diff options
Diffstat (limited to 'hw/arm/armsse.c')
-rw-r--r-- | hw/arm/armsse.c | 1729 |
1 files changed, 1729 insertions, 0 deletions
diff --git a/hw/arm/armsse.c b/hw/arm/armsse.c new file mode 100644 index 000000000..aecdeb981 --- /dev/null +++ b/hw/arm/armsse.c @@ -0,0 +1,1729 @@ +/* + * Arm SSE (Subsystems for Embedded): IoTKit + * + * Copyright (c) 2018 Linaro Limited + * Written by Peter Maydell + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 or + * (at your option) any later version. + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "qemu/module.h" +#include "qemu/bitops.h" +#include "qemu/units.h" +#include "qapi/error.h" +#include "trace.h" +#include "hw/sysbus.h" +#include "migration/vmstate.h" +#include "hw/registerfields.h" +#include "hw/arm/armsse.h" +#include "hw/arm/armsse-version.h" +#include "hw/arm/boot.h" +#include "hw/irq.h" +#include "hw/qdev-clock.h" + +/* + * The SSE-300 puts some devices in different places to the + * SSE-200 (and original IoTKit). We use an array of these structs + * to define how each variant lays out these devices. (Parts of the + * SoC that are the same for all variants aren't handled via these + * data structures.) + */ + +#define NO_IRQ -1 +#define NO_PPC -1 +/* + * Special values for ARMSSEDeviceInfo::irq to indicate that this + * device uses one of the inputs to the OR gate that feeds into the + * CPU NMI input. + */ +#define NMI_0 10000 +#define NMI_1 10001 + +typedef struct ARMSSEDeviceInfo { + const char *name; /* name to use for the QOM object; NULL terminates list */ + const char *type; /* QOM type name */ + unsigned int index; /* Which of the N devices of this type is this ? */ + hwaddr addr; + hwaddr size; /* only needed for TYPE_UNIMPLEMENTED_DEVICE */ + int ppc; /* Index of APB PPC this device is wired up to, or NO_PPC */ + int ppc_port; /* Port number of this device on the PPC */ + int irq; /* NO_IRQ, or 0..NUM_SSE_IRQS-1, or NMI_0 or NMI_1 */ + bool slowclk; /* true if device uses the slow 32KHz clock */ +} ARMSSEDeviceInfo; + +struct ARMSSEInfo { + const char *name; + const char *cpu_type; + uint32_t sse_version; + int sram_banks; + uint32_t sram_bank_base; + int num_cpus; + uint32_t sys_version; + uint32_t iidr; + uint32_t cpuwait_rst; + bool has_mhus; + bool has_cachectrl; + bool has_cpusecctrl; + bool has_cpuid; + bool has_cpu_pwrctrl; + bool has_sse_counter; + bool has_tcms; + Property *props; + const ARMSSEDeviceInfo *devinfo; + const bool *irq_is_common; +}; + +static Property iotkit_properties[] = { + DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, + MemoryRegion *), + DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), + DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), + DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), + DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), + DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), + DEFINE_PROP_END_OF_LIST() +}; + +static Property sse200_properties[] = { + DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, + MemoryRegion *), + DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), + DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), + DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), + DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false), + DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false), + DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true), + DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true), + DEFINE_PROP_END_OF_LIST() +}; + +static Property sse300_properties[] = { + DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, + MemoryRegion *), + DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), + DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 18), + DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000), + DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true), + DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true), + DEFINE_PROP_END_OF_LIST() +}; + +static const ARMSSEDeviceInfo iotkit_devices[] = { + { + .name = "timer0", + .type = TYPE_CMSDK_APB_TIMER, + .index = 0, + .addr = 0x40000000, + .ppc = 0, + .ppc_port = 0, + .irq = 3, + }, + { + .name = "timer1", + .type = TYPE_CMSDK_APB_TIMER, + .index = 1, + .addr = 0x40001000, + .ppc = 0, + .ppc_port = 1, + .irq = 4, + }, + { + .name = "s32ktimer", + .type = TYPE_CMSDK_APB_TIMER, + .index = 2, + .addr = 0x4002f000, + .ppc = 1, + .ppc_port = 0, + .irq = 2, + .slowclk = true, + }, + { + .name = "dualtimer", + .type = TYPE_CMSDK_APB_DUALTIMER, + .index = 0, + .addr = 0x40002000, + .ppc = 0, + .ppc_port = 2, + .irq = 5, + }, + { + .name = "s32kwatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 0, + .addr = 0x5002e000, + .ppc = NO_PPC, + .irq = NMI_0, + .slowclk = true, + }, + { + .name = "nswatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 1, + .addr = 0x40081000, + .ppc = NO_PPC, + .irq = 1, + }, + { + .name = "swatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 2, + .addr = 0x50081000, + .ppc = NO_PPC, + .irq = NMI_1, + }, + { + .name = "armsse-sysinfo", + .type = TYPE_IOTKIT_SYSINFO, + .index = 0, + .addr = 0x40020000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "armsse-sysctl", + .type = TYPE_IOTKIT_SYSCTL, + .index = 0, + .addr = 0x50021000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = NULL, + } +}; + +static const ARMSSEDeviceInfo sse200_devices[] = { + { + .name = "timer0", + .type = TYPE_CMSDK_APB_TIMER, + .index = 0, + .addr = 0x40000000, + .ppc = 0, + .ppc_port = 0, + .irq = 3, + }, + { + .name = "timer1", + .type = TYPE_CMSDK_APB_TIMER, + .index = 1, + .addr = 0x40001000, + .ppc = 0, + .ppc_port = 1, + .irq = 4, + }, + { + .name = "s32ktimer", + .type = TYPE_CMSDK_APB_TIMER, + .index = 2, + .addr = 0x4002f000, + .ppc = 1, + .ppc_port = 0, + .irq = 2, + .slowclk = true, + }, + { + .name = "dualtimer", + .type = TYPE_CMSDK_APB_DUALTIMER, + .index = 0, + .addr = 0x40002000, + .ppc = 0, + .ppc_port = 2, + .irq = 5, + }, + { + .name = "s32kwatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 