diff options
Diffstat (limited to 'hw/i386/x86.c')
-rw-r--r-- | hw/i386/x86.c | 1399 |
1 files changed, 1399 insertions, 0 deletions
diff --git a/hw/i386/x86.c b/hw/i386/x86.c new file mode 100644 index 000000000..b84840a1b --- /dev/null +++ b/hw/i386/x86.c @@ -0,0 +1,1399 @@ +/* + * Copyright (c) 2003-2004 Fabrice Bellard + * Copyright (c) 2019 Red Hat, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ +#include "qemu/osdep.h" +#include "qemu/error-report.h" +#include "qemu/option.h" +#include "qemu/cutils.h" +#include "qemu/units.h" +#include "qemu-common.h" +#include "qemu/datadir.h" +#include "qapi/error.h" +#include "qapi/qmp/qerror.h" +#include "qapi/qapi-visit-common.h" +#include "qapi/clone-visitor.h" +#include "qapi/qapi-visit-machine.h" +#include "qapi/visitor.h" +#include "sysemu/qtest.h" +#include "sysemu/whpx.h" +#include "sysemu/numa.h" +#include "sysemu/replay.h" +#include "sysemu/sysemu.h" +#include "sysemu/cpu-timers.h" +#include "trace.h" + +#include "hw/i386/x86.h" +#include "target/i386/cpu.h" +#include "hw/i386/topology.h" +#include "hw/i386/fw_cfg.h" +#include "hw/intc/i8259.h" +#include "hw/rtc/mc146818rtc.h" +#include "target/i386/sev.h" + +#include "hw/acpi/cpu_hotplug.h" +#include "hw/irq.h" +#include "hw/nmi.h" +#include "hw/loader.h" +#include "multiboot.h" +#include "elf.h" +#include "standard-headers/asm-x86/bootparam.h" +#include CONFIG_DEVICES +#include "kvm/kvm_i386.h" + +/* Physical Address of PVH entry point read from kernel ELF NOTE */ +static size_t pvh_start_addr; + +inline void init_topo_info(X86CPUTopoInfo *topo_info, + const X86MachineState *x86ms) +{ + MachineState *ms = MACHINE(x86ms); + + topo_info->dies_per_pkg = ms->smp.dies; + topo_info->cores_per_die = ms->smp.cores; + topo_info->threads_per_core = ms->smp.threads; +} + +/* + * Calculates initial APIC ID for a specific CPU index + * + * Currently we need to be able to calculate the APIC ID from the CPU index + * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have + * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of + * all CPUs up to max_cpus. + */ +uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms, + unsigned int cpu_index) +{ + X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms); + X86CPUTopoInfo topo_info; + uint32_t correct_id; + static bool warned; + + init_topo_info(&topo_info, x86ms); + + correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index); + if (x86mc->compat_apic_id_mode) { + if (cpu_index != correct_id && !warned && !qtest_enabled()) { + error_report("APIC IDs set in compatibility mode, " + "CPU topology won't match the configuration"); + warned = true; + } + return cpu_index; + } else { + return correct_id; + } +} + + +void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) +{ + Object *cpu = object_new(MACHINE(x86ms)->cpu_type); + + if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { + goto out; + } + qdev_realize(DEVICE(cpu), NULL, errp); + +out: + object_unref(cpu); +} + +void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) +{ + int i; + const CPUArchIdList *possible_cpus; + MachineState *ms = MACHINE(x86ms); + MachineClass *mc = MACHINE_GET_CLASS(x86ms); + + x86_cpu_set_default_version(default_cpu_version); + + /* + * Calculates the limit to CPU APIC ID values + * + * Limit for the APIC ID value, so that all + * CPU APIC IDs are < x86ms->apic_id_limit. + * + * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). + */ + x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, + ms->smp.max_cpus - 1) + 1; + possible_cpus = mc->possible_cpu_arch_ids(ms); + for (i = 0; i < ms->smp.cpus; i++) { + x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); + } +} + +void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) +{ + if (cpus_count > 0xff) { + /* + * If the number of CPUs can't be represented in 8 bits, the + * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just + * to make old BIOSes fail more predictably. + */ + rtc_set_memory(rtc, 0x5f, 0); + } else { + rtc_set_memory(rtc, 0x5f, cpus_count - 1); + } +} + +static int x86_apic_cmp(const void *a, const void *b) +{ + CPUArchId *apic_a = (CPUArchId *)a; + CPUArchId *apic_b = (CPUArchId *)b; + + return apic_a->arch_id - apic_b->arch_id; +} + +/* + * returns pointer to CPUArchId descriptor that matches CPU's apic_id + * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no + * entry corresponding to CPU's apic_id returns NULL. + */ +CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) +{ + CPUArchId apic_id, *found_cpu; + + apic_id.arch_id = id; + found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, + ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), + x86_apic_cmp); + if (found_cpu && idx) { + *idx = found_cpu - ms->possible_cpus->cpus; + } + return found_cpu; +} + +void x86_cpu_plug(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + CPUArchId *found_cpu; + Error *local_err = NULL; + X86CPU *cpu = X86_CPU(dev); + X86MachineState *x86ms = X86_MACHINE(hotplug_dev); + + if (x86ms->acpi_dev) { + hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); + if (local_err) { + goto out; + } + } + + /* increment the number of CPUs */ + x86ms->boot_cpus++; + if (x86ms->rtc) { + x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); + } + if (x86ms->fw_cfg) { + fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); + } + + found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); + found_cpu->cpu = OBJECT(dev); +out: + error_propagate(errp, local_err); +} + +void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + int idx = -1; + X86CPU *cpu = X86_CPU(dev); + X86MachineState *x86ms = X86_MACHINE(hotplug_dev); + + if (!x86ms->acpi_dev) { + error_setg(errp, "CPU hot unplug not supported without ACPI"); + return; + } + + x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); + assert(idx != -1); + if (idx == 0) { + error_setg(errp, "Boot CPU is unpluggable"); + return; + } + + hotplug_handler_unplug_request(x86ms->acpi_dev, dev, + errp); +} + +void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + CPUArchId *found_cpu; + Error *local_err = NULL; + X86CPU *cpu = X86_CPU(dev); + X86MachineState *x86ms = X86_MACHINE(hotplug_dev); + + hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); + if (local_err) { + goto out; + } + + found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); + found_cpu->cpu = NULL; + qdev_unrealize(dev); + + /* decrement the number of CPUs */ + x86ms->boot_cpus--; + /* Update the number of CPUs in CMOS */ + x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); + fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); + out: + error_propagate(errp, local_err); +} + +void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, + DeviceState *dev, Error **errp) +{ + int idx; + CPUState *cs; + CPUArchId *cpu_slot; + X86CPUTopoIDs topo_ids; + X86CPU *cpu = X86_CPU(dev); + CPUX86State *env = &cpu->env; + MachineState *ms = MACHINE(hotplug_dev); + X86MachineState *x86ms = X86_MACHINE(hotplug_dev); + unsigned int smp_cores = ms->smp.cores; + unsigned int smp_threads = ms->smp.threads; + X86CPUTopoInfo topo_info; + + if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { + error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", + ms->cpu_type); + return; + } + + if (x86ms->acpi_dev) { + Error *local_err = NULL; + + hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, + &local_err); + if (local_err) { + error_propagate(errp, local_err); + return; + } + } + + init_topo_info(&topo_info, x86ms); + + env->nr_dies = ms->smp.dies; + + /* + * If APIC ID is not set, + * set it based on socket/die/core/thread properties. + */ + if (cpu->apic_id == UNASSIGNED_APIC_ID) { + int max_socket = (ms->smp.max_cpus - 1) / + smp_threads / smp_cores / ms->smp.dies; + + /* + * die-id was optional in QEMU 4.0 and older, so keep it optional + * if there's only one die per socket. + */ + if (cpu->die_id < 0 && ms->smp.dies == 1) { + cpu->die_id = 0; + } + + if (cpu->socket_id < 0) { + error_setg(errp, "CPU socket-id is not set"); + return; + } else if (cpu->socket_id > max_socket) { + error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", + cpu->socket_id, max_socket); + return; + } + if (cpu->die_id < 0) { + error_setg(errp, "CPU die-id is not set"); + return; + } else if (cpu->die_id > ms->smp.dies - 1) { + error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", + cpu->die_id, ms->smp.dies - 1); + return; + } + if (cpu->core_id < 0) { + error_setg(errp, "CPU core-id is not set"); + return; + } else if (cpu->core_id > (smp_cores - 1)) { + error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", + cpu->core_id, smp_cores - 1); + return; + } + if (cpu->thread_id < 0) { + error_setg(errp, "CPU thread-id is not set"); + return; + } else if (cpu->thread_id > (smp_threads - 1)) { + error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", + cpu->thread_id, smp_threads - 1); + return; + } + + topo_ids.pkg_id = cpu->socket_id; + topo_ids.die_id = cpu->die_id; + topo_ids.core_id = cpu->core_id; + topo_ids.smt_id = cpu->thread_id; + cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids); + } + + cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); + if (!cpu_slot) { + MachineState *ms = MACHINE(x86ms); + + x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); + error_setg(errp, + "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with" + " APIC ID %" PRIu32 ", valid index range 0:%d", + topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id, + cpu->apic_id, ms->possible_cpus->len - 1); + return; + } + + if (cpu_slot->cpu) { + error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", + idx, cpu->apic_id); + return; + } + + /* if 'address' properties socket-id/core-id/thread-id are not set, set them + * so that machine_query_hotpluggable_cpus would show correct values + */ + /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() + * once -smp refactoring is complete and there will be CPU private + * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ + x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids); + if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { + error_setg(errp, "property socket-id: %u doesn't match set apic-id:" + " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, + topo_ids.pkg_id); + return; + } + cpu->socket_id = topo_ids.pkg_id; + + if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { + error_setg(errp, "property die-id: %u doesn't match set apic-id:" + " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); + return; + } + cpu->die_id = topo_ids.die_id; + + if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { + error_setg(errp, "property core-id: %u doesn't match set apic-id:" + " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, + topo_ids.core_id); + return; + } + cpu->core_id = topo_ids.core_id; + + if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { + error_setg(errp, "property thread-id: %u doesn't match set apic-id:" + " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, + topo_ids.smt_id); + return; + } + cpu->thread_id = topo_ids.smt_id; + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && + !kvm_hv_vpindex_settable()) { + error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); + return; + } + + cs = CPU(cpu); + cs->cpu_index = idx; + + numa_cpu_pre_plug(cpu_slot, dev, errp); +} + +CpuInstanceProperties +x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) +{ + MachineClass *mc = MACHINE_GET_CLASS(ms); + const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); + + assert(cpu_index < possible_cpus->len); + return possible_cpus->cpus[cpu_index].props; +} + +int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) +{ + X86CPUTopoIDs topo_ids; + X86MachineState *x86ms = X86_MACHINE(ms); + X86CPUTopoInfo topo_info; + + init_topo_info(&topo_info, x86ms); + + assert(idx < ms->possible_cpus->len); + x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, + &topo_info, &topo_ids); + return topo_ids.pkg_id % ms->numa_state->num_nodes; +} + +const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) +{ + X86MachineState *x86ms = X86_MACHINE(ms); + unsigned int max_cpus = ms->smp.max_cpus; + X86CPUTopoInfo topo_info; + int i; + + if (ms->possible_cpus) { + /* + * make sure that max_cpus hasn't changed since the first use, i.e. + * -smp hasn't been parsed after it + */ + assert(ms->possible_cpus->len == max_cpus); + return ms->possible_cpus; + } + + ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + + sizeof(CPUArchId) * max_cpus); + ms->possible_cpus->len = max_cpus; + + init_topo_info(&topo_info, x86ms); + + for (i = 0; i < ms->possible_cpus->len; i++) { + X86CPUTopoIDs topo_ids; + + ms->possible_cpus->cpus[i].type = ms->cpu_type; + ms->possible_cpus->cpus[i].vcpus_count = 1; + ms->possible_cpus->cpus[i].arch_id = + x86_cpu_apic_id_from_index(x86ms, i); + x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, + &topo_info, &topo_ids); + ms->possible_cpus->cpus[i].props.has_socket_id = true; + ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id; + if (ms->smp.dies > 1) { + ms->possible_cpus->cpus[i].props.has_die_id = true; + ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id; + } + ms->possible_cpus->cpus[i].props.has_core_id = true; + ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id; + ms->possible_cpus->cpus[i].props.has_thread_id = true; + ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id; + } + return ms->possible_cpus; +} + +static void x86_nmi(NMIState *n, int cpu_index, Error **errp) +{ + /* cpu index isn't used */ + CPUState *cs; + + CPU_FOREACH(cs) { + X86CPU *cpu = X86_CPU(cs); + + if (!cpu->apic_state) { + cpu_interrupt(cs, CPU_INTERRUPT_NMI); + } else { + apic_deliver_nmi(cpu->apic_state); + } + } +} + +static long get_file_size(FILE *f) +{ + long where, size; + + /* XXX: on Unix systems, using fstat() probably makes more sense */ + + where = ftell(f); + fseek(f, 