 constant where top 32-bits are zero. This could theoretically +// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however +// that would make it more difficult to rematerialize. +let isReMaterializable = 1, isAsCheapAsAMove = 1, + isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteMove] in +def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>; + +// This 64-bit pseudo-move can be used for both a 64-bit constant that is +// actually the zero-extension of a 32-bit constant and for labels in the +// x86-64 small code model. +def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>; + +let AddedComplexity = 1 in +def : Pat<(i64 mov64imm32:$src), + (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>; + +// Use sbb to materialize carry bit. +let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in { +// FIXME: These are pseudo ops that should be replaced with Pat<> patterns. +// However, Pat<> can't replicate the destination reg into the inputs of the +// result. +def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", + [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", + [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", + [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", + [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; +} // isCodeGenOnly + + +def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C16r)>; +def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; +def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C64r)>; + +def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C16r)>; +def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; +def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C64r)>; + +// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and +// will be eliminated and that the sbb can be extended up to a wider type. When +// this happens, it is great. However, if we are left with an 8-bit sbb and an +// and, we might as well just match it as a setb. +def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), + (SETBr)>; + +// (add OP, SETB) -> (adc OP, 0) +def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), + (ADC8ri GR8:$op, 0)>; +def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), + (ADC32ri8 GR32:$op, 0)>; +def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), + (ADC64ri8 GR64:$op, 0)>; + +// (sub OP, SETB) -> (sbb OP, 0) +def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), + (SBB8ri GR8:$op, 0)>; +def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), + (SBB32ri8 GR32:$op, 0)>; +def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), + (SBB64ri8 GR64:$op, 0)>; + +// (sub OP, SETCC_CARRY) -> (adc OP, 0) +def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), + (ADC8ri GR8:$op, 0)>; +def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), + (ADC32ri8 GR32:$op, 0)>; +def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), + (ADC64ri8 GR64:$op, 0)>; + +//===----------------------------------------------------------------------===// +// String Pseudo Instructions +// +let SchedRW = [WriteMicrocoded] in { +let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { +def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", + [(X86rep_movs i8)]>, REP, + Requires<[Not64BitMode]>; +def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", + [(X86rep_movs i16)]>, REP, OpSize16, + Requires<[Not64BitMode]>; +def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", + [(X86rep_movs i32)]>, REP, OpSize32, + Requires<[Not64BitMode]>; +} + +let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { +def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", + [(X86rep_movs i8)]>, REP, + Requires<[In64BitMode]>; +def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", + [(X86rep_movs i16)]>, REP, OpSize16, + Requires<[In64BitMode]>; +def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", + [(X86rep_movs i32)]>, REP, OpSize32, + Requires<[In64BitMode]>; +def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", + [(X86rep_movs i64)]>, REP, + Requires<[In64BitMode]>; +} + +// FIXME: Should use "(X86rep_stos AL)" as the pattern. +let Defs = [ECX,EDI], isCodeGenOnly = 1 in { + let Uses = [AL,ECX,EDI] in + def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", + [(X86rep_stos i8)]>, REP, + Requires<[Not64BitMode]>; + let Uses = [AX,ECX,EDI] in + def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", + [(X86rep_stos i16)]>, REP, OpSize16, + Requires<[Not64BitMode]>; + let Uses = [EAX,ECX,EDI] in + def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", + [(X86rep_stos i32)]>, REP, OpSize32, + Requires<[Not64BitMode]>; +} + +let Defs = [RCX,RDI], isCodeGenOnly = 1 in { + let Uses = [AL,RCX,RDI] in + def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", + [(X86rep_stos i8)]>, REP, + Requires<[In64BitMode]>; + let Uses = [AX,RCX,RDI] in + def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", + [(X86rep_stos i16)]>, REP, OpSize16, + Requires<[In64BitMode]>; + let Uses = [RAX,RCX,RDI] in + def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", + [(X86rep_stos i32)]>, REP, OpSize32, + Requires<[In64BitMode]>; + + let Uses = [RAX,RCX,RDI] in + def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", + [(X86rep_stos i64)]>, REP, + Requires<[In64BitMode]>; +} +} // SchedRW + +//===----------------------------------------------------------------------===// +// Thread Local Storage Instructions +// +let SchedRW = [WriteSystem] in { + +// ELF TLS Support +// All calls clobber the non-callee saved registers. ESP is marked as +// a use to prevent stack-pointer assignments that appear immediately +// before calls from potentially appearing dead. +let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, + ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, + MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, + XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, + XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF], + usesCustomInserter = 1, Uses = [ESP, SSP] in { +def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLS_addr32", + [(X86tlsaddr tls32addr:$sym)]>, + Requires<[Not64BitMode]>; +def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLS_base_addr32", + [(X86tlsbaseaddr tls32baseaddr:$sym)]>, + Requires<[Not64BitMode]>; +} + +// All calls clobber the non-callee saved registers. RSP is marked as +// a use to prevent stack-pointer assignments that appear immediately +// before calls from potentially appearing dead. +let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, + FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7, + ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, + MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, + XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, + XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF], + usesCustomInserter = 1, Uses = [RSP, SSP] in { +def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLS_addr64", + [(X86tlsaddr tls64addr:$sym)]>, + Requires<[In64BitMode]>; +def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLS_base_addr64", + [(X86tlsbaseaddr tls64baseaddr:$sym)]>, + Requires<[In64BitMode]>; +} + +// Darwin TLS Support +// For i386, the address of the thunk is passed on the stack, on return the +// address of the variable is in %eax. %ecx is trashed during the function +// call. All other registers are preserved. +let Defs = [EAX, ECX, EFLAGS, DF], + Uses = [ESP, SSP], + usesCustomInserter = 1 in +def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), + "# TLSCall_32", + [(X86TLSCall addr:$sym)]>, + Requires<[Not64BitMode]>; + +// For x86_64, the address of the thunk is passed in %rdi, but the +// pseudo directly use the symbol, so do not add an implicit use of +// %rdi. The lowering will do the right thing with RDI. +// On return the address of the variable is in %rax. All other +// registers are preserved. +let Defs = [RAX, EFLAGS, DF], + Uses = [RSP, SSP], + usesCustomInserter = 1 in +def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), + "# TLSCall_64", + [(X86TLSCall addr:$sym)]>, + Requires<[In64BitMode]>; +} // SchedRW + +//===----------------------------------------------------------------------===// +// Conditional Move Pseudo Instructions + +// CMOV* - Used to implement the SELECT DAG operation. Expanded after +// instruction selection into a branch sequence. +multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> { + def CMOV#NAME : I<0, Pseudo, + (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond), + "#CMOV_"#NAME#" PSEUDO!", + [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond, + EFLAGS)))]>; +} + +let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in { + // X86 doesn't have 8-bit conditional moves. Use a customInserter to + // emit control flow. An alternative to this is to mark i8 SELECT as Promote, + // however that requires promoting the operands, and can induce additional + // i8 register pressure. + defm _GR8 : CMOVrr_PSEUDO<GR8, i8>; + + let Predicates = [NoCMov] in { + defm _GR32 : CMOVrr_PSEUDO<GR32, i32>; + defm _GR16 : CMOVrr_PSEUDO<GR16, i16>; + } // Predicates = [NoCMov] + + // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no + // SSE1/SSE2. + let Predicates = [FPStackf32] in + defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>; + + let Predicates = [FPStackf64] in + defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>; + + defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>; + + defm _FR32 : CMOVrr_PSEUDO<FR32, f32>; + defm _FR64 : CMOVrr_PSEUDO<FR64, f64>; + defm _F128 : CMOVrr_PSEUDO<VR128, f128>; + defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>; + defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>; + defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>; + defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>; + defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>; + defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>; + defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>; + defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>; + defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>; + defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>; + defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>; + defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>; + defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>; +} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] + +//===----------------------------------------------------------------------===// +// Normal-Instructions-With-Lock-Prefix Pseudo Instructions +//===----------------------------------------------------------------------===// + +// FIXME: Use normal instructions and add lock prefix dynamically. + +// Memory barriers + +// TODO: Get this to fold the constant into the instruction. +let isCodeGenOnly = 1, Defs = [EFLAGS] in +def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), + "or{l}\t{$zero, $dst|$dst, $zero}", []>, + Requires<[Not64BitMode]>, OpSize32, LOCK, + Sched<[WriteALULd, WriteRMW]>; + +let hasSideEffects = 1 in +def Int_MemBarrier : I<0, Pseudo, (outs), (ins), + "#MEMBARRIER", + [(X86MemBarrier)]>, Sched<[WriteLoad]>; + +// RegOpc corresponds to the mr version of the instruction +// ImmOpc corresponds to the mi version of the instruction +// ImmOpc8 corresponds to the mi8 version of the instruction +// ImmMod corresponds to the instruction format of the mi and mi8 versions +multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, + Format ImmMod, SDNode Op, string mnemonic> { +let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + +def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, + MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), + !strconcat(mnemonic, "{b}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK; + +def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>, + OpSize16, LOCK; + +def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>, + OpSize32, LOCK; + +def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, + RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, + MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK; + +def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, + ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), + !strconcat(mnemonic, "{b}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK; + +def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>, + OpSize16, LOCK; + +def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>, + OpSize32, LOCK; + +def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, + ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, + ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>, + LOCK; + +def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), + !strconcat(mnemonic, "{w}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>, + OpSize16, LOCK; + +def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), + !strconcat(mnemonic, "{l}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>, + OpSize32, LOCK; + +def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, + ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, + ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), + !strconcat(mnemonic, "{q}\t", + "{$src2, $dst|$dst, $src2}"), + [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>, + LOCK; +} + +} + +defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">; +defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">; +defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">; +defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">; +defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">; + +multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, + string frag, string mnemonic> { +let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { +def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), + !strconcat(mnemonic, "{b}\t$dst"), + [(set EFLAGS, (!cast<PatFrag>(frag # "_8") addr:$dst))]>, + LOCK; +def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), + !strconcat(mnemonic, "{w}\t$dst"), + [(set EFLAGS, (!cast<PatFrag>(frag # "_16") addr:$dst))]>, + OpSize16, LOCK; +def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), + !strconcat(mnemonic, "{l}\t$dst"), + [(set EFLAGS, (!cast<PatFrag>(frag # "_32") addr:$dst))]>, + OpSize32, LOCK; +def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), + !strconcat(mnemonic, "{q}\t$dst"), + [(set EFLAGS, (!cast<PatFrag>(frag # "_64") addr:$dst))]>, + LOCK; +} +} + +multiclass unary_atomic_intrin<SDNode atomic_op> { + def _8 : PatFrag<(ops node:$ptr), + (atomic_op node:$ptr), [{ + return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8; + }]>; + def _16 : PatFrag<(ops node:$ptr), + (atomic_op node:$ptr), [{ + return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16; + }]>; + def _32 : PatFrag<(ops node:$ptr), + (atomic_op node:$ptr), [{ + return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32; + }]>; + def _64 : PatFrag<(ops node:$ptr), + (atomic_op node:$ptr), [{ + return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64; + }]>; +} + +defm X86lock_inc : unary_atomic_intrin<X86lock_inc>; +defm X86lock_dec : unary_atomic_intrin<X86lock_dec>; + +defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "X86lock_inc", "inc">; +defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "X86lock_dec", "dec">; + +// Atomic compare and swap. +multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, + SDPatternOperator frag, X86MemOperand x86memop> { +let isCodeGenOnly = 1, usesCustomInserter = 1 in { + def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), + !strconcat(mnemonic, "\t$ptr"), + [(frag addr:$ptr)]>, TB, LOCK; +} +} + +multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, + string mnemonic, SDPatternOperator frag> { +let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in { + let Defs = [AL, EFLAGS], Uses = [AL] in + def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), + !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK; + let Defs = [AX, EFLAGS], Uses = [AX] in + def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), + !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK; + let Defs = [EAX, EFLAGS], Uses = [EAX] in + def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), + !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK; + let Defs = [RAX, EFLAGS], Uses = [RAX] in + def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), + !