aboutsummaryrefslogtreecommitdiffstats
path: root/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td
diff options
context:
space:
mode:
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td')
-rw-r--r--capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td2103
1 files changed, 2103 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td b/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td
new file mode 100644
index 000000000..373f85020
--- /dev/null
+++ b/capstone/suite/synctools/tablegen/X86/back/X86InstrCompiler.td
@@ -0,0 +1,2103 @@
+//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the various pseudo instructions used by the compiler,
+// as well as Pat patterns used during instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Pattern Matching Support
+
+def GetLo32XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 32 bits.
+ return getI32Imm((uint32_t)N->getZExtValue(), SDLoc(N));
+}]>;
+
+def GetLo8XForm : SDNodeXForm<imm, [{
+ // Transformation function: get the low 8 bits.
+ return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
+}]>;
+
+
+//===----------------------------------------------------------------------===//
+// Random Pseudo Instructions.
+
+// PIC base construction. This expands to code that looks like this:
+// call $next_inst
+// popl %destreg"
+let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP, SSP],
+ SchedRW = [WriteJump] in
+ def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
+ "", []>;
+
+// 64-bit large code model PIC base construction.
+let hasSideEffects = 0, mayLoad = 1, isNotDuplicable = 1, SchedRW = [WriteJump] in
+ def MOVGOT64r : PseudoI<(outs GR64:$reg),
+ (ins GR64:$scratch, i64i32imm_pcrel:$got), []>;
+
+// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [ESP, EFLAGS, SSP], Uses = [ESP, SSP], SchedRW = [WriteALU] in {
+def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs),
+ (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
+ "#ADJCALLSTACKDOWN", []>, Requires<[NotLP64]>;
+def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[NotLP64]>;
+}
+def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
+ (ADJCALLSTACKDOWN32 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[NotLP64]>;
+
+
+// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber EFLAGS.
+let Defs = [RSP, EFLAGS, SSP], Uses = [RSP, SSP], SchedRW = [WriteALU] in {
+def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs),
+ (ins i32imm:$amt1, i32imm:$amt2, i32imm:$amt3),
+ "#ADJCALLSTACKDOWN", []>, Requires<[IsLP64]>;
+def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP",
+ [(X86callseq_end timm:$amt1, timm:$amt2)]>,
+ Requires<[IsLP64]>;
+}
+def : Pat<(X86callseq_start timm:$amt1, timm:$amt2),
+ (ADJCALLSTACKDOWN64 i32imm:$amt1, i32imm:$amt2, 0)>, Requires<[IsLP64]>;
+
+let SchedRW = [WriteSystem] in {
+
+// x86-64 va_start lowering magic.
+let usesCustomInserter = 1, Defs = [EFLAGS] in {
+def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
+ (outs),
+ (ins GR8:$al,
+ i64imm:$regsavefi, i64imm:$offset,
+ variable_ops),
+ "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
+ [(X86vastart_save_xmm_regs GR8:$al,
+ imm:$regsavefi,
+ imm:$offset),
+ (implicit EFLAGS)]>;
+
+// The VAARG_64 pseudo-instruction takes the address of the va_list,
+// and places the address of the next argument into a register.
+let Defs = [EFLAGS] in
+def VAARG_64 : I<0, Pseudo,
+ (outs GR64:$dst),
+ (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
+ "#VAARG_64 $dst, $ap, $size, $mode, $align",
+ [(set GR64:$dst,
+ (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
+ (implicit EFLAGS)]>;
+
+
+// When using segmented stacks these are lowered into instructions which first
+// check if the current stacklet has enough free memory. If it does, memory is
+// allocated by bumping the stack pointer. Otherwise memory is allocated from
+// the heap.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR32:$dst,
+ (X86SegAlloca GR32:$size))]>,
+ Requires<[NotLP64]>;
+
+let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
+def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
+ "# variable sized alloca for segmented stacks",
+ [(set GR64:$dst,
+ (X86SegAlloca GR64:$size))]>,
+ Requires<[In64BitMode]>;
+}
+
+// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
+// targets. These calls are needed to probe the stack when allocating more than
+// 4k bytes in one go. Touching the stack at 4K increments is necessary to
+// ensure that the guard pages used by the OS virtual memory manager are
+// allocated in correct sequence.
+// The main point of having separate instruction are extra unmodelled effects
+// (compared to ordinary calls) like stack pointer change.
+
+let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
+def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
+ "# dynamic stack allocation",
+ [(X86WinAlloca GR32:$size)]>,
+ Requires<[NotLP64]>;
+
+let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
+def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
+ "# dynamic stack allocation",
+ [(X86WinAlloca GR64:$size)]>,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+// These instructions XOR the frame pointer into a GPR. They are used in some
+// stack protection schemes. These are post-RA pseudos because we only know the
+// frame register after register allocation.
+let Constraints = "$src = $dst", isPseudo = 1, Defs = [EFLAGS] in {
+ def XOR32_FP : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src),
+ "xorl\t$$FP, $src", []>,
+ Requires<[NotLP64]>, Sched<[WriteALU]>;
+ def XOR64_FP : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src),
+ "xorq\t$$FP $src", []>,
+ Requires<[In64BitMode]>, Sched<[WriteALU]>;
+}
+
+//===----------------------------------------------------------------------===//
+// EH Pseudo Instructions
+//
+let SchedRW = [WriteSystem] in {
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR32:$addr)]>, Sched<[WriteJumpLd]>;
+
+}
+
+let isTerminator = 1, isReturn = 1, isBarrier = 1,
+ hasCtrlDep = 1, isCodeGenOnly = 1 in {
+def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
+ "ret\t#eh_return, addr: $addr",
+ [(X86ehret GR64:$addr)]>, Sched<[WriteJumpLd]>;
+
+}
+
+let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
+ isCodeGenOnly = 1, isReturn = 1 in {
+ def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
+
+ // CATCHRET needs a custom inserter for SEH.
+ let usesCustomInserter = 1 in
+ def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
+ "# CATCHRET",
+ [(catchret bb:$dst, bb:$from)]>;
+}
+
+let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in
+def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
+
+// This instruction is responsible for re-establishing stack pointers after an
+// exception has been caught and we are rejoining normal control flow in the
+// parent function or funclet. It generally sets ESP and EBP, and optionally
+// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
+// elsewhere.
+let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
+def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
+
+let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
+ usesCustomInserter = 1 in {
+ def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
+ "#EH_SJLJ_SETJMP32",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[Not64BitMode]>;
+ def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
+ "#EH_SJLJ_SETJMP64",
+ [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
+ Requires<[In64BitMode]>;
+ let isTerminator = 1 in {
+ def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
+ "#EH_SJLJ_LONGJMP32",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[Not64BitMode]>;
+ def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
+ "#EH_SJLJ_LONGJMP64",
+ [(X86eh_sjlj_longjmp addr:$buf)]>,
+ Requires<[In64BitMode]>;
+ }
+}
+
+let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
+ def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
+ "#EH_SjLj_Setup\t$dst", []>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by unwind info.
+//
+let isPseudo = 1, SchedRW = [WriteSystem] in {
+ def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
+ "#SEH_PushReg $reg", []>;
+ def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
+ "#SEH_SaveReg $reg, $dst", []>;
+ def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
+ "#SEH_SaveXMM $reg, $dst", []>;
+ def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
+ "#SEH_StackAlloc $size", []>;
+ def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
+ "#SEH_SetFrame $reg, $offset", []>;
+ def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
+ "#SEH_PushFrame $mode", []>;
+ def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
+ "#SEH_EndPrologue", []>;
+ def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
+ "#SEH_Epilogue", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions used by segmented stacks.
+//
+
+// This is lowered into a RET instruction by MCInstLower. We need
+// this so that we don't have to have a MachineBasicBlock which ends
+// with a RET and also has successors.
