aboutsummaryrefslogtreecommitdiffstats
path: root/linux-user/elfload.c
diff options
context:
space:
mode:
Diffstat (limited to 'linux-user/elfload.c')
-rw-r--r--linux-user/elfload.c4138
1 files changed, 4138 insertions, 0 deletions
diff --git a/linux-user/elfload.c b/linux-user/elfload.c
new file mode 100644
index 000000000..767f54c76
--- /dev/null
+++ b/linux-user/elfload.c
@@ -0,0 +1,4138 @@
+/* This is the Linux kernel elf-loading code, ported into user space */
+#include "qemu/osdep.h"
+#include <sys/param.h>
+
+#include <sys/resource.h>
+#include <sys/shm.h>
+
+#include "qemu.h"
+#include "user-internals.h"
+#include "signal-common.h"
+#include "loader.h"
+#include "user-mmap.h"
+#include "disas/disas.h"
+#include "qemu/bitops.h"
+#include "qemu/path.h"
+#include "qemu/queue.h"
+#include "qemu/guest-random.h"
+#include "qemu/units.h"
+#include "qemu/selfmap.h"
+#include "qapi/error.h"
+#include "target_signal.h"
+
+#ifdef _ARCH_PPC64
+#undef ARCH_DLINFO
+#undef ELF_PLATFORM
+#undef ELF_HWCAP
+#undef ELF_HWCAP2
+#undef ELF_CLASS
+#undef ELF_DATA
+#undef ELF_ARCH
+#endif
+
+#define ELF_OSABI ELFOSABI_SYSV
+
+/* from personality.h */
+
+/*
+ * Flags for bug emulation.
+ *
+ * These occupy the top three bytes.
+ */
+enum {
+ ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
+ FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
+ descriptors (signal handling) */
+ MMAP_PAGE_ZERO = 0x0100000,
+ ADDR_COMPAT_LAYOUT = 0x0200000,
+ READ_IMPLIES_EXEC = 0x0400000,
+ ADDR_LIMIT_32BIT = 0x0800000,
+ SHORT_INODE = 0x1000000,
+ WHOLE_SECONDS = 0x2000000,
+ STICKY_TIMEOUTS = 0x4000000,
+ ADDR_LIMIT_3GB = 0x8000000,
+};
+
+/*
+ * Personality types.
+ *
+ * These go in the low byte. Avoid using the top bit, it will
+ * conflict with error returns.
+ */
+enum {
+ PER_LINUX = 0x0000,
+ PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
+ PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
+ PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
+ PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
+ PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
+ PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
+ PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
+ PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
+ PER_BSD = 0x0006,
+ PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
+ PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
+ PER_LINUX32 = 0x0008,
+ PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
+ PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
+ PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
+ PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
+ PER_RISCOS = 0x000c,
+ PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
+ PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
+ PER_OSF4 = 0x000f, /* OSF/1 v4 */
+ PER_HPUX = 0x0010,
+ PER_MASK = 0x00ff,
+};
+
+/*
+ * Return the base personality without flags.
+ */
+#define personality(pers) (pers & PER_MASK)
+
+int info_is_fdpic(struct image_info *info)
+{
+ return info->personality == PER_LINUX_FDPIC;
+}
+
+/* this flag is uneffective under linux too, should be deleted */
+#ifndef MAP_DENYWRITE
+#define MAP_DENYWRITE 0
+#endif
+
+/* should probably go in elf.h */
+#ifndef ELIBBAD
+#define ELIBBAD 80
+#endif
+
+#ifdef TARGET_WORDS_BIGENDIAN
+#define ELF_DATA ELFDATA2MSB
+#else
+#define ELF_DATA ELFDATA2LSB
+#endif
+
+#ifdef TARGET_ABI_MIPSN32
+typedef abi_ullong target_elf_greg_t;
+#define tswapreg(ptr) tswap64(ptr)
+#else
+typedef abi_ulong target_elf_greg_t;
+#define tswapreg(ptr) tswapal(ptr)
+#endif
+
+#ifdef USE_UID16
+typedef abi_ushort target_uid_t;
+typedef abi_ushort target_gid_t;
+#else
+typedef abi_uint target_uid_t;
+typedef abi_uint target_gid_t;
+#endif
+typedef abi_int target_pid_t;
+
+#ifdef TARGET_I386
+
+#define ELF_PLATFORM get_elf_platform()
+
+static const char *get_elf_platform(void)
+{
+ static char elf_platform[] = "i386";
+ int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
+ if (family > 6)
+ family = 6;
+ if (family >= 3)
+ elf_platform[1] = '0' + family;
+ return elf_platform;
+}
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ X86CPU *cpu = X86_CPU(thread_cpu);
+
+ return cpu->env.features[FEAT_1_EDX];
+}
+
+#ifdef TARGET_X86_64
+#define ELF_START_MMAP 0x2aaaaab000ULL
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_ARCH EM_X86_64
+
+static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ regs->rax = 0;
+ regs->rsp = infop->start_stack;
+ regs->rip = infop->entry;
+}
+
+#define ELF_NREG 27
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/*
+ * Note that ELF_NREG should be 29 as there should be place for
+ * TRAPNO and ERR "registers" as well but linux doesn't dump
+ * those.