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), + [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK; +} +} + +let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX], + SchedRW = [WriteALULd, WriteRMW] in { +defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>; +} + +// This pseudo must be used when the frame uses RBX as +// the base pointer. Indeed, in such situation RBX is a reserved +// register and the register allocator will ignore any use/def of +// it. In other words, the register will not fix the clobbering of +// RBX that will happen when setting the arguments for the instrucion. +// +// Unlike the actual related instuction, we mark that this one +// defines EBX (instead of using EBX). +// The rationale is that we will define RBX during the expansion of +// the pseudo. The argument feeding EBX is ebx_input. +// +// The additional argument, $ebx_save, is a temporary register used to +// save the value of RBX across the actual instruction. +// +// To make sure the register assigned to $ebx_save does not interfere with +// the definition of the actual instruction, we use a definition $dst which +// is tied to $rbx_save. That way, the live-range of $rbx_save spans across +// the instruction and we are sure we will have a valid register to restore +// the value of RBX. +let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX], + SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1, + Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in { +def LCMPXCHG8B_SAVE_EBX : + I<0, Pseudo, (outs GR32:$dst), + (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save), + !strconcat("cmpxchg8b", "\t$ptr"), + [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input, + GR32:$ebx_save))]>; +} + + +let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], + Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in { +defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", + X86cas16, i128mem>, REX_W; +} + +// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant. +let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX], + Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW], + isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst", + usesCustomInserter = 1 in { +def LCMPXCHG16B_SAVE_RBX : + I<0, Pseudo, (outs GR64:$dst), + (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save), + !strconcat("cmpxchg16b", "\t$ptr"), + [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input, + GR64:$rbx_save))]>; +} + +defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>; + +// Atomic exchange and add +multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, + string frag> { + let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1, + SchedRW = [WriteALULd, WriteRMW] in { + def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), + (ins GR8:$val, i8mem:$ptr), + !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), + [(set GR8:$dst, + (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>; + def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), + (ins GR16:$val, i16mem:$ptr), + !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), + [(set + GR16:$dst, + (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>, + OpSize16; + def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$val, i32mem:$ptr), + !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), + [(set + GR32:$dst, + (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>, + OpSize32; + def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$val, i64mem:$ptr), + !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), + [(set + GR64:$dst, + (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>; + } +} + +defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK; + +/* The following multiclass tries to make sure that in code like + * x.store (immediate op x.load(acquire), release) + * and + * x.store (register op x.load(acquire), release) + * an operation directly on memory is generated instead of wasting a register. + * It is not automatic as atomic_store/load are only lowered to MOV instructions + * extremely late to prevent them from being accidentally reordered in the backend + * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions) + */ +multiclass RELEASE_BINOP_MI<SDNode op> { + def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), + "#BINOP "#NAME#"8mi PSEUDO!", + [(atomic_store_8 addr:$dst, (op + (atomic_load_8 addr:$dst), (i8 imm:$src)))]>; + def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src), + "#BINOP "#NAME#"8mr PSEUDO!", + [(atomic_store_8 addr:$dst, (op + (atomic_load_8 addr:$dst), GR8:$src))]>; + // NAME#16 is not generated as 16-bit arithmetic instructions are considered + // costly and avoided as far as possible by this backend anyway + def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), + "#BINOP "#NAME#"32mi PSEUDO!", + [(atomic_store_32 addr:$dst, (op + (atomic_load_32 addr:$dst), (i32 imm:$src)))]>; + def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), + "#BINOP "#NAME#"32mr PSEUDO!", + [(atomic_store_32 addr:$dst, (op + (atomic_load_32 addr:$dst), GR32:$src))]>; + def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), + "#BINOP "#NAME#"64mi32 PSEUDO!", + [(atomic_store_64 addr:$dst, (op + (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>; + def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), + "#BINOP "#NAME#"64mr PSEUDO!", + [(atomic_store_64 addr:$dst, (op + (atomic_load_64 addr:$dst), GR64:$src))]>; +} +let Defs = [EFLAGS], SchedRW = [WriteMicrocoded] in { + defm RELEASE_ADD : RELEASE_BINOP_MI<add>; + defm RELEASE_AND : RELEASE_BINOP_MI<and>; + defm RELEASE_OR : RELEASE_BINOP_MI<or>; + defm RELEASE_XOR : RELEASE_BINOP_MI<xor>; + // Note: we don't deal with sub, because substractions of constants are + // optimized into additions before this code can run. +} + +// Same as above, but for floating-point. +// FIXME: imm version. +// FIXME: Version that doesn't clobber $src, using AVX's VADDSS. +// FIXME: This could also handle SIMD operations with *ps and *pd instructions. +let usesCustomInserter = 1, SchedRW = [WriteMicrocoded] in { +multiclass RELEASE_FP_BINOP_MI<SDNode op> { + def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src), + "#BINOP "#NAME#"32mr PSEUDO!", + [(atomic_store_32 addr:$dst, + (i32 (bitconvert (op + (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))), + FR32:$src))))]>, Requires<[HasSSE1]>; + def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src), + "#BINOP "#NAME#"64mr PSEUDO!", + [(atomic_store_64 addr:$dst, + (i64 (bitconvert (op + (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))), + FR64:$src))))]>, Requires<[HasSSE2]>; +} +defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>; +// FIXME: Add fsub, fmul, fdiv, ... +} + +multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> { + def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst), + "#UNOP "#NAME#"8m PSEUDO!", + [(atomic_store_8 addr:$dst, dag8)]>; + def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst), + "#UNOP "#NAME#"16m PSEUDO!", + [(atomic_store_16 addr:$dst, dag16)]>; + def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst), + "#UNOP "#NAME#"32m PSEUDO!", + [(atomic_store_32 addr:$dst, dag32)]>; + def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst), + "#UNOP "#NAME#"64m PSEUDO!", + [(atomic_store_64 addr:$dst, dag64)]>; +} + +let Defs = [EFLAGS], Predicates = [UseIncDec], SchedRW = [WriteMicrocoded] in { + defm RELEASE_INC : RELEASE_UNOP< + (add (atomic_load_8 addr:$dst), (i8 1)), + (add (atomic_load_16 addr:$dst), (i16 1)), + (add (atomic_load_32 addr:$dst), (i32 1)), + (add (atomic_load_64 addr:$dst), (i64 1))>; + defm RELEASE_DEC : RELEASE_UNOP< + (add (atomic_load_8 addr:$dst), (i8 -1)), + (add (atomic_load_16 addr:$dst), (i16 -1)), + (add (atomic_load_32 addr:$dst), (i32 -1)), + (add (atomic_load_64 addr:$dst), (i64 -1))>; +} +/* +TODO: These don't work because the type inference of TableGen fails. +TODO: find a way to fix it. +let Defs = [EFLAGS] in { + defm RELEASE_NEG : RELEASE_UNOP< + (ineg (atomic_load_8 addr:$dst)), + (ineg (atomic_load_16 addr:$dst)), + (ineg (atomic_load_32 addr:$dst)), + (ineg (atomic_load_64 addr:$dst))>; +} +// NOT doesn't set flags. +defm RELEASE_NOT : RELEASE_UNOP< + (not (atomic_load_8 addr:$dst)), + (not (atomic_load_16 addr:$dst)), + (not (atomic_load_32 addr:$dst)), + (not (atomic_load_64 addr:$dst))>; +*/ + +let SchedRW = [WriteMicrocoded] in { +def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src), + "#RELEASE_MOV8mi PSEUDO!", + [(atomic_store_8 addr:$dst, (i8 imm:$src))]>; +def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src), + "#RELEASE_MOV16mi PSEUDO!", + [(atomic_store_16 addr:$dst, (i16 imm:$src))]>; +def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src), + "#RELEASE_MOV32mi PSEUDO!", + [(atomic_store_32 addr:$dst, (i32 imm:$src))]>; +def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src), + "#RELEASE_MOV64mi32 PSEUDO!", + [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>; + +def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), + "#RELEASE_MOV8mr PSEUDO!", + [(atomic_store_8 addr:$dst, GR8 :$src)]>; +def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), + "#RELEASE_MOV16mr