+let isPseudo = 1, SchedRW = [WriteJumpLd] in {
+def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>;
+
+// This instruction is lowered to a RET followed by a MOV. The two
+// instructions are not generated on a higher level since then the
+// verifier sees a MachineBasicBlock ending with a non-terminator.
+def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Alias Instructions
+//===----------------------------------------------------------------------===//
+
+// Alias instruction mapping movr0 to xor.
+// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
+let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isPseudo = 1, AddedComplexity = 10 in
+def MOV32r0 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, 0)]>, Sched<[WriteZero]>;
+
+// Other widths can also make use of the 32-bit xor, which may have a smaller
+// encoding and avoid partial register updates.
+let AddedComplexity = 10 in {
+def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
+def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
+def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)>;
+}
+
+let Predicates = [OptForSize, Not64BitMode],
+ AddedComplexity = 10 in {
+ let SchedRW = [WriteALU] in {
+ // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
+ // which only require 3 bytes compared to MOV32ri which requires 5.
+ let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
+ def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, 1)]>;
+ def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, -1)]>;
+ }
+ } // SchedRW
+
+ // MOV16ri is 4 bytes, so the instructions above are smaller.
+ def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
+ def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
+}
+
+let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 5,
+ SchedRW = [WriteALU] in {
+// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
+def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
+ [(set GR32:$dst, i32immSExt8:$src)]>,
+ Requires<[OptForMinSize, NotWin64WithoutFP]>;
+def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
+ [(set GR64:$dst, i64immSExt8:$src)]>,
+ Requires<[OptForMinSize, NotWin64WithoutFP]>;
+}
+
+// Materialize i64 constant where top 32-bits are zero. This could theoretically
+// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
+// that would make it more difficult to rematerialize.
+let isReMaterializable = 1, isAsCheapAsAMove = 1,
+ isPseudo = 1, hasSideEffects = 0, SchedRW = [WriteMove] in
+def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
+
+// This 64-bit pseudo-move can be used for both a 64-bit constant that is
+// actually the zero-extension of a 32-bit constant and for labels in the
+// x86-64 small code model.
+def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
+
+let AddedComplexity = 1 in
+def : Pat<(i64 mov64imm32:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
+
+// Use sbb to materialize carry bit.
+let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
+// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
+// However, Pat<> can't replicate the destination reg into the inputs of the
+// result.
+def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
+ [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
+ [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
+ [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
+ [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
+} // isCodeGenOnly
+
+
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C64r)>;
+
+// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
+// will be eliminated and that the sbb can be extended up to a wider type. When
+// this happens, it is great. However, if we are left with an 8-bit sbb and an
+// and, we might as well just match it as a setb.
+def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
+ (SETBr)>;
+
+// (add OP, SETB) -> (adc OP, 0)
+def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
+ (ADC64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETB) -> (sbb OP, 0)
+def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
+ (SBB64ri8 GR64:$op, 0)>;
+
+// (sub OP, SETCC_CARRY) -> (adc OP, 0)
+def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC8ri GR8:$op, 0)>;
+def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC32ri8 GR32:$op, 0)>;
+def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
+ (ADC64ri8 GR64:$op, 0)>;
+
+//===----------------------------------------------------------------------===//
+// String Pseudo Instructions
+//
+let SchedRW = [WriteMicrocoded] in {
+let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
+def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)]>, REP,
+ Requires<[Not64BitMode]>;
+def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)]>, REP, OpSize16,
+ Requires<[Not64BitMode]>;
+def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)]>, REP, OpSize32,
+ Requires<[Not64BitMode]>;
+}
+
+let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
+def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
+ [(X86rep_movs i8)]>, REP,
+ Requires<[In64BitMode]>;
+def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
+ [(X86rep_movs i16)]>, REP, OpSize16,
+ Requires<[In64BitMode]>;
+def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
+ [(X86rep_movs i32)]>, REP, OpSize32,
+ Requires<[In64BitMode]>;
+def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
+ [(X86rep_movs i64)]>, REP,
+ Requires<[In64BitMode]>;
+}
+
+// FIXME: Should use "(X86rep_stos AL)" as the pattern.
+let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,ECX,EDI] in
+ def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)]>, REP,
+ Requires<[Not64BitMode]>;
+ let Uses = [AX,ECX,EDI] in
+ def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)]>, REP, OpSize16,
+ Requires<[Not64BitMode]>;
+ let Uses = [EAX,ECX,EDI] in
+ def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)]>, REP, OpSize32,
+ Requires<[Not64BitMode]>;
+}
+
+let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
+ let Uses = [AL,RCX,RDI] in
+ def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
+ [(X86rep_stos i8)]>, REP,
+ Requires<[In64BitMode]>;
+ let Uses = [AX,RCX,RDI] in
+ def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
+ [(X86rep_stos i16)]>, REP, OpSize16,
+ Requires<[In64BitMode]>;
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
+ [(X86rep_stos i32)]>, REP, OpSize32,
+ Requires<[In64BitMode]>;
+
+ let Uses = [RAX,RCX,RDI] in
+ def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
+ [(X86rep_stos i64)]>, REP,
+ Requires<[In64BitMode]>;
+}
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Thread Local Storage Instructions
+//
+let SchedRW = [WriteSystem] in {
+
+// ELF TLS Support
+// All calls clobber the non-callee saved registers. ESP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
+ ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
+ usesCustomInserter = 1, Uses = [ESP, SSP] in {
+def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_addr32",
+ [(X86tlsaddr tls32addr:$sym)]>,
+ Requires<[Not64BitMode]>;
+def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLS_base_addr32",
+ [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
+ Requires<[Not64BitMode]>;
+}
+
+// All calls clobber the non-callee saved registers. RSP is marked as
+// a use to prevent stack-pointer assignments that appear immediately
+// before calls from potentially appearing dead.
+let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
+ FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
+ ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
+ MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
+ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS, DF],
+ usesCustomInserter = 1, Uses = [RSP, SSP] in {
+def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_addr64",
+ [(X86tlsaddr tls64addr:$sym)]>,
+ Requires<[In64BitMode]>;
+def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLS_base_addr64",
+ [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
+ Requires<[In64BitMode]>;
+}
+
+// Darwin TLS Support
+// For i386, the address of the thunk is passed on the stack, on return the
+// address of the variable is in %eax. %ecx is trashed during the function
+// call. All other registers are preserved.
+let Defs = [EAX, ECX, EFLAGS, DF],
+ Uses = [ESP, SSP],
+ usesCustomInserter = 1 in
+def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
+ "# TLSCall_32",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[Not64BitMode]>;
+
+// For x86_64, the address of the thunk is passed in %rdi, but the
+// pseudo directly use the symbol, so do not add an implicit use of
+// %rdi. The lowering will do the right thing with RDI.
+// On return the address of the variable is in %rax. All other
+// registers are preserved.
+let Defs = [RAX, EFLAGS, DF],
+ Uses = [RSP, SSP],
+ usesCustomInserter = 1 in
+def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
+ "# TLSCall_64",
+ [(X86TLSCall addr:$sym)]>,
+ Requires<[In64BitMode]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// Conditional Move Pseudo Instructions
+
+// CMOV* - Used to implement the SELECT DAG operation. Expanded after
+// instruction selection into a branch sequence.
+multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
+ def CMOV#NAME : I<0, Pseudo,
+ (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
+ "#CMOV_"#NAME#" PSEUDO!",
+ [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
+ EFLAGS)))]>;
+}
+
+let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS] in {
+ // X86 doesn't have 8-bit conditional moves. Use a customInserter to
+ // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
+ // however that requires promoting the operands, and can induce additional
+ // i8 register pressure.
+ defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
+
+ let Predicates = [NoCMov] in {
+ defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
+ defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
+ } // Predicates = [NoCMov]
+
+ // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
+ // SSE1/SSE2.