+ *
+ * See linux kernel: arch/x86/include/asm/elf.h
+ */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
+{
+ (*regs)[0] = tswapreg(env->regs[15]);
+ (*regs)[1] = tswapreg(env->regs[14]);
+ (*regs)[2] = tswapreg(env->regs[13]);
+ (*regs)[3] = tswapreg(env->regs[12]);
+ (*regs)[4] = tswapreg(env->regs[R_EBP]);
+ (*regs)[5] = tswapreg(env->regs[R_EBX]);
+ (*regs)[6] = tswapreg(env->regs[11]);
+ (*regs)[7] = tswapreg(env->regs[10]);
+ (*regs)[8] = tswapreg(env->regs[9]);
+ (*regs)[9] = tswapreg(env->regs[8]);
+ (*regs)[10] = tswapreg(env->regs[R_EAX]);
+ (*regs)[11] = tswapreg(env->regs[R_ECX]);
+ (*regs)[12] = tswapreg(env->regs[R_EDX]);
+ (*regs)[13] = tswapreg(env->regs[R_ESI]);
+ (*regs)[14] = tswapreg(env->regs[R_EDI]);
+ (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
+ (*regs)[16] = tswapreg(env->eip);
+ (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
+ (*regs)[18] = tswapreg(env->eflags);
+ (*regs)[19] = tswapreg(env->regs[R_ESP]);
+ (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
+ (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
+ (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
+ (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
+ (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
+ (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
+ (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
+}
+
+#else
+
+#define ELF_START_MMAP 0x80000000
+
+/*
+ * This is used to ensure we don't load something for the wrong architecture.
+ */
+#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
+
+/*
+ * These are used to set parameters in the core dumps.
+ */
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_386
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->esp = infop->start_stack;
+ regs->eip = infop->entry;
+
+ /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
+ starts %edx contains a pointer to a function which might be
+ registered using `atexit'. This provides a mean for the
+ dynamic linker to call DT_FINI functions for shared libraries
+ that have been loaded before the code runs.
+
+ A value of 0 tells we have no such handler. */
+ regs->edx = 0;
+}
+
+#define ELF_NREG 17
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/*
+ * Note that ELF_NREG should be 19 as there should be place for
+ * TRAPNO and ERR "registers" as well but linux doesn't dump
+ * those.
+ *
+ * See linux kernel: arch/x86/include/asm/elf.h
+ */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
+{
+ (*regs)[0] = tswapreg(env->regs[R_EBX]);
+ (*regs)[1] = tswapreg(env->regs[R_ECX]);
+ (*regs)[2] = tswapreg(env->regs[R_EDX]);
+ (*regs)[3] = tswapreg(env->regs[R_ESI]);
+ (*regs)[4] = tswapreg(env->regs[R_EDI]);
+ (*regs)[5] = tswapreg(env->regs[R_EBP]);
+ (*regs)[6] = tswapreg(env->regs[R_EAX]);
+ (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
+ (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
+ (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
+ (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
+ (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
+ (*regs)[12] = tswapreg(env->eip);
+ (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
+ (*regs)[14] = tswapreg(env->eflags);
+ (*regs)[15] = tswapreg(env->regs[R_ESP]);
+ (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
+}
+#endif
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif
+
+#ifdef TARGET_ARM
+
+#ifndef TARGET_AARCH64
+/* 32 bit ARM definitions */
+
+#define ELF_START_MMAP 0x80000000
+
+#define ELF_ARCH EM_ARM
+#define ELF_CLASS ELFCLASS32
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ abi_long stack = infop->start_stack;
+ memset(regs, 0, sizeof(*regs));
+
+ regs->uregs[16] = ARM_CPU_MODE_USR;
+ if (infop->entry & 1) {
+ regs->uregs[16] |= CPSR_T;
+ }
+ regs->uregs[15] = infop->entry & 0xfffffffe;
+ regs->uregs[13] = infop->start_stack;
+ /* FIXME - what to for failure of get_user()? */
+ get_user_ual(regs->uregs[2], stack + 8); /* envp */
+ get_user_ual(regs->uregs[1], stack + 4); /* envp */
+ /* XXX: it seems that r0 is zeroed after ! */
+ regs->uregs[0] = 0;
+ /* For uClinux PIC binaries. */
+ /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
+ regs->uregs[10] = infop->start_data;
+
+ /* Support ARM FDPIC. */
+ if (info_is_fdpic(infop)) {
+ /* As described in the ABI document, r7 points to the loadmap info
+ * prepared by the kernel. If an interpreter is needed, r8 points
+ * to the interpreter loadmap and r9 points to the interpreter
+ * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
+ * r9 points to the main program PT_DYNAMIC info.
+ */
+ regs->uregs[7] = infop->loadmap_addr;
+ if (infop->interpreter_loadmap_addr) {
+ /* Executable is dynamically loaded. */
+ regs->uregs[8] = infop->interpreter_loadmap_addr;
+ regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
+ } else {
+ regs->uregs[8] = 0;
+ regs->uregs[9] = infop->pt_dynamic_addr;
+ }
+ }
+}
+
+#define ELF_NREG 18
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
+{
+ (*regs)[0] = tswapreg(env->regs[0]);
+ (*regs)[1] = tswapreg(env->regs[1]);
+ (*regs)[2] = tswapreg(env->regs[2]);
+ (*regs)[3] = tswapreg(env->regs[3]);
+ (*regs)[4] = tswapreg(env->regs[4]);
+ (*regs)[5] = tswapreg(env->regs[5]);
+ (*regs)[6] = tswapreg(env->regs[6]);
+ (*regs)[7] = tswapreg(env->regs[7]);
+ (*regs)[8] = tswapreg(env->regs[8]);
+ (*regs)[9] = tswapreg(env->regs[9]);
+ (*regs)[10] = tswapreg(env->regs[10]);
+ (*regs)[11] = tswapreg(env->regs[11]);
+ (*regs)[12] = tswapreg(env->regs[12]);
+ (*regs)[13] = tswapreg(env->regs[13]);
+ (*regs)[14] = tswapreg(env->regs[14]);
+ (*regs)[15] = tswapreg(env->regs[15]);
+
+ (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
+ (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum
+{
+ ARM_HWCAP_ARM_SWP = 1 << 0,
+ ARM_HWCAP_ARM_HALF = 1 << 1,
+ ARM_HWCAP_ARM_THUMB = 1 << 2,
+ ARM_HWCAP_ARM_26BIT = 1 << 3,
+ ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
+ ARM_HWCAP_ARM_FPA = 1 << 5,
+ ARM_HWCAP_ARM_VFP = 1 << 6,
+ ARM_HWCAP_ARM_EDSP = 1 << 7,
+ ARM_HWCAP_ARM_JAVA = 1 << 8,
+ ARM_HWCAP_ARM_IWMMXT = 1 << 9,
+ ARM_HWCAP_ARM_CRUNCH = 1 << 10,
+ ARM_HWCAP_ARM_THUMBEE = 1 << 11,
+ ARM_HWCAP_ARM_NEON = 1 << 12,
+ ARM_HWCAP_ARM_VFPv3 = 1 << 13,
+ ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
+ ARM_HWCAP_ARM_TLS = 1 << 15,
+ ARM_HWCAP_ARM_VFPv4 = 1 << 16,
+ ARM_HWCAP_ARM_IDIVA = 1 << 17,
+ ARM_HWCAP_ARM_IDIVT = 1 << 18,
+ ARM_HWCAP_ARM_VFPD32 = 1 << 19,
+ ARM_HWCAP_ARM_LPAE = 1 << 20,
+ ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
+};
+
+enum {
+ ARM_HWCAP2_ARM_AES = 1 << 0,
+ ARM_HWCAP2_ARM_PMULL = 1 << 1,
+ ARM_HWCAP2_ARM_SHA1 = 1 << 2,
+ ARM_HWCAP2_ARM_SHA2 = 1 << 3,
+ ARM_HWCAP2_ARM_CRC32 = 1 << 4,
+};
+
+/* The commpage only exists for 32 bit kernels */
+
+#define ARM_COMMPAGE (intptr_t)0xffff0f00u
+
+static bool init_guest_commpage(void)
+{
+ void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
+ void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
+ MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
+
+ if (addr == MAP_FAILED) {