PSEUDO!", + [(atomic_store_16 addr:$dst, GR16:$src)]>; +def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), + "#RELEASE_MOV32mr PSEUDO!", + [(atomic_store_32 addr:$dst, GR32:$src)]>; +def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), + "#RELEASE_MOV64mr PSEUDO!", + [(atomic_store_64 addr:$dst, GR64:$src)]>; + +def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), + "#ACQUIRE_MOV8rm PSEUDO!", + [(set GR8:$dst, (atomic_load_8 addr:$src))]>; +def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), + "#ACQUIRE_MOV16rm PSEUDO!", + [(set GR16:$dst, (atomic_load_16 addr:$src))]>; +def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), + "#ACQUIRE_MOV32rm PSEUDO!", + [(set GR32:$dst, (atomic_load_32 addr:$src))]>; +def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), + "#ACQUIRE_MOV64rm PSEUDO!", + [(set GR64:$dst, (atomic_load_64 addr:$src))]>; +} // SchedRW + +//===----------------------------------------------------------------------===// +// DAG Pattern Matching Rules +//===----------------------------------------------------------------------===// + +// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves +// binary size compared to a regular MOV, but it introduces an unnecessary +// load, so is not suitable for regular or optsize functions. +let Predicates = [OptForMinSize] in { +def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>; +def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>; +def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>; +def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>; +def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>; +def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>; +} + +// In kernel code model, we can get the address of a label +// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of +// the MOV64ri32 should accept these. +def : Pat<(i64 (X86Wrapper tconstpool :$dst)), + (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper tjumptable :$dst)), + (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), + (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper texternalsym:$dst)), + (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper mcsym:$dst)), + (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>; +def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), + (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; + +// If we have small model and -static mode, it is safe to store global addresses +// directly as immediates. FIXME: This is really a hack, the 'imm' predicate +// for MOV64mi32 should handle this sort of thing. +def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tconstpool:$src)>, + Requires<[NearData, IsNotPIC]>; +def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tjumptable:$src)>, + Requires<[NearData, IsNotPIC]>; +def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tglobaladdr:$src)>, + Requires<[NearData, IsNotPIC]>; +def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), + (MOV64mi32 addr:$dst, texternalsym:$src)>, + Requires<[NearData, IsNotPIC]>; +def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst), + (MOV64mi32 addr:$dst, mcsym:$src)>, + Requires<[NearData, IsNotPIC]>; +def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), + (MOV64mi32 addr:$dst, tblockaddress:$src)>, + Requires<[NearData, IsNotPIC]>; + +def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>; +def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>; + +// Calls + +// tls has some funny stuff here... +// This corresponds to movabs $foo@tpoff, %rax +def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), + (MOV64ri32 tglobaltlsaddr :$dst)>; +// This corresponds to add $foo@tpoff, %rax +def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), + (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; + + +// Direct PC relative function call for small code model. 32-bit displacement +// sign extended to 64-bit. +def : Pat<(X86call (i64 tglobaladdr:$dst)), + (CALL64pcrel32 tglobaladdr:$dst)>; +def : Pat<(X86call (i64 texternalsym:$dst)), + (CALL64pcrel32 texternalsym:$dst)>; + +// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they +// can never use callee-saved registers. That is the purpose of the GR64_TC +// register classes. +// +// The only volatile register that is never used by the calling convention is +// %r11. This happens when calling a vararg function with 6 arguments. +// +// Match an X86tcret that uses less than 7 volatile registers. +def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), + (X86tcret node:$ptr, node:$off), [{ + // X86tcret args: (*chain, ptr, imm, regs..., glue) + unsigned NumRegs = 0; + for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) + if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) + return false; + return true; +}]>; + +def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), + (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, + Requires<[Not64BitMode, NotUseRetpoline]>; + +// FIXME: This is disabled for 32-bit PIC mode because the global base +// register which is part of the address mode may be assigned a +// callee-saved register. +def : Pat<(X86tcret (load addr:$dst), imm:$off), + (TCRETURNmi addr:$dst, imm:$off)>, + Requires<[Not64BitMode, IsNotPIC, NotUseRetpoline]>; + +def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), + (TCRETURNdi tglobaladdr:$dst, imm:$off)>, + Requires<[NotLP64]>; + +def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), + (TCRETURNdi texternalsym:$dst, imm:$off)>, + Requires<[NotLP64]>; + +def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), + (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, + Requires<[In64BitMode, NotUseRetpoline]>; + +// Don't fold loads into X86tcret requiring more than 6 regs. +// There wouldn't be enough scratch registers for base+index. +def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), + (TCRETURNmi64 addr:$dst, imm:$off)>, + Requires<[In64BitMode, NotUseRetpoline]>; + +def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), + (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>, + Requires<[In64BitMode, UseRetpoline]>; + +def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), + (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>, + Requires<[Not64BitMode, UseRetpoline]>; + +def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), + (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, + Requires<[IsLP64]>; + +def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), + (TCRETURNdi64 texternalsym:$dst, imm:$off)>, + Requires<[IsLP64]>; + +// Normal calls, with various flavors of addresses. +def : Pat<(X86call (i32 tglobaladdr:$dst)), + (CALLpcrel32 tglobaladdr:$dst)>; +def : Pat<(X86call (i32 texternalsym:$dst)), + (CALLpcrel32 texternalsym:$dst)>; +def : Pat<(X86call (i32 imm:$dst)), + (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; + +// Comparisons. + +// TEST R,R is smaller than CMP R,0 +def : Pat<(X86cmp GR8:$src1, 0), + (TEST8rr GR8:$src1, GR8:$src1)>; +def : Pat<(X86cmp GR16:$src1, 0), + (TEST16rr GR16:$src1, GR16:$src1)>; +def : Pat<(X86cmp GR32:$src1, 0), + (TEST32rr GR32:$src1, GR32:$src1)>; +def : Pat<(X86cmp GR64:$src1, 0), + (TEST64rr GR64:$src1, GR64:$src1)>; + +// Conditional moves with folded loads with operands swapped and conditions +// inverted. +multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, + Instruction Inst64> { + let Predicates = [HasCMov] in { + def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), + (Inst16 GR16:$src2, addr:$src1)>; + def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), + (Inst32 GR32:$src2, addr:$src1)>; + def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), + (Inst64 GR64:$src2, addr:$src1)>; + } +} + +defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; +defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; +defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; +defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; +defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; +defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; +defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; +defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; +defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; +defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; +defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; +defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; +defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; +defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; +defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; +defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; + +// zextload