+ let Predicates = [FPStackf32] in
+ defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
+
+ let Predicates = [FPStackf64] in
+ defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
+
+ defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
+
+ defm _FR32 : CMOVrr_PSEUDO<FR32, f32>;
+ defm _FR64 : CMOVrr_PSEUDO<FR64, f64>;
+ defm _F128 : CMOVrr_PSEUDO<VR128, f128>;
+ defm _V4F32 : CMOVrr_PSEUDO<VR128, v4f32>;
+ defm _V2F64 : CMOVrr_PSEUDO<VR128, v2f64>;
+ defm _V2I64 : CMOVrr_PSEUDO<VR128, v2i64>;
+ defm _V8F32 : CMOVrr_PSEUDO<VR256, v8f32>;
+ defm _V4F64 : CMOVrr_PSEUDO<VR256, v4f64>;
+ defm _V4I64 : CMOVrr_PSEUDO<VR256, v4i64>;
+ defm _V8I64 : CMOVrr_PSEUDO<VR512, v8i64>;
+ defm _V8F64 : CMOVrr_PSEUDO<VR512, v8f64>;
+ defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
+ defm _V8I1 : CMOVrr_PSEUDO<VK8, v8i1>;
+ defm _V16I1 : CMOVrr_PSEUDO<VK16, v16i1>;
+ defm _V32I1 : CMOVrr_PSEUDO<VK32, v32i1>;
+ defm _V64I1 : CMOVrr_PSEUDO<VK64, v64i1>;
+} // usesCustomInserter = 1, hasNoSchedulingInfo = 1, Uses = [EFLAGS]
+
+//===----------------------------------------------------------------------===//
+// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
+//===----------------------------------------------------------------------===//
+
+// FIXME: Use normal instructions and add lock prefix dynamically.
+
+// Memory barriers
+
+// TODO: Get this to fold the constant into the instruction.
+let isCodeGenOnly = 1, Defs = [EFLAGS] in
+def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
+ "or{l}\t{$zero, $dst|$dst, $zero}", []>,
+ Requires<[Not64BitMode]>, OpSize32, LOCK,
+ Sched<[WriteALULd, WriteRMW]>;
+
+let hasSideEffects = 1 in
+def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
+ "#MEMBARRIER",
+ [(X86MemBarrier)]>, Sched<[WriteLoad]>;
+
+// RegOpc corresponds to the mr version of the instruction
+// ImmOpc corresponds to the mi version of the instruction
+// ImmOpc8 corresponds to the mi8 version of the instruction
+// ImmMod corresponds to the instruction format of the mi and mi8 versions
+multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
+ Format ImmMod, SDNode Op, string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+
+def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
+ MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, GR8:$src2))]>, LOCK;
+
+def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, GR16:$src2))]>,
+ OpSize16, LOCK;
+
+def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, GR32:$src2))]>,
+ OpSize32, LOCK;
+
+def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
+ RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
+ MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, GR64:$src2))]>, LOCK;
+
+def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
+ ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
+ !strconcat(mnemonic, "{b}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))]>, LOCK;
+
+def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))]>,
+ OpSize16, LOCK;
+
+def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))]>,
+ OpSize32, LOCK;
+
+def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
+ ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))]>,
+ LOCK;
+
+def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
+ !strconcat(mnemonic, "{w}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))]>,
+ OpSize16, LOCK;
+
+def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
+ !strconcat(mnemonic, "{l}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))]>,
+ OpSize32, LOCK;
+
+def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
+ ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
+ ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
+ !strconcat(mnemonic, "{q}\t",
+ "{$src2, $dst|$dst, $src2}"),
+ [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))]>,
+ LOCK;
+}
+
+}
+
+defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
+defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
+defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
+defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
+defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
+
+multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string frag, string mnemonic> {
+let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst),
+ !strconcat(mnemonic, "{b}\t$dst"),
+ [(set EFLAGS, (!cast<PatFrag>(frag # "_8") addr:$dst))]>,
+ LOCK;
+def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
+ !strconcat(mnemonic, "{w}\t$dst"),
+ [(set EFLAGS, (!cast<PatFrag>(frag # "_16") addr:$dst))]>,
+ OpSize16, LOCK;
+def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
+ !strconcat(mnemonic, "{l}\t$dst"),
+ [(set EFLAGS, (!cast<PatFrag>(frag # "_32") addr:$dst))]>,
+ OpSize32, LOCK;
+def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
+ !strconcat(mnemonic, "{q}\t$dst"),
+ [(set EFLAGS, (!cast<PatFrag>(frag # "_64") addr:$dst))]>,
+ LOCK;
+}
+}
+
+multiclass unary_atomic_intrin<SDNode atomic_op> {
+ def _8 : PatFrag<(ops node:$ptr),
+ (atomic_op node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
+ }]>;
+ def _16 : PatFrag<(ops node:$ptr),
+ (atomic_op node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
+ }]>;
+ def _32 : PatFrag<(ops node:$ptr),
+ (atomic_op node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
+ }]>;
+ def _64 : PatFrag<(ops node:$ptr),
+ (atomic_op node:$ptr), [{
+ return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
+ }]>;
+}
+
+defm X86lock_inc : unary_atomic_intrin<X86lock_inc>;
+defm X86lock_dec : unary_atomic_intrin<X86lock_dec>;
+
+defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "X86lock_inc", "inc">;
+defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "X86lock_dec", "dec">;
+
+// Atomic compare and swap.
+multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
+ SDPatternOperator frag, X86MemOperand x86memop> {
+let isCodeGenOnly = 1, usesCustomInserter = 1 in {
+ def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
+ !strconcat(mnemonic, "\t$ptr"),
+ [(frag addr:$ptr)]>, TB, LOCK;
+}
+}
+
+multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
+ string mnemonic, SDPatternOperator frag> {
+let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
+ let Defs = [AL, EFLAGS], Uses = [AL] in
+ def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
+ !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
+ let Defs = [AX, EFLAGS], Uses = [AX] in
+ def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
+ !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR16:$swap, 2)]>, TB, OpSize16, LOCK;
+ let Defs = [EAX, EFLAGS], Uses = [EAX] in
+ def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
+ !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR32:$swap, 4)]>, TB, OpSize32, LOCK;
+ let Defs = [RAX, EFLAGS], Uses = [RAX] in
+ def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
+ !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
+ [(frag addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
+}
+}
+
+let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
+ SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem>;
+}
+
+// This pseudo must be used when the frame uses RBX as
+// the base pointer. Indeed, in such situation RBX is a reserved
+// register and the register allocator will ignore any use/def of
+// it. In other words, the register will not fix the clobbering of
+// RBX that will happen when setting the arguments for the instrucion.
+//
+// Unlike the actual related instuction, we mark that this one
+// defines EBX (instead of using EBX).
+// The rationale is that we will define RBX during the expansion of
+// the pseudo. The argument feeding EBX is ebx_input.
+//
+// The additional argument, $ebx_save, is a temporary register used to
+// save the value of RBX across the actual instruction.
+//
+// To make sure the register assigned to $ebx_save does not interfere with
+// the definition of the actual instruction, we use a definition $dst which
+// is tied to $rbx_save. That way, the live-range of $rbx_save spans across
+// the instruction and we are sure we will have a valid register to restore
+// the value of RBX.
+let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
+ SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
+ Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
+def LCMPXCHG8B_SAVE_EBX :
+ I<0, Pseudo, (outs GR32:$dst),
+ (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
+ !strconcat("cmpxchg8b", "\t$ptr"),
+ [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
+ GR32:$ebx_save))]>;
+}
+
+
+let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
+ Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
+defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
+ X86cas16, i128mem>, REX_W;
+}
+
+// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
+let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
+ Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
+ isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
+ usesCustomInserter = 1 in {
+def LCMPXCHG16B_SAVE_RBX :
+ I<0, Pseudo, (outs GR64:$dst),
+ (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
+ !strconcat("cmpxchg16b", "\t$ptr"),
+ [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
+ GR64:$rbx_save))]>;
+}
+
+defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas>;
+
+// Atomic exchange and add
+multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
+ string frag> {
+ let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
+ SchedRW = [WriteALULd, WriteRMW] in {
+ def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst),
+ (ins GR8:$val, i8mem:$ptr),
+ !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
+ [(set GR8:$dst,
+ (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))]>;
+ def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$val, i16mem:$ptr),
+ !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR16:$dst,
+ (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))]>,
+ OpSize16;
+ def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$val, i32mem:$ptr),
+ !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR32:$dst,
+ (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))]>,
+ OpSize32;
+ def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$val, i64mem:$ptr),
+ !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
+ [(set
+ GR64:$dst,
+ (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))]>;
+ }
+}
+
+defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add">, TB, LOCK;
+
+/* The following multiclass tries to make sure that in code like
+ * x.store (immediate op x.load(acquire), release)
+ * and
+ * x.store (register op x.load(acquire), release)
+ * an operation directly on memory is generated instead of wasting a register.