+ perror("Allocating guest commpage");
+ exit(EXIT_FAILURE);
+ }
+ if (addr != want) {
+ return false;
+ }
+
+ /* Set kernel helper versions; rest of page is 0. */
+ __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
+
+ if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
+ perror("Protecting guest commpage");
+ exit(EXIT_FAILURE);
+ }
+ return true;
+}
+
+#define ELF_HWCAP get_elf_hwcap()
+#define ELF_HWCAP2 get_elf_hwcap2()
+
+static uint32_t get_elf_hwcap(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ hwcaps |= ARM_HWCAP_ARM_SWP;
+ hwcaps |= ARM_HWCAP_ARM_HALF;
+ hwcaps |= ARM_HWCAP_ARM_THUMB;
+ hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
+
+ /* probe for the extra features */
+#define GET_FEATURE(feat, hwcap) \
+ do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
+
+#define GET_FEATURE_ID(feat, hwcap) \
+ do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
+
+ /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
+ GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
+ GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
+ GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
+ GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
+ GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
+ GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
+ GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
+ GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
+ GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
+
+ if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
+ cpu_isar_feature(aa32_fpdp_v3, cpu)) {
+ hwcaps |= ARM_HWCAP_ARM_VFPv3;
+ if (cpu_isar_feature(aa32_simd_r32, cpu)) {
+ hwcaps |= ARM_HWCAP_ARM_VFPD32;
+ } else {
+ hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
+ }
+ }
+ GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
+
+ return hwcaps;
+}
+
+static uint32_t get_elf_hwcap2(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
+ GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
+ GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
+ GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
+ GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
+ return hwcaps;
+}
+
+#undef GET_FEATURE
+#undef GET_FEATURE_ID
+
+#define ELF_PLATFORM get_elf_platform()
+
+static const char *get_elf_platform(void)
+{
+ CPUARMState *env = thread_cpu->env_ptr;
+
+#ifdef TARGET_WORDS_BIGENDIAN
+# define END "b"
+#else
+# define END "l"
+#endif
+
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ return "v8" END;
+ } else if (arm_feature(env, ARM_FEATURE_V7)) {
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ return "v7m" END;
+ } else {
+ return "v7" END;
+ }
+ } else if (arm_feature(env, ARM_FEATURE_V6)) {
+ return "v6" END;
+ } else if (arm_feature(env, ARM_FEATURE_V5)) {
+ return "v5" END;
+ } else {
+ return "v4" END;
+ }
+
+#undef END
+}
+
+#else
+/* 64 bit ARM definitions */
+#define ELF_START_MMAP 0x80000000
+
+#define ELF_ARCH EM_AARCH64
+#define ELF_CLASS ELFCLASS64
+#ifdef TARGET_WORDS_BIGENDIAN
+# define ELF_PLATFORM "aarch64_be"
+#else
+# define ELF_PLATFORM "aarch64"
+#endif
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ abi_long stack = infop->start_stack;
+ memset(regs, 0, sizeof(*regs));
+
+ regs->pc = infop->entry & ~0x3ULL;
+ regs->sp = stack;
+}
+
+#define ELF_NREG 34
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUARMState *env)
+{
+ int i;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[i] = tswapreg(env->xregs[i]);
+ }
+ (*regs)[32] = tswapreg(env->pc);
+ (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum {
+ ARM_HWCAP_A64_FP = 1 << 0,
+ ARM_HWCAP_A64_ASIMD = 1 << 1,
+ ARM_HWCAP_A64_EVTSTRM = 1 << 2,
+ ARM_HWCAP_A64_AES = 1 << 3,
+ ARM_HWCAP_A64_PMULL = 1 << 4,
+ ARM_HWCAP_A64_SHA1 = 1 << 5,
+ ARM_HWCAP_A64_SHA2 = 1 << 6,
+ ARM_HWCAP_A64_CRC32 = 1 << 7,
+ ARM_HWCAP_A64_ATOMICS = 1 << 8,
+ ARM_HWCAP_A64_FPHP = 1 << 9,
+ ARM_HWCAP_A64_ASIMDHP = 1 << 10,
+ ARM_HWCAP_A64_CPUID = 1 << 11,
+ ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
+ ARM_HWCAP_A64_JSCVT = 1 << 13,
+ ARM_HWCAP_A64_FCMA = 1 << 14,
+ ARM_HWCAP_A64_LRCPC = 1 << 15,
+ ARM_HWCAP_A64_DCPOP = 1 << 16,
+ ARM_HWCAP_A64_SHA3 = 1 << 17,
+ ARM_HWCAP_A64_SM3 = 1 << 18,
+ ARM_HWCAP_A64_SM4 = 1 << 19,
+ ARM_HWCAP_A64_ASIMDDP = 1 << 20,
+ ARM_HWCAP_A64_SHA512 = 1 << 21,
+ ARM_HWCAP_A64_SVE = 1 << 22,
+ ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
+ ARM_HWCAP_A64_DIT = 1 << 24,
+ ARM_HWCAP_A64_USCAT = 1 << 25,
+ ARM_HWCAP_A64_ILRCPC = 1 << 26,
+ ARM_HWCAP_A64_FLAGM = 1 << 27,
+ ARM_HWCAP_A64_SSBS = 1 << 28,
+ ARM_HWCAP_A64_SB = 1 << 29,
+ ARM_HWCAP_A64_PACA = 1 << 30,
+ ARM_HWCAP_A64_PACG = 1UL << 31,
+
+ ARM_HWCAP2_A64_DCPODP = 1 << 0,
+ ARM_HWCAP2_A64_SVE2 = 1 << 1,
+ ARM_HWCAP2_A64_SVEAES = 1 << 2,
+ ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
+ ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
+ ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
+ ARM_HWCAP2_A64_SVESM4 = 1 << 6,
+ ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
+ ARM_HWCAP2_A64_FRINT = 1 << 8,
+ ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
+ ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
+ ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
+ ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
+ ARM_HWCAP2_A64_I8MM = 1 << 13,
+ ARM_HWCAP2_A64_BF16 = 1 << 14,
+ ARM_HWCAP2_A64_DGH = 1 << 15,
+ ARM_HWCAP2_A64_RNG = 1 << 16,
+ ARM_HWCAP2_A64_BTI = 1 << 17,
+ ARM_HWCAP2_A64_MTE = 1 << 18,
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+#define ELF_HWCAP2 get_elf_hwcap2()
+
+#define GET_FEATURE_ID(feat, hwcap) \
+ do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
+
+static uint32_t get_elf_hwcap(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ hwcaps |= ARM_HWCAP_A64_FP;
+ hwcaps |= ARM_HWCAP_A64_ASIMD;
+ hwcaps |= ARM_HWCAP_A64_CPUID;
+
+ /* probe for the extra features */
+
+ GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
+ GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
+ GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
+ GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
+ GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
+ GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
+ GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
+ GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
+ GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
+ GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
+ GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
+ GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
+ GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
+ GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
+ GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
+ GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
+ GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
+ GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
+ GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
+ GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
+ GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
+ GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
+ GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
+
+ return hwcaps;
+}
+
+static uint32_t get_elf_hwcap2(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
+ GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
+ GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
+ GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
+ GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
+ GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
+ GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
+ GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
+ GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
+ GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
+ GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
+ GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
+ GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
+ GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
+ GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
+ GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
+ GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
+ GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
+
+ return hwcaps;
+}
+
+#undef GET_FEATURE_ID
+
+#endif /* not TARGET_AARCH64 */
+#endif /* TARGET_ARM */
+
+#ifdef TARGET_SPARC
+#ifdef TARGET_SPARC64
+
+#define ELF_START_MMAP 0x80000000
+#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
+ | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
+#ifndef TARGET_ABI32
+#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
+#else
+#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
+#endif
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_ARCH EM_SPARCV9
+#else
+#define ELF_START_MMAP 0x80000000
+#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
+ | HWCAP_SPARC_MULDIV)
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_SPARC
+#endif /* TARGET_SPARC64 */
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ /* Note that target_cpu_copy_regs does not read psr/tstate. */
+ regs->pc = infop->entry;
+ regs->npc = regs->pc + 4;
+ regs->y = 0;
+ regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
+ - TARGET_STACK_BIAS);
+}
+#endif /* TARGET_SPARC */
+
+#ifdef TARGET_PPC
+
+#define ELF_MACHINE PPC_ELF_MACHINE
+#define ELF_START_MMAP 0x80000000
+
+#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
+
+#define elf_check_arch(x) ( (x) == EM_PPC64 )
+
+#define ELF_CLASS ELFCLASS64
+
+#else
+
+#define ELF_CLASS ELFCLASS32
+
+#endif
+
+#define ELF_ARCH EM_PPC
+
+/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
+ See arch/powerpc/include/asm/cputable.h. */
+enum {
+ QEMU_PPC_FEATURE_32 = 0x80000000,
+ QEMU_PPC_FEATURE_64 = 0x40000000,
+ QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
+ QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
+ QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
+ QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
+ QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
+ QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
+ QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
+ QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
+ QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
+ QEMU_PPC_FEATURE_NO_TB = 0x00100000,
+ QEMU_PPC_FEATURE_POWER4 = 0x00080000,
+ QEMU_PPC_FEATURE_POWER5 = 0x00040000,
+ QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
+ QEMU_PPC_FEATURE_CELL = 0x00010000,
+ QEMU_PPC_FEATURE_BOOKE = 0x00008000,
+ QEMU_PPC_FEATURE_SMT = 0x00004000,
+ QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
+ QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
+ QEMU_PPC_FEATURE_PA6T = 0x00000800,
+ QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
+ QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
+ QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
+ QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
+ QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
+
+ QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
+ QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
+
+ /* Feature definitions in AT_HWCAP2. */
+ QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
+ QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
+ QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
+ QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
+ QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
+ QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
+ QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
+ QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
+ QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
+ QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
+ QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
+ QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
+ QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
+ uint32_t features = 0;
+
+ /* We don't have to be terribly complete here; the high points are
+ Altivec/FP/SPE support. Anything else is just a bonus. */
+#define GET_FEATURE(flag, feature) \
+ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
+#define GET_FEATURE2(flags, feature) \
+ do { \
+ if ((cpu->env.insns_flags2 & flags) == flags) { \
+ features |= feature; \
+ } \
+ } while (0)
+ GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
+ GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
+ GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
+ GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
+ GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
+ GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
+ GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
+ GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
+ GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
+ GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
+ GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
+ PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
+ QEMU_PPC_FEATURE_ARCH_2_06);
+#undef GET_FEATURE
+#undef GET_FEATURE2
+
+ return features;
+}
+
+#define ELF_HWCAP2 get_elf_hwcap2()
+
+static uint32_t get_elf_hwcap2(void)
+{
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
+ uint32_t features = 0;
+
+#define GET_FEATURE(flag, feature) \
+ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
+#define GET_FEATURE2(flag, feature) \
+ do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
+
+ GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
+ GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
+ GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
+ PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
+ QEMU_PPC_FEATURE2_VEC_CRYPTO);
+ GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
+ QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
+
+#undef GET_FEATURE
+#undef GET_FEATURE2
+
+ return features;
+}
+
+/*
+ * The requirements here are:
+ * - keep the final alignment of sp (sp & 0xf)
+ * - make sure the 32-bit value at the first 16 byte aligned position of
+ * AUXV is greater than 16 for glibc compatibility.