0, SEEK_END); + size = ftell(f); + fseek(f, where, SEEK_SET); + + return size; +} + +/* TSC handling */ +uint64_t cpu_get_tsc(CPUX86State *env) +{ + return cpus_get_elapsed_ticks(); +} + +/* IRQ handling */ +static void pic_irq_request(void *opaque, int irq, int level) +{ + CPUState *cs = first_cpu; + X86CPU *cpu = X86_CPU(cs); + + trace_x86_pic_interrupt(irq, level); + if (cpu->apic_state && !kvm_irqchip_in_kernel() && + !whpx_apic_in_platform()) { + CPU_FOREACH(cs) { + cpu = X86_CPU(cs); + if (apic_accept_pic_intr(cpu->apic_state)) { + apic_deliver_pic_intr(cpu->apic_state, level); + } + } + } else { + if (level) { + cpu_interrupt(cs, CPU_INTERRUPT_HARD); + } else { + cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); + } + } +} + +qemu_irq x86_allocate_cpu_irq(void) +{ + return qemu_allocate_irq(pic_irq_request, NULL, 0); +} + +int cpu_get_pic_interrupt(CPUX86State *env) +{ + X86CPU *cpu = env_archcpu(env); + int intno; + + if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) { + intno = apic_get_interrupt(cpu->apic_state); + if (intno >= 0) { + return intno; + } + /* read the irq from the PIC */ + if (!apic_accept_pic_intr(cpu->apic_state)) { + return -1; + } + } + + intno = pic_read_irq(isa_pic); + return intno; +} + +DeviceState *cpu_get_current_apic(void) +{ + if (current_cpu) { + X86CPU *cpu = X86_CPU(current_cpu); + return cpu->apic_state; + } else { + return NULL; + } +} + +void gsi_handler(void *opaque, int n, int level) +{ + GSIState *s = opaque; + + trace_x86_gsi_interrupt(n, level); + switch (n) { + case 0 ... ISA_NUM_IRQS - 1: + if (s->i8259_irq[n]) { + /* Under KVM, Kernel will forward to both PIC and IOAPIC */ + qemu_set_irq(s->i8259_irq[n], level); + } + /* fall through */ + case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: + qemu_set_irq(s->ioapic_irq[n], level); + break; + case IO_APIC_SECONDARY_IRQBASE + ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: + qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); + break; + } +} + +void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) +{ + DeviceState *dev; + SysBusDevice *d; + unsigned int i; + + assert(parent_name); + if (kvm_ioapic_in_kernel()) { + dev = qdev_new(TYPE_KVM_IOAPIC); + } else { + dev = qdev_new(TYPE_IOAPIC); + } + object_property_add_child(object_resolve_path(parent_name, NULL), + "ioapic", OBJECT(dev)); + d = SYS_BUS_DEVICE(dev); + sysbus_realize_and_unref(d, &error_fatal); + sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); + + for (i = 0; i < IOAPIC_NUM_PINS; i++) { + gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); + } +} + +DeviceState *ioapic_init_secondary(GSIState *gsi_state) +{ + DeviceState *dev; + SysBusDevice *d; + unsigned int i; + + dev = qdev_new(TYPE_IOAPIC); + d = SYS_BUS_DEVICE(dev); + sysbus_realize_and_unref(d, &error_fatal); + sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); + + for (i = 0; i < IOAPIC_NUM_PINS; i++) { + gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); + } + return dev; +} + +struct setup_data { + uint64_t next; + uint32_t type; + uint32_t len; + uint8_t data[]; +} __attribute__((packed)); + + +/* + * The entry point into the kernel for PVH boot is different from + * the native entry point. The PVH entry is defined by the x86/HVM + * direct boot ABI and is available in an ELFNOTE in the kernel binary. + * + * This function is passed to load_elf() when it is called from + * load_elfboot() which then additionally checks for an ELF Note of + * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to + * parse the PVH entry address from the ELF Note. + * + * Due to trickery in elf_opts.h, load_elf() is actually available as + * load_elf32() or load_elf64() and this routine needs to be able + * to deal with being called as 32 or 64 bit. + * + * The address of the PVH entry point is saved to the 'pvh_start_addr' + * global variable. (although the entry point is 32-bit, the kernel + * binary can be either 32-bit or 64-bit). + */ +static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) +{ + size_t *elf_note_data_addr; + + /* Check if ELF Note header passed in is valid */ + if (arg1 == NULL) { + return 0; + } + + if (is64) { + struct elf64_note *nhdr64 = (struct elf64_note *)arg1; + uint64_t nhdr_size64 = sizeof(struct elf64_note); + uint64_t phdr_align = *(uint64_t *)arg2; + uint64_t nhdr_namesz = nhdr64->n_namesz; + + elf_note_data_addr = + ((void *)nhdr64) + nhdr_size64 + + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); + + pvh_start_addr = *elf_note_data_addr; + } else { + struct elf32_note *nhdr32 = (struct elf32_note *)arg1; + uint32_t nhdr_size32 = sizeof(struct