+ * It is not automatic as atomic_store/load are only lowered to MOV instructions
+ * extremely late to prevent them from being accidentally reordered in the backend
+ * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
+ */
+multiclass RELEASE_BINOP_MI<SDNode op> {
+ def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
+ "#BINOP "#NAME#"8mi PSEUDO!",
+ [(atomic_store_8 addr:$dst, (op
+ (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
+ def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
+ "#BINOP "#NAME#"8mr PSEUDO!",
+ [(atomic_store_8 addr:$dst, (op
+ (atomic_load_8 addr:$dst), GR8:$src))]>;
+ // NAME#16 is not generated as 16-bit arithmetic instructions are considered
+ // costly and avoided as far as possible by this backend anyway
+ def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
+ "#BINOP "#NAME#"32mi PSEUDO!",
+ [(atomic_store_32 addr:$dst, (op
+ (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
+ def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
+ "#BINOP "#NAME#"32mr PSEUDO!",
+ [(atomic_store_32 addr:$dst, (op
+ (atomic_load_32 addr:$dst), GR32:$src))]>;
+ def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "#BINOP "#NAME#"64mi32 PSEUDO!",
+ [(atomic_store_64 addr:$dst, (op
+ (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
+ def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
+ "#BINOP "#NAME#"64mr PSEUDO!",
+ [(atomic_store_64 addr:$dst, (op
+ (atomic_load_64 addr:$dst), GR64:$src))]>;
+}
+let Defs = [EFLAGS], SchedRW = [WriteMicrocoded] in {
+ defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
+ defm RELEASE_AND : RELEASE_BINOP_MI<and>;
+ defm RELEASE_OR : RELEASE_BINOP_MI<or>;
+ defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
+ // Note: we don't deal with sub, because substractions of constants are
+ // optimized into additions before this code can run.
+}
+
+// Same as above, but for floating-point.
+// FIXME: imm version.
+// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
+// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
+let usesCustomInserter = 1, SchedRW = [WriteMicrocoded] in {
+multiclass RELEASE_FP_BINOP_MI<SDNode op> {
+ def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
+ "#BINOP "#NAME#"32mr PSEUDO!",
+ [(atomic_store_32 addr:$dst,
+ (i32 (bitconvert (op
+ (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
+ FR32:$src))))]>, Requires<[HasSSE1]>;
+ def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
+ "#BINOP "#NAME#"64mr PSEUDO!",
+ [(atomic_store_64 addr:$dst,
+ (i64 (bitconvert (op
+ (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
+ FR64:$src))))]>, Requires<[HasSSE2]>;
+}
+defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
+// FIXME: Add fsub, fmul, fdiv, ...
+}
+
+multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
+ def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
+ "#UNOP "#NAME#"8m PSEUDO!",
+ [(atomic_store_8 addr:$dst, dag8)]>;
+ def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
+ "#UNOP "#NAME#"16m PSEUDO!",
+ [(atomic_store_16 addr:$dst, dag16)]>;
+ def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
+ "#UNOP "#NAME#"32m PSEUDO!",
+ [(atomic_store_32 addr:$dst, dag32)]>;
+ def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
+ "#UNOP "#NAME#"64m PSEUDO!",
+ [(atomic_store_64 addr:$dst, dag64)]>;
+}
+
+let Defs = [EFLAGS], Predicates = [UseIncDec], SchedRW = [WriteMicrocoded] in {
+ defm RELEASE_INC : RELEASE_UNOP<
+ (add (atomic_load_8 addr:$dst), (i8 1)),
+ (add (atomic_load_16 addr:$dst), (i16 1)),
+ (add (atomic_load_32 addr:$dst), (i32 1)),
+ (add (atomic_load_64 addr:$dst), (i64 1))>;
+ defm RELEASE_DEC : RELEASE_UNOP<
+ (add (atomic_load_8 addr:$dst), (i8 -1)),
+ (add (atomic_load_16 addr:$dst), (i16 -1)),
+ (add (atomic_load_32 addr:$dst), (i32 -1)),
+ (add (atomic_load_64 addr:$dst), (i64 -1))>;
+}
+/*
+TODO: These don't work because the type inference of TableGen fails.
+TODO: find a way to fix it.
+let Defs = [EFLAGS] in {
+ defm RELEASE_NEG : RELEASE_UNOP<
+ (ineg (atomic_load_8 addr:$dst)),
+ (ineg (atomic_load_16 addr:$dst)),
+ (ineg (atomic_load_32 addr:$dst)),
+ (ineg (atomic_load_64 addr:$dst))>;
+}
+// NOT doesn't set flags.
+defm RELEASE_NOT : RELEASE_UNOP<
+ (not (atomic_load_8 addr:$dst)),
+ (not (atomic_load_16 addr:$dst)),
+ (not (atomic_load_32 addr:$dst)),
+ (not (atomic_load_64 addr:$dst))>;
+*/
+
+let SchedRW = [WriteMicrocoded] in {
+def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
+ "#RELEASE_MOV8mi PSEUDO!",
+ [(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
+def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
+ "#RELEASE_MOV16mi PSEUDO!",
+ [(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
+def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
+ "#RELEASE_MOV32mi PSEUDO!",
+ [(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
+def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
+ "#RELEASE_MOV64mi32 PSEUDO!",
+ [(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
+
+def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
+ "#RELEASE_MOV8mr PSEUDO!",
+ [(atomic_store_8 addr:$dst, GR8 :$src)]>;
+def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
+ "#RELEASE_MOV16mr PSEUDO!",
+ [(atomic_store_16 addr:$dst, GR16:$src)]>;
+def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
+ "#RELEASE_MOV32mr PSEUDO!",
+ [(atomic_store_32 addr:$dst, GR32:$src)]>;
+def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
+ "#RELEASE_MOV64mr PSEUDO!",
+ [(atomic_store_64 addr:$dst, GR64:$src)]>;
+
+def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
+ "#ACQUIRE_MOV8rm PSEUDO!",
+ [(set GR8:$dst, (atomic_load_8 addr:$src))]>;
+def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
+ "#ACQUIRE_MOV16rm PSEUDO!",
+ [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
+def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
+ "#ACQUIRE_MOV32rm PSEUDO!",
+ [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
+def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
+ "#ACQUIRE_MOV64rm PSEUDO!",
+ [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
+} // SchedRW
+
+//===----------------------------------------------------------------------===//
+// DAG Pattern Matching Rules
+//===----------------------------------------------------------------------===//
+
+// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
+// binary size compared to a regular MOV, but it introduces an unnecessary
+// load, so is not suitable for regular or optsize functions.
+let Predicates = [OptForMinSize] in {
+def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
+def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
+def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
+def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
+def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
+def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
+}
+
+// In kernel code model, we can get the address of a label
+// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
+// the MOV64ri32 should accept these.
+def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
+ (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
+ (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
+ (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
+ (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper mcsym:$dst)),
+ (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
+def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
+ (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
+
+// If we have small model and -static mode, it is safe to store global addresses
+// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
+// for MOV64mi32 should handle this sort of thing.
