aboutsummaryrefslogtreecommitdiffstats
path: root/hw/intc/arm_gicv3_cpuif.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/intc/arm_gicv3_cpuif.c')
-rw-r--r--hw/intc/arm_gicv3_cpuif.c2700
1 files changed, 2700 insertions, 0 deletions
diff --git a/hw/intc/arm_gicv3_cpuif.c b/hw/intc/arm_gicv3_cpuif.c
new file mode 100644
index 000000000..85fc369e5
--- /dev/null
+++ b/hw/intc/arm_gicv3_cpuif.c
@@ -0,0 +1,2700 @@
+/*
+ * ARM Generic Interrupt Controller v3
+ *
+ * Copyright (c) 2016 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This code is licensed under the GPL, version 2 or (at your option)
+ * any later version.
+ */
+
+/* This file contains the code for the system register interface
+ * portions of the GICv3.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "qemu/log.h"
+#include "qemu/main-loop.h"
+#include "trace.h"
+#include "gicv3_internal.h"
+#include "hw/irq.h"
+#include "cpu.h"
+
+void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
+{
+ ARMCPU *arm_cpu = ARM_CPU(cpu);
+ CPUARMState *env = &arm_cpu->env;
+
+ env->gicv3state = (void *)s;
+};
+
+static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
+{
+ return env->gicv3state;
+}
+
+static bool gicv3_use_ns_bank(CPUARMState *env)
+{
+ /* Return true if we should use the NonSecure bank for a banked GIC
+ * CPU interface register. Note that this differs from the
+ * access_secure_reg() function because GICv3 banked registers are
+ * banked even for AArch64, unlike the other CPU system registers.
+ */
+ return !arm_is_secure_below_el3(env);
+}
+
+/* The minimum BPR for the virtual interface is a configurable property */
+static inline int icv_min_vbpr(GICv3CPUState *cs)
+{
+ return 7 - cs->vprebits;
+}
+
+/* Simple accessor functions for LR fields */
+static uint32_t ich_lr_vintid(uint64_t lr)
+{
+ return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
+}
+
+static uint32_t ich_lr_pintid(uint64_t lr)
+{
+ return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
+}
+
+static uint32_t ich_lr_prio(uint64_t lr)
+{
+ return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
+}
+
+static int ich_lr_state(uint64_t lr)
+{
+ return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
+}
+
+static bool icv_access(CPUARMState *env, int hcr_flags)
+{
+ /* Return true if this ICC_ register access should really be
+ * directed to an ICV_ access. hcr_flags is a mask of
+ * HCR_EL2 bits to check: we treat this as an ICV_ access
+ * if we are in NS EL1 and at least one of the specified
+ * HCR_EL2 bits is set.
+ *
+ * ICV registers fall into four categories:
+ * * access if NS EL1 and HCR_EL2.FMO == 1:
+ * all ICV regs with '0' in their name
+ * * access if NS EL1 and HCR_EL2.IMO == 1:
+ * all ICV regs with '1' in their name
+ * * access if NS EL1 and either IMO or FMO == 1:
+ * CTLR, DIR, PMR, RPR
+ */
+ uint64_t hcr_el2 = arm_hcr_el2_eff(env);
+ bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
+
+ return flagmatch && arm_current_el(env) == 1
+ && !arm_is_secure_below_el3(env);
+}
+
+static int read_vbpr(GICv3CPUState *cs, int grp)
+{
+ /* Read VBPR value out of the VMCR field (caller must handle
+ * VCBPR effects if required)
+ */
+ if (grp == GICV3_G0) {
+ return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
+ ICH_VMCR_EL2_VBPR0_LENGTH);
+ } else {
+ return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
+ ICH_VMCR_EL2_VBPR1_LENGTH);
+ }
+}
+
+static void write_vbpr(GICv3CPUState *cs, int grp, int value)
+{
+ /* Write new VBPR1 value, handling the "writing a value less than
+ * the minimum sets it to the minimum" semantics.
+ */
+ int min = icv_min_vbpr(cs);
+
+ if (grp != GICV3_G0) {
+ min++;
+ }
+
+ value = MAX(value, min);
+
+ if (grp == GICV3_G0) {
+ cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
+ ICH_VMCR_EL2_VBPR0_LENGTH, value);
+ } else {
+ cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
+ ICH_VMCR_EL2_VBPR1_LENGTH, value);
+ }
+}
+
+static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
+{
+ /* Return a mask word which clears the unimplemented priority bits
+ * from a priority value for a virtual interrupt. (Not to be confused
+ * with the group priority, whose mask depends on the value of VBPR
+ * for the interrupt group.)
+ */
+ return ~0U << (8 - cs->vpribits);
+}
+
+static int ich_highest_active_virt_prio(GICv3CPUState *cs)
+{
+ /* Calculate the current running priority based on the set bits
+ * in the ICH Active Priority Registers.
+ */
+ int i;
+ int aprmax = 1 << (cs->vprebits - 5);
+
+ assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
+
+ for (i = 0; i < aprmax; i++) {
+ uint32_t apr = cs->ich_apr[GICV3_G0][i] |
+ cs->ich_apr[GICV3_G1NS][i];
+
+ if (!apr) {
+ continue;
+ }
+ return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
+ }
+ /* No current active interrupts: return idle priority */
+ return 0xff;
+}
+
+static int hppvi_index(GICv3CPUState *cs)
+{
+ /* Return the list register index of the highest priority pending
+ * virtual interrupt, as per the HighestPriorityVirtualInterrupt
+ * pseudocode. If no pending virtual interrupts, return -1.
+ */
+ int idx = -1;
+ int i;
+ /* Note that a list register entry with a priority of 0xff will
+ * never be reported by this function; this is the architecturally
+ * correct behaviour.
+ */
+ int prio = 0xff;
+
+ if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
+ /* Both groups disabled, definitely nothing to do */
+ return idx;
+ }
+
+ for (i = 0; i < cs->num_list_regs; i++) {
+ uint64_t lr = cs->ich_lr_el2[i];
+ int thisprio;
+
+ if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
+ /* Not Pending */
+ continue;
+ }
+
+ /* Ignore interrupts if relevant group enable not set */
+ if (lr & ICH_LR_EL2_GROUP) {
+ if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
+ continue;
+ }
+ } else {
+ if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
+ continue;
+ }
+ }
+
+ thisprio = ich_lr_prio(lr);
+
+ if (thisprio < prio) {
+ prio = thisprio;
+ idx = i;
+ }
+ }
+
+ return idx;
+}
+
+static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
+{
+ /* Return a mask word which clears the subpriority bits from
+ * a priority value for a virtual interrupt in the specified group.
+ * This depends on the VBPR value.
+ * If using VBPR0 then:
+ * a BPR of 0 means the group priority bits are [7:1];
+ * a BPR of 1 means they are [7:2], and so on down to
+ * a BPR of 7 meaning no group priority bits at all.
+ * If using VBPR1 then:
+ * a BPR of 0 is impossible (the minimum value is 1)
+ * a BPR of 1 means the group priority bits are [7:1];
+ * a BPR of 2 means they are [7:2], and so on down to
+ * a BPR of 7 meaning the group priority is [7].
+ *
+ * Which BPR to use depends on the group of the interrupt and
+ * the current ICH_VMCR_EL2.VCBPR settings.