0, + .addr = 0x5002e000, + .ppc = NO_PPC, + .irq = NMI_0, + .slowclk = true, + }, + { + .name = "nswatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 1, + .addr = 0x40081000, + .ppc = NO_PPC, + .irq = 1, + }, + { + .name = "swatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 2, + .addr = 0x50081000, + .ppc = NO_PPC, + .irq = NMI_1, + }, + { + .name = "armsse-sysinfo", + .type = TYPE_IOTKIT_SYSINFO, + .index = 0, + .addr = 0x40020000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "armsse-sysctl", + .type = TYPE_IOTKIT_SYSCTL, + .index = 0, + .addr = 0x50021000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "CPU0CORE_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 0, + .addr = 0x50023000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "CPU1CORE_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 1, + .addr = 0x50025000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "DBG_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 2, + .addr = 0x50029000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "RAM0_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 3, + .addr = 0x5002a000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "RAM1_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 4, + .addr = 0x5002b000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "RAM2_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 5, + .addr = 0x5002c000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "RAM3_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 6, + .addr = 0x5002d000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "SYS_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 7, + .addr = 0x50022000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = NULL, + } +}; + +static const ARMSSEDeviceInfo sse300_devices[] = { + { + .name = "timer0", + .type = TYPE_SSE_TIMER, + .index = 0, + .addr = 0x48000000, + .ppc = 0, + .ppc_port = 0, + .irq = 3, + }, + { + .name = "timer1", + .type = TYPE_SSE_TIMER, + .index = 1, + .addr = 0x48001000, + .ppc = 0, + .ppc_port = 1, + .irq = 4, + }, + { + .name = "timer2", + .type = TYPE_SSE_TIMER, + .index = 2, + .addr = 0x48002000, + .ppc = 0, + .ppc_port = 2, + .irq = 5, + }, + { + .name = "timer3", + .type = TYPE_SSE_TIMER, + .index = 3, + .addr = 0x48003000, + .ppc = 0, + .ppc_port = 5, + .irq = 27, + }, + { + .name = "s32ktimer", + .type = TYPE_CMSDK_APB_TIMER, + .index = 0, + .addr = 0x4802f000, + .ppc = 1, + .ppc_port = 0, + .irq = 2, + .slowclk = true, + }, + { + .name = "s32kwatchdog", + .type = TYPE_CMSDK_APB_WATCHDOG, + .index = 0, + .addr = 0x4802e000, + .ppc = NO_PPC, + .irq = NMI_0, + .slowclk = true, + }, + { + .name = "watchdog", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 0, + .addr = 0x48040000, + .size = 0x2000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "armsse-sysinfo", + .type = TYPE_IOTKIT_SYSINFO, + .index = 0, + .addr = 0x48020000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "armsse-sysctl", + .type = TYPE_IOTKIT_SYSCTL, + .index = 0, + .addr = 0x58021000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "SYS_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 1, + .addr = 0x58022000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "CPU0CORE_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 2, + .addr = 0x50023000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "MGMT_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 3, + .addr = 0x50028000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = "DEBUG_PPU", + .type = TYPE_UNIMPLEMENTED_DEVICE, + .index = 4, + .addr = 0x50029000, + .size = 0x1000, + .ppc = NO_PPC, + .irq = NO_IRQ, + }, + { + .name = NULL, + } +}; + +/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ +static const bool sse200_irq_is_common[32] = { + [0 ... 5] = true, + /* 6, 7: per-CPU MHU interrupts */ + [8 ... 12] = true, + /* 13: per-CPU icache interrupt */ + /* 14: reserved */ + [15 ... 20] = true, + /* 21: reserved */ + [22 ... 26] = true, + /* 27: reserved */ + /* 28, 29: per-CPU CTI interrupts */ + /* 30, 31: reserved */ +}; + +static const bool sse300_irq_is_common[32] = { + [0 ... 5] = true, + /* 6, 7: per-CPU MHU interrupts */ + [8 ... 12] = true, + /* 13: reserved */ + [14 ... 16] = true, + /* 17-25: reserved */ + [26 ... 27] = true, + /* 28, 29: per-CPU CTI interrupts */ + /* 30, 31: reserved */ +}; + +static const ARMSSEInfo armsse_variants[] = { + { + .name = TYPE_IOTKIT, + .sse_version = ARMSSE_IOTKIT, + .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"), + .sram_banks = 1, + .sram_bank_base = 0x20000000, + .num_cpus = 1, + .sys_version = 0x41743, + .iidr = 0, + .cpuwait_rst = 0, + .has_mhus = false, + .has_cachectrl = false, + .has_cpusecctrl = false, + .has_cpuid = false, + .has_cpu_pwrctrl = false, + .has_sse_counter = false, + .has_tcms = false, + .props = iotkit_properties, + .devinfo = iotkit_devices, + .irq_is_common = sse200_irq_is_common, + }, + { + .name = TYPE_SSE200, + .sse_version = ARMSSE_SSE200, + .cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"), + .sram_banks = 4, + .sram_bank_base = 0x20000000, + .num_cpus = 2, + .sys_version = 0x22041743, + .iidr = 0, + .cpuwait_rst = 2, + .has_mhus = true, + .has_cachectrl = true, + .has_cpusecctrl = true, + .has_cpuid = true, + .has_cpu_pwrctrl = false, + .has_sse_counter = false, + .has_tcms = false, + .props = sse200_properties, + .devinfo = sse200_devices, + .irq_is_common = sse200_irq_is_common, + }, + { + .name = TYPE_SSE300, + .sse_version = ARMSSE_SSE300, + .cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"), + .sram_banks = 2, + .sram_bank_base = 0x21000000, + .num_cpus = 1, + .sys_version = 0x7e00043b, + .iidr = 0x74a0043b, + .cpuwait_rst = 0, + .has_mhus = false, + .has_cachectrl = false, + .has_cpusecctrl = true, + .has_cpuid = true, + .has_cpu_pwrctrl = true, + .has_sse_counter = true, + .has_tcms = true, + .props = sse300_properties, + .devinfo = sse300_devices, + .irq_is_common = sse300_irq_is_common, + }, +}; + +static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) +{ + /* Return the SYS_CONFIG value for this SSE */ + uint32_t sys_config; + + switch (info->sse_version) { + case ARMSSE_IOTKIT: + sys_config = 0; + sys_config = deposit32(sys_config, 0, 4, info->sram_banks); + sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); + break; + case ARMSSE_SSE200: + sys_config = 0; + sys_config = deposit32(sys_config, 0, 4, info->sram_banks); + sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); + sys_config = deposit32(sys_config, 24, 4, 2); + if (info->num_cpus > 1) { + sys_config = deposit32(sys_config, 10, 1, 1); + sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); + sys_config = deposit32(sys_config, 28, 4, 2); + } + break; + case ARMSSE_SSE300: + sys_config = 0; + sys_config = deposit32(sys_config, 0, 4, info->sram_banks); + sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); + sys_config = deposit32(sys_config, 16, 3, 3); /* CPU0 = Cortex-M55 */ + break; + default: + g_assert_not_reached(); + } + return sys_config; +} + +/* Clock frequency in HZ of the 32KHz "slow clock" */ +#define S32KCLK (32 * 1000) + +/* + * Create an alias region in @container of @size bytes starting at @base + * which mirrors the memory starting at @orig. + */ +static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container, + const char *name, hwaddr base, hwaddr size, hwaddr orig) +{ + memory_region_init_alias(mr, NULL, name, container, orig, size); + /* The alias is even lower priority than unimplemented_device regions */ + memory_region_add_subregion_overlap(container, base, mr, -1500); +} + +static void irq_status_forwarder(void *opaque, int n, int level) +{ + qemu_irq destirq = opaque; + + qemu_set_irq(destirq, level); +} + +static void nsccfg_handler(void *opaque, int n, int level) +{ + ARMSSE *s = ARM_SSE(opaque); + + s->nsccfg = level; +} + +static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) +{ + /* Each of the 4 AHB and 4 APB PPCs that might be present in a + * system using the ARMSSE has a collection of control lines which + * are provided by the security controller and which we want to + * expose as control lines on the ARMSSE device itself, so the + * code using the ARMSSE can wire them up to the PPCs. + */ + SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; + DeviceState *armssedev = DEVICE(s); + DeviceState *dev_secctl = DEVICE(&s->secctl); + DeviceState *dev_splitter = DEVICE(splitter); + char *name; + + name = g_strdup_printf("%s_nonsec", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + name = g_strdup_printf("%s_ap", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + name = g_strdup_printf("%s_irq_enable", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + name = g_strdup_printf("%s_irq_clear", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + + /* irq_status is a little more tricky, because we need to + * split it so we can send it both to the security controller + * and to our OR gate for the NVIC interrupt line. + * Connect up the splitter's outputs, and create a GPIO input + * which will pass the line state to the input splitter. + */ + name = g_strdup_printf("%s_irq_status", ppcname); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + name, 0)); + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); + s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); + qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, + s->irq_status_in[ppcnum], name, 1); + g_free(name); +} + +static void armsse_forward_sec_resp_cfg(ARMSSE *s) +{ + /* Forward the 3rd output from the splitter device as a + * named GPIO output of the armsse object. + */ + DeviceState *dev = DEVICE(s); + DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); + + qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); + s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, + s->sec_resp_cfg, 1); + qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); +} + +static void armsse_init(Object *obj) +{ + ARMSSE *s = ARM_SSE(obj); + ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj); + const ARMSSEInfo *info = asc->info; + const ARMSSEDeviceInfo *devinfo; + int i; + + assert(info->sram_banks <= MAX_SRAM_BANKS); + assert(info->num_cpus <= SSE_MAX_CPUS); + + s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK", NULL, NULL, 0); + s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL, 0); + + memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); + + for (i = 0; i < info->num_cpus; i++) { + /* + * We put each CPU in its own cluster as they are logically + * distinct and may be configured differently. + */ + char *name; + + name = g_strdup_printf("cluster%d", i); + object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER); + qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); + g_free(name); + + name = g_strdup_printf("armv7m%d", i); + object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i], + TYPE_ARMV7M); + qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", info->cpu_type); + g_free(name); + name = g_strdup_printf("arm-sse-cpu-container%d", i); + memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); + g_free(name); + if (i > 0) { + name = g_strdup_printf("arm-sse-container-alias%d", i); + memory_region_init_alias(&s->container_alias[i - 1], obj, + name, &s->container, 0, UINT64_MAX); + g_free(name); + } + } + + for (devinfo = info->devinfo; devinfo->name; devinfo++) { + assert(devinfo->ppc == NO_PPC || devinfo->ppc < ARRAY_SIZE(s->apb_ppc)); + if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) { + assert(devinfo->index < ARRAY_SIZE(s->timer)); + object_initialize_child(obj, devinfo->name, + &s->timer[devinfo->index], + TYPE_CMSDK_APB_TIMER); + } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) { + assert(devinfo->index == 0); + object_initialize_child(obj, devinfo->name, &s->dualtimer, + TYPE_CMSDK_APB_DUALTIMER); + } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) { + assert(devinfo->index < ARRAY_SIZE(s->sse_timer)); + object_initialize_child(obj, devinfo->name, + &s->sse_timer[devinfo->index], + TYPE_SSE_TIMER); + } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) { + assert(devinfo->index < ARRAY_SIZE(s->cmsdk_watchdog)); + object_initialize_child(obj, devinfo->name, + &s->cmsdk_watchdog[devinfo->index], + TYPE_CMSDK_APB_WATCHDOG); + } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) { + assert(devinfo->index == 0); + object_initialize_child(obj, devinfo->name, &s->sysinfo, + TYPE_IOTKIT_SYSINFO); + } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) { + assert(devinfo->index == 0); + object_initialize_child(obj, devinfo->name, &s->sysctl, + TYPE_IOTKIT_SYSCTL); + } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) { + assert(devinfo->index < ARRAY_SIZE(s->unimp)); + object_initialize_child(obj, devinfo->name, + &s->unimp[devinfo->index], + TYPE_UNIMPLEMENTED_DEVICE); + } else { + g_assert_not_reached(); + } + } + + object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL); + + for (i = 0; i < ARRAY_SIZE(s->apb_ppc); i++) { + g_autofree char *name = g_strdup_printf("apb-ppc%d", i); + object_initialize_child(obj, name, &s->apb_ppc[i], TYPE_TZ_PPC); + } + + for (i = 0; i < info->sram_banks; i++) { + char *name = g_strdup_printf("mpc%d", i); + object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC); + g_free(name); + } + object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, + TYPE_OR_IRQ); + + for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { + char *name = g_strdup_printf("mpc-irq-splitter-%d", i); + SplitIRQ *splitter = &s->mpc_irq_splitter[i]; + + object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); + g_free(name); + } + + if (info->has_mhus) { + object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU); + object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU); + } + if (info->has_cachectrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cachectrl%d", i); + + object_initialize_child(obj, name, &s->cachectrl[i], + TYPE_UNIMPLEMENTED_DEVICE); + g_free(name); + } + } + if (info->has_cpusecctrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cpusecctrl%d", i); + + object_initialize_child(obj, name, &s->cpusecctrl[i], + TYPE_UNIMPLEMENTED_DEVICE); + g_free(name); + } + } + if (info->has_cpuid) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cpuid%d", i); + + object_initialize_child(obj, name, &s->cpuid[i], + TYPE_ARMSSE_CPUID); + g_free(name); + } + } + if (info->has_cpu_pwrctrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cpu_pwrctrl%d", i); + + object_initialize_child(obj, name, &s->cpu_pwrctrl[i], + TYPE_ARMSSE_CPU_PWRCTRL); + g_free(name); + } + } + if (info->has_sse_counter) { + object_initialize_child(obj, "sse-counter", &s->sse_counter, + TYPE_SSE_COUNTER); + } + + object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ); + object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, + TYPE_OR_IRQ); + object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, + TYPE_SPLIT_IRQ); + for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { + char *name = g_strdup_printf("ppc-irq-splitter-%d", i); + SplitIRQ *splitter = &s->ppc_irq_splitter[i]; + + object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); + g_free(name); + } + if (info->num_cpus > 1) { + for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { + if (info->irq_is_common[i]) { + char *name = g_strdup_printf("cpu-irq-splitter%d", i); + SplitIRQ *splitter = &s->cpu_irq_splitter[i]; + + object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ); + g_free(name); + } + } + } +} + +static void armsse_exp_irq(void *opaque, int n, int level) +{ + qemu_irq *irqarray = opaque; + + qemu_set_irq(irqarray[n], level); +} + +static void armsse_mpcexp_status(void *opaque, int n, int level) +{ + ARMSSE *s = ARM_SSE(opaque); + qemu_set_irq(s->mpcexp_status_in[n], level); +} + +static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) +{ + /* + * Return a qemu_irq which can be used to signal IRQ n to + * all CPUs in the SSE. + */ + ARMSSEClass *asc = ARM_SSE_GET_CLASS(s); + const ARMSSEInfo *info = asc->info; + + assert(info->irq_is_common[irqno]); + + if (info->num_cpus == 1) { + /* Only one CPU -- just connect directly to it */ + return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); + } else { + /* Connect to the splitter which feeds all CPUs */ + return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); + } +} + +static void armsse_realize(DeviceState *dev, Error **errp) +{ + ARMSSE *s = ARM_SSE(dev); + ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev); + const ARMSSEInfo *info = asc->info; + const ARMSSEDeviceInfo *devinfo; + int i; + MemoryRegion *mr; + SysBusDevice *sbd_apb_ppc0; + SysBusDevice *sbd_secctl; + DeviceState *dev_apb_ppc0; + DeviceState *dev_apb_ppc1; + DeviceState *dev_secctl; + DeviceState *dev_splitter; + uint32_t addr_width_max; + + ERRP_GUARD(); + + if (!s->board_memory) { + error_setg(errp, "memory property was not set"); + return; + } + + if (!clock_has_source(s->mainclk)) { + error_setg(errp, "MAINCLK clock was not connected"); + } + if (!clock_has_source(s->s32kclk)) { + error_setg(errp, "S32KCLK clock was not connected"); + } + + assert(info->num_cpus <= SSE_MAX_CPUS); + + /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ + assert(is_power_of_2(info->sram_banks)); + addr_width_max = 24 - ctz32(info->sram_banks); + if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { + error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", + addr_width_max); + return; + } + + /* Handling of which devices should be available only to secure + * code is usually done differently for M profile than for A profile. + * Instead of putting some devices only into the secure address space, + * devices exist in both address spaces but with hard-wired security + * permissions that will cause the CPU to fault for non-secure accesses. + * + * The ARMSSE has an IDAU (Implementation Defined Access Unit), + * which specifies hard-wired security permissions for different + * areas of the physical