+def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tconstpool:$src)>,
+ Requires<[NearData, IsNotPIC]>;
+def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tjumptable:$src)>,
+ Requires<[NearData, IsNotPIC]>;
+def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
+ Requires<[NearData, IsNotPIC]>;
+def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, texternalsym:$src)>,
+ Requires<[NearData, IsNotPIC]>;
+def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, mcsym:$src)>,
+ Requires<[NearData, IsNotPIC]>;
+def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
+ (MOV64mi32 addr:$dst, tblockaddress:$src)>,
+ Requires<[NearData, IsNotPIC]>;
+
+def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
+def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
+
+// Calls
+
+// tls has some funny stuff here...
+// This corresponds to movabs $foo@tpoff, %rax
+def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
+ (MOV64ri32 tglobaltlsaddr :$dst)>;
+// This corresponds to add $foo@tpoff, %rax
+def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
+ (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
+
+
+// Direct PC relative function call for small code model. 32-bit displacement
+// sign extended to 64-bit.
+def : Pat<(X86call (i64 tglobaladdr:$dst)),
+ (CALL64pcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i64 texternalsym:$dst)),
+ (CALL64pcrel32 texternalsym:$dst)>;
+
+// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
+// can never use callee-saved registers. That is the purpose of the GR64_TC
+// register classes.
+//
+// The only volatile register that is never used by the calling convention is
+// %r11. This happens when calling a vararg function with 6 arguments.
+//
+// Match an X86tcret that uses less than 7 volatile registers.
+def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
+ (X86tcret node:$ptr, node:$off), [{
+ // X86tcret args: (*chain, ptr, imm, regs..., glue)
+ unsigned NumRegs = 0;
+ for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
+ if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
+ return false;
+ return true;
+}]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[Not64BitMode, NotUseRetpoline]>;
+
+// FIXME: This is disabled for 32-bit PIC mode because the global base
+// register which is part of the address mode may be assigned a
+// callee-saved register.
+def : Pat<(X86tcret (load addr:$dst), imm:$off),
+ (TCRETURNmi addr:$dst, imm:$off)>,
+ Requires<[Not64BitMode, IsNotPIC, NotUseRetpoline]>;
+
+def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
+ Requires<[NotLP64]>;
+
+def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
+ (TCRETURNdi texternalsym:$dst, imm:$off)>,
+ Requires<[NotLP64]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[In64BitMode, NotUseRetpoline]>;
+
+// Don't fold loads into X86tcret requiring more than 6 regs.
+// There wouldn't be enough scratch registers for base+index.
+def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
+ (TCRETURNmi64 addr:$dst, imm:$off)>,
+ Requires<[In64BitMode, NotUseRetpoline]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (RETPOLINE_TCRETURN64 ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[In64BitMode, UseRetpoline]>;
+
+def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
+ (RETPOLINE_TCRETURN32 ptr_rc_tailcall:$dst, imm:$off)>,
+ Requires<[Not64BitMode, UseRetpoline]>;
+
+def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
+ (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
+ Requires<[IsLP64]>;
+
+def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
+ (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
+ Requires<[IsLP64]>;
+
+// Normal calls, with various flavors of addresses.
+def : Pat<(X86call (i32 tglobaladdr:$dst)),
+ (CALLpcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call (i32 texternalsym:$dst)),
+ (CALLpcrel32 texternalsym:$dst)>;
+def : Pat<(X86call (i32 imm:$dst)),
+ (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
+
+// Comparisons.
+
+// TEST R,R is smaller than CMP R,0
+def : Pat<(X86cmp GR8:$src1, 0),
+ (TEST8rr GR8:$src1, GR8:$src1)>;
+def : Pat<(X86cmp GR16:$src1, 0),
+ (TEST16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(X86cmp GR32:$src1, 0),
+ (TEST32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(X86cmp GR64:$src1, 0),
+ (TEST64rr GR64:$src1, GR64:$src1)>;
+
+// Conditional moves with folded loads with operands swapped and conditions
+// inverted.
+multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
+ Instruction Inst64> {
+ let Predicates = [HasCMov] in {
+ def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
+ (Inst16 GR16:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
+ (Inst32 GR32:$src2, addr:$src1)>;
+ def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
+ (Inst64 GR64:$src2, addr:$src1)>;
+ }
+}
+
+defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
+defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
+defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
+defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
+defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
+defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
+defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
+defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
+defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
+defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
+defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
+defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
+defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
+defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
+defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
+defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
+
+// zextload bool -> zextload byte
+// i1 stored in one byte in zero-extended form.
+// Upper bits cleanup should be executed before Store.
+def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(zextloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+
+// extload bool -> extload byte
+// When extloading from 16-bit and smaller memory locations into 64-bit
+// registers, use zero-extending loads so that the entire 64-bit register is
+// defined, avoiding partial-register updates.
+
+def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
+def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
+
+// For other extloads, use subregs, since the high contents of the register are
+// defined after an extload.
+def : Pat<(extloadi64i1 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i8 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i16 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
+def : Pat<(extloadi64i32 addr:$src),
+ (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
+
+// anyext. Define these to do an explicit zero-extend to
+// avoid partial-register updates.
+def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
+ (MOVZX32rr8 GR8 :$src), sub_16bit)>;
+def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
+
+// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
+def : Pat<(i32 (anyext GR16:$src)),
+ (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
+
+def : Pat<(i64 (anyext GR8 :$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR16:$src)),
+ (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
+def : Pat<(i64 (anyext GR32:$src)),
+ (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, sub_32bit)>;
+
+
+// Any instruction that defines a 32-bit result leaves the high half of the
+// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
+// be copying from a truncate. Any other 32-bit operation will zero-extend
+// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
+// 32 bits, they're probably just qualifying a CopyFromReg.
+def def32 : PatLeaf<(i32 GR32:$src), [{
+ return N->getOpcode() != ISD::TRUNCATE &&
+ N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
+ N->getOpcode() != ISD::CopyFromReg &&
+ N->getOpcode() != ISD::AssertSext &&
+ N->getOpcode() != ISD::AssertZext;
+}]>;
+
+// In the case of a 32-bit def that is known to implicitly zero-extend,
+// we can use a SUBREG_TO_REG.
+def : Pat<(i64 (zext def32:$src)),
+ (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
+
+//===----------------------------------------------------------------------===//
+// Pattern match OR as ADD
+//===----------------------------------------------------------------------===//
+
+// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
+// 3-addressified into an LEA instruction to avoid copies. However, we also
+// want to finally emit these instructions as an or at the end of the code
+// generator to make the generated code easier to read. To do this, we select
+// into "disjoint bits" pseudo ops.
+
+// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
+def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
+
+ KnownBits Known0;
+ CurDAG->computeKnownBits(N->getOperand(0), Known0, 0);
+ KnownBits Known1;
+ CurDAG->computeKnownBits(N->getOperand(1), Known1, 0);
+ return (~Known0.Zero & ~Known1.Zero) == 0;
+}]>;
+
+
+// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
+// Try this before the selecting to OR.
+let AddedComplexity = 5, SchedRW = [WriteALU] in {
+
+let isConvertibleToThreeAddress = 1,
+ Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
+let isCommutable = 1 in {
+def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
+ "", // orw/addw REG, REG
+ [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
+def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
+ "", // orl/addl REG, REG
+ [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
+def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
+ "", // orq/addq REG, REG
+ [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
+} // isCommutable
+
+// NOTE: These are order specific, we want the ri8 forms to be listed
+// first so that they are slightly preferred to the ri forms.
+
+def ADD16ri8_DB : I<0, Pseudo,
+ (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
+ "", // orw/addw REG, imm8
+ [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
+def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
+ "", // orw/addw REG, imm
+ [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
+
+def ADD32ri8_DB : I<0, Pseudo,
+ (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
+ "", // orl/addl REG, imm8
+ [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
+def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "", // orl/addl REG, imm
+ [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
+
+
+def ADD64ri8_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
+ "", // orq/addq REG, imm8
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt8:$src2))]>;
+def ADD64ri32_DB : I<0, Pseudo,
+ (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
+ "", // orq/addq REG, imm
+ [(set GR64:$dst, (or_is_add GR64:$src1,
+ i64immSExt32:$src2))]>;
+}
+} // AddedComplexity, SchedRW
+
+//===----------------------------------------------------------------------===//
+// Pattern match SUB as XOR
+//===----------------------------------------------------------------------===//
+
+// An immediate in the LHS of a subtract can't be encoded in the instruction.