+ *
+ * This corresponds to the VGroupBits() pseudocode.
+ */
+ int bpr;
+
+ if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
+ group = GICV3_G0;
+ }
+
+ bpr = read_vbpr(cs, group);
+ if (group == GICV3_G1NS) {
+ assert(bpr > 0);
+ bpr--;
+ }
+
+ return ~0U << (bpr + 1);
+}
+
+static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
+{
+ /* Return true if we can signal this virtual interrupt defined by
+ * the given list register value; see the pseudocode functions
+ * CanSignalVirtualInterrupt and CanSignalVirtualInt.
+ * Compare also icc_hppi_can_preempt() which is the non-virtual
+ * equivalent of these checks.
+ */
+ int grp;
+ uint32_t mask, prio, rprio, vpmr;
+
+ if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
+ /* Virtual interface disabled */
+ return false;
+ }
+
+ /* We don't need to check that this LR is in Pending state because
+ * that has already been done in hppvi_index().
+ */
+
+ prio = ich_lr_prio(lr);
+ vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
+ ICH_VMCR_EL2_VPMR_LENGTH);
+
+ if (prio >= vpmr) {
+ /* Priority mask masks this interrupt */
+ return false;
+ }
+
+ rprio = ich_highest_active_virt_prio(cs);
+ if (rprio == 0xff) {
+ /* No running interrupt so we can preempt */
+ return true;
+ }
+
+ grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
+
+ mask = icv_gprio_mask(cs, grp);
+
+ /* We only preempt a running interrupt if the pending interrupt's
+ * group priority is sufficient (the subpriorities are not considered).
+ */
+ if ((prio & mask) < (rprio & mask)) {
+ return true;
+ }
+
+ return false;
+}
+
+static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
+ uint32_t *misr)
+{
+ /* Return a set of bits indicating the EOI maintenance interrupt status
+ * for each list register. The EOI maintenance interrupt status is
+ * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
+ * (see the GICv3 spec for the ICH_EISR_EL2 register).
+ * If misr is not NULL then we should also collect the information
+ * about the MISR.EOI, MISR.NP and MISR.U bits.
+ */
+ uint32_t value = 0;
+ int validcount = 0;
+ bool seenpending = false;
+ int i;
+
+ for (i = 0; i < cs->num_list_regs; i++) {
+ uint64_t lr = cs->ich_lr_el2[i];
+
+ if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
+ == ICH_LR_EL2_EOI) {
+ value |= (1 << i);
+ }
+ if ((lr & ICH_LR_EL2_STATE_MASK)) {
+ validcount++;
+ }
+ if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
+ seenpending = true;
+ }
+ }
+
+ if (misr) {
+ if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
+ *misr |= ICH_MISR_EL2_U;
+ }
+ if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
+ *misr |= ICH_MISR_EL2_NP;
+ }
+ if (value) {
+ *misr |= ICH_MISR_EL2_EOI;
+ }
+ }
+ return value;
+}
+
+static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
+{
+ /* Return a set of bits indicating the maintenance interrupt status
+ * (as seen in the ICH_MISR_EL2 register).
+ */
+ uint32_t value = 0;
+
+ /* Scan list registers and fill in the U, NP and EOI bits */
+ eoi_maintenance_interrupt_state(cs, &value);
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
+ (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
+ value |= ICH_MISR_EL2_LRENP;
+ }
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
+ (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
+ value |= ICH_MISR_EL2_VGRP0E;
+ }
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
+ !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
+ value |= ICH_MISR_EL2_VGRP0D;
+ }
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
+ (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
+ value |= ICH_MISR_EL2_VGRP1E;
+ }
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
+ !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
+ value |= ICH_MISR_EL2_VGRP1D;
+ }
+
+ return value;
+}
+
+static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
+{
+ /* Tell the CPU about any pending virtual interrupts or
+ * maintenance interrupts, following a change to the state
+ * of the CPU interface relevant to virtual interrupts.
+ *
+ * CAUTION: this function will call qemu_set_irq() on the
+ * CPU maintenance IRQ line, which is typically wired up
+ * to the GIC as a per-CPU interrupt. This means that it
+ * will recursively call back into the GIC code via
+ * gicv3_redist_set_irq() and thus into the CPU interface code's
+ * gicv3_cpuif_update(). It is therefore important that this
+ * function is only called as the final action of a CPU interface
+ * register write implementation, after all the GIC state
+ * fields have been updated. gicv3_cpuif_update() also must
+ * not cause this function to be called, but that happens
+ * naturally as a result of there being no architectural
+ * linkage between the physical and virtual GIC logic.
+ */
+ int idx;
+ int irqlevel = 0;
+ int fiqlevel = 0;
+ int maintlevel = 0;
+ ARMCPU *cpu = ARM_CPU(cs->cpu);
+
+ idx = hppvi_index(cs);
+ trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
+ if (idx >= 0) {
+ uint64_t lr = cs->ich_lr_el2[idx];
+
+ if (icv_hppi_can_preempt(cs, lr)) {
+ /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
+ if (lr & ICH_LR_EL2_GROUP) {
+ irqlevel = 1;
+ } else {
+ fiqlevel = 1;
+ }
+ }
+ }
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
+ maintenance_interrupt_state(cs) != 0) {
+ maintlevel = 1;
+ }
+
+ trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
+ irqlevel, maintlevel);
+
+ qemu_set_irq(cs->parent_vfiq, fiqlevel);
+ qemu_set_irq(cs->parent_virq, irqlevel);
+ qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
+}
+
+static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int regno = ri->opc2 & 3;
+ int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
+ uint64_t value = cs->ich_apr[grp][regno];
+
+ trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int regno = ri->opc2 & 3;
+ int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
+
+ trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
+
+ cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
+
+ gicv3_cpuif_virt_update(cs);
+ return;
+}
+
+static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
+ uint64_t bpr;
+ bool satinc = false;
+
+ if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
+ /* reads return bpr0 + 1 saturated to 7, writes ignored */
+ grp = GICV3_G0;
+ satinc = true;
+ }
+
+ bpr = read_vbpr(cs, grp);
+
+ if (satinc) {
+ bpr++;
+ bpr = MIN(bpr, 7);
+ }
+
+ trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
+
+ return bpr;
+}
+
+static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
+
+ trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
+ gicv3_redist_affid(cs), value);
+
+ if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
+ /* reads return bpr0 + 1 saturated to 7, writes ignored */
+ return;
+ }
+
+ write_vbpr(cs, grp, value);
+
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
+ ICH_VMCR_EL2_VPMR_LENGTH);
+
+ trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
+
+ value &= icv_fullprio_mask(cs);
+
+ cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
+ ICH_VMCR_EL2_VPMR_LENGTH, value);
+
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int enbit;
+ uint64_t value;
+
+ enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
+ value = extract64(cs->ich_vmcr_el2, enbit, 1);
+
+ trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
+ gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int enbit;
+
+ trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
+ gicv3_redist_affid(cs), value);
+
+ enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
+
+ cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
+ * should match the ones reported in ich_vtr_read().
