diff options
Diffstat (limited to 'capstone/suite/synctools/tablegen/X86/back/X86InstrFPStack.td')
-rw-r--r-- | capstone/suite/synctools/tablegen/X86/back/X86InstrFPStack.td | 748 |
1 files changed, 748 insertions, 0 deletions
diff --git a/capstone/suite/synctools/tablegen/X86/back/X86InstrFPStack.td b/capstone/suite/synctools/tablegen/X86/back/X86InstrFPStack.td new file mode 100644 index 000000000..b0c9bd163 --- /dev/null +++ b/capstone/suite/synctools/tablegen/X86/back/X86InstrFPStack.td @@ -0,0 +1,748 @@ +//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the X86 x87 FPU instruction set, defining the +// instructions, and properties of the instructions which are needed for code +// generation, machine code emission, and analysis. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// FPStack specific DAG Nodes. +//===----------------------------------------------------------------------===// + +def SDTX86FpGet2 : SDTypeProfile<2, 0, [SDTCisVT<0, f80>, + SDTCisVT<1, f80>]>; +def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisFP<0>, + SDTCisPtrTy<1>, + SDTCisVT<2, OtherVT>]>; +def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>, + SDTCisPtrTy<1>, + SDTCisVT<2, OtherVT>]>; +def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisFP<0>, SDTCisPtrTy<1>, + SDTCisVT<2, OtherVT>]>; +def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>; +def SDTX86FpToIMem : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>; + +def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; + +def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, + [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; +def X86fst : SDNode<"X86ISD::FST", SDTX86Fst, + [SDNPHasChain, SDNPInGlue, SDNPMayStore, + SDNPMemOperand]>; +def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild, + [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; +def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild, + [SDNPHasChain, SDNPOutGlue, SDNPMayLoad, + SDNPMemOperand]>; +def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>; +def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem, + [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; +def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem, + [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; +def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem, + [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; +def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore, + [SDNPHasChain, SDNPMayStore, SDNPSideEffect, + SDNPMemOperand]>; + +//===----------------------------------------------------------------------===// +// FPStack pattern fragments +//===----------------------------------------------------------------------===// + +def fpimm0 : FPImmLeaf<fAny, [{ + return Imm.isExactlyValue(+0.0); +}]>; + +def fpimmneg0 : FPImmLeaf<fAny, [{ + return Imm.isExactlyValue(-0.0); +}]>; + +def fpimm1 : FPImmLeaf<fAny, [{ + return Imm.isExactlyValue(+1.0); +}]>; + +def fpimmneg1 : FPImmLeaf<fAny, [{ + return Imm.isExactlyValue(-1.0); +}]>; + +/* +// Some 'special' instructions - expanded after instruction selection. +let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in { + def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src), + [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; + def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src), + [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; + def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src), + [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; + def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src), + [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; + def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src), + [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; + def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src), + [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; + def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src), + [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; + def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src), + [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; + def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src), + [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; +} +*/ + +// All FP Stack operations are represented with four instructions here. The +// first three instructions, generated by the instruction selector, use "RFP32" +// "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, +// 64-bit or 80-bit floating point values. These sizes apply to the values, +// not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be +// copied to each other without losing information. These instructions are all +// pseudo instructions and use the "_Fp" suffix. +// In some cases there are additional variants with a mixture of different +// register sizes. +// The second instruction is defined with FPI, which is the actual instruction +// emitted by the assembler. These use "RST" registers, although frequently +// the actual register(s) used are implicit. These are always 80 bits. +// The FP stackifier pass converts one to the other after register allocation +// occurs. +// +// Note that the FpI instruction should have instruction selection info (e.g. +// a pattern) and the FPI instruction should have emission info (e.g. opcode +// encoding and asm printing info). + +// FpIf32, FpIf64 - Floating Point Pseudo Instruction template. +// f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. +// f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. +// f80 instructions cannot use SSE and use neither of these. +class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> : + FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>; +class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> : + FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>; + +// Factoring for arithmetic. +multiclass FPBinary_rr<SDNode OpNode> { +// Register op register -> register +// These are separated out because they have no reversed form. +def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, + [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; +def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, + [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; +def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, + [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; +} +// The FopST0 series are not included here because of the irregularities +// in where the 'r' goes in assembly output. +// These instructions cannot address 80-bit memory. +multiclass FPBinary<SDNode OpNode, Format fp, string asmstring, + bit Forward = 1> { +let mayLoad = 1, hasSideEffects = 1 in { +// ST(0) = ST(0) + [mem] +def _Fp32m : FpIf32<(outs RFP32:$dst), + (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, + [!if(Forward, + (set RFP32:$dst, + (OpNode RFP32:$src1, (loadf32 addr:$src2))), + (set RFP32:$dst, + (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>; +def _Fp64m : FpIf64<(outs RFP64:$dst), + (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, + [!if(Forward, + (set RFP64:$dst, + (OpNode RFP64:$src1, (loadf64 addr:$src2))), + (set RFP64:$dst, + (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>; +def _Fp64m32: FpIf64<(outs RFP64:$dst), + (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, + [!if(Forward, + (set RFP64:$dst, + (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))), + (set RFP64:$dst, + (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>; +def _Fp80m32: FpI_<(outs RFP80:$dst), + (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, + [!if(Forward, + (set RFP80:$dst, + (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))), + (set RFP80:$dst, + (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>; +def _Fp80m64: FpI_<(outs RFP80:$dst), + (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, + [!if(Forward, + (set RFP80:$dst, + (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))), + (set RFP80:$dst, + (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>; +def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), + !strconcat("f", asmstring, "{s}\t$src")>; +def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), + !strconcat("f", asmstring, "{l}\t$src")>; +// ST(0) = ST(0) + [memint] +def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), + OneArgFPRW, + [!if(Forward, + (set RFP32:$dst, + (OpNode RFP32:$src1, (X86fild addr:$src2, i16))), + (set RFP32:$dst, + (OpNode (X86fild addr:$src2, i16), RFP32:$src1)))]>; +def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), + OneArgFPRW, + [!if(Forward, + (set RFP32:$dst, + (OpNode RFP32:$src1, (X86fild addr:$src2, i32))), + (set RFP32:$dst, + (OpNode (X86fild addr:$src2, i32), RFP32:$src1)))]>; +def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), + OneArgFPRW, + [!if(Forward, + (set RFP64:$dst, + (OpNode RFP64:$src1, (X86fild addr:$src2, i16))), + (set RFP64:$dst, + (OpNode (X86fild addr:$src2, i16), RFP64:$src1)))]>; +def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), + OneArgFPRW, + [!if(Forward, + (set RFP64:$dst, + (OpNode RFP64:$src1, (X86fild addr:$src2, i32))), + (set RFP64:$dst, + (OpNode (X86fild addr:$src2, i32), RFP64:$src1)))]>; +def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), + OneArgFPRW, + [!if(Forward, + (set RFP80:$dst, + (OpNode RFP80:$src1, (X86fild addr:$src2, i16))), + (set RFP80:$dst, + (OpNode (X86fild addr:$src2, i16), RFP80:$src1)))]>; +def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), + OneArgFPRW, + [!if(Forward, + (set RFP80:$dst, + (OpNode RFP80:$src1, (X86fild addr:$src2, i32))), + (set RFP80:$dst, + (OpNode (X86fild addr:$src2, i32), RFP80:$src1)))]>; +def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), + !strconcat("fi", asmstring, "{s}\t$src")>; +def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), + !strconcat("fi", asmstring, "{l}\t$src")>; +} // mayLoad = 1, hasSideEffects = 1 +} + +let Defs = [FPSW] in { +// FPBinary_rr just defines pseudo-instructions, no need to set a scheduling +// resources. +let hasNoSchedulingInfo = 1 in { +defm ADD : FPBinary_rr<fadd>; +defm SUB : FPBinary_rr<fsub>; +defm MUL : FPBinary_rr<fmul>; +defm DIV : FPBinary_rr<fdiv>; +} + +// Sets the scheduling resources for the actual NAME#_F<size>m defintions. +let SchedRW = [WriteFAddLd] in { +defm ADD : FPBinary<fadd, MRM0m, "add">; +defm SUB : FPBinary<fsub, MRM4m, "sub">; +defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>; +} + +let SchedRW = [WriteFMulLd] in { +defm MUL : FPBinary<fmul, MRM1m, "mul">; +} + +let SchedRW = [WriteFDivLd] in { +defm DIV : FPBinary<fdiv, MRM6m, "div">; +defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>; +} +} // Defs = [FPSW] + +class FPST0rInst<Format fp, string asm> + : FPI<0xD8, fp, (outs), (ins RST:$op), asm>; +class FPrST0Inst<Format fp, string asm> + : FPI<0xDC, fp, (outs), (ins RST:$op), asm>; +class FPrST0PInst<Format fp, string asm> + : FPI<0xDE, fp, (outs), (ins RST:$op), asm>; + +// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion +// of some of the 'reverse' forms of the fsub and fdiv instructions. As such, +// we have to put some 'r's in and take them out of weird places. +let SchedRW = [WriteFAdd] in { +def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t$op">; +def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st(0), $op|$op, st(0)}">; +def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t$op">; +def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t$op">; +def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st(0), $op|$op, st(0)}">; +def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t$op">; +def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t$op">; +def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st(0), $op|$op, st(0)}">; +def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t$op">; +} // SchedRW +let SchedRW = [WriteFCom] in { +def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">; +def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">; +} // SchedRW +let SchedRW = [WriteFMul] in { +def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t$op">; +def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st(0), $op|$op, st(0)}">; +def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t$op">; +} // SchedRW +let SchedRW = [WriteFDiv] in { +def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t$op">; +def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st(0), $op|$op, st(0)}">; +def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t$op">; +def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t$op">; +def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st(0), $op|$op, st(0)}">; +def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t$op">; +} // SchedRW + +// Unary operations. +multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> { +def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, + [(set RFP32:$dst, (OpNode RFP32:$src))]>; +def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, + [(set RFP64:$dst, (OpNode RFP64:$src))]>; +def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, + [(set RFP80:$dst, (OpNode RFP80:$src))]>; +def _F : FPI<0xD9, fp, (outs), (ins), asmstring>; +} + +let Defs = [FPSW] in { + +let SchedRW = [WriteFSign] in { +defm CHS : FPUnary<fneg, MRM_E0, "fchs">; +defm ABS : FPUnary<fabs, MRM_E1, "fabs">; +} + +let SchedRW = [WriteFSqrt80] in +defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">; + +let SchedRW = [WriteMicrocoded] in { +defm SIN : FPUnary<fsin, MRM_FE, "fsin">; +defm COS : FPUnary<fcos, MRM_FF, "fcos">; +} + +let SchedRW = [WriteFCom] in { +let hasSideEffects = 0 in { +def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; +def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; +def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; +} // hasSideEffects + +def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">; +} // SchedRW +} // Defs = [FPSW] + +// Versions of FP instructions that take a single memory operand. Added for the +// disassembler; remove as they are included with patterns elsewhere. +let SchedRW = [WriteFComLd] in { +def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">; +def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">; + +def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">; +def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">; + +def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">; +def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">; + +def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; +def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; +} // SchedRW + +let SchedRW = [WriteMicrocoded] in { +def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">; +def FSTENVm : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">; + +def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">; +def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">; +def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">; + +def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\ttbyte ptr $src">; +def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\ttbyte ptr $dst">; +} // SchedRW + +// Floating point cmovs. +class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : + FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>; +class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> : + FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>; + +multiclass FPCMov<PatLeaf cc> { + def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), + CondMovFP, + [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, + cc, EFLAGS))]>; + def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), + CondMovFP, + [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, + cc, EFLAGS))]>; + def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), + CondMovFP, + [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, + cc, EFLAGS))]>, + Requires<[HasCMov]>; +} + +let