+ * AT_IGNOREPPC is used for that.
+ * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
+ * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
+ */
+#define DLINFO_ARCH_ITEMS 5
+#define ARCH_DLINFO \
+ do { \
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
+ /* \
+ * Handle glibc compatibility: these magic entries must \
+ * be at the lowest addresses in the final auxv. \
+ */ \
+ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
+ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
+ NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
+ NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
+ NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
+ } while (0)
+
+static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
+{
+ _regs->gpr[1] = infop->start_stack;
+#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
+ if (get_ppc64_abi(infop) < 2) {
+ uint64_t val;
+ get_user_u64(val, infop->entry + 8);
+ _regs->gpr[2] = val + infop->load_bias;
+ get_user_u64(val, infop->entry);
+ infop->entry = val + infop->load_bias;
+ } else {
+ _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
+ }
+#endif
+ _regs->nip = infop->entry;
+}
+
+/* See linux kernel: arch/powerpc/include/asm/elf.h. */
+#define ELF_NREG 48
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
+{
+ int i;
+ target_ulong ccr = 0;
+
+ for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
+ (*regs)[i] = tswapreg(env->gpr[i]);
+ }
+
+ (*regs)[32] = tswapreg(env->nip);
+ (*regs)[33] = tswapreg(env->msr);
+ (*regs)[35] = tswapreg(env->ctr);
+ (*regs)[36] = tswapreg(env->lr);
+ (*regs)[37] = tswapreg(cpu_read_xer(env));
+
+ for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
+ ccr |= env->crf[i] << (32 - ((i + 1) * 4));
+ }
+ (*regs)[38] = tswapreg(ccr);
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif
+
+#ifdef TARGET_MIPS
+
+#define ELF_START_MMAP 0x80000000
+
+#ifdef TARGET_MIPS64
+#define ELF_CLASS ELFCLASS64
+#else
+#define ELF_CLASS ELFCLASS32
+#endif
+#define ELF_ARCH EM_MIPS
+
+#ifdef TARGET_ABI_MIPSN32
+#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
+#else
+#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
+#endif
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->cp0_status = 2 << CP0St_KSU;
+ regs->cp0_epc = infop->entry;
+ regs->regs[29] = infop->start_stack;
+}
+
+/* See linux kernel: arch/mips/include/asm/elf.h. */
+#define ELF_NREG 45
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/mips/include/asm/reg.h. */
+enum {
+#ifdef TARGET_MIPS64
+ TARGET_EF_R0 = 0,
+#else
+ TARGET_EF_R0 = 6,
+#endif
+ TARGET_EF_R26 = TARGET_EF_R0 + 26,
+ TARGET_EF_R27 = TARGET_EF_R0 + 27,
+ TARGET_EF_LO = TARGET_EF_R0 + 32,
+ TARGET_EF_HI = TARGET_EF_R0 + 33,
+ TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
+ TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
+ TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
+ TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
+};
+
+/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
+{
+ int i;
+
+ for (i = 0; i < TARGET_EF_R0; i++) {
+ (*regs)[i] = 0;
+ }
+ (*regs)[TARGET_EF_R0] = 0;
+
+ for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
+ (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
+ }
+
+ (*regs)[TARGET_EF_R26] = 0;
+ (*regs)[TARGET_EF_R27] = 0;
+ (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
+ (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
+ (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
+ (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
+ (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
+ (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+/* See arch/mips/include/uapi/asm/hwcap.h. */
+enum {
+ HWCAP_MIPS_R6 = (1 << 0),
+ HWCAP_MIPS_MSA = (1 << 1),
+ HWCAP_MIPS_CRC32 = (1 << 2),
+ HWCAP_MIPS_MIPS16 = (1 << 3),
+ HWCAP_MIPS_MDMX = (1 << 4),
+ HWCAP_MIPS_MIPS3D = (1 << 5),
+ HWCAP_MIPS_SMARTMIPS = (1 << 6),
+ HWCAP_MIPS_DSP = (1 << 7),
+ HWCAP_MIPS_DSP2 = (1 << 8),
+ HWCAP_MIPS_DSP3 = (1 << 9),
+ HWCAP_MIPS_MIPS16E2 = (1 << 10),
+ HWCAP_LOONGSON_MMI = (1 << 11),
+ HWCAP_LOONGSON_EXT = (1 << 12),
+ HWCAP_LOONGSON_EXT2 = (1 << 13),
+ HWCAP_LOONGSON_CPUCFG = (1 << 14),
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+#define GET_FEATURE_INSN(_flag, _hwcap) \
+ do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
+
+#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
+ do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
+
+#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
+ do { \
+ if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
+ hwcaps |= _hwcap; \
+ } \
+ } while (0)
+
+static uint32_t get_elf_hwcap(void)
+{
+ MIPSCPU *cpu = MIPS_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
+ 2, HWCAP_MIPS_R6);
+ GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
+ GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
+ GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
+
+ return hwcaps;
+}
+
+#undef GET_FEATURE_REG_EQU
+#undef GET_FEATURE_REG_SET
+#undef GET_FEATURE_INSN