+ */
+ value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
+ (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
+
+ if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
+ value |= ICC_CTLR_EL1_EOIMODE;
+ }
+
+ if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
+ value |= ICC_CTLR_EL1_CBPR;
+ }
+
+ trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
+
+ cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
+ 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
+ cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
+ 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
+
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int prio = ich_highest_active_virt_prio(cs);
+
+ trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
+ return prio;
+}
+
+static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
+ int idx = hppvi_index(cs);
+ uint64_t value = INTID_SPURIOUS;
+
+ if (idx >= 0) {
+ uint64_t lr = cs->ich_lr_el2[idx];
+ int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
+
+ if (grp == thisgrp) {
+ value = ich_lr_vintid(lr);
+ }
+ }
+
+ trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
+{
+ /* Activate the interrupt in the specified list register
+ * by moving it from Pending to Active state, and update the
+ * Active Priority Registers.
+ */
+ uint32_t mask = icv_gprio_mask(cs, grp);
+ int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
+ int aprbit = prio >> (8 - cs->vprebits);
+ int regno = aprbit / 32;
+ int regbit = aprbit % 32;
+
+ cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
+ cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
+ cs->ich_apr[grp][regno] |= (1 << regbit);
+}
+
+static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
+ int idx = hppvi_index(cs);
+ uint64_t intid = INTID_SPURIOUS;
+
+ if (idx >= 0) {
+ uint64_t lr = cs->ich_lr_el2[idx];
+ int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
+
+ if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
+ intid = ich_lr_vintid(lr);
+ if (!gicv3_intid_is_special(intid)) {
+ icv_activate_irq(cs, idx, grp);
+ } else {
+ /* Interrupt goes from Pending to Invalid */
+ cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
+ /* We will now return the (bogus) ID from the list register,
+ * as per the pseudocode.
+ */
+ }
+ }
+ }
+
+ trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
+ gicv3_redist_affid(cs), intid);
+
+ gicv3_cpuif_virt_update(cs);
+
+ return intid;
+}
+
+static int icc_highest_active_prio(GICv3CPUState *cs)
+{
+ /* Calculate the current running priority based on the set bits
+ * in the Active Priority Registers.
+ */
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
+ uint32_t apr = cs->icc_apr[GICV3_G0][i] |
+ cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
+
+ if (!apr) {
+ continue;
+ }
+ return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
+ }
+ /* No current active interrupts: return idle priority */
+ return 0xff;
+}
+
+static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
+{
+ /* Return a mask word which clears the subpriority bits from
+ * a priority value for an interrupt in the specified group.
+ * This depends on the BPR value. For CBPR0 (S or NS):
+ * a BPR of 0 means the group priority bits are [7:1];
+ * a BPR of 1 means they are [7:2], and so on down to
+ * a BPR of 7 meaning no group priority bits at all.
+ * For CBPR1 NS:
+ * a BPR of 0 is impossible (the minimum value is 1)
+ * a BPR of 1 means the group priority bits are [7:1];
+ * a BPR of 2 means they are [7:2], and so on down to
+ * a BPR of 7 meaning the group priority is [7].
+ *
+ * Which BPR to use depends on the group of the interrupt and
+ * the current ICC_CTLR.CBPR settings.
+ *
+ * This corresponds to the GroupBits() pseudocode.
+ */
+ int bpr;
+
+ if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
+ (group == GICV3_G1NS &&
+ cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
+ group = GICV3_G0;
+ }
+
+ bpr = cs->icc_bpr[group] & 7;
+
+ if (group == GICV3_G1NS) {
+ assert(bpr > 0);
+ bpr--;
+ }
+
+ return ~0U << (bpr + 1);
+}
+
+static bool icc_no_enabled_hppi(GICv3CPUState *cs)
+{
+ /* Return true if there is no pending interrupt, or the
+ * highest priority pending interrupt is in a group which has been
+ * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
+ */
+ return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
+}
+
+static bool icc_hppi_can_preempt(GICv3CPUState *cs)
+{
+ /* Return true if we have a pending interrupt of sufficient
+ * priority to preempt.
+ */
+ int rprio;
+ uint32_t mask;
+
+ if (icc_no_enabled_hppi(cs)) {
+ return false;
+ }
+
+ if (cs->hppi.prio >= cs->icc_pmr_el1) {
+ /* Priority mask masks this interrupt */
+ return false;
+ }
+
+ rprio = icc_highest_active_prio(cs);
+ if (rprio == 0xff) {
+ /* No currently running interrupt so we can preempt */
+ return true;
+ }
+
+ mask = icc_gprio_mask(cs, cs->hppi.grp);
+
+ /* We only preempt a running interrupt if the pending interrupt's
+ * group priority is sufficient (the subpriorities are not considered).
+ */
+ if ((cs->hppi.prio & mask) < (rprio & mask)) {
+ return true;
+ }
+
+ return false;
+}
+
+void gicv3_cpuif_update(GICv3CPUState *cs)
+{
+ /* Tell the CPU about its highest priority pending interrupt */
+ int irqlevel = 0;
+ int fiqlevel = 0;
+ ARMCPU *cpu = ARM_CPU(cs->cpu);
+ CPUARMState *env = &cpu->env;
+
+ g_assert(qemu_mutex_iothread_locked());
+
+ trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
+ cs->hppi.grp, cs->hppi.prio);
+
+ if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
+ /* If a Security-enabled GIC sends a G1S interrupt to a
+ * Security-disabled CPU, we must treat it as if it were G0.
+ */
+ cs->hppi.grp = GICV3_G0;
+ }
+
+ if (icc_hppi_can_preempt(cs)) {
+ /* We have an interrupt: should we signal it as IRQ or FIQ?
+ * This is described in the GICv3 spec section 4.6.2.
+ */
+ bool isfiq;
+
+ switch (cs->hppi.grp) {
+ case GICV3_G0:
+ isfiq = true;
+ break;
+ case GICV3_G1:
+ isfiq = (!arm_is_secure(env) ||
+ (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
+ break;
+ case GICV3_G1NS:
+ isfiq = arm_is_secure(env);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (isfiq) {
+ fiqlevel = 1;
+ } else {
+ irqlevel = 1;
+ }
+ }
+
+ trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
+
+ qemu_set_irq(cs->parent_fiq, fiqlevel);
+ qemu_set_irq(cs->parent_irq, irqlevel);
+}
+
+static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint32_t value = cs->icc_pmr_el1;
+
+ if (icv_access(env, HCR_FMO | HCR_IMO)) {
+ return icv_pmr_read(env, ri);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
+ (env->cp15.scr_el3 & SCR_FIQ)) {
+ /* NS access and Group 0 is inaccessible to NS: return the
+ * NS view of the current priority
+ */
+ if ((value & 0x80) == 0) {
+ /* Secure priorities not visible to NS */
+ value = 0;
+ } else if (value != 0xff) {
+ value = (value << 1) & 0xff;
+ }
+ }
+
+ trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
+
+ return value;
+}
+
+static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ if (icv_access(env, HCR_FMO | HCR_IMO)) {
+ return icv_pmr_write(env, ri, value);
+ }
+
+ trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
+
+ value &= 0xff;
+
+ if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
+ (env->cp15.scr_el3 & SCR_FIQ)) {
+ /* NS access and Group 0 is inaccessible to NS: return the
+ * NS view of the current priority
+ */
+ if (!(cs->icc_pmr_el1 & 0x80)) {
+ /* Current PMR in the secure range, don't allow NS to change it */
+ return;
+ }
+ value = (value >> 1) | 0x80;
+ }
+ cs->icc_pmr_el1 = value;
+ gicv3_cpuif_update(cs);
+}
+
+static void icc_activate_irq(GICv3CPUState *cs, int irq)
+{
+ /* Move the interrupt from the Pending state to Active, and update
+ * the Active Priority Registers
+ */
+ uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
+ int prio = cs->hppi.prio & mask;
+ int aprbit = prio >> 1;
+ int regno = aprbit / 32;
+ int regbit = aprbit % 32;
+
+ cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
+
+ if (irq < GIC_INTERNAL) {
+ cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
+ cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
+ gicv3_redist_update(cs);
+ } else if (irq < GICV3_LPI_INTID_START) {
+ gicv3_gicd_active_set(cs->gic, irq);
+ gicv3_gicd_pending_clear(cs->gic, irq);
+ gicv3_update(cs->gic, irq, 1);
+ } else {
+ gicv3_redist_lpi_pending(cs, irq, 0);
+ }
+}
+
+static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
+{
+ /* Return the highest priority pending interrupt register value
+ * for group 0.