elf32_note); + uint32_t phdr_align = *(uint32_t *)arg2; + uint32_t nhdr_namesz = nhdr32->n_namesz; + + elf_note_data_addr = + ((void *)nhdr32) + nhdr_size32 + + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); + + pvh_start_addr = *(uint32_t *)elf_note_data_addr; + } + + return pvh_start_addr; +} + +static bool load_elfboot(const char *kernel_filename, + int kernel_file_size, + uint8_t *header, + size_t pvh_xen_start_addr, + FWCfgState *fw_cfg) +{ + uint32_t flags = 0; + uint32_t mh_load_addr = 0; + uint32_t elf_kernel_size = 0; + uint64_t elf_entry; + uint64_t elf_low, elf_high; + int kernel_size; + + if (ldl_p(header) != 0x464c457f) { + return false; /* no elfboot */ + } + + bool elf_is64 = header[EI_CLASS] == ELFCLASS64; + flags = elf_is64 ? + ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; + + if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ + error_report("elfboot unsupported flags = %x", flags); + exit(1); + } + + uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; + kernel_size = load_elf(kernel_filename, read_pvh_start_addr, + NULL, &elf_note_type, &elf_entry, + &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, + 0, 0); + + if (kernel_size < 0) { + error_report("Error while loading elf kernel"); + exit(1); + } + mh_load_addr = elf_low; + elf_kernel_size = elf_high - elf_low; + + if (pvh_start_addr == 0) { + error_report("Error loading uncompressed kernel without PVH ELF Note"); + exit(1); + } + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); + + return true; +} + +void x86_load_linux(X86MachineState *x86ms, + FWCfgState *fw_cfg, + int acpi_data_size, + bool pvh_enabled) +{ + bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; + uint16_t protocol; + int setup_size, kernel_size, cmdline_size; + int dtb_size, setup_data_offset; + uint32_t initrd_max; + uint8_t header[8192], *setup, *kernel; + hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; + FILE *f; + char *vmode; + MachineState *machine = MACHINE(x86ms); + struct setup_data *setup_data; + const char *kernel_filename = machine->kernel_filename; + const char *initrd_filename = machine->initrd_filename; + const char *dtb_filename = machine->dtb; + const char *kernel_cmdline = machine->kernel_cmdline; + SevKernelLoaderContext sev_load_ctx = {}; + + /* Align to 16 bytes as a paranoia measure */ + cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; + + /* load the kernel header */ + f = fopen(kernel_filename, "rb"); + if (!f) { + fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", + kernel_filename, strerror(errno)); + exit(1); + } + + kernel_size = get_file_size(f); + if (!kernel_size || + fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != + MIN(ARRAY_SIZE(header), kernel_size)) { + fprintf(stderr, "qemu: could not load kernel '%s': %s\n", + kernel_filename, strerror(errno)); + exit(1); + } + + /* kernel protocol version */ + if (ldl_p(header + 0x202) == 0x53726448) { + protocol = lduw_p(header + 0x206); + } else { + /* + * This could be a multiboot kernel. If it is, let's stop treating it + * like a Linux kernel. + * Note: some multiboot images could be in the ELF format (the same of + * PVH), so we try multiboot first since we check the multiboot magic + * header before to load it. + */ + if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, + kernel_cmdline, kernel_size, header)) { + return; + } + /* + * Check if the file is an uncompressed kernel file (ELF) and load it, + * saving the PVH entry point used by the x86/HVM direct boot ABI. + * If load_elfboot() is successful, populate the fw_cfg info. + */ + if (pvh_enabled && + load_elfboot(kernel_filename, kernel_size, + header, pvh_start_addr, fw_cfg)) { + fclose(f); + + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, + strlen(kernel_cmdline) + 1); + fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); + + fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); + fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, + header, sizeof(header)); + + /* load initrd */ + if (initrd_filename) { + GMappedFile *mapped_file; + gsize initrd_size; + gchar *initrd_data; + GError *gerr = NULL; + + mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); + if (!mapped_file) { + fprintf(stderr, "qemu: error reading initrd %s: %s\n", + initrd_filename, gerr->message); + exit(1); + } + x86ms->initrd_mapped_file = mapped_file; + + initrd_data = g_mapped_file_get_contents(mapped_file); + initrd_size = g_mapped_file_get_length(mapped_file); + initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; + if (initrd_size >= initrd_max) { + fprintf(stderr, "qemu: initrd is too large, cannot support." + "(max: %"PRIu32", need %"PRId64")\n", + initrd_max, (uint64_t)initrd_size); + exit(1); + } + + initrd_addr = (initrd_max - initrd_size) & ~4095; + + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, + initrd_size); + } + + option_rom[nb_option_roms].bootindex = 0; + option_rom[nb_option_roms].name = "pvh.bin"; + nb_option_roms++; + + return; + } + protocol = 0; + } + + if (protocol < 0x200 || !