+
+#endif /* TARGET_MIPS */
+
+#ifdef TARGET_MICROBLAZE
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_MICROBLAZE
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->pc = infop->entry;
+ regs->r1 = infop->start_stack;
+
+}
+
+#define ELF_EXEC_PAGESIZE 4096
+
+#define USE_ELF_CORE_DUMP
+#define ELF_NREG 38
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
+{
+ int i, pos = 0;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[pos++] = tswapreg(env->regs[i]);
+ }
+
+ (*regs)[pos++] = tswapreg(env->pc);
+ (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
+ (*regs)[pos++] = 0;
+ (*regs)[pos++] = tswapreg(env->ear);
+ (*regs)[pos++] = 0;
+ (*regs)[pos++] = tswapreg(env->esr);
+}
+
+#endif /* TARGET_MICROBLAZE */
+
+#ifdef TARGET_NIOS2
+
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_ALTERA_NIOS2
+
+static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ regs->ea = infop->entry;
+ regs->sp = infop->start_stack;
+ regs->estatus = 0x3;
+}
+
+#define ELF_EXEC_PAGESIZE 4096
+
+#define USE_ELF_CORE_DUMP
+#define ELF_NREG 49
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUNios2State *env)
+{
+ int i;
+
+ (*regs)[0] = -1;
+ for (i = 1; i < 8; i++) /* r0-r7 */
+ (*regs)[i] = tswapreg(env->regs[i + 7]);
+
+ for (i = 8; i < 16; i++) /* r8-r15 */
+ (*regs)[i] = tswapreg(env->regs[i - 8]);
+
+ for (i = 16; i < 24; i++) /* r16-r23 */
+ (*regs)[i] = tswapreg(env->regs[i + 7]);
+ (*regs)[24] = -1; /* R_ET */
+ (*regs)[25] = -1; /* R_BT */
+ (*regs)[26] = tswapreg(env->regs[R_GP]);
+ (*regs)[27] = tswapreg(env->regs[R_SP]);
+ (*regs)[28] = tswapreg(env->regs[R_FP]);
+ (*regs)[29] = tswapreg(env->regs[R_EA]);
+ (*regs)[30] = -1; /* R_SSTATUS */
+ (*regs)[31] = tswapreg(env->regs[R_RA]);
+
+ (*regs)[32] = tswapreg(env->regs[R_PC]);
+
+ (*regs)[33] = -1; /* R_STATUS */
+ (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
+
+ for (i = 35; i < 49; i++) /* ... */
+ (*regs)[i] = -1;
+}
+
+#endif /* TARGET_NIOS2 */
+
+#ifdef TARGET_OPENRISC
+
+#define ELF_START_MMAP 0x08000000
+
+#define ELF_ARCH EM_OPENRISC
+#define ELF_CLASS ELFCLASS32
+#define ELF_DATA ELFDATA2MSB
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->pc = infop->entry;
+ regs->gpr[1] = infop->start_stack;
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 8192
+
+/* See linux kernel arch/openrisc/include/asm/elf.h. */
+#define ELF_NREG 34 /* gprs and pc, sr */
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUOpenRISCState *env)
+{
+ int i;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
+ }
+ (*regs)[32] = tswapreg(env->pc);
+ (*regs)[33] = tswapreg(cpu_get_sr(env));
+}
+#define ELF_HWCAP 0
+#define ELF_PLATFORM NULL
+
+#endif /* TARGET_OPENRISC */
+
+#ifdef TARGET_SH4
+
+#define ELF_START_MMAP 0x80000000
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_SH
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ /* Check other registers XXXXX */
+ regs->pc = infop->entry;
+ regs->regs[15] = infop->start_stack;
+}
+
+/* See linux kernel: arch/sh/include/asm/elf.h. */
+#define ELF_NREG 23
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+/* See linux kernel: arch/sh/include/asm/ptrace.h. */
+enum {
+ TARGET_REG_PC = 16,
+ TARGET_REG_PR = 17,
+ TARGET_REG_SR = 18,
+ TARGET_REG_GBR = 19,
+ TARGET_REG_MACH = 20,
+ TARGET_REG_MACL = 21,
+ TARGET_REG_SYSCALL = 22
+};
+
+static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUSH4State *env)
+{
+ int i;
+
+ for (i = 0; i < 16; i++) {
+ (*regs)[i] = tswapreg(env->gregs[i]);
+ }
+
+ (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
+ (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
+ (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
+ (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
+ (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
+ (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
+ (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum {
+ SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
+ SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
+ SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
+ SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
+ SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
+ SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
+ SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
+ SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
+ SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
+ SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
+ uint32_t hwcap = 0;
+
+ hwcap |= SH_CPU_HAS_FPU;
+
+ if (cpu->env.features & SH_FEATURE_SH4A) {
+ hwcap |= SH_CPU_HAS_LLSC;
+ }
+
+ return hwcap;
+}
+
+#endif
+
+#ifdef TARGET_CRIS
+
+#define ELF_START_MMAP 0x80000000
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_CRIS
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->erp = infop->entry;
+}
+
+#define ELF_EXEC_PAGESIZE 8192
+
+#endif
+
+#ifdef TARGET_M68K
+
+#define ELF_START_MMAP 0x80000000
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_68K
+
+/* ??? Does this need to do anything?