+ */
+ bool irq_is_secure;
+
+ if (cs->hppi.prio == 0xff) {
+ return INTID_SPURIOUS;
+ }
+
+ /* Check whether we can return the interrupt or if we should return
+ * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
+ * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
+ * is always zero.)
+ */
+ irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
+ (cs->hppi.grp != GICV3_G1NS));
+
+ if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
+ return INTID_SPURIOUS;
+ }
+ if (irq_is_secure && !arm_is_secure(env)) {
+ /* Secure interrupts not visible to Nonsecure */
+ return INTID_SPURIOUS;
+ }
+
+ if (cs->hppi.grp != GICV3_G0) {
+ /* Indicate to EL3 that there's a Group 1 interrupt for the other
+ * state pending.
+ */
+ return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
+ }
+
+ return cs->hppi.irq;
+}
+
+static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
+{
+ /* Return the highest priority pending interrupt register value
+ * for group 1.
+ */
+ bool irq_is_secure;
+
+ if (cs->hppi.prio == 0xff) {
+ return INTID_SPURIOUS;
+ }
+
+ /* Check whether we can return the interrupt or if we should return
+ * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
+ * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
+ * is always zero.)
+ */
+ irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
+ (cs->hppi.grp != GICV3_G1NS));
+
+ if (cs->hppi.grp == GICV3_G0) {
+ /* Group 0 interrupts not visible via HPPIR1 */
+ return INTID_SPURIOUS;
+ }
+ if (irq_is_secure) {
+ if (!arm_is_secure(env)) {
+ /* Secure interrupts not visible in Non-secure */
+ return INTID_SPURIOUS;
+ }
+ } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
+ /* Group 1 non-secure interrupts not visible in Secure EL1 */
+ return INTID_SPURIOUS;
+ }
+
+ return cs->hppi.irq;
+}
+
+static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t intid;
+
+ if (icv_access(env, HCR_FMO)) {
+ return icv_iar_read(env, ri);
+ }
+
+ if (!icc_hppi_can_preempt(cs)) {
+ intid = INTID_SPURIOUS;
+ } else {
+ intid = icc_hppir0_value(cs, env);
+ }
+
+ if (!gicv3_intid_is_special(intid)) {
+ icc_activate_irq(cs, intid);
+ }
+
+ trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
+ return intid;
+}
+
+static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t intid;
+
+ if (icv_access(env, HCR_IMO)) {
+ return icv_iar_read(env, ri);
+ }
+
+ if (!icc_hppi_can_preempt(cs)) {
+ intid = INTID_SPURIOUS;
+ } else {
+ intid = icc_hppir1_value(cs, env);
+ }
+
+ if (!gicv3_intid_is_special(intid)) {
+ icc_activate_irq(cs, intid);
+ }
+
+ trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
+ return intid;
+}
+
+static void icc_drop_prio(GICv3CPUState *cs, int grp)
+{
+ /* Drop the priority of the currently active interrupt in
+ * the specified group.
+ *
+ * Note that we can guarantee (because of the requirement to nest
+ * ICC_IAR reads [which activate an interrupt and raise priority]
+ * with ICC_EOIR writes [which drop the priority for the interrupt])
+ * that the interrupt we're being called for is the highest priority
+ * active interrupt, meaning that it has the lowest set bit in the
+ * APR registers.
+ *
+ * If the guest does not honour the ordering constraints then the
+ * behaviour of the GIC is UNPREDICTABLE, which for us means that
+ * the values of the APR registers might become incorrect and the
+ * running priority will be wrong, so interrupts that should preempt
+ * might not do so, and interrupts that should not preempt might do so.
+ */
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
+ uint64_t *papr = &cs->icc_apr[grp][i];
+
+ if (!*papr) {
+ continue;
+ }
+ /* Clear the lowest set bit */
+ *papr &= *papr - 1;
+ break;
+ }
+
+ /* running priority change means we need an update for this cpu i/f */
+ gicv3_cpuif_update(cs);
+}
+
+static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
+{
+ /* Return true if we should split priority drop and interrupt
+ * deactivation, ie whether the relevant EOIMode bit is set.
+ */
+ if (arm_is_el3_or_mon(env)) {
+ return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
+ }
+ if (arm_is_secure_below_el3(env)) {
+ return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
+ } else {
+ return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
+ }
+}
+
+static int icc_highest_active_group(GICv3CPUState *cs)
+{
+ /* Return the group with the highest priority active interrupt.
+ * We can do this by just comparing the APRs to see which one
+ * has the lowest set bit.
+ * (If more than one group is active at the same priority then
+ * we're in UNPREDICTABLE territory.)
+ */
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
+ int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
+ int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
+ int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
+
+ if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
+ return GICV3_G1NS;
+ }
+ if (g1ctz < g0ctz) {
+ return GICV3_G1;
+ }
+ if (g0ctz < 32) {
+ return GICV3_G0;
+ }
+ }
+ /* No set active bits? UNPREDICTABLE; return -1 so the caller
+ * ignores the spurious EOI attempt.
+ */
+ return -1;
+}
+
+static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
+{
+ if (irq < GIC_INTERNAL) {
+ cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
+ gicv3_redist_update(cs);
+ } else {
+ gicv3_gicd_active_clear(cs->gic, irq);
+ gicv3_update(cs->gic, irq, 1);
+ }
+}
+
+static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
+{
+ /* Return true if we should split priority drop and interrupt
+ * deactivation, ie whether the virtual EOIMode bit is set.
+ */
+ return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
+}
+
+static int icv_find_active(GICv3CPUState *cs, int irq)
+{
+ /* Given an interrupt number for an active interrupt, return the index
+ * of the corresponding list register, or -1 if there is no match.
+ * Corresponds to FindActiveVirtualInterrupt pseudocode.
+ */
+ int i;
+
+ for (i = 0; i < cs->num_list_regs; i++) {
+ uint64_t lr = cs->ich_lr_el2[i];
+
+ if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
+ return i;
+ }
+ }
+
+ return -1;
+}
+
+static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
+{
+ /* Deactivate the interrupt in the specified list register index */
+ uint64_t lr = cs->ich_lr_el2[idx];
+
+ if (lr & ICH_LR_EL2_HW) {
+ /* Deactivate the associated physical interrupt */
+ int pirq = ich_lr_pintid(lr);
+
+ if (pirq < INTID_SECURE) {
+ icc_deactivate_irq(cs, pirq);
+ }
+ }
+
+ /* Clear the 'active' part of the state, so ActivePending->Pending
+ * and Active->Invalid.