bool -> zextload byte +// i1 stored in one byte in zero-extended form. +// Upper bits cleanup should be executed before Store. +def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; +def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; +def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; +def : Pat<(zextloadi64i1 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; + +// extload bool -> extload byte +// When extloading from 16-bit and smaller memory locations into 64-bit +// registers, use zero-extending loads so that the entire 64-bit register is +// defined, avoiding partial-register updates. + +def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; +def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; +def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; +def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; +def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; +def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; + +// For other extloads, use subregs, since the high contents of the register are +// defined after an extload. +def : Pat<(extloadi64i1 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; +def : Pat<(extloadi64i8 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>; +def : Pat<(extloadi64i16 addr:$src), + (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>; +def : Pat<(extloadi64i32 addr:$src), + (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; + +// anyext. Define these to do an explicit zero-extend to +// avoid partial-register updates. +def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG + (MOVZX32rr8 GR8 :$src), sub_16bit)>; +def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; + +// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. +def : Pat<(i32 (anyext GR16:$src)), + (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; + +def : Pat<(i64 (anyext GR8 :$src)), + (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>; +def : Pat<(i64 (anyext GR16:$src)), + (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>; +def : Pat<(i64 (anyext GR32:$src)), + (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>; + + +// Any instruction that defines a 32-bit result leaves the high half of the +// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may +// be copying from a truncate. Any other 32-bit operation will zero-extend +// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper +// 32 bits, they're probably just qualifying a CopyFromReg. +def def32 : PatLeaf<(i32 GR32:$src), [{ + return N->getOpcode() != ISD::TRUNCATE && + N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && + N->getOpcode() != ISD::CopyFromReg && + N->getOpcode() != ISD::AssertSext && + N->getOpcode() != ISD::AssertZext; +}]>; + +// In the case of a 32-bit def that is known to implicitly zero-extend, +// we can use a SUBREG_TO_REG. +def : Pat<(i64 (zext def32:$src)), + (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; + +//===----------------------------------------------------------------------===// +// Pattern match OR as ADD +//===----------------------------------------------------------------------===// + +// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be +// 3-addressified into an LEA instruction to avoid copies. However, we also +// want to finally emit these instructions as an or at the end of the code +// generator to make the generated code easier to read. To do this, we select +// into "disjoint bits" pseudo ops. + +// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. +def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) + return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); + + KnownBits Known0; + CurDAG->computeKnownBits(N->getOperand(0), Known0, 0); + KnownBits Known1; + CurDAG->computeKnownBits(N->getOperand(1), Known1, 0); + return (~Known0.Zero & ~Known1.Zero) == 0; +}]>; + + +// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. +// Try this before the selecting to OR. +let AddedComplexity = 5, SchedRW = [WriteALU] in { + +let isConvertibleToThreeAddress = 1, + Constraints = "$src1 = $dst", Defs = [EFLAGS] in { +let isCommutable = 1 in { +def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), + "", // orw/addw REG, REG + [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; +def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), + "", // orl/addl REG, REG + [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; +def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), + "", // orq/addq REG, REG + [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; +} // isCommutable + +// NOTE: These are order specific, we want the ri8 forms to be listed +// first so that they are slightly preferred to the ri forms. + +def ADD16ri8_DB : I<0, Pseudo, + (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), + "", // orw/addw REG, imm8 + [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; +def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), + "", // orw/addw REG, imm + [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; + +def ADD32ri8_DB : I<0, Pseudo, + (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), + "", // orl/addl REG, imm8 + [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; +def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), + "", // orl/addl REG, imm + [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; + + +def ADD64ri8_DB : I<0, Pseudo, + (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), + "", // orq/addq REG, imm8 + [(set GR64:$dst, (or_is_add GR64:$src1, + i64immSExt8:$src2))]>; +def ADD64ri32_DB : I<0, Pseudo, + (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), + "", // orq/addq REG, imm + [(set GR64:$dst, (or_is_add GR64:$src1, + i64immSExt32:$src2))]>; +} +} // AddedComplexity, SchedRW + +//===----------------------------------------------------------------------===// +// Pattern match SUB as XOR +//===----------------------------------------------------------------------===// + +// An immediate in the LHS of a subtract can't be encoded in the instruction. +// If there is no possibility of a borrow we can use an XOR instead of a SUB +// to enable the immediate to be folded. +// TODO: Move this to a DAG combine? + +def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{ + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) { + KnownBits Known; + CurDAG->computeKnownBits(N->getOperand(1), Known); + + // If all possible ones in the RHS are set in the LHS then there can't be + // a borrow and we can use xor. + return (~Known.Zero).isSubsetOf(CN->getAPIntValue()); + } + + return false; +}]>; + +let AddedComplexity = 5 in { +def : Pat<(sub_is_xor imm:$src2, GR8:$src1), + (XOR8ri GR8:$src1, imm:$src2)>; +def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1), + (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(sub_is_xor imm:$src2, GR16:$src1), + (XOR16ri GR16:$src1, imm:$src2)>; +def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1), + (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(sub_is_xor imm:$src2, GR32:$src1), + (XOR32ri GR32:$src1, imm:$src2)>; +def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1), + (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1), + (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; +} + +//===----------------------------------------------------------------------===// +// Some peepholes +//===----------------------------------------------------------------------===// + +// Odd encoding trick: -128 fits into an 8-bit immediate field while +// +128 doesn't, so in this special case use a sub instead of an add. +def : Pat<(add GR16:$src1, 128), + (SUB16ri8 GR16:$src1, -128)>; +def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), + (SUB16mi8 addr:$dst, -128)>; + +def : Pat<(add GR32:$src1, 128), + (SUB32ri8 GR32:$src1, -128)>; +def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), + (SUB32mi8 addr:$dst, -128)>; + +def : Pat<(add GR64:$src1, 128), + (SUB64ri8 GR64:$src1, -128)>; +def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), + (SUB64mi8 addr:$dst, -128)>; + +// The same trick applies for 32-bit immediate fields in 64-bit +// instructions. +def : Pat<(add GR64:$src1, 0x0000000080000000), + (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; +def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst), + (SUB64mi32 addr:$dst, 0xffffffff80000000)>; + +// To avoid needing to materialize an immediate in a register, use