+// If there is no possibility of a borrow we can use an XOR instead of a SUB
+// to enable the immediate to be folded.
+// TODO: Move this to a DAG combine?
+
+def sub_is_xor : PatFrag<(ops node:$lhs, node:$rhs), (sub node:$lhs, node:$rhs),[{
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ KnownBits Known;
+ CurDAG->computeKnownBits(N->getOperand(1), Known);
+
+ // If all possible ones in the RHS are set in the LHS then there can't be
+ // a borrow and we can use xor.
+ return (~Known.Zero).isSubsetOf(CN->getAPIntValue());
+ }
+
+ return false;
+}]>;
+
+let AddedComplexity = 5 in {
+def : Pat<(sub_is_xor imm:$src2, GR8:$src1),
+ (XOR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(sub_is_xor i16immSExt8:$src2, GR16:$src1),
+ (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(sub_is_xor imm:$src2, GR16:$src1),
+ (XOR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(sub_is_xor i32immSExt8:$src2, GR32:$src1),
+ (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(sub_is_xor imm:$src2, GR32:$src1),
+ (XOR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(sub_is_xor i64immSExt8:$src2, GR64:$src1),
+ (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(sub_is_xor i64immSExt32:$src2, GR64:$src1),
+ (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+}
+
+//===----------------------------------------------------------------------===//
+// Some peepholes
+//===----------------------------------------------------------------------===//
+
+// Odd encoding trick: -128 fits into an 8-bit immediate field while
+// +128 doesn't, so in this special case use a sub instead of an add.
+def : Pat<(add GR16:$src1, 128),
+ (SUB16ri8 GR16:$src1, -128)>;
+def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
+ (SUB16mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR32:$src1, 128),
+ (SUB32ri8 GR32:$src1, -128)>;
+def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
+ (SUB32mi8 addr:$dst, -128)>;
+
+def : Pat<(add GR64:$src1, 128),
+ (SUB64ri8 GR64:$src1, -128)>;
+def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
+ (SUB64mi8 addr:$dst, -128)>;
+
+// The same trick applies for 32-bit immediate fields in 64-bit
+// instructions.
+def : Pat<(add GR64:$src1, 0x0000000080000000),
+ (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
+def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
+ (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
+
+// To avoid needing to materialize an immediate in a register, use a 32-bit and
+// with implicit zero-extension instead of a 64-bit and if the immediate has at
+// least 32 bits of leading zeros. If in addition the last 32 bits can be
+// represented with a sign extension of a 8 bit constant, use that.
+// This can also reduce instruction size by eliminating the need for the REX
+// prefix.
+
+// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
+let AddedComplexity = 1 in {
+def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri8
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo8XForm imm:$imm))),
+ sub_32bit)>;
+
+def : Pat<(and GR64:$src, i64immZExt32:$imm),
+ (SUBREG_TO_REG
+ (i64 0),
+ (AND32ri
+ (EXTRACT_SUBREG GR64:$src, sub_32bit),
+ (i32 (GetLo32XForm imm:$imm))),
+ sub_32bit)>;
+} // AddedComplexity = 1
+
+
+// AddedComplexity is needed due to the increased complexity on the
+// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
+// the MOVZX patterns keeps thems together in DAGIsel tables.
+let AddedComplexity = 1 in {
+// r & (2^16-1) ==> movz
+def : Pat<(and GR32:$src1, 0xffff),
+ (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR32:$src1, 0xff),
+ (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR16:$src1, 0xff),
+ (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)),
+ sub_16bit)>;
+
+// r & (2^32-1) ==> movz
+def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
+ (SUBREG_TO_REG (i64 0),
+ (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
+ sub_32bit)>;
+// r & (2^16-1) ==> movz
+def : Pat<(and GR64:$src, 0xffff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
+ sub_32bit)>;
+// r & (2^8-1) ==> movz
+def : Pat<(and GR64:$src, 0xff),
+ (SUBREG_TO_REG (i64 0),
+ (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
+ sub_32bit)>;
+} // AddedComplexity = 1
+
+
+// Try to use BTS/BTR/BTC for single bit operations on the upper 32-bits.
+
+def BTRXForm : SDNodeXForm<imm, [{
+ // Transformation function: Find the lowest 0.
+ return getI64Imm((uint8_t)N->getAPIntValue().countTrailingOnes(), SDLoc(N));
+}]>;
+
+def BTCBTSXForm : SDNodeXForm<imm, [{
+ // Transformation function: Find the lowest 1.
+ return getI64Imm((uint8_t)N->getAPIntValue().countTrailingZeros(), SDLoc(N));
+}]>;
+
+def BTRMask64 : ImmLeaf<i64, [{
+ return !isUInt<32>(Imm) && !isInt<32>(Imm) && isPowerOf2_64(~Imm);
+}]>;
+
+def BTCBTSMask64 : ImmLeaf<i64, [{
+ return !isInt<32>(Imm) && isPowerOf2_64(Imm);
+}]>;
+
+// For now only do this for optsize.
+let AddedComplexity = 1, Predicates=[OptForSize] in {
+ def : Pat<(and GR64:$src1, BTRMask64:$mask),
+ (BTR64ri8 GR64:$src1, (BTRXForm imm:$mask))>;
+ def : Pat<(or GR64:$src1, BTCBTSMask64:$mask),
+ (BTS64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
+ def : Pat<(xor GR64:$src1, BTCBTSMask64:$mask),
+ (BTC64ri8 GR64:$src1, (BTCBTSXForm imm:$mask))>;
+}
+
+
+// sext_inreg patterns
+def : Pat<(sext_inreg GR32:$src, i16),
+ (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR32:$src, i8),
+ (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>;
+
+def : Pat<(sext_inreg GR16:$src, i8),
+ (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)),
+ sub_16bit)>;
+
+def : Pat<(sext_inreg GR64:$src, i32),
+ (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
+def : Pat<(sext_inreg GR64:$src, i16),
+ (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
+def : Pat<(sext_inreg GR64:$src, i8),
+ (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
+
+// sext, sext_load, zext, zext_load
+def: Pat<(i16 (sext GR8:$src)),
+ (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(sextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
+def: Pat<(i16 (zext GR8:$src)),
+ (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
+def: Pat<(zextloadi16i8 addr:$src),
+ (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
+
+// trunc patterns
+def : Pat<(i16 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
+ sub_8bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
+ sub_8bit)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i32 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
+def : Pat<(i16 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
+def : Pat<(i8 (trunc GR64:$src)),
+ (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
+def : Pat<(i8 (trunc GR32:$src)),
+ (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+def : Pat<(i8 (trunc GR16:$src)),
+ (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
+ Requires<[In64BitMode]>;
+
+def immff00_ffff : ImmLeaf<i32, [{
+ return Imm >= 0xff00 && Imm <= 0xffff;
+}]>;
+
+// h-register tricks
+def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
+ (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
+ (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
+ (EXTRACT_SUBREG GR32:$src, sub_8bit_hi)>,
+ Requires<[Not64BitMode]>;
+def : Pat<(srl GR16:$src, (i8 8)),
+ (EXTRACT_SUBREG
+ (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
+ sub_16bit)>;
+def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
+def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
+ (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>;
+def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
+ (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
+def : Pat<(srl (and_su GR32:$src, immff00_ffff), (i8 8)),
+ (MOVZX32rr8_NOREX (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>;
+
+// h-register tricks.