(header[0x211] & 0x01)) { + /* Low kernel */ + real_addr = 0x90000; + cmdline_addr = 0x9a000 - cmdline_size; + prot_addr = 0x10000; + } else if (protocol < 0x202) { + /* High but ancient kernel */ + real_addr = 0x90000; + cmdline_addr = 0x9a000 - cmdline_size; + prot_addr = 0x100000; + } else { + /* High and recent kernel */ + real_addr = 0x10000; + cmdline_addr = 0x20000; + prot_addr = 0x100000; + } + + /* highest address for loading the initrd */ + if (protocol >= 0x20c && + lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { + /* + * Linux has supported initrd up to 4 GB for a very long time (2007, + * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), + * though it only sets initrd_max to 2 GB to "work around bootloader + * bugs". Luckily, QEMU firmware(which does something like bootloader) + * has supported this. + * + * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can + * be loaded into any address. + * + * In addition, initrd_max is uint32_t simply because QEMU doesn't + * support the 64-bit boot protocol (specifically the ext_ramdisk_image + * field). + * + * Therefore here just limit initrd_max to UINT32_MAX simply as well. + */ + initrd_max = UINT32_MAX; + } else if (protocol >= 0x203) { + initrd_max = ldl_p(header + 0x22c); + } else { + initrd_max = 0x37ffffff; + } + + if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { + initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; + } + + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); + fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); + sev_load_ctx.cmdline_data = (char *)kernel_cmdline; + sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; + + if (protocol >= 0x202) { + stl_p(header + 0x228, cmdline_addr); + } else { + stw_p(header + 0x20, 0xA33F); + stw_p(header + 0x22, cmdline_addr - real_addr); + } + + /* handle vga= parameter */ + vmode = strstr(kernel_cmdline, "vga="); + if (vmode) { + unsigned int video_mode; + const char *end; + int ret; + /* skip "vga=" */ + vmode += 4; + if (!strncmp(vmode, "normal", 6)) { + video_mode = 0xffff; + } else if (!strncmp(vmode, "ext", 3)) { + video_mode = 0xfffe; + } else if (!strncmp(vmode, "ask", 3)) { + video_mode = 0xfffd; + } else { + ret = qemu_strtoui(vmode, &end, 0, &video_mode); + if (ret != 0 || (*end && *end != ' ')) { + fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); + exit(1); + } + } + stw_p(header + 0x1fa, video_mode); + } + + /* loader type */ + /* + * High nybble = B reserved for QEMU; low nybble is revision number. + * If this code is substantially changed, you may want to consider + * incrementing the revision. + */ + if (protocol >= 0x200) { + header[0x210] = 0xB0; + } + /* heap */ + if (protocol >= 0x201) { + header[0x211] |= 0x80; /* CAN_USE_HEAP */ + stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); + } + + /* load initrd */ + if (initrd_filename) { + GMappedFile *mapped_file; + gsize initrd_size; + gchar *initrd_data; + GError *gerr = NULL; + + if (protocol < 0x200) { + fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); + exit(1); + } + + mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); + if (!mapped_file) { + fprintf(stderr, "qemu: error reading initrd %s: %s\n", + initrd_filename, gerr->message); + exit(1); + } + x86ms->initrd_mapped_file = mapped_file; + + initrd_data = g_mapped_file_get_contents(mapped_file); + initrd_size = g_mapped_file_get_length(mapped_file); + if (initrd_size >= initrd_max) { + fprintf(stderr, "qemu: initrd is too large, cannot support." + "(max: %"PRIu32", need %"PRId64")\n", + initrd_max, (uint64_t)initrd_size); + exit(1); + } + + initrd_addr = (initrd_max - initrd_size) & ~4095; + + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); + sev_load_ctx.initrd_data = initrd_data; + sev_load_ctx.initrd_size = initrd_size; + + stl_p(header + 0x218, initrd_addr); + stl_p(header + 0x21c, initrd_size); + } + + /* load kernel and setup */ + setup_size = header[0x1f1]; + if (setup_size == 0) { + setup_size = 4; + } + setup_size = (setup_size + 1) * 512; + if (setup_size > kernel_size) { + fprintf(stderr, "qemu: invalid kernel header\n"); + exit(1); + } + kernel_size -= setup_size; + + setup = g_malloc(setup_size); + kernel = g_malloc(kernel_size); + fseek(f, 