+ */
+ lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
+ cs->ich_lr_el2[idx] = lr;
+}
+
+static void icv_increment_eoicount(GICv3CPUState *cs)
+{
+ /* Increment the EOICOUNT field in ICH_HCR_EL2 */
+ int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
+ ICH_HCR_EL2_EOICOUNT_LENGTH);
+
+ cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
+ ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
+}
+
+static int icv_drop_prio(GICv3CPUState *cs)
+{
+ /* Drop the priority of the currently active virtual interrupt
+ * (favouring group 0 if there is a set active bit at
+ * the same priority for both group 0 and group 1).
+ * Return the priority value for the bit we just cleared,
+ * or 0xff if no bits were set in the AP registers at all.
+ * Note that though the ich_apr[] are uint64_t only the low
+ * 32 bits are actually relevant.
+ */
+ int i;
+ int aprmax = 1 << (cs->vprebits - 5);
+
+ assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
+
+ for (i = 0; i < aprmax; i++) {
+ uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
+ uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
+ int apr0count, apr1count;
+
+ if (!*papr0 && !*papr1) {
+ continue;
+ }
+
+ /* We can't just use the bit-twiddling hack icc_drop_prio() does
+ * because we need to return the bit number we cleared so
+ * it can be compared against the list register's priority field.
+ */
+ apr0count = ctz32(*papr0);
+ apr1count = ctz32(*papr1);
+
+ if (apr0count <= apr1count) {
+ *papr0 &= *papr0 - 1;
+ return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
+ } else {
+ *papr1 &= *papr1 - 1;
+ return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
+ }
+ }
+ return 0xff;
+}
+
+static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Deactivate interrupt */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int idx;
+ int irq = value & 0xffffff;
+
+ trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
+
+ if (irq >= GICV3_MAXIRQ) {
+ /* Also catches special interrupt numbers and LPIs */
+ return;
+ }
+
+ if (!icv_eoi_split(env, cs)) {
+ return;
+ }
+
+ idx = icv_find_active(cs, irq);
+
+ if (idx < 0) {
+ /* No list register matching this, so increment the EOI count
+ * (might trigger a maintenance interrupt)
+ */
+ icv_increment_eoicount(cs);
+ } else {
+ icv_deactivate_irq(cs, idx);
+ }
+
+ gicv3_cpuif_virt_update(cs);
+}
+
+static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* End of Interrupt */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int irq = value & 0xffffff;
+ int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
+ int idx, dropprio;
+
+ trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
+ gicv3_redist_affid(cs), value);
+
+ if (gicv3_intid_is_special(irq)) {
+ return;
+ }
+
+ /* We implement the IMPDEF choice of "drop priority before doing
+ * error checks" (because that lets us avoid scanning the AP
+ * registers twice).
+ */
+ dropprio = icv_drop_prio(cs);
+ if (dropprio == 0xff) {
+ /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
+ * whether the list registers are checked in this
+ * situation; we choose not to.
+ */
+ return;
+ }
+
+ idx = icv_find_active(cs, irq);
+
+ if (idx < 0) {
+ /* No valid list register corresponding to EOI ID */
+ icv_increment_eoicount(cs);
+ } else {
+ uint64_t lr = cs->ich_lr_el2[idx];
+ int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
+ int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
+
+ if (thisgrp == grp && lr_gprio == dropprio) {
+ if (!icv_eoi_split(env, cs)) {
+ /* Priority drop and deactivate not split: deactivate irq now */
+ icv_deactivate_irq(cs, idx);
+ }
+ }
+ }
+
+ gicv3_cpuif_virt_update(cs);
+}
+
+static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* End of Interrupt */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int irq = value & 0xffffff;
+ int grp;
+ bool is_eoir0 = ri->crm == 8;
+
+ if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
+ icv_eoir_write(env, ri, value);
+ return;
+ }
+
+ trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
+ gicv3_redist_affid(cs), value);
+
+ if ((irq >= cs->gic->num_irq) &&
+ !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
+ /* This handles two cases:
+ * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
+ * to the GICC_EOIR, the GIC ignores that write.
+ * 2. If software writes the number of a non-existent interrupt
+ * this must be a subcase of "value written does not match the last
+ * valid interrupt value read from the Interrupt Acknowledge
+ * register" and so this is UNPREDICTABLE. We choose to ignore it.
+ */
+ return;
+ }
+
+ grp = icc_highest_active_group(cs);
+ switch (grp) {
+ case GICV3_G0:
+ if (!is_eoir0) {
+ return;
+ }
+ if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
+ && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
+ return;
+ }
+ break;
+ case GICV3_G1:
+ if (is_eoir0) {
+ return;
+ }
+ if (!arm_is_secure(env)) {
+ return;
+ }
+ break;
+ case GICV3_G1NS:
+ if (is_eoir0) {
+ return;
+ }
+ if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
+ return;
+ }
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: IRQ %d isn't active\n", __func__, irq);
+ return;
+ }
+
+ icc_drop_prio(cs, grp);
+
+ if (!icc_eoi_split(env, cs)) {
+ /* Priority drop and deactivate not split: deactivate irq now */
+ icc_deactivate_irq(cs, irq);
+ }
+}
+
+static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ if (icv_access(env, HCR_FMO)) {
+ return icv_hppir_read(env, ri);
+ }
+
+ value = icc_hppir0_value(cs, env);
+ trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ if (icv_access(env, HCR_IMO)) {
+ return icv_hppir_read(env, ri);
+ }
+
+ value = icc_hppir1_value(cs, env);
+ trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
+ bool satinc = false;
+ uint64_t bpr;
+
+ if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
+ return icv_bpr_read(env, ri);
+ }
+
+ if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
+ grp = GICV3_G1NS;
+ }
+
+ if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
+ (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
+ /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
+ * modify BPR0
+ */
+ grp = GICV3_G0;
+ }
+
+ if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
+ (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
+ /* reads return bpr0 + 1 sat to 7, writes ignored */
+ grp = GICV3_G0;
+ satinc = true;
+ }
+
+ bpr = cs->icc_bpr[grp];
+ if (satinc) {
+ bpr++;
+ bpr = MIN(bpr, 7);
+ }
+
+ trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
+
+ return bpr;
+}
+
+static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
+ uint64_t minval;
+
+ if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
+ icv_bpr_write(env, ri, value);
+ return;
+ }
+
+ trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
+ gicv3_redist_affid(cs), value);
+
+ if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
+ grp = GICV3_G1NS;
+ }
+
+ if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
+ (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
+ /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
+ * modify BPR0
+ */
+ grp = GICV3_G0;
+ }
+
+ if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
+ (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
+ /* reads return bpr0 + 1 sat to 7, writes ignored */
+ return;
+ }
+
+ minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
+ if (value < minval) {
+ value = minval;
+ }
+
+ cs->icc_bpr[grp] = value & 7;
+ gicv3_cpuif_update(cs);
+}
+
+static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ int regno = ri->opc2 & 3;
+ int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
+
+ if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
+ return icv_ap_read(env, ri);
+ }
+
+ if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
+ grp = GICV3_G1NS;
+ }
+
+ value = cs->icc_apr[grp][regno];
+
+ trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ int regno = ri->opc2 & 3;
+ int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
+
+ if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
+ icv_ap_write(env, ri, value);
+ return;
+ }
+
+ trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
+
+ if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
+ grp = GICV3_G1NS;
+ }
+
+ /* It's not possible to claim that a Non-secure interrupt is active
+ * at a priority outside the Non-secure range (128..255), since this
+ * would otherwise allow malicious NS code to block delivery of S interrupts
+ * by writing a bad value to these registers.