+// For now, be conservative on x86-64 and use an h-register extract only if the
+// value is immediately zero-extended or stored, which are somewhat common
+// cases. This uses a bunch of code to prevent a register requiring a REX prefix
+// from being allocated in the same instruction as the h register, as there's
+// currently no way to describe this requirement to the register allocator.
+
+// h-register extract and zero-extend.
+def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32rr8_NOREX
+ (EXTRACT_SUBREG GR64:$src, sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32rr8_NOREX
+ (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
+ sub_32bit)>;
+def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
+ (SUBREG_TO_REG
+ (i64 0),
+ (MOVZX32rr8_NOREX
+ (EXTRACT_SUBREG GR16:$src, sub_8bit_hi)),
+ sub_32bit)>;
+
+// h-register extract and store.
+def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG GR64:$src, sub_8bit_hi))>;
+def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG GR32:$src, sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
+ (MOV8mr_NOREX
+ addr:$dst,
+ (EXTRACT_SUBREG GR16:$src, sub_8bit_hi))>,
+ Requires<[In64BitMode]>;
+
+
+// (shl x, 1) ==> (add x, x)
+// Note that if x is undef (immediate or otherwise), we could theoretically
+// end up with the two uses of x getting different values, producing a result
+// where the least significant bit is not 0. However, the probability of this
+// happening is considered low enough that this is officially not a
+// "real problem".
+def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
+def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
+def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
+def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
+
+// Helper imms to check if a mask doesn't change significant shift/rotate bits.
+def immShift8 : ImmLeaf<i8, [{
+ return countTrailingOnes<uint64_t>(Imm) >= 3;
+}]>;
+def immShift16 : ImmLeaf<i8, [{
+ return countTrailingOnes<uint64_t>(Imm) >= 4;
+}]>;
+def immShift32 : ImmLeaf<i8, [{
+ return countTrailingOnes<uint64_t>(Imm) >= 5;
+}]>;
+def immShift64 : ImmLeaf<i8, [{
+ return countTrailingOnes<uint64_t>(Imm) >= 6;
+}]>;
+
+// Shift amount is implicitly masked.
+multiclass MaskedShiftAmountPats<SDNode frag, string name> {
+ // (shift x (and y, 31)) ==> (shift x, y)
+ def : Pat<(frag GR8:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
+ def : Pat<(frag GR16:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
+ def : Pat<(frag GR32:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
+ def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "8mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "16mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "32mCL") addr:$dst)>;
+
+ // (shift x (and y, 63)) ==> (shift x, y)
+ def : Pat<(frag GR64:$src1, (and CL, immShift64)),
+ (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
+ def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
+ (!cast<Instruction>(name # "64mCL") addr:$dst)>;
+}
+
+defm : MaskedShiftAmountPats<shl, "SHL">;
+defm : MaskedShiftAmountPats<srl, "SHR">;
+defm : MaskedShiftAmountPats<sra, "SAR">;
+
+// ROL/ROR instructions allow a stronger mask optimization than shift for 8- and
+// 16-bit. We can remove a mask of any (bitwidth - 1) on the rotation amount
+// because over-rotating produces the same result. This is noted in the Intel
+// docs with: "tempCOUNT <- (COUNT & COUNTMASK) MOD SIZE". Masking the rotation
+// amount could affect EFLAGS results, but that does not matter because we are
+// not tracking flags for these nodes.
+multiclass MaskedRotateAmountPats<SDNode frag, string name> {
+ // (rot x (and y, BitWidth - 1)) ==> (rot x, y)
+ def : Pat<(frag GR8:$src1, (and CL, immShift8)),
+ (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
+ def : Pat<(frag GR16:$src1, (and CL, immShift16)),
+ (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
+ def : Pat<(frag GR32:$src1, (and CL, immShift32)),
+ (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
+ def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift8)), addr:$dst),
+ (!cast<Instruction>(name # "8mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift16)), addr:$dst),
+ (!cast<Instruction>(name # "16mCL") addr:$dst)>;
+ def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
+ (!cast<Instruction>(name # "32mCL") addr:$dst)>;
+
+ // (rot x (and y, 63)) ==> (rot x, y)
+ def : Pat<(frag GR64:$src1, (and CL, immShift64)),
+ (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
+ def : Pat<(store (frag (loadi64 addr:$dst), (and CL, immShift64)), addr:$dst),
+ (!cast<Instruction>(name # "64mCL") addr:$dst)>;
+}
+
+
+defm : MaskedRotateAmountPats<rotl, "ROL">;
+defm : MaskedRotateAmountPats<rotr, "ROR">;
+
+// Double shift amount is implicitly masked.
+multiclass MaskedDoubleShiftAmountPats<SDNode frag, string name> {
+ // (shift x (and y, 31)) ==> (shift x, y)
+ def : Pat<(frag GR16:$src1, GR16:$src2, (and CL, immShift32)),
+ (!cast<Instruction>(name # "16rrCL") GR16:$src1, GR16:$src2)>;
+ def : Pat<(frag GR32:$src1, GR32:$src2, (and CL, immShift32)),
+ (!cast<Instruction>(name # "32rrCL") GR32:$src1, GR32:$src2)>;
+
+ // (shift x (and y, 63)) ==> (shift x, y)
+ def : Pat<(frag GR64:$src1, GR64:$src2, (and CL, immShift64)),
+ (!cast<Instruction>(name # "64rrCL") GR64:$src1, GR64:$src2)>;
+}
+
+defm : MaskedDoubleShiftAmountPats<X86shld, "SHLD">;
+defm : MaskedDoubleShiftAmountPats<X86shrd, "SHRD">;
+
+let Predicates = [HasBMI2] in {
+ let AddedComplexity = 1 in {
+ def : Pat<(sra GR32:$src1, (and GR8:$src2, immShift32)),
+ (SARX32rr GR32:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(sra GR64:$src1, (and GR8:$src2, immShift64)),
+ (SARX64rr GR64:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ def : Pat<(srl GR32:$src1, (and GR8:$src2, immShift32)),
+ (SHRX32rr GR32:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(srl GR64:$src1, (and GR8:$src2, immShift64)),
+ (SHRX64rr GR64:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ def : Pat<(shl GR32:$src1, (and GR8:$src2, immShift32)),
+ (SHLX32rr GR32:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(shl GR64:$src1, (and GR8:$src2, immShift64)),
+ (SHLX64rr GR64:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ }
+
+ def : Pat<(sra (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
+ (SARX32rm addr:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(sra (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
+ (SARX64rm addr:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ def : Pat<(srl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
+ (SHRX32rm addr:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(srl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
+ (SHRX64rm addr:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ def : Pat<(shl (loadi32 addr:$src1), (and GR8:$src2, immShift32)),
+ (SHLX32rm addr:$src1,
+ (INSERT_SUBREG
+ (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(shl (loadi64 addr:$src1), (and GR8:$src2, immShift64)),
+ (SHLX64rm addr:$src1,
+ (INSERT_SUBREG
+ (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+}
+
+// Use BTR/BTS/BTC for clearing/setting/toggling a bit in a variable location.
+multiclass one_bit_patterns<RegisterClass RC, ValueType VT, Instruction BTR,
+ Instruction BTS, Instruction BTC,
+ ImmLeaf ImmShift> {
+ def : Pat<(and RC:$src1, (rotl -2, GR8:$src2)),
+ (BTR RC:$src1,
+ (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(or RC:$src1, (shl 1, GR8:$src2)),
+ (BTS RC:$src1,
+ (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(xor RC:$src1, (shl 1, GR8:$src2)),
+ (BTC RC:$src1,
+ (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+
+ // Similar to above, but removing unneeded masking of the shift amount.