a 32-bit and +// with implicit zero-extension instead of a 64-bit and if the immediate has at +// least 32 bits of leading zeros. If in addition the last 32 bits can be +// represented with a sign extension of a 8 bit constant, use that. +// This can also reduce instruction size by eliminating the need for the REX +// prefix. + +// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32. +let AddedComplexity = 1 in { +def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), + (SUBREG_TO_REG + (i64 0), + (AND32ri8 + (EXTRACT_SUBREG GR64:$src, sub_32bit), + (i32 (GetLo8XForm imm:$imm))), + sub_32bit)>; + +def : Pat<(and GR64:$src, i64immZExt32:$imm), + (SUBREG_TO_REG + (i64 0), + (AND32ri + (EXTRACT_SUBREG GR64:$src, sub_32bit), + (i32 (GetLo32XForm imm:$imm))), + sub_32bit)>; +} // AddedComplexity = 1 + + +// AddedComplexity is needed due to the increased complexity on the +// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all +// the MOVZX patterns keeps thems together in DAGIsel tables. +let AddedComplexity = 1 in { +// r & (2^16-1) ==> movz +def : Pat<(and GR32:$src1, 0xffff), + (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; +// r & (2^8-1) ==> movz +def : Pat<(and GR32:$src1, 0xff), + (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>; +// r & (2^8-1) ==> movz +def : Pat<(and GR16:$src1, 0xff), + (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)), + sub_16bit)>; + +// r & (2^32-1) ==> movz +def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), + (SUBREG_TO_REG (i64 0), + (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)), + sub_32bit)>; +// r & (2^16-1) ==> movz +def : Pat<(and GR64:$src, 0xffff), + (SUBREG_TO_REG (i64 0), + (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))), + sub_32bit)>; +// r & (2^8-1) ==> movz +def : Pat<(and GR64:$src, 0xff), + (SUBREG_TO_REG (i64 0), + (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))), + sub_32bit)>; +} // AddedComplexity = 1 + + +// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits. + +def BTRXForm : SDNodeXForm<imm, [{ + // Transformation function: Find the lowest 0. + return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N)); +}]>; + +def BTCBTSXForm : SDNodeXForm<imm, [{ + // Transformation function: Find the lowest 1. + return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N)); +}]>; + +def BTRMask64 : ImmLeaf<i64, [{ + return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm); +}]>; + +def BTCBTSMask64 : ImmLeaf<i64, [{ + return !isInt<32>(Imm) && isPowerOf2_64(Imm); +}]>; + +// For now only do this for optsize. +let AddedComplexity = 1, Predicates=[OptForSize] in { + def : Pat<(and GR64:$src1, BTRMask64:$mask), + (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>; + def : Pat<(or GR64:$src1, BTCBTSMask64:$mask), + (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>; + def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask), + (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>; +} + + +// sext_inreg patterns +def : Pat<(sext_inreg GR32:$src, i16), + (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; +def : Pat<(sext_inreg GR32:$src, i8), + (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>; + +def : Pat<(sext_inreg GR16:$src, i8), + (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)), + sub_16bit)>; + +def : Pat<(sext_inreg GR64:$src, i32), + (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; +def : Pat<(sext_inreg GR64:$src, i16), + (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; +def : Pat<(sext_inreg GR64:$src, i8), + (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; + +// sext, sext_load, zext, zext_load +def: Pat<(i16 (sext GR8:$src)), + (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; +def: Pat<(sextloadi16i8 addr:$src), + (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; +def: Pat<(i16 (zext GR8:$src)), + (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; +def: Pat<(zextloadi16i8 addr:$src), + (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; + +// trunc patterns +def : Pat<(i16 (trunc GR32:$src)), + (EXTRACT_SUBREG GR32:$src, sub_16bit)>; +def : Pat<(i8 (trunc GR32:$src)), + (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), + sub_8bit)>, + Requires<[Not64BitMode]>; +def : Pat<(i8 (trunc GR16:$src)), + (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), + sub_8bit)>, + Requires<[Not64BitMode]>; +def : Pat<(i32 (trunc GR64:$src)), + (EXTRACT_SUBREG GR64:$src, sub_32bit)>; +def : Pat<(i16 (trunc GR64:$src)), + (EXTRACT_SUBREG GR64:$src, sub_16bit)>; +def : Pat<(i8 (trunc GR64:$src)), + (EXTRACT_SUBREG GR64:$src, sub_8bit)>; +def : Pat<(i8 (trunc GR32:$src)), + (EXTRACT_SUBREG GR32:$src, sub_8bit)>, + Requires<[In64BitMode]>; +def : Pat<(i8 (trunc GR16:$src)), + (EXTRACT_SUBREG GR16:$src, sub_8bit)>, + Requires<[In64BitMode]>; + +def immff00_ffff : ImmLeaf<i32, [{ + return Imm >= 0xff00 && Imm <= 0xffff; +}]>; + +// h-register tricks +def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), + (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>, + Requires<[Not64BitMode]>; +def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))), + (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>, + Requires<[Not64BitMode]>; +def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), + (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>, + Requires<[Not64BitMode]>; +def : Pat<(srl GR16:$src, (i8 8)), + (EXTRACT_SUBREG + (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), + sub_16bit)>; +def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), + (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>; +def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), + (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>; +def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), + (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; +def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)), + (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>; + +// h-register tricks. +// For now, be conservative on x86-64 and use an h-register extract only if the +// value is immediately zero-extended or stored, which are somewhat common +// cases. This uses a bunch of code to prevent a register requiring a REX prefix +// from being allocated in the same instruction as the h register, as there's +// currently no way to describe this requirement to the register allocator. + +// h-register extract and zero-extend. +def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), + (SUBREG_TO_REG + (i64 0), + (MOVZX32rr8_NOREX + (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)), + sub_32bit)>; +def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), + (SUBREG_TO_REG + (i64 0), + (MOVZX32rr8_NOREX + (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), + sub_32bit)>; +def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), + (SUBREG_TO_REG + (i64 0), + (MOVZX32rr8_NOREX + (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)), + sub_32bit)>; + +// h-register extract and store. +def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), + (MOV8mr_NOREX + addr:$dst, + (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>; +def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), + (MOV8mr_NOREX + addr:$dst, + (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>, + Requires<[In64BitMode]>; +def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), + (MOV8mr_NOREX + addr:$dst, + (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>, + Requires<[In64BitMode]>; + + +// (shl x, 1) ==> (add x, x) +// Note that if x is undef (immediate or otherwise), we could theoretically +// end up with the two uses of x getting different values, producing a result +// where the least significant bit is not 0. However, the probability of this +// happening is considered low enough that this is officially not a +// "real problem". +def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; +def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; +def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; +def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; + +// Helper imms to check if a mask doesn't change significant shift/rotate bits. +def immShift8 : ImmLeaf<i8, [{ + return countTrailingOnes<uint64_t>(Imm) >= 3; +}]>; +def immShift16 : ImmLeaf<i8, [{ + return countTrailingOnes<uint64_t>(Imm) >= 4; +}]>; +def immShift32 : ImmLeaf<i8, [{ + return countTrailingOnes<uint64_t>(Imm) >= 5; +}]>; +def immShift64 : ImmLeaf<i8, [{ + return countTrailingOnes<uint64_t>(Imm) >= 6; +}]>; + +// Shift amount