+ #define ELF_PLAT_INIT(_r) */
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->usp = infop->start_stack;
+ regs->sr = 0;
+ regs->pc = infop->entry;
+}
+
+/* See linux kernel: arch/m68k/include/asm/elf.h. */
+#define ELF_NREG 20
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
+{
+ (*regs)[0] = tswapreg(env->dregs[1]);
+ (*regs)[1] = tswapreg(env->dregs[2]);
+ (*regs)[2] = tswapreg(env->dregs[3]);
+ (*regs)[3] = tswapreg(env->dregs[4]);
+ (*regs)[4] = tswapreg(env->dregs[5]);
+ (*regs)[5] = tswapreg(env->dregs[6]);
+ (*regs)[6] = tswapreg(env->dregs[7]);
+ (*regs)[7] = tswapreg(env->aregs[0]);
+ (*regs)[8] = tswapreg(env->aregs[1]);
+ (*regs)[9] = tswapreg(env->aregs[2]);
+ (*regs)[10] = tswapreg(env->aregs[3]);
+ (*regs)[11] = tswapreg(env->aregs[4]);
+ (*regs)[12] = tswapreg(env->aregs[5]);
+ (*regs)[13] = tswapreg(env->aregs[6]);
+ (*regs)[14] = tswapreg(env->dregs[0]);
+ (*regs)[15] = tswapreg(env->aregs[7]);
+ (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
+ (*regs)[17] = tswapreg(env->sr);
+ (*regs)[18] = tswapreg(env->pc);
+ (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 8192
+
+#endif
+
+#ifdef TARGET_ALPHA
+
+#define ELF_START_MMAP (0x30000000000ULL)
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_ARCH EM_ALPHA
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->pc = infop->entry;
+ regs->ps = 8;
+ regs->usp = infop->start_stack;
+}
+
+#define ELF_EXEC_PAGESIZE 8192
+
+#endif /* TARGET_ALPHA */
+
+#ifdef TARGET_S390X
+
+#define ELF_START_MMAP (0x20000000000ULL)
+
+#define ELF_CLASS ELFCLASS64
+#define ELF_DATA ELFDATA2MSB
+#define ELF_ARCH EM_S390
+
+#include "elf.h"
+
+#define ELF_HWCAP get_elf_hwcap()
+
+#define GET_FEATURE(_feat, _hwcap) \
+ do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
+
+static uint32_t get_elf_hwcap(void)
+{
+ /*
+ * Let's assume we always have esan3 and zarch.
+ * 31-bit processes can use 64-bit registers (high gprs).
+ */
+ uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
+
+ GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
+ GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
+ GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
+ GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
+ if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
+ s390_has_feat(S390_FEAT_ETF3_ENH)) {
+ hwcap |= HWCAP_S390_ETF3EH;
+ }
+ GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
+ GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
+
+ return hwcap;
+}
+
+static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ regs->psw.addr = infop->entry;
+ regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
+ regs->gprs[15] = infop->start_stack;
+}
+
+/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
+#define ELF_NREG 27
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+enum {
+ TARGET_REG_PSWM = 0,
+ TARGET_REG_PSWA = 1,
+ TARGET_REG_GPRS = 2,
+ TARGET_REG_ARS = 18,
+ TARGET_REG_ORIG_R2 = 26,
+};
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUS390XState *env)
+{
+ int i;
+ uint32_t *aregs;
+
+ (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
+ (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
+ for (i = 0; i < 16; i++) {
+ (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
+ }
+ aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
+ for (i = 0; i < 16; i++) {
+ aregs[i] = tswap32(env->aregs[i]);
+ }
+ (*regs)[TARGET_REG_ORIG_R2] = 0;
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif /* TARGET_S390X */
+
+#ifdef TARGET_RISCV
+
+#define ELF_START_MMAP 0x80000000
+#define ELF_ARCH EM_RISCV
+
+#ifdef TARGET_RISCV32
+#define ELF_CLASS ELFCLASS32
+#else
+#define ELF_CLASS ELFCLASS64
+#endif
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+#define MISA_BIT(EXT) (1 << (EXT - 'A'))
+ RISCVCPU *cpu = RISCV_CPU(thread_cpu);
+ uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
+ | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
+
+ return cpu->env.misa_ext & mask;
+#undef MISA_BIT
+}
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->sepc = infop->entry;
+ regs->sp = infop->start_stack;
+}
+
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif /* TARGET_RISCV */
+
+#ifdef TARGET_HPPA
+
+#define ELF_START_MMAP 0x80000000
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_PARISC
+#define ELF_PLATFORM "PARISC"
+#define STACK_GROWS_DOWN 0
+#define STACK_ALIGNMENT 64
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->iaoq[0] = infop->entry;
+ regs->iaoq[1] = infop->entry + 4;
+ regs->gr[23] = 0;
+ regs->gr[24] = infop->arg_start;
+ regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
+ /* The top-of-stack contains a linkage buffer. */
+ regs->gr[30] = infop->start_stack + 64;
+ regs->gr[31] = infop->entry;
+}
+
+#endif /* TARGET_HPPA */
+
+#ifdef TARGET_XTENSA
+
+#define ELF_START_MMAP 0x20000000
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_XTENSA
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->windowbase = 0;
+ regs->windowstart = 1;
+ regs->areg[1] = infop->start_stack;
+ regs->pc = infop->entry;
+}
+
+/* See linux kernel: arch/xtensa/include/asm/elf.h. */
+#define ELF_NREG 128
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+enum {
+ TARGET_REG_PC,
+ TARGET_REG_PS,
+ TARGET_REG_LBEG,
+ TARGET_REG_LEND,
+ TARGET_REG_LCOUNT,
+ TARGET_REG_SAR,
+ TARGET_REG_WINDOWSTART,
+ TARGET_REG_WINDOWBASE,
+ TARGET_REG_THREADPTR,
+ TARGET_REG_AR0 = 64,