+ def : Pat<(and RC:$src1, (rotl -2, (and GR8:$src2, ImmShift))),
+ (BTR RC:$src1,
+ (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(or RC:$src1, (shl 1, (and GR8:$src2, ImmShift))),
+ (BTS RC:$src1,
+ (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+ def : Pat<(xor RC:$src1, (shl 1, (and GR8:$src2, ImmShift))),
+ (BTC RC:$src1,
+ (INSERT_SUBREG (VT (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
+}
+
+defm : one_bit_patterns<GR16, i16, BTR16rr, BTS16rr, BTC16rr, immShift16>;
+defm : one_bit_patterns<GR32, i32, BTR32rr, BTS32rr, BTC32rr, immShift32>;
+defm : one_bit_patterns<GR64, i64, BTR64rr, BTS64rr, BTC64rr, immShift64>;
+
+
+// (anyext (setcc_carry)) -> (setcc_carry)
+def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C16r)>;
+def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
+ (SETB_C32r)>;
+
+//===----------------------------------------------------------------------===//
+// EFLAGS-defining Patterns
+//===----------------------------------------------------------------------===//
+
+// add reg, reg
+def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>;
+
+// add reg, mem
+def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
+ (ADD8rm GR8:$src1, addr:$src2)>;
+def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
+ (ADD16rm GR16:$src1, addr:$src2)>;
+def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
+ (ADD32rm GR32:$src1, addr:$src2)>;
+def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
+ (ADD64rm GR64:$src1, addr:$src2)>;
+
+// add reg, imm
+def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
+def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
+def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
+def : Pat<(add GR16:$src1, i16immSExt8:$src2),
+ (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(add GR32:$src1, i32immSExt8:$src2),
+ (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt8:$src2),
+ (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(add GR64:$src1, i64immSExt32:$src2),
+ (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// sub reg, reg
+def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>;
+
+// sub reg, mem
+def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
+ (SUB8rm GR8:$src1, addr:$src2)>;
+def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
+ (SUB16rm GR16:$src1, addr:$src2)>;
+def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
+ (SUB32rm GR32:$src1, addr:$src2)>;
+def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
+ (SUB64rm GR64:$src1, addr:$src2)>;
+
+// sub reg, imm
+def : Pat<(sub GR8:$src1, imm:$src2),
+ (SUB8ri GR8:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, imm:$src2),
+ (SUB16ri GR16:$src1, imm:$src2)>;
+def : Pat<(sub GR32:$src1, imm:$src2),
+ (SUB32ri GR32:$src1, imm:$src2)>;
+def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
+ (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
+ (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
+ (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
+ (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// sub 0, reg
+def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>;
+def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
+def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
+def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
+
+// sub reg, relocImm
+def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt8_su:$src2),
+ (SUB64ri8 GR64:$src1, i64relocImmSExt8_su:$src2)>;
+def : Pat<(X86sub_flag GR64:$src1, i64relocImmSExt32_su:$src2),
+ (SUB64ri32 GR64:$src1, i64relocImmSExt32_su:$src2)>;
+
+// mul reg, reg
+def : Pat<(mul GR16:$src1, GR16:$src2),
+ (IMUL16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(mul GR32:$src1, GR32:$src2),
+ (IMUL32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(mul GR64:$src1, GR64:$src2),
+ (IMUL64rr GR64:$src1, GR64:$src2)>;
+
+// mul reg, mem
+def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
+ (IMUL16rm GR16:$src1, addr:$src2)>;
+def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
+ (IMUL32rm GR32:$src1, addr:$src2)>;
+def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
+ (IMUL64rm GR64:$src1, addr:$src2)>;
+
+// mul reg, imm
+def : Pat<(mul GR16:$src1, imm:$src2),
+ (IMUL16rri GR16:$src1, imm:$src2)>;
+def : Pat<(mul GR32:$src1, imm:$src2),
+ (IMUL32rri GR32:$src1, imm:$src2)>;
+def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
+ (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
+ (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
+ (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
+ (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// reg = mul mem, imm
+def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
+ (IMUL16rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
+ (IMUL32rmi addr:$src1, imm:$src2)>;
+def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
+ (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
+def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
+ (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
+ (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
+def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
+ (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
+
+// Increment/Decrement reg.
+// Do not make INC/DEC if it is slow
+let Predicates = [UseIncDec] in {
+ def : Pat<(add GR8:$src, 1), (INC8r GR8:$src)>;
+ def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>;
+ def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>;
+ def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
+ def : Pat<(add GR8:$src, -1), (DEC8r GR8:$src)>;
+ def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
+ def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
+ def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
+}
+
+// or reg/reg.
+def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
+
+// or reg/mem
+def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
+ (OR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
+ (OR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
+ (OR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
+ (OR64rm GR64:$src1, addr:$src2)>;
+
+// or reg/imm
+def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(or GR16:$src1, i16immSExt8:$src2),
+ (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(or GR32:$src1, i32immSExt8:$src2),
+ (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt8:$src2),
+ (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(or GR64:$src1, i64immSExt32:$src2),
+ (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// xor reg/reg
+def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
+
+// xor reg/mem
+def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
+ (XOR8rm GR8:$src1, addr:$src2)>;
+def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
+ (XOR16rm GR16:$src1, addr:$src2)>;
+def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
+ (XOR32rm GR32:$src1, addr:$src2)>;
+def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
+ (XOR64rm GR64:$src1, addr:$src2)>;
+
+// xor reg/imm
+def : Pat<(xor GR8:$src1, imm:$src2),
+ (XOR8ri GR8:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, imm:$src2),
+ (XOR16ri GR16:$src1, imm:$src2)>;
+def : Pat<(xor GR32:$src1, imm:$src2),
+ (XOR32ri GR32:$src1, imm:$src2)>;
+def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
+ (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
+ (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
+ (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
+ (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// and reg/reg
+def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
+def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
+def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
+def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
+
+// and reg/mem
+def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
+ (AND8rm GR8:$src1, addr:$src2)>;
+def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
+ (AND16rm GR16:$src1, addr:$src2)>;
+def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
+ (AND32rm GR32:$src1, addr:$src2)>;
+def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
+ (AND64rm GR64:$src1, addr:$src2)>;
+
+// and reg/imm
+def : Pat<(and GR8:$src1, imm:$src2),
+ (AND8ri GR8:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, imm:$src2),
+ (AND16ri GR16:$src1, imm:$src2)>;
+def : Pat<(and GR32:$src1, imm:$src2),
+ (AND32ri GR32:$src1, imm:$src2)>;
+def : Pat<(and GR16:$src1, i16immSExt8:$src2),
+ (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
+def : Pat<(and GR32:$src1, i32immSExt8:$src2),
+ (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt8:$src2),
+ (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
+def : Pat<(and GR64:$src1, i64immSExt32:$src2),
+ (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
+
+// Bit scan instruction patterns to match explicit zero-undef behavior.
+def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
+def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
+def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
+def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
+def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
+
+// When HasMOVBE is enabled it is possible to get a non-legalized
+// register-register 16 bit bswap. This maps it to a ROL instruction.
+let Predicates = [HasMOVBE] in {
+ def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
+}
+
+// These patterns are selected by some custom code in X86ISelDAGToDAG.cpp that
+// custom combines and+srl into BEXTR. We use these patterns to avoid a bunch
+// of manual code for folding loads.
+let Predicates = [HasBMI, NoTBM] in {
+ def : Pat<(X86bextr GR32:$src1, (i32 imm:$src2)),
+ (BEXTR32rr GR32:$src1, (MOV32ri imm:$src2))>;
+ def : Pat<(X86bextr (loadi32 addr:$src1), (i32 imm:$src2)),
+ (BEXTR32rm addr:$src1, (MOV32ri imm:$src2))>;
+ def : Pat<(X86bextr GR64:$src1, mov64imm32:$src2),
+ (BEXTR64rr GR64:$src1,
+ (SUBREG_TO_REG (i64 0),
+ (MOV32ri64 mov64imm32:$src2),
+ sub_32bit))>;
+ def : Pat<(X86bextr (loadi64 addr:$src1), mov64imm32:$src2),
+ (BEXTR64rm addr:$src1,
+ (SUBREG_TO_REG (i64 0),
+ (MOV32ri64 mov64imm32:$src2),
+ sub_32bit))>;
+} // HasBMI, NoTBM