+ */
+ if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
+ return;
+ }
+
+ cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
+ gicv3_cpuif_update(cs);
+}
+
+static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Deactivate interrupt */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int irq = value & 0xffffff;
+ bool irq_is_secure, single_sec_state, irq_is_grp0;
+ bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
+
+ if (icv_access(env, HCR_FMO | HCR_IMO)) {
+ icv_dir_write(env, ri, value);
+ return;
+ }
+
+ trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
+
+ if (irq >= cs->gic->num_irq) {
+ /* Also catches special interrupt numbers and LPIs */
+ return;
+ }
+
+ if (!icc_eoi_split(env, cs)) {
+ return;
+ }
+
+ int grp = gicv3_irq_group(cs->gic, cs, irq);
+
+ single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
+ irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
+ irq_is_grp0 = grp == GICV3_G0;
+
+ /* Check whether we're allowed to deactivate this interrupt based
+ * on its group and the current CPU state.
+ * These checks are laid out to correspond to the spec's pseudocode.
+ */
+ route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
+ route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
+ /* No need to include !IsSecure in route_*_to_el2 as it's only
+ * tested in cases where we know !IsSecure is true.
+ */
+ uint64_t hcr_el2 = arm_hcr_el2_eff(env);
+ route_fiq_to_el2 = hcr_el2 & HCR_FMO;
+ route_irq_to_el2 = hcr_el2 & HCR_IMO;
+
+ switch (arm_current_el(env)) {
+ case 3:
+ break;
+ case 2:
+ if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
+ break;
+ }
+ if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
+ break;
+ }
+ return;
+ case 1:
+ if (!arm_is_secure_below_el3(env)) {
+ if (single_sec_state && irq_is_grp0 &&
+ !route_fiq_to_el3 && !route_fiq_to_el2) {
+ break;
+ }
+ if (!irq_is_secure && !irq_is_grp0 &&
+ !route_irq_to_el3 && !route_irq_to_el2) {
+ break;
+ }
+ } else {
+ if (irq_is_grp0 && !route_fiq_to_el3) {
+ break;
+ }
+ if (!irq_is_grp0 &&
+ (!irq_is_secure || !single_sec_state) &&
+ !route_irq_to_el3) {
+ break;
+ }
+ }
+ return;
+ default:
+ g_assert_not_reached();
+ }
+
+ icc_deactivate_irq(cs, irq);
+}
+
+static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int prio;
+
+ if (icv_access(env, HCR_FMO | HCR_IMO)) {
+ return icv_rpr_read(env, ri);
+ }
+
+ prio = icc_highest_active_prio(cs);
+
+ if (arm_feature(env, ARM_FEATURE_EL3) &&
+ !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
+ /* NS GIC access and Group 0 is inaccessible to NS */
+ if ((prio & 0x80) == 0) {
+ /* NS mustn't see priorities in the Secure half of the range */
+ prio = 0;
+ } else if (prio != 0xff) {
+ /* Non-idle priority: show the Non-secure view of it */
+ prio = (prio << 1) & 0xff;
+ }
+ }
+
+ trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
+ return prio;
+}
+
+static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
+ uint64_t value, int grp, bool ns)
+{
+ GICv3State *s = cs->gic;
+
+ /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
+ uint64_t aff = extract64(value, 48, 8) << 16 |
+ extract64(value, 32, 8) << 8 |
+ extract64(value, 16, 8);
+ uint32_t targetlist = extract64(value, 0, 16);
+ uint32_t irq = extract64(value, 24, 4);
+ bool irm = extract64(value, 40, 1);
+ int i;
+
+ if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
+ /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
+ * interrupts as Group 0 interrupts and must send Secure Group 0
+ * interrupts to the target CPUs.
+ */
+ grp = GICV3_G0;
+ }
+
+ trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
+ aff, targetlist);
+
+ for (i = 0; i < s->num_cpu; i++) {
+ GICv3CPUState *ocs = &s->cpu[i];
+
+ if (irm) {
+ /* IRM == 1 : route to all CPUs except self */
+ if (cs == ocs) {
+ continue;
+ }
+ } else {
+ /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
+ * where the corresponding bit is set in targetlist
+ */
+ int aff0;
+
+ if (ocs->gicr_typer >> 40 != aff) {
+ continue;
+ }
+ aff0 = extract64(ocs->gicr_typer, 32, 8);
+ if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
+ continue;
+ }
+ }
+
+ /* The redistributor will check against its own GICR_NSACR as needed */
+ gicv3_redist_send_sgi(ocs, grp, irq, ns);
+ }
+}
+
+static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Generate Secure Group 0 SGI. */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ bool ns = !arm_is_secure(env);
+
+ icc_generate_sgi(env, cs, value, GICV3_G0, ns);
+}
+
+static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Generate Group 1 SGI for the current Security state */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp;
+ bool ns = !arm_is_secure(env);
+
+ grp = ns ? GICV3_G1NS : GICV3_G1;
+ icc_generate_sgi(env, cs, value, grp, ns);
+}
+
+static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Generate Group 1 SGI for the Security state that is not
+ * the current state
+ */
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp;
+ bool ns = !arm_is_secure(env);
+
+ grp = ns ? GICV3_G1 : GICV3_G1NS;
+ icc_generate_sgi(env, cs, value, grp, ns);
+}
+
+static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
+ uint64_t value;
+
+ if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
+ return icv_igrpen_read(env, ri);
+ }
+
+ if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
+ grp = GICV3_G1NS;
+ }
+
+ value = cs->icc_igrpen[grp];
+ trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
+ gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
+
+ if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
+ icv_igrpen_write(env, ri, value);
+ return;
+ }
+
+ trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
+ gicv3_redist_affid(cs), value);
+
+ if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
+ grp = GICV3_G1NS;
+ }
+
+ cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
+ gicv3_cpuif_update(cs);
+}
+
+static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
+ value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
+ trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
+
+ /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
+ cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
+ cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
+ gicv3_cpuif_update(cs);
+}
+
+static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
+ uint64_t value;
+
+ if (icv_access(env, HCR_FMO | HCR_IMO)) {
+ return icv_ctlr_read(env, ri);
+ }
+
+ value = cs->icc_ctlr_el1[bank];
+ trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
+ uint64_t mask;
+
+ if (icv_access(env, HCR_FMO | HCR_IMO)) {
+ icv_ctlr_write(env, ri, value);
+ return;
+ }
+
+ trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
+
+ /* Only CBPR and EOIMODE can be RW;
+ * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
+ * the asseciated priority-based routing of them);
+ * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3) &&
+ ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
+ mask = ICC_CTLR_EL1_EOIMODE;
+ } else {
+ mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
+ }
+
+ cs->icc_ctlr_el1[bank] &= ~mask;
+ cs->icc_ctlr_el1[bank] |= (value & mask);
+ gicv3_cpuif_update(cs);
+}
+
+
+static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ value = cs->icc_ctlr_el3;
+ if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
+ value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
+ }
+ if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
+ value |= ICC_CTLR_EL3_CBPR_EL1NS;
+ }
+ if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
+ value |= ICC_CTLR_EL3_EOIMODE_EL1S;
+ }
+ if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
+ value |= ICC_CTLR_EL3_CBPR_EL1S;
+ }
+
+ trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t mask;
+
+ trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
+
+ /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
+ cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
+ if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
+ cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