is implicitly masked. +multiclass MaskedShiftAmountPats<SDNode frag, string name> { + // (shift x (and y, 31)) ==> (shift x, y) + def : Pat<(frag GR8:$src1, (and CL, immShift32)), + (!cast<Instruction>(name # "8rCL") GR8:$src1)>; + def : Pat<(frag GR16:$src1, (and CL, immShift32)), + (!cast<Instruction>(name # "16rCL") GR16:$src1)>; + def : Pat<(frag GR32:$src1, (and CL, immShift32)), + (!cast<Instruction>(name # "32rCL") GR32:$src1)>; + def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), + (!cast<Instruction>(name # "8mCL") addr:$dst)>; + def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), + (!cast<Instruction>(name # "16mCL") addr:$dst)>; + def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), + (!cast<Instruction>(name # "32mCL") addr:$dst)>; + + // (shift x (and y, 63)) ==> (shift x, y) + def : Pat<(frag GR64:$src1, (and CL, immShift64)), + (!cast<Instruction>(name # "64rCL") GR64:$src1)>; + def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst), + (!cast<Instruction>(name # "64mCL") addr:$dst)>; +} + +defm : MaskedShiftAmountPats<shl, "SHL">; +defm : MaskedShiftAmountPats<srl, "SHR">; +defm : MaskedShiftAmountPats<sra, "SAR">; + +// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and +// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount +// because over-rotating produces the same result. This is noted in the Intel +// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation +// amount could affect EFLAGS results, but that does not matter because we are +// not tracking flags for these nodes. +multiclass MaskedRotateAmountPats<SDNode frag, string name> { + // (rot x (and y, BitWidth - 1)) ==> (rot x, y) + def : Pat<(frag GR8:$src1, (and CL, immShift8)), + (!cast<Instruction>(name # "8rCL") GR8:$src1)>; + def : Pat<(frag GR16:$src1, (and CL, immShift16)), + (!cast<Instruction>(name # "16rCL") GR16:$src1)>; + def : Pat<(frag GR32:$src1, (and CL, immShift32)), + (!cast<Instruction>(name # "32rCL") GR32:$src1)>; + def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst), + (!cast<Instruction>(name # "8mCL") addr:$dst)>; + def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst), + (!cast<Instruction>(name # "16mCL") addr:$dst)>; + def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), + (!cast<Instruction>(name # "32mCL") addr:$dst)>; + + // (rot x (and y, 63)) ==> (rot x, y) + def : Pat<(frag GR64:$src1, (and CL, immShift64)), + (!cast<Instruction>(name # "64rCL") GR64:$src1)>; + def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst), + (!cast<Instruction>(name # "64mCL") addr:$dst)>; +} + + +defm : MaskedRotateAmountPats<rotl, "ROL">; +defm : MaskedRotateAmountPats<rotr, "ROR">; + +// Double shift amount is implicitly masked. +multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> { + // (shift x (and y, 31)) ==> (shift x, y) + def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)), + (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>; + def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)), + (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>; + + // (shift x (and y, 63)) ==> (shift x, y) + def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)), + (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>; +} + +defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">; +defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">; + +let Predicates = [HasBMI2] in { + let AddedComplexity = 1 in { + def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)), + (SARX32rr GR32:$src1, + (INSERT_SUBREG + (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)), + (SARX64rr GR64:$src1, + (INSERT_SUBREG + (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + + def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)), + (SHRX32rr GR32:$src1, + (INSERT_SUBREG + (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)), + (SHRX64rr GR64:$src1, + (INSERT_SUBREG + (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + + def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)), + (SHLX32rr GR32:$src1, + (INSERT_SUBREG + (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)), + (SHLX64rr GR64:$src1, + (INSERT_SUBREG + (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + } + + def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)), + (SARX32rm addr:$src1, + (INSERT_SUBREG + (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)), + (SARX64rm addr:$src1, + (INSERT_SUBREG + (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + + def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)), + (SHRX32rm addr:$src1, + (INSERT_SUBREG + (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)), + (SHRX64rm addr:$src1, + (INSERT_SUBREG + (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + + def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)), + (SHLX32rm addr:$src1, + (INSERT_SUBREG + (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)), + (SHLX64rm addr:$src1, + (INSERT_SUBREG + (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; +} + +// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location. +multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR, + Instruction BTS, Instruction BTC, + ImmLeaf ImmShift> { + def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)), + (BTR RC:$src1, + (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(or RC:$src1, (shl 1, GR8:$src2)), + (BTS RC:$src1, + (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)), + (BTC RC:$src1, + (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + + // Similar to above, but removing unneeded masking of the shift amount. + def : Pat<(and RC:$src1, (rotl -2, (and GR8:$src2, ImmShift))), + (BTR RC:$src1, + (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(or RC:$src1, (shl 1, (and GR8:$src2, ImmShift))), + (BTS RC:$src1, + (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; + def : Pat<(xor RC:$src1, (shl 1, (and GR8:$src2, ImmShift))), + (BTC RC:$src1, + (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>; +} + +defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, immShift16>; +defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, immShift32>; +defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, immShift64>; + + +// (anyext (setcc_carry)) -> (setcc_carry) +def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C16r)>; +def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; +def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), + (SETB_C32r)>; + +//===----------------------------------------------------------------------===// +// EFLAGS-defining Patterns +//===----------------------------------------------------------------------===// + +// add reg, reg +def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; +def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; +def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; + +// add reg, mem +def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), + (ADD8rm GR8:$src1, addr:$src2)>; +def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), + (ADD16rm GR16:$src1, addr:$src2)>; +def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), + (ADD32rm GR32:$src1, addr:$src2)>; +def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), + (ADD64rm GR64:$src1, addr:$src2)>; + +// add reg, imm +def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; +def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; +def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; +def : Pat<(add GR16:$src1, i16immSExt8:$src2), + (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(add GR32:$src1, i32immSExt8:$src2), + (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(add GR64:$src1, i64immSExt8:$src2), + (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(add GR64:$src1, i64immSExt32:$src2), + (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// sub reg, reg +def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; +def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; +def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; + +// sub reg, mem +def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), + (SUB8rm GR8:$src1, addr:$src2)>; +def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), + (SUB16rm GR16:$src1, addr:$src2)>; +def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), + (SUB32rm GR32:$src1, addr:$src2)>; +def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), + (SUB64rm GR64:$src1, addr:$src2)>; + +// sub reg, imm +def : Pat<(sub GR8:$src1, imm:$src2), + (SUB8ri GR8:$src1, imm:$src2)>; +def : Pat<(sub GR16:$src1, imm:$src2), + (SUB16ri