+};
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUXtensaState *env)
+{
+ unsigned i;
+
+ (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
+ (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
+ (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
+ (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
+ (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
+ (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
+ (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
+ (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
+ (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
+ xtensa_sync_phys_from_window((CPUXtensaState *)env);
+ for (i = 0; i < env->config->nareg; ++i) {
+ (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
+ }
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+#endif /* TARGET_XTENSA */
+
+#ifdef TARGET_HEXAGON
+
+#define ELF_START_MMAP 0x20000000
+
+#define ELF_CLASS ELFCLASS32
+#define ELF_ARCH EM_HEXAGON
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ regs->sepc = infop->entry;
+ regs->sp = infop->start_stack;
+}
+
+#endif /* TARGET_HEXAGON */
+
+#ifndef ELF_PLATFORM
+#define ELF_PLATFORM (NULL)
+#endif
+
+#ifndef ELF_MACHINE
+#define ELF_MACHINE ELF_ARCH
+#endif
+
+#ifndef elf_check_arch
+#define elf_check_arch(x) ((x) == ELF_ARCH)
+#endif
+
+#ifndef elf_check_abi
+#define elf_check_abi(x) (1)
+#endif
+
+#ifndef ELF_HWCAP
+#define ELF_HWCAP 0
+#endif
+
+#ifndef STACK_GROWS_DOWN
+#define STACK_GROWS_DOWN 1
+#endif
+
+#ifndef STACK_ALIGNMENT
+#define STACK_ALIGNMENT 16
+#endif
+
+#ifdef TARGET_ABI32
+#undef ELF_CLASS
+#define ELF_CLASS ELFCLASS32
+#undef bswaptls
+#define bswaptls(ptr) bswap32s(ptr)
+#endif
+
+#include "elf.h"
+
+/* We must delay the following stanzas until after "elf.h". */
+#if defined(TARGET_AARCH64)
+
+static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
+ const uint32_t *data,
+ struct image_info *info,
+ Error **errp)
+{
+ if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
+ if (pr_datasz != sizeof(uint32_t)) {
+ error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
+ return false;
+ }
+ /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
+ info->note_flags = *data;
+ }
+ return true;
+}
+#define ARCH_USE_GNU_PROPERTY 1
+
+#else
+
+static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
+ const uint32_t *data,
+ struct image_info *info,
+ Error **errp)
+{
+ g_assert_not_reached();
+}
+#define ARCH_USE_GNU_PROPERTY 0
+
+#endif
+
+struct exec
+{
+ unsigned int a_info; /* Use macros N_MAGIC, etc for access */
+ unsigned int a_text; /* length of text, in bytes */
+ unsigned int a_data; /* length of data, in bytes */
+ unsigned int a_bss; /* length of uninitialized data area, in bytes */
+ unsigned int a_syms; /* length of symbol table data in file, in bytes */
+ unsigned int a_entry; /* start address */
+ unsigned int a_trsize; /* length of relocation info for text, in bytes */
+ unsigned int a_drsize; /* length of relocation info for data, in bytes */
+};
+
+
+#define N_MAGIC(exec) ((exec).a_info & 0xffff)
+#define OMAGIC 0407
+#define NMAGIC 0410
+#define ZMAGIC 0413
+#define QMAGIC 0314
+
+/* Necessary parameters */
+#define TARGET_ELF_EXEC_PAGESIZE \
+ (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
+ TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
+#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
+#define TARGET_ELF_PAGESTART(_v) ((_v) & \
+ ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
+#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
+
+#define DLINFO_ITEMS 16
+
+static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
+{
+ memcpy(to, from, n);
+}
+
+#ifdef BSWAP_NEEDED
+static void bswap_ehdr(struct elfhdr *ehdr)
+{
+ bswap16s(&ehdr->e_type); /* Object file type */
+ bswap16s(&ehdr->e_machine); /* Architecture */
+ bswap32s(&ehdr->e_version); /* Object file version */
+ bswaptls(&ehdr->e_entry); /* Entry point virtual address */
+ bswaptls(&ehdr->e_phoff); /* Program header table file offset */
+ bswaptls(&ehdr->e_shoff); /* Section header table file offset */
+ bswap32s(&ehdr->e_flags); /* Processor-specific flags */
+ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
+ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
+ bswap16s(&ehdr->e_phnum); /* Program header table entry count */
+ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
+ bswap16s(&ehdr->e_shnum); /* Section header table entry count */
+ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
+}
+
+static void bswap_phdr(struct elf_phdr *phdr, int phnum)
+{
+ int i;
+ for (i = 0; i < phnum; ++i, ++phdr) {
+ bswap32s(&phdr->p_type); /* Segment type */
+ bswap32s(&phdr->p_flags); /* Segment flags */
+ bswaptls(&phdr->p_offset); /* Segment file offset */
+ bswaptls(&phdr->p_vaddr); /* Segment virtual address */
+ bswaptls(&phdr->p_paddr); /* Segment physical address */
+ bswaptls(&phdr->p_filesz); /* Segment size in file */
+ bswaptls(&phdr->p_memsz); /* Segment size in memory */
+ bswaptls(&phdr->p_align); /* Segment alignment */
+ }
+}
+
+static void bswap_shdr(struct elf_shdr *shdr, int shnum)
+{
+ int i;
+ for (i = 0; i < shnum; ++i, ++shdr) {
+ bswap32s(&shdr->sh_name);
+ bswap32s(&shdr->sh_type);
+ bswaptls(&shdr->sh_flags);
+ bswaptls(&shdr->sh_addr);
+ bswaptls(&shdr->sh_offset);
+ bswaptls(&shdr->sh_size);
+ bswap32s(&shdr->sh_link);
+ bswap32s(&shdr->sh_info);
+