address space. For the ARMSSE IDAU, the + * top 4 bits of the physical address are the IDAU region ID, and + * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS + * region, otherwise it is an S region. + * + * The various devices and RAMs are generally all mapped twice, + * once into a region that the IDAU defines as secure and once + * into a non-secure region. They sit behind either a Memory + * Protection Controller (for RAM) or a Peripheral Protection + * Controller (for devices), which allow a more fine grained + * configuration of whether non-secure accesses are permitted. + * + * (The other place that guest software can configure security + * permissions is in the architected SAU (Security Attribution + * Unit), which is entirely inside the CPU. The IDAU can upgrade + * the security attributes for a region to more restrictive than + * the SAU specifies, but cannot downgrade them.) + * + * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff + * 0x20000000..0x2007ffff 32KB FPGA block RAM + * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff + * 0x40000000..0x4000ffff base peripheral region 1 + * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) + * 0x40020000..0x4002ffff system control element peripherals + * 0x40080000..0x400fffff base peripheral region 2 + * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff + */ + + memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); + + for (i = 0; i < info->num_cpus; i++) { + DeviceState *cpudev = DEVICE(&s->armv7m[i]); + Object *cpuobj = OBJECT(&s->armv7m[i]); + int j; + char *gpioname; + + qdev_connect_clock_in(cpudev, "cpuclk", s->mainclk); + /* The SSE subsystems do not wire up a systick refclk */ + + qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + NUM_SSE_IRQS); + /* + * In real hardware the initial Secure VTOR is set from the INITSVTOR* + * registers in the IoT Kit System Control Register block. In QEMU + * we set the initial value here, and also the reset value of the + * sysctl register, from this object's QOM init-svtor property. + * If the guest changes the INITSVTOR* registers at runtime then the + * code in iotkit-sysctl.c will update the CPU init-svtor property + * (which will then take effect on the next CPU warm-reset). + * + * Note that typically a board using the SSE-200 will have a system + * control processor whose boot firmware initializes the INITSVTOR* + * registers before powering up the CPUs. QEMU doesn't emulate + * the control processor, so instead we behave in the way that the + * firmware does: the initial value should be set by the board code + * (using the init-svtor property on the ARMSSE object) to match + * whatever its firmware does. + */ + qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor); + /* + * CPUs start powered down if the corresponding bit in the CPUWAIT + * register is 1. In real hardware the CPUWAIT register reset value is + * a configurable property of the SSE-200 (via the CPUWAIT0_RST and + * CPUWAIT1_RST parameters), but since all the boards we care about + * start CPU0 and leave CPU1 powered off, we hard-code that in + * info->cpuwait_rst for now. We can add QOM properties for this + * later if necessary. + */ + if (extract32(info->cpuwait_rst, i, 1)) { + if (!object_property_set_bool(cpuobj, "start-powered-off", true, + errp)) { + return; + } + } + if (!s->cpu_fpu[i]) { + if (!object_property_set_bool(cpuobj, "vfp", false, errp)) { + return; + } + } + if (!s->cpu_dsp[i]) { + if (!object_property_set_bool(cpuobj, "dsp", false, errp)) { + return; + } + } + + if (i > 0) { + memory_region_add_subregion_overlap(&s->cpu_container[i], 0, + &s->container_alias[i - 1], -1); + } else { + memory_region_add_subregion_overlap(&s->cpu_container[i], 0, + &s->container, -1); + } + object_property_set_link(cpuobj, "memory", + OBJECT(&s->cpu_container[i]), &error_abort); + object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort); + if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) { + return; + } + /* + * The cluster must be realized after the armv7m container, as + * the container's CPU object is only created on realize, and the + * CPU must exist and have been parented into the cluster before + * the cluster is realized. + */ + if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) { + return; + } + + /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ + s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); + for (j = 0; j < s->exp_numirq; j++) { + s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + NUM_SSE_IRQS); + } + if (i == 0) { + gpioname = g_strdup("EXP_IRQ"); + } else { + gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); + } + qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, + s->exp_irqs[i], + gpioname, s->exp_numirq); + g_free(gpioname); + } + + /* Wire up the splitters that connect common IRQs to all CPUs */ + if (info->num_cpus > 1) { + for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { + if (info->irq_is_common[i]) { + Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); + DeviceState *devs = DEVICE(splitter); + int cpunum; + + if (!object_property_set_int(splitter, "num-lines", + info->num_cpus, errp)) { + return; + } + if (!qdev_realize(DEVICE(splitter), NULL, errp)) { + return; + } + for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { + DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); + + qdev_connect_gpio_out(devs, cpunum, + qdev_get_gpio_in(cpudev, i)); + } + } + } + } + + /* Set up the big aliases first */ + make_alias(s, &s->alias1, &s->container, "alias 1", + 0x10000000, 0x10000000, 0x00000000); + make_alias(s, &s->alias2, &s->container, + "alias 2", 0x30000000, 0x10000000, 0x20000000); + /* The 0x50000000..0x5fffffff region is not a pure alias: it has + * a few extra devices that only appear there (generally the + * control interfaces for the protection controllers). + * We implement this by mapping those devices over the top of this + * alias MR at a higher priority. Some of the devices in this range + * are per-CPU, so we must put this alias in the per-cpu containers. + */ + for (i = 0; i < info->num_cpus; i++) { + make_alias(s, &s->alias3[i], &s->cpu_container[i], + "alias 3", 0x50000000, 0x10000000, 0x40000000); + } + + /* Security controller */ + object_property_set_int(OBJECT(&s->secctl), "sse-version", + info->sse_version, &error_abort); + if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) { + return; + } + sbd_secctl = SYS_BUS_DEVICE(&s->secctl); + dev_secctl = DEVICE(&s->secctl); + sysbus_mmio_map(sbd_secctl, 0, 0x50080000); + sysbus_mmio_map(sbd_secctl, 1, 0x40080000); + + s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); + qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); + + /* The sec_resp_cfg output from the security controller must be split into + * multiple lines, one for each of the PPCs within the ARMSSE and one + * that will be an output from the ARMSSE to the system. + */ + if (!object_property_set_int(OBJECT(&s->sec_resp_splitter), + "num-lines", 3, errp)) { + return; + } + if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) { + return; + } + dev_splitter = DEVICE(&s->sec_resp_splitter); + qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, + qdev_get_gpio_in(dev_splitter, 0)); + + /* Each SRAM bank lives behind its own Memory Protection Controller */ + for (i = 0; i < info->sram_banks; i++) { + char *ramname = g_strdup_printf("armsse.sram%d", i); + SysBusDevice *sbd_mpc; + uint32_t sram_bank_size = 1 << s->sram_addr_width; + + memory_region_init_ram(&s->sram[i], NULL, ramname, + sram_bank_size, errp); + g_free(ramname); + if (*errp) { + return; + } + object_property_set_link(OBJECT(&s->mpc[i]), "downstream", + OBJECT(&s->sram[i]), &error_abort); + if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) { + return; + } + /* Map the upstream end of the MPC into the right place... */ + sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); + memory_region_add_subregion(&s->container, + info->sram_bank_base + i * sram_bank_size, + sysbus_mmio_get_region(sbd_mpc, 1)); + /* ...and its register interface */ + memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, + sysbus_mmio_get_region(sbd_mpc, 0)); + } + + /* We must OR together lines from the MPC splitters to go to the NVIC */ + if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines", + IOTS_NUM_EXP_MPC + info->sram_banks, + errp)) { + return; + } + if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) { + return; + } + qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, + armsse_get_common_irq_in(s, 9)); + + /* This OR gate wires together outputs from the secure watchdogs to NMI */ + if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2, + errp)) { + return; + } + if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) { + return; + } + qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, + qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); + + /* The SSE-300 has a System Counter / System Timestamp Generator */ + if (info->has_sse_counter) { + SysBusDevice *sbd = SYS_BUS_DEVICE(&s->sse_counter); + + qdev_connect_clock_in(DEVICE(sbd), "CLK", s->mainclk); + if (!sysbus_realize(sbd, errp)) { + return; + } + /* + * The control frame is only in the Secure region; + * the status frame is in the NS region (and visible in the + * S region via the alias mapping). + */ + memory_region_add_subregion(&s->container, 0x58100000, + sysbus_mmio_get_region(sbd, 0)); + memory_region_add_subregion(&s->container, 0x48101000, + sysbus_mmio_get_region(sbd, 1)); + } + + if (info->has_tcms) { + /* The SSE-300 has an ITCM at 0x0000_0000 and a DTCM at 0x2000_0000 */ + memory_region_init_ram(&s->itcm, NULL, "sse300-itcm", 512 * KiB, errp); + if (*errp) { + return; + } + memory_region_init_ram(&s->dtcm, NULL, "sse300-dtcm", 512 * KiB, errp); + if (*errp) { + return; + } + memory_region_add_subregion(&s->container, 0x00000000, &s->itcm); + memory_region_add_subregion(&s->container, 0x20000000, &s->dtcm); + } + + /* Devices behind APB PPC0: + * 0x40000000: timer0 + * 0x40001000: timer1 + * 0x40002000: dual timer + * 0x40003000: MHU0 (SSE-200 only) + * 0x40004000: MHU1 (SSE-200 only) + * We must configure and realize each downstream device and connect + * it to the appropriate PPC port; then we can realize the PPC and + * map its upstream ends to the right place in the container. + */ + for (devinfo = info->devinfo; devinfo->name; devinfo++) { + SysBusDevice *sbd; + qemu_irq irq; + + if (!strcmp(devinfo->type, TYPE_CMSDK_APB_TIMER)) { + sbd = SYS_BUS_DEVICE(&s->timer[devinfo->index]); + + qdev_connect_clock_in(DEVICE(sbd), "pclk", + devinfo->slowclk ? s->s32kclk : s->mainclk); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_DUALTIMER)) { + sbd = SYS_BUS_DEVICE(&s->dualtimer); + + qdev_connect_clock_in(DEVICE(sbd), "TIMCLK", s->mainclk); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else if (!strcmp(devinfo->type, TYPE_SSE_TIMER)) { + sbd = SYS_BUS_DEVICE(&s->sse_timer[devinfo->index]); + + assert(info->has_sse_counter); + object_property_set_link(OBJECT(sbd), "counter", + OBJECT(&s->sse_counter), &error_abort); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else if (!strcmp(devinfo->type, TYPE_CMSDK_APB_WATCHDOG)) { + sbd = SYS_BUS_DEVICE(&s->cmsdk_watchdog[devinfo->index]); + + qdev_connect_clock_in(DEVICE(sbd), "WDOGCLK", + devinfo->slowclk ? s->s32kclk : s->mainclk); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSINFO)) { + sbd = SYS_BUS_DEVICE(&s->sysinfo); + + object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION", + info->sys_version, &error_abort); + object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG", + armsse_sys_config_value(s, info), + &error_abort); + object_property_set_int(OBJECT(&s->sysinfo), "sse-version", + info->sse_version, &error_abort); + object_property_set_int(OBJECT(&s->sysinfo), "IIDR", + info->iidr, &error_abort); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else if (!strcmp(devinfo->type, TYPE_IOTKIT_SYSCTL)) { + /* System control registers */ + sbd = SYS_BUS_DEVICE(&s->sysctl); + + object_property_set_int(OBJECT(&s->sysctl), "sse-version", + info->sse_version, &error_abort); + object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST", + info->cpuwait_rst, &error_abort); + object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST", + s->init_svtor, &error_abort); + object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST", + s->init_svtor, &error_abort); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else if (!strcmp(devinfo->type, TYPE_UNIMPLEMENTED_DEVICE)) { + sbd = SYS_BUS_DEVICE(&s->unimp[devinfo->index]); + + qdev_prop_set_string(DEVICE(sbd), "name", devinfo->name); + qdev_prop_set_uint64(DEVICE(sbd), "size", devinfo->size); + if (!sysbus_realize(sbd, errp)) { + return; + } + mr = sysbus_mmio_get_region(sbd, 0); + } else { + g_assert_not_reached(); + } + + switch (devinfo->irq) { + case NO_IRQ: + irq = NULL; + break; + case 0 ... NUM_SSE_IRQS - 1: + irq = armsse_get_common_irq_in(s, devinfo->irq); + break; + case NMI_0: + case NMI_1: + irq = qdev_get_gpio_in(DEVICE(&s->nmi_orgate), + devinfo->irq - NMI_0); + break; + default: + g_assert_not_reached(); + } + + if (irq) { + sysbus_connect_irq(sbd, 0, irq); + } + + /* + * Devices connected to a PPC are connected to the port here; + * we will map the upstream end of that port to the right address + * in the container later after the PPC has been realized. + * Devices not connected to a PPC can be mapped immediately. + */ + if (devinfo->ppc != NO_PPC) { + TZPPC *ppc = &s->apb_ppc[devinfo->ppc]; + g_autofree char *portname = g_strdup_printf("port[%d]", + devinfo->ppc_port); + object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), + &error_abort); + } else { + memory_region_add_subregion(&s->container, devinfo->addr, mr); + } + } + + if (info->has_mhus) { + /* + * An SSE-200 with only one CPU should have only one MHU created, + * with the region where the second MHU usually is being RAZ/WI. + * We don't implement that SSE-200 config; if we want to support + * it then this code needs to be enhanced to handle creating the + * RAZ/WI region instead of the second MHU. + */ + assert(info->num_cpus == ARRAY_SIZE(s->mhu)); + + for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { + char *port; + int cpunum; + SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]); + + if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) { + return; + } + port = g_strdup_printf("port[%d]", i + 3); + mr = sysbus_mmio_get_region(mhu_sbd, 0); + object_property_set_link(OBJECT(&s->apb_ppc[0]), port, OBJECT(mr), + &error_abort); + g_free(port); + + /* + * Each MHU has an irq line for each CPU: + * MHU 0 irq line 0 -> CPU 0 IRQ 6 + * MHU 0 irq line 1 -> CPU 1 IRQ 6 + * MHU 1 irq line 0 -> CPU 0 IRQ 7 + * MHU 1 irq line 1 -> CPU 1 IRQ 7 + */ + for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { + DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); + + sysbus_connect_irq(mhu_sbd, cpunum, + qdev_get_gpio_in(cpudev, 6 + i)); + } + } + } + + if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[0]), errp)) { + return; + } + + sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc[0]); + dev_apb_ppc0 = DEVICE(&s->apb_ppc[0]); + + if (info->has_mhus) { + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); + memory_region_add_subregion(&s->container, 0x40003000, mr); + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); + memory_region_add_subregion(&s->container, 0x40004000, mr); + } + for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_nonsec", i)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_ap", i)); + } + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "irq_enable", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "irq_clear", 0)); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_sec_resp", 0)); + + /* All the PPC irq lines (from the 2 internal PPCs and the 8 external + * ones) are sent individually to the security controller, and also + * ORed together to give a single combined PPC interrupt to the NVIC. + */ + if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate), + "num-lines", NUM_PPCS, errp)) { + return; + } + if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) { + return; + } + qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, + armsse_get_common_irq_in(s, 10)); + + /* + * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): + * private per-CPU region (all these devices are SSE-200 only): + * 0x50010000: L1 icache control registers + * 0x50011000: CPUSECCTRL (CPU local security control registers) + * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block + * The SSE-300 has an extra: + * 0x40012000 and 0x50012000: CPU_PWRCTRL register block + */ + if (info->has_cachectrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cachectrl%d", i); + MemoryRegion *mr; + + qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); + g_free(name); + qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); + if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) { + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); + } + } + if (info->has_cpusecctrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("CPUSECCTRL%d", i); + MemoryRegion *mr; + + qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); + g_free(name); + qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); + if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) { + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); + } + } + if (info->has_cpuid) { + for (i = 0; i < info->num_cpus; i++) { + MemoryRegion *mr; + + qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); + if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) { + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); + } + } + if (info->has_cpu_pwrctrl) { + for (i = 0; i < info->num_cpus; i++) { + MemoryRegion *mr; + + if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), errp)) { + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpu_pwrctrl[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x40012000, mr); + } + } + + if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc[1]), errp)) { + return; + } + + dev_apb_ppc1 = DEVICE(&s->apb_ppc[1]); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_nonsec", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_ap", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "irq_enable", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "irq_clear", 0)); + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_sec_resp", 0)); + + /* + * Now both PPCs are realized we can map the upstream ends of + * ports which correspond to entries in the devinfo array. + * The ports which are connected to non-devinfo devices have + * already been mapped. + */ + for (devinfo = info->devinfo; devinfo->name; devinfo++) { + SysBusDevice *ppc_sbd; + + if (devinfo->ppc == NO_PPC) { + continue; + } + ppc_sbd = SYS_BUS_DEVICE(&s->apb_ppc[devinfo->ppc]); + mr = sysbus_mmio_get_region(ppc_sbd, devinfo->ppc_port); + memory_region_add_subregion(&s->container, devinfo->addr, mr); + } + + for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { + Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); + + if (!object_property_set_int(splitter, "num-lines", 2, errp)) { + return; + } + if (!qdev_realize(DEVICE(splitter), NULL, errp)) { + return; + } + } + + for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { + char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); + + armsse_forward_ppc(s, ppcname, i); + g_free(ppcname); + } + + for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { + char *ppcname = g_strdup_printf("apb_ppcexp%d", i); + + armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); + g_free(ppcname); + } + + for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { + /* Wire up IRQ splitter for internal PPCs */ + DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); + char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", + i - NUM_EXTERNAL_PPCS); + TZPPC *ppc = &s->apb_ppc[i - NUM_EXTERNAL_PPCS]; + + qdev_connect_gpio_out(devs, 0, + qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); + qdev_connect_gpio_out(devs, 1, + qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); + qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, + qdev_get_gpio_in(devs, 0)); + g_free(gpioname); + } + + /* Wire up the splitters for the MPC IRQs */ + for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { + SplitIRQ *splitter = &s->mpc_irq_splitter[i]; + DeviceState *dev_splitter = DEVICE(splitter); + + if (!object_property_set_int(OBJECT(splitter), "num-lines", 2, + errp)) { + return; + } + if (!qdev_realize(DEVICE(splitter), NULL, errp)) { + return; + } + + if (i < IOTS_NUM_EXP_MPC) { + /* Splitter input is from GPIO input line */ + s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + "mpcexp_status", i)); + } else { + /* Splitter input is from our own MPC */ + qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), + "irq", 0, + qdev_get_gpio_in(dev_splitter, 0)); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + "mpc_status", + i - IOTS_NUM_EXP_MPC)); + } + + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); + } + /* Create GPIO inputs which will pass the line state for our + * mpcexp_irq inputs to the correct splitter devices. + */ + qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", + IOTS_NUM_EXP_MPC); + + armsse_forward_sec_resp_cfg(s); + + /* Forward the MSC related signals */ + qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); + qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); + qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); + qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, + armsse_get_common_irq_in(s, 11)); + + /* + * Expose our container region to the board model; this corresponds + * to the AHB Slave Expansion ports which allow bus master devices + * (eg DMA controllers) in the board model to make transactions into + * devices in the ARMSSE. + */ + sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); +} + +static void armsse_idau_check(IDAUInterface *ii, uint32_t address, + int *iregion, bool *exempt, bool *ns, bool *nsc) +{ + /* + * For ARMSSE systems the IDAU responses are simple logical functions + * of the address bits. The NSC attribute is guest-adjustable via the + * NSCCFG register in the security controller. + */ + ARMSSE *s = ARM_SSE(ii); + int region = extract32(address, 28, 4); + + *ns = !(region & 1); + *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); + /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ + *exempt = (address & 0xeff00000) == 0xe0000000; + *iregion = region; +} + +static const VMStateDescription armsse_vmstate = { + .name = "iotkit", + .version_id = 2, + .minimum_version_id = 2, + .fields = (VMStateField[]) { + VMSTATE_CLOCK(mainclk, ARMSSE), + VMSTATE_CLOCK(s32kclk, ARMSSE), + VMSTATE_UINT32(nsccfg, ARMSSE), + VMSTATE_END_OF_LIST() + } +}; + +static void armsse_reset(DeviceState *dev) +{ + ARMSSE *s = ARM_SSE(dev); + + s->nsccfg = 0; +} + +static void armsse_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); + ARMSSEClass *asc = ARM_SSE_CLASS(klass); + const ARMSSEInfo *info = data; + + dc->realize = armsse_realize; + dc->vmsd = &armsse_vmstate; + device_class_set_props(dc, info->props); + dc->reset = armsse_reset; + iic->check = armsse_idau_check; + asc->info = info; +} + +static const TypeInfo armsse_info = { + .name = TYPE_ARM_SSE, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(ARMSSE), + .class_size = sizeof(ARMSSEClass), + .instance_init = armsse_init, + .abstract = true, + .interfaces = (InterfaceInfo[]) { + { TYPE_IDAU_INTERFACE }, + { } + } +}; + +static void armsse_register_types(void) +{ + int i; + + type_register_static(&armsse_info); + + for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { + TypeInfo ti = { + .name = armsse_variants[i].name, + .parent = TYPE_ARM_SSE, + .class_init = armsse_class_init, + .class_data = (void *)&armsse_variants[i], + }; + type_register(&ti); + } +} + +type_init(armsse_register_types); |