GR16:$src1, imm:$src2)>; +def : Pat<(sub GR32:$src1, imm:$src2), + (SUB32ri GR32:$src1, imm:$src2)>; +def : Pat<(sub GR16:$src1, i16immSExt8:$src2), + (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(sub GR32:$src1, i32immSExt8:$src2), + (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(sub GR64:$src1, i64immSExt8:$src2), + (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(sub GR64:$src1, i64immSExt32:$src2), + (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// sub 0, reg +def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; +def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; +def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; +def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; + +// sub reg, relocImm +def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2), + (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>; +def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2), + (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>; + +// mul reg, reg +def : Pat<(mul GR16:$src1, GR16:$src2), + (IMUL16rr GR16:$src1, GR16:$src2)>; +def : Pat<(mul GR32:$src1, GR32:$src2), + (IMUL32rr GR32:$src1, GR32:$src2)>; +def : Pat<(mul GR64:$src1, GR64:$src2), + (IMUL64rr GR64:$src1, GR64:$src2)>; + +// mul reg, mem +def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), + (IMUL16rm GR16:$src1, addr:$src2)>; +def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), + (IMUL32rm GR32:$src1, addr:$src2)>; +def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), + (IMUL64rm GR64:$src1, addr:$src2)>; + +// mul reg, imm +def : Pat<(mul GR16:$src1, imm:$src2), + (IMUL16rri GR16:$src1, imm:$src2)>; +def : Pat<(mul GR32:$src1, imm:$src2), + (IMUL32rri GR32:$src1, imm:$src2)>; +def : Pat<(mul GR16:$src1, i16immSExt8:$src2), + (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(mul GR32:$src1, i32immSExt8:$src2), + (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(mul GR64:$src1, i64immSExt8:$src2), + (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(mul GR64:$src1, i64immSExt32:$src2), + (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; + +// reg = mul mem, imm +def : Pat<(mul (loadi16 addr:$src1), imm:$src2), + (IMUL16rmi addr:$src1, imm:$src2)>; +def : Pat<(mul (loadi32 addr:$src1), imm:$src2), + (IMUL32rmi addr:$src1, imm:$src2)>; +def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), + (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; +def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), + (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; +def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), + (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; +def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), + (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; + +// Increment/Decrement reg. +// Do not make INC/DEC if it is slow +let Predicates = [UseIncDec] in { + def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>; + def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>; + def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>; + def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; + def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>; + def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>; + def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>; + def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; +} + +// or reg/reg. +def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; +def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; +def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; + +// or reg/mem +def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), + (OR8rm GR8:$src1, addr:$src2)>; +def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), + (OR16rm GR16:$src1, addr:$src2)>; +def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), + (OR32rm GR32:$src1, addr:$src2)>; +def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), + (OR64rm GR64:$src1, addr:$src2)>; + +// or reg/imm +def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; +def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; +def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; +def : Pat<(or GR16:$src1, i16immSExt8:$src2), + (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(or GR32:$src1, i32immSExt8:$src2), + (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(or GR64:$src1, i64immSExt8:$src2), + (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(or GR64:$src1, i64immSExt32:$src2), + (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// xor reg/reg +def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; +def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; +def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; + +// xor reg/mem +def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), + (XOR8rm GR8:$src1, addr:$src2)>; +def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), + (XOR16rm GR16:$src1, addr:$src2)>; +def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), + (XOR32rm GR32:$src1, addr:$src2)>; +def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), + (XOR64rm GR64:$src1, addr:$src2)>; + +// xor reg/imm +def : Pat<(xor GR8:$src1, imm:$src2), + (XOR8ri GR8:$src1, imm:$src2)>; +def : Pat<(xor GR16:$src1, imm:$src2), + (XOR16ri GR16:$src1, imm:$src2)>; +def : Pat<(xor GR32:$src1, imm:$src2), + (XOR32ri GR32:$src1, imm:$src2)>; +def : Pat<(xor GR16:$src1, i16immSExt8:$src2), + (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(xor GR32:$src1, i32immSExt8:$src2), + (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(xor GR64:$src1, i64immSExt8:$src2), + (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(xor GR64:$src1, i64immSExt32:$src2), + (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// and reg/reg +def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; +def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; +def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; +def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; + +// and reg/mem +def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), + (AND8rm GR8:$src1, addr:$src2)>; +def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), + (AND16rm GR16:$src1, addr:$src2)>; +def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), + (AND32rm GR32:$src1, addr:$src2)>; +def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), + (AND64rm GR64:$src1, addr:$src2)>; + +// and reg/imm +def : Pat<(and GR8:$src1, imm:$src2), + (AND8ri GR8:$src1, imm:$src2)>; +def : Pat<(and GR16:$src1, imm:$src2), + (AND16ri GR16:$src1, imm:$src2)>; +def : Pat<(and GR32:$src1, imm:$src2), + (AND32ri GR32:$src1, imm:$src2)>; +def : Pat<(and GR16:$src1, i16immSExt8:$src2), + (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; +def : Pat<(and GR32:$src1, i32immSExt8:$src2), + (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; +def : Pat<(and GR64:$src1, i64immSExt8:$src2), + (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; +def : Pat<(and GR64:$src1, i64immSExt32:$src2), + (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; + +// Bit scan instruction patterns to match explicit zero-undef behavior. +def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; +def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; +def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; +def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; +def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; +def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>; + +// When HasMOVBE is enabled it is possible to get a non-legalized +// register-register 16 bit bswap. This maps it to a ROL instruction. +let Predicates = [HasMOVBE] in { + def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>; +} + +// These patterns are selected by some custom code in X86ISelDAGToDAG.cpp that +// custom combines and+srl into BEXTR. We use these patterns to avoid a bunch +// of manual code for folding loads. +let Predicates = [HasBMI, NoTBM] in { + def : Pat<(X86bextr GR32:$src1, (i32 imm:$src2)), + (BEXTR32rr GR32:$src1, (MOV32ri imm:$src2))>; + def : Pat<(X86bextr (loadi32 addr:$src1), (i32 imm:$src2)), + (BEXTR32rm addr:$src1, (MOV32ri imm:$src2))>; + def : Pat<(X86bextr GR64:$src1, mov64imm32:$src2), + (BEXTR64rr GR64:$src1, + (SUBREG_TO_REG (i64 0), + (MOV32ri64 mov64imm32:$src2), + sub_32bit))>; + def : Pat<(X86bextr (loadi64 addr:$src1), mov64imm32:$src2), + (BEXTR64rm addr:$src1, + (SUBREG_TO_REG (i64 0), + (MOV32ri64 mov64imm32:$src2), + sub_32bit))>; +} // HasBMI, NoTBM |