+ }
+ if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
+ cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
+ }
+
+ cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
+ if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
+ cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
+ }
+ if (value & ICC_CTLR_EL3_CBPR_EL1S) {
+ cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
+ }
+
+ /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
+ mask = ICC_CTLR_EL3_EOIMODE_EL3;
+
+ cs->icc_ctlr_el3 &= ~mask;
+ cs->icc_ctlr_el3 |= (value & mask);
+ gicv3_cpuif_update(cs);
+}
+
+static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ CPAccessResult r = CP_ACCESS_OK;
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int el = arm_current_el(env);
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
+ el == 1 && !arm_is_secure_below_el3(env)) {
+ /* Takes priority over a possible EL3 trap */
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
+ switch (el) {
+ case 1:
+ /* Note that arm_hcr_el2_eff takes secure state into account. */
+ if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
+ r = CP_ACCESS_TRAP_EL3;
+ }
+ break;
+ case 2:
+ r = CP_ACCESS_TRAP_EL3;
+ break;
+ case 3:
+ if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
+ r = CP_ACCESS_TRAP_EL3;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
+ r = CP_ACCESS_TRAP;
+ }
+ return r;
+}
+
+static CPAccessResult gicv3_dir_access(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
+ arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
+ /* Takes priority over a possible EL3 trap */
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return gicv3_irqfiq_access(env, ri, isread);
+}
+
+static CPAccessResult gicv3_sgi_access(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ if (arm_current_el(env) == 1 &&
+ (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
+ /* Takes priority over a possible EL3 trap */
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ return gicv3_irqfiq_access(env, ri, isread);
+}
+
+static CPAccessResult gicv3_fiq_access(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ CPAccessResult r = CP_ACCESS_OK;
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int el = arm_current_el(env);
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
+ el == 1 && !arm_is_secure_below_el3(env)) {
+ /* Takes priority over a possible EL3 trap */
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ if (env->cp15.scr_el3 & SCR_FIQ) {
+ switch (el) {
+ case 1:
+ if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
+ r = CP_ACCESS_TRAP_EL3;
+ }
+ break;
+ case 2:
+ r = CP_ACCESS_TRAP_EL3;
+ break;
+ case 3:
+ if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
+ r = CP_ACCESS_TRAP_EL3;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
+ r = CP_ACCESS_TRAP;
+ }
+ return r;
+}
+
+static CPAccessResult gicv3_irq_access(CPUARMState *env,
+ const ARMCPRegInfo *ri, bool isread)
+{
+ CPAccessResult r = CP_ACCESS_OK;
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int el = arm_current_el(env);
+
+ if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
+ el == 1 && !arm_is_secure_below_el3(env)) {
+ /* Takes priority over a possible EL3 trap */
+ return CP_ACCESS_TRAP_EL2;
+ }
+
+ if (env->cp15.scr_el3 & SCR_IRQ) {
+ switch (el) {
+ case 1:
+ if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
+ r = CP_ACCESS_TRAP_EL3;
+ }
+ break;
+ case 2:
+ r = CP_ACCESS_TRAP_EL3;
+ break;
+ case 3:
+ if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
+ r = CP_ACCESS_TRAP_EL3;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
+ r = CP_ACCESS_TRAP;
+ }
+ return r;
+}
+
+static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
+ (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
+ (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
+ cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
+ (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
+ (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
+ cs->icc_pmr_el1 = 0;
+ cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
+ cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
+ cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
+ memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
+ memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
+ cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
+ (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
+ (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
+
+ memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
+ cs->ich_hcr_el2 = 0;
+ memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
+ cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
+ ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
+ (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
+}
+
+static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
+ { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
+ .readfn = icc_pmr_read,
+ .writefn = icc_pmr_write,
+ /* We hang the whole cpu interface reset routine off here
+ * rather than parcelling it out into one little function
+ * per register
+ */
+ .resetfn = icc_reset,
+ },
+ { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_R, .accessfn = gicv3_fiq_access,
+ .readfn = icc_iar0_read,
+ },
+ { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_fiq_access,
+ .writefn = icc_eoir_write,
+ },
+ { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_R, .accessfn = gicv3_fiq_access,
+ .readfn = icc_hppir0_read,
+ },
+ { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_fiq_access,
+ .readfn = icc_bpr_read,
+ .writefn = icc_bpr_write,
+ },
+ { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_fiq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_fiq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_fiq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_fiq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ /* All the ICC_AP1R*_EL1 registers are banked */
+ { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irq_access,
+ .readfn = icc_ap_read,
+ .writefn = icc_ap_write,
+ },
+ { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_dir_access,
+ .writefn = icc_dir_write,
+ },
+ { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_R, .accessfn = gicv3_irqfiq_access,
+ .readfn = icc_rpr_read,
+ },
+ { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_sgi_access,
+ .writefn = icc_sgi1r_write,
+ },
+ { .name = "ICC_SGI1R",
+ .cp = 15, .opc1 = 0, .crm = 12,
+ .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_sgi_access,
+ .writefn = icc_sgi1r_write,
+ },
+ { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_sgi_access,
+ .writefn = icc_asgi1r_write,
+ },
+ { .name = "ICC_ASGI1R",
+ .cp = 15, .opc1 = 1, .crm = 12,
+ .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_sgi_access,
+ .writefn = icc_asgi1r_write,
+ },
+ { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_sgi_access,
+ .writefn = icc_sgi0r_write,
+ },
+ { .name = "ICC_SGI0R",
+ .cp = 15, .opc1 = 2, .crm = 12,
+ .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_sgi_access,
+ .writefn = icc_sgi0r_write,
+ },
+ { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_R, .accessfn = gicv3_irq_access,
+ .readfn = icc_iar1_read,
+ },
+ { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_W, .accessfn = gicv3_irq_access,
+ .writefn = icc_eoir_write,
+ },
+ { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_R, .accessfn = gicv3_irq_access,
+ .readfn = icc_hppir1_read,
+ },
+ /* This register is banked */
+ { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irq_access,
+ .readfn = icc_bpr_read,
+ .writefn = icc_bpr_write,
+ },
+ /* This register is banked */
+ { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
+ .readfn = icc_ctlr_el1_read,
+ .writefn = icc_ctlr_el1_write,
+ },
+ { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
+ .type = ARM_CP_NO_RAW | ARM_CP_CONST,
+ .access = PL1_RW,
+ /* We don't support IRQ/FIQ bypass and system registers are
+ * always enabled, so all our bits are RAZ/WI or RAO/WI.