0, SEEK_SET); + if (fread(setup, 1, setup_size, f) != setup_size) { + fprintf(stderr, "fread() failed\n"); + exit(1); + } + if (fread(kernel, 1, kernel_size, f) != kernel_size) { + fprintf(stderr, "fread() failed\n"); + exit(1); + } + fclose(f); + + /* append dtb to kernel */ + if (dtb_filename) { + if (protocol < 0x209) { + fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); + exit(1); + } + + dtb_size = get_image_size(dtb_filename); + if (dtb_size <= 0) { + fprintf(stderr, "qemu: error reading dtb %s: %s\n", + dtb_filename, strerror(errno)); + exit(1); + } + + setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); + kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; + kernel = g_realloc(kernel, kernel_size); + + stq_p(header + 0x250, prot_addr + setup_data_offset); + + setup_data = (struct setup_data *)(kernel + setup_data_offset); + setup_data->next = 0; + setup_data->type = cpu_to_le32(SETUP_DTB); + setup_data->len = cpu_to_le32(dtb_size); + + load_image_size(dtb_filename, setup_data->data, dtb_size); + } + + /* + * If we're starting an encrypted VM, it will be OVMF based, which uses the + * efi stub for booting and doesn't require any values to be placed in the + * kernel header. We therefore don't update the header so the hash of the + * kernel on the other side of the fw_cfg interface matches the hash of the + * file the user passed in. + */ + if (!sev_enabled()) { + memcpy(setup, header, MIN(sizeof(header), setup_size)); + } + + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); + sev_load_ctx.kernel_data = (char *)kernel; + sev_load_ctx.kernel_size = kernel_size; + + fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); + sev_load_ctx.setup_data = (char *)setup; + sev_load_ctx.setup_size = setup_size; + + if (sev_enabled()) { + sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); + } + + option_rom[nb_option_roms].bootindex = 0; + option_rom[nb_option_roms].name = "linuxboot.bin"; + if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { + option_rom[nb_option_roms].name = "linuxboot_dma.bin"; + } + nb_option_roms++; +} + +void x86_bios_rom_init(MachineState *ms, const char *default_firmware, + MemoryRegion *rom_memory, bool isapc_ram_fw) +{ + const char *bios_name; + char *filename; + MemoryRegion *bios, *isa_bios; + int bios_size, isa_bios_size; + int ret; + + /* BIOS load */ + bios_name = ms->firmware ?: default_firmware; + filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); + if (filename) { + bios_size = get_image_size(filename); + } else { + bios_size = -1; + } + if (bios_size <= 0 || + (bios_size % 65536) != 0) { + goto bios_error; + } + bios = g_malloc(sizeof(*bios)); + memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); + if (!isapc_ram_fw) { + memory_region_set_readonly(bios, true); + } + ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); + if (ret != 0) { + bios_error: + fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); + exit(1); + } + g_free(filename); + + /* map the last 128KB of the BIOS in ISA space */ + isa_bios_size = MIN(bios_size, 128 * KiB); + isa_bios = g_malloc(sizeof(*isa_bios)); + memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, + bios_size - isa_bios_size, isa_bios_size); + memory_region_add_subregion_overlap(rom_memory, + 0x100000 - isa_bios_size, + isa_bios, + 1); + if (!isapc_ram_fw) { + memory_region_set_readonly(isa_bios, true); + } + + /* map all the bios at the top of memory */ + memory_region_add_subregion(rom_memory, + (uint32_t)(-bios_size), + bios); +} + +bool x86_machine_is_smm_enabled(const X86MachineState *x86ms) +{ + bool smm_available = false; + + if (x86ms->smm == ON_OFF_AUTO_OFF) { + return false; + } + + if (tcg_enabled() || qtest_enabled()) { + smm_available = true; + } else if (kvm_enabled()) { + smm_available = kvm_has_smm(); + } + + if (smm_available) { + return true; + } + + if (x86ms->smm == ON_OFF_AUTO_ON) { + error_report("System Management Mode not supported by this hypervisor."); + exit(1); + } + return false; +} + +static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + OnOffAuto smm = x86ms->smm; + + visit_type_OnOffAuto(v, name, &smm, errp); +} + +static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + + visit_type_OnOffAuto(v, name, &x86ms->smm, errp); +} + +bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms) +{ + if (x86ms->acpi == ON_OFF_AUTO_OFF) { + return false; + } + return true; +} + +static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + OnOffAuto acpi = x86ms->acpi; + + visit_type_OnOffAuto(v, name, &acpi, errp); +} + +static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + + visit_type_OnOffAuto(v, name, &x86ms->acpi, errp); +} + +static char *x86_machine_get_oem_id(Object *obj, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + + return g_strdup(x86ms->oem_id); +} + +static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + size_t len = strlen(value); + + if (len > 6) { + error_setg(errp, + "User specified "X86_MACHINE_OEM_ID" value is bigger than " + "6 bytes in size"); + return; + } + + strncpy(x86ms->oem_id, value, 6); +} + +static char *x86_machine_get_oem_table_id(Object *obj, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + + return g_strdup(x86ms->oem_table_id); +} + +static void x86_machine_set_oem_table_id(Object *obj, const char *value, + Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + size_t len = strlen(value); + + if (len > 8) { + error_setg(errp, + "User specified "X86_MACHINE_OEM_TABLE_ID + " value is bigger than " + "8 bytes in size"); + return; + } + strncpy(x86ms->oem_table_id, value, 8); +} + +static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v, + const char *name, void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit; + + visit_type_uint64(v, name, &bus_lock_ratelimit, errp); +} + +static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v, + const char *name, void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + + visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp); +} + +static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + SgxEPCList *list = x86ms->sgx_epc_list; + + visit_type_SgxEPCList(v, name, &list, errp); +} + +static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + SgxEPCList *list; + + list = x86ms->sgx_epc_list; + visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp); + + qapi_free_SgxEPCList(list); +} + +static void x86_machine_initfn(Object *obj) +{ + X86MachineState *x86ms = X86_MACHINE(obj); + + x86ms->smm = ON_OFF_AUTO_AUTO; + x86ms->acpi = ON_OFF_AUTO_AUTO; + x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS; + x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); + x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); + x86ms->bus_lock_ratelimit = 0; +} + +static void x86_machine_class_init(ObjectClass *oc, void *data) +{ + MachineClass *mc = MACHINE_CLASS(oc); + X86MachineClass *x86mc = X86_MACHINE_CLASS(oc); + NMIClass *nc = NMI_CLASS(oc); + + mc->cpu_index_to_instance_props = x86_cpu_index_to_props; + mc->get_default_cpu_node_id = x86_get_default_cpu_node_id; + mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids; + x86mc->compat_apic_id_mode = false; + x86mc->save_tsc_khz = true; + x86mc->fwcfg_dma_enabled = true; + nc->nmi_monitor_handler = x86_nmi; + + object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto", + x86_machine_get_smm, x86_machine_set_smm, + NULL, NULL); + object_class_property_set_description(oc, X86_MACHINE_SMM, + "Enable SMM"); + + object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto", + x86_machine_get_acpi, x86_machine_set_acpi, + NULL, NULL); + object_class_property_set_description(oc, X86_MACHINE_ACPI, + "Enable ACPI"); + + object_class_property_add_str(oc, X86_MACHINE_OEM_ID, + x86_machine_get_oem_id, + x86_machine_set_oem_id); + object_class_property_set_description(oc, X86_MACHINE_OEM_ID, + "Override the default value of field OEMID " + "in ACPI table header." + "The string may be up to 6 bytes in size"); + + + object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID, + x86_machine_get_oem_table_id, + x86_machine_set_oem_table_id); + object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID, + "Override the default value of field OEM Table ID " + "in ACPI table header." + "The string may be up to 8 bytes in size"); + + object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t", + x86_machine_get_bus_lock_ratelimit, + x86_machine_set_bus_lock_ratelimit, NULL, NULL); + object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, + "Set the ratelimit for the bus locks acquired in VMs"); + + object_class_property_add(oc, "sgx-epc", "SgxEPC", + machine_get_sgx_epc, machine_set_sgx_epc, + NULL, NULL); + object_class_property_set_description(oc, "sgx-epc", + "SGX EPC device"); +} + +static const TypeInfo x86_machine_info = { + .name = TYPE_X86_MACHINE, + .parent = TYPE_MACHINE, + .abstract = true, + .instance_size = sizeof(X86MachineState), + .instance_init = x86_machine_initfn, + .class_size = sizeof(X86MachineClass), + .class_init = x86_machine_class_init, + .interfaces = (InterfaceInfo[]) { + { TYPE_NMI }, + { } + }, +}; + +static void x86_machine_register_types(void) +{ + type_register_static(&x86_machine_info); +} + +type_init(x86_machine_register_types) |