Defs = [FPSW] in { +let SchedRW = [WriteFCMOV] in { +let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { +defm CMOVB : FPCMov<X86_COND_B>; +defm CMOVBE : FPCMov<X86_COND_BE>; +defm CMOVE : FPCMov<X86_COND_E>; +defm CMOVP : FPCMov<X86_COND_P>; +defm CMOVNB : FPCMov<X86_COND_AE>; +defm CMOVNBE: FPCMov<X86_COND_A>; +defm CMOVNE : FPCMov<X86_COND_NE>; +defm CMOVNP : FPCMov<X86_COND_NP>; +} // Uses = [EFLAGS], Constraints = "$src1 = $dst" + +let Predicates = [HasCMov] in { +// These are not factored because there's no clean way to pass DA/DB. +def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RST:$op), + "fcmovb\t{$op, %st(0)|st(0), $op}">; +def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RST:$op), + "fcmovbe\t{$op, %st(0)|st(0), $op}">; +def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RST:$op), + "fcmove\t{$op, %st(0)|st(0), $op}">; +def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RST:$op), + "fcmovu\t{$op, %st(0)|st(0), $op}">; +def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RST:$op), + "fcmovnb\t{$op, %st(0)|st(0), $op}">; +def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RST:$op), + "fcmovnbe\t{$op, %st(0)|st(0), $op}">; +def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RST:$op), + "fcmovne\t{$op, %st(0)|st(0), $op}">; +def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RST:$op), + "fcmovnu\t{$op, %st(0)|st(0), $op}">; +} // Predicates = [HasCMov] +} // SchedRW + +// Floating point loads & stores. +let SchedRW = [WriteLoad] in { +let canFoldAsLoad = 1 in { +def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP32:$dst, (loadf32 addr:$src))]>; +let isReMaterializable = 1 in + def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, + [(set RFP64:$dst, (loadf64 addr:$src))]>; +def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, + [(set RFP80:$dst, (loadf80 addr:$src))]>; +} // canFoldAsLoad +def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; +def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, + [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; +def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, + [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; +def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, + [(set RFP32:$dst, (X86fild addr:$src, i16))]>; +def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, + [(set RFP32:$dst, (X86fild addr:$src, i32))]>; +def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, + [(set RFP32:$dst, (X86fild addr:$src, i64))]>; +def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, + [(set RFP64:$dst, (X86fild addr:$src, i16))]>; +def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, + [(set RFP64:$dst, (X86fild addr:$src, i32))]>; +def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, + [(set RFP64:$dst, (X86fild addr:$src, i64))]>; +def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, + [(set RFP80:$dst, (X86fild addr:$src, i16))]>; +def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, + [(set RFP80:$dst, (X86fild addr:$src, i32))]>; +def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, + [(set RFP80:$dst, (X86fild addr:$src, i64))]>; +} // SchedRW + +let SchedRW = [WriteStore] in { +def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, + [(store RFP32:$src, addr:$op)]>; +def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, + [(truncstoref32 RFP64:$src, addr:$op)]>; +def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, + [(store RFP64:$src, addr:$op)]>; +def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, + [(truncstoref32 RFP80:$src, addr:$op)]>; +def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, + [(truncstoref64 RFP80:$src, addr:$op)]>; +// FST does not support 80-bit memory target; FSTP must be used. + +let mayStore = 1, hasSideEffects = 0 in { +def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; +def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; +def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; +def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; +def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; +} // mayStore + +def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, + [(store RFP80:$src, addr:$op)]>; + +let mayStore = 1, hasSideEffects = 0 in { +def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>; +def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>; +def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; +def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>; +def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>; +} // mayStore +} // SchedRW + +let mayLoad = 1, SchedRW = [WriteLoad] in { +def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; +def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; +def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; +def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; +def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; +def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; +} +let mayStore = 1, SchedRW = [WriteStore] in { +def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; +def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; +def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; +def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; +def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; +def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; +def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; +def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; +def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; +def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; +} + +// FISTTP requires SSE3 even though it's a FPStack op. +let Predicates = [HasSSE3], SchedRW = [WriteStore] in { +def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, + [(X86fp_to_i16mem RFP32:$src, addr:$op)]>; +def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, + [(X86fp_to_i32mem RFP32:$src, addr:$op)]>; +def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, + [(X86fp_to_i64mem RFP32:$src, addr:$op)]>; +def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, + [(X86fp_to_i16mem RFP64:$src, addr:$op)]>; +def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, + [(X86fp_to_i32mem RFP64:$src, addr:$op)]>; +def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, + [(X86fp_to_i64mem RFP64:$src, addr:$op)]>; +def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i16mem RFP80:$src, addr:$op)]>; +def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i32mem RFP80:$src, addr:$op)]>; +def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, + [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; +} // Predicates = [HasSSE3] + +let mayStore = 1, SchedRW = [WriteStore] in { +def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; +def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; +def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; +} + +// FP Stack manipulation instructions. +let SchedRW = [WriteMove] in { +def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RST:$op), "fld\t$op">; +def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RST:$op), "fst\t$op">; +def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RST:$op), "fstp\t$op">; +def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RST:$op), "fxch\t$op">; +} + +// Floating point constant loads. +let isReMaterializable = 1, SchedRW = [WriteZero] in { +def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, + [(set RFP32:$dst, fpimm0)]>; +def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, + [(set RFP32:$dst, fpimm1)]>; +def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, + [(set RFP64:$dst, fpimm0)]>; +def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, + [(set RFP64:$dst, fpimm1)]>; +def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, + [(set RFP80:$dst, fpimm0)]>; +def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, + [(set RFP80:$dst, fpimm1)]>; +} + +let SchedRW = [WriteFLD0] in +def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">; + +let SchedRW = [WriteFLD1] in +def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">; + +let SchedRW = [WriteFLDC], Defs = [FPSW] in { +def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>; +def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>; +def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>; +def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>; +def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>; +} // SchedRW + +// Floating point compares. +let SchedRW = [WriteFCom] in { +def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, + [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>; +def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, + [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>; +def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, + [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>; +} // SchedRW +} // Defs = [FPSW] + +let SchedRW = [WriteFCom] in { +// CC = ST(0) cmp ST(i) +let Defs = [EFLAGS, FPSW] in { +def UCOM_FpIr32: FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, + [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>; +def UCOM_FpIr64: FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, + [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>; +def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, + [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>; +} + +let Defs = [FPSW], Uses = [ST0] in { +def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i) + (outs), (ins RST:$reg), "fucom\t$reg">; +def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop + (outs), (ins RST:$reg), "fucomp\t$reg">; +def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop + (outs), (ins), "fucompp">; +} + +let Defs = [EFLAGS, FPSW], Uses = [ST0] in { +def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i) + (outs), (ins RST:$reg), "fucomi\t$reg">; +def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop + (outs), (ins RST:$reg), "fucompi\t$reg">; +} + +let Defs = [EFLAGS, FPSW] in { +def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RST:$reg), "fcomi\t$reg">; +def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RST:$reg), "fcompi\t$reg">; +} +} // SchedRW + +// Floating point flag ops. +let SchedRW = [WriteALU] in { +let Defs = [AX], Uses = [FPSW] in +def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags + (outs), (ins), "fnstsw\t{%ax|ax}", + [(set AX, (X86fp_stsw FPSW))]>; +let Defs = [FPSW] in +def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world + (outs), (ins i16mem:$dst), "fnstcw\t$dst", + [(X86fp_cwd_get16 addr:$dst)]>; +} // SchedRW +let Defs = [FPSW], mayLoad = 1 in +def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] + (outs), (ins i16mem:$dst), "fldcw\t$dst", []>, + Sched<[WriteLoad]>; + +// FPU control instructions +let SchedRW = [WriteMicrocoded] in { +let Defs = [FPSW] in { +def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>; +def FFREE : FPI<0xDD, MRM0r, (outs), (ins RST:$reg), "ffree\t$reg">; +def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RST:$reg), "ffreep\t$reg">; + +def FPNCEST0r : FPI<0xD9, MRM3r, (outs RST:$op), (ins), + "fstpnce\t{%st(0), $op|$op, st(0)}">; + +def FENI8087_NOP : I<0xDB, MRM_E0, (outs), (ins), "feni8087_nop", []>; + +def FDISI8087_NOP : I<0xDB, MRM_E1, (outs), (ins), "fdisi8087_nop", []>; + +// Clear exceptions +def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>; +} // Defs = [FPSW] +} // SchedRW + +// Operand-less floating-point instructions for the disassembler. +def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>; + +let SchedRW = [WriteMicrocoded] in { +let Defs = [FPSW] in { +def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>; +def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>; +def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>; +def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>; +def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>; +def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>; +def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>; +def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>; +def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>; +def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>; +def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>; +def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>; +def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>; +def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>; +def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>; +def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>; +} // Defs = [FPSW] + +def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst), + "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB, + Requires<[HasFXSR]>; +def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst), + "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>, + TB, Requires<[HasFXSR, In64BitMode]>; +def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src), + "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>, + TB, Requires<[HasFXSR]>; +def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src), + "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>, + TB, Requires<[HasFXSR, In64BitMode]>; +} // SchedRW + +//===----------------------------------------------------------------------===// +// Non-Instruction Patterns +//===----------------------------------------------------------------------===// + +// Required for RET of f32 / f64 / f80 values. +def : Pat<(X86fld addr:$src, f32), (LD_Fp32m addr:$src)>; +def : Pat<(X86fld addr:$src, f64), (LD_Fp64m addr:$src)>; +def : Pat<(X86fld addr:$src, f80), (LD_Fp80m addr:$src)>; + +// Required for CALL which return f32 / f64 / f80 values. +def : Pat<(X86fst RFP32:$src, addr:$op, f32), (ST_Fp32m addr:$op, RFP32:$src)>; +def : Pat<(X86fst RFP64:$src, addr:$op, f32), (ST_Fp64m32 addr:$op, + RFP64:$src)>; +def : Pat<(X86fst RFP64:$src, addr:$op, f64), (ST_Fp64m addr:$op, RFP64:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f32), (ST_Fp80m32 addr:$op, + RFP80:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f64), (ST_Fp80m64 addr:$op, + RFP80:$src)>; +def : Pat<(X86fst RFP80:$src, addr:$op, f80), (ST_FpP80m addr:$op, + RFP80:$src)>; + +// Floating point constant -0.0 and -1.0 +def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; +def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; +def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; +def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; +def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; +def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; + +// Used to conv. i64 to f64 since there isn't a SSE version. +def : Pat<(X86fildflag addr:$src, i64), (ILD_Fp64m64 addr:$src)>; + +// FP extensions map onto simple pseudo-value conversions if they are to/from +// the FP stack. +def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, + Requires<[FPStackf32]>; +def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, + Requires<[FPStackf32]>; +def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, + Requires<[FPStackf64]>; + +// FP truncations map onto simple pseudo-value conversions if they are to/from +// the FP stack. We have validated that only value-preserving truncations make +// it through isel. +def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, + Requires<[FPStackf32]>; +def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, + Requires<[FPStackf32]>; +def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, + Requires<[FPStackf64]>; |