+ * This register is banked but since it's constant we don't
+ * need to do anything special.
+ */
+ .resetvalue = 0x7,
+ },
+ { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_fiq_access,
+ .readfn = icc_igrpen_read,
+ .writefn = icc_igrpen_write,
+ },
+ /* This register is banked */
+ { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL1_RW, .accessfn = gicv3_irq_access,
+ .readfn = icc_igrpen_read,
+ .writefn = icc_igrpen_write,
+ },
+ { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
+ .type = ARM_CP_NO_RAW | ARM_CP_CONST,
+ .access = PL2_RW,
+ /* We don't support IRQ/FIQ bypass and system registers are
+ * always enabled, so all our bits are RAZ/WI or RAO/WI.
+ */
+ .resetvalue = 0xf,
+ },
+ { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL3_RW,
+ .readfn = icc_ctlr_el3_read,
+ .writefn = icc_ctlr_el3_write,
+ },
+ { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
+ .type = ARM_CP_NO_RAW | ARM_CP_CONST,
+ .access = PL3_RW,
+ /* We don't support IRQ/FIQ bypass and system registers are
+ * always enabled, so all our bits are RAZ/WI or RAO/WI.
+ */
+ .resetvalue = 0xf,
+ },
+ { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL3_RW,
+ .readfn = icc_igrpen1_el3_read,
+ .writefn = icc_igrpen1_el3_write,
+ },
+ REGINFO_SENTINEL
+};
+
+static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int regno = ri->opc2 & 3;
+ int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
+ uint64_t value;
+
+ value = cs->ich_apr[grp][regno];
+ trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int regno = ri->opc2 & 3;
+ int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
+
+ trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
+
+ cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value = cs->ich_hcr_el2;
+
+ trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
+
+ value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
+ ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
+ ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
+ ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
+ ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
+
+ cs->ich_hcr_el2 = value;
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value = cs->ich_vmcr_el2;
+
+ trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+
+ trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
+
+ value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
+ ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
+ ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
+ value |= ICH_VMCR_EL2_VFIQEN;
+
+ cs->ich_vmcr_el2 = value;
+ /* Enforce "writing BPRs to less than minimum sets them to the minimum"
+ * by reading and writing back the fields.
+ */
+ write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
+ write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
+
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int regno = ri->opc2 | ((ri->crm & 1) << 3);
+ uint64_t value;
+
+ /* This read function handles all of:
+ * 64-bit reads of the whole LR
+ * 32-bit reads of the low half of the LR
+ * 32-bit reads of the high half of the LR
+ */
+ if (ri->state == ARM_CP_STATE_AA32) {
+ if (ri->crm >= 14) {
+ value = extract64(cs->ich_lr_el2[regno], 32, 32);
+ trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
+ } else {
+ value = extract64(cs->ich_lr_el2[regno], 0, 32);
+ trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
+ }
+ } else {
+ value = cs->ich_lr_el2[regno];
+ trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
+ }
+
+ return value;
+}
+
+static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ int regno = ri->opc2 | ((ri->crm & 1) << 3);
+
+ /* This write function handles all of:
+ * 64-bit writes to the whole LR
+ * 32-bit writes to the low half of the LR
+ * 32-bit writes to the high half of the LR
+ */
+ if (ri->state == ARM_CP_STATE_AA32) {
+ if (ri->crm >= 14) {
+ trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
+ value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
+ } else {
+ trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
+ value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
+ }
+ } else {
+ trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
+ }
+
+ /* Enforce RES0 bits in priority field */
+ if (cs->vpribits < 8) {
+ value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
+ 8 - cs->vpribits, 0);
+ }
+
+ cs->ich_lr_el2[regno] = value;
+ gicv3_cpuif_virt_update(cs);
+}
+
+static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value;
+
+ value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
+ | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
+ | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
+ | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
+ | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
+
+ trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value = maintenance_interrupt_state(cs);
+
+ trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
+
+ trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ GICv3CPUState *cs = icc_cs_from_env(env);
+ uint64_t value = 0;
+ int i;
+
+ for (i = 0; i < cs->num_list_regs; i++) {
+ uint64_t lr = cs->ich_lr_el2[i];
+
+ if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
+ ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
+ value |= (1 << i);
+ }
+ }
+
+ trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
+ return value;
+}
+
+static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
+ { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_hcr_read,
+ .writefn = ich_hcr_write,
+ },
+ { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_R,
+ .readfn = ich_vtr_read,
+ },
+ { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_R,
+ .readfn = ich_misr_read,
+ },
+ { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_R,
+ .readfn = ich_eisr_read,
+ },
+ { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_R,
+ .readfn = ich_elrsr_read,
+ },
+ { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_vmcr_read,
+ .writefn = ich_vmcr_write,
+ },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
+ { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
+ { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_ap_read,
+ .writefn = ich_ap_write,
+ },
+ REGINFO_SENTINEL
+};
+
+static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
+{
+ GICv3CPUState *cs = opaque;
+
+ gicv3_cpuif_update(cs);
+}
+
+void gicv3_init_cpuif(GICv3State *s)
+{
+ /* Called from the GICv3 realize function; register our system
+ * registers with the CPU
+ */
+ int i;
+
+ for (i = 0; i < s->num_cpu; i++) {
+ ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
+ GICv3CPUState *cs = &s->cpu[i];
+
+ /* Note that we can't just use the GICv3CPUState as an opaque pointer
+ * in define_arm_cp_regs_with_opaque(), because when we're called back
+ * it might be with code translated by CPU 0 but run by CPU 1, in
+ * which case we'd get the wrong value.
+ * So instead we define the regs with no ri->opaque info, and
+ * get back to the GICv3CPUState from the CPUARMState.
+ */
+ define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
+ if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
+ && cpu->gic_num_lrs) {
+ int j;
+
+ cs->num_list_regs = cpu->gic_num_lrs;
+ cs->vpribits = cpu->gic_vpribits;
+ cs->vprebits = cpu->gic_vprebits;
+
+ /* Check against architectural constraints: getting these
+ * wrong would be a bug in the CPU code defining these,
+ * and the implementation relies on them holding.
+ */
+ g_assert(cs->vprebits <= cs->vpribits);
+ g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
+ g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
+
+ define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
+
+ for (j = 0; j < cs->num_list_regs; j++) {
+ /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
+ * are split into two cp15 regs, LR (the low part, with the
+ * same encoding as the AArch64 LR) and LRC (the high part).
+ */
+ ARMCPRegInfo lr_regset[] = {
+ { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 4, .crn = 12,
+ .crm = 12 + (j >> 3), .opc2 = j & 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_lr_read,
+ .writefn = ich_lr_write,
+ },
+ { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
+ .cp = 15, .opc1 = 4, .crn = 12,
+ .crm = 14 + (j >> 3), .opc2 = j & 7,
+ .type = ARM_CP_IO | ARM_CP_NO_RAW,
+ .access = PL2_RW,
+ .readfn = ich_lr_read,
+ .writefn = ich_lr_write,
+ },
+ REGINFO_SENTINEL
+ };
+ define_arm_cp_regs(cpu, lr_regset);
+ }
+ if (cs->vprebits >= 6) {
+ define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
+ }
+ if (cs->vprebits == 7) {
+ define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
+ }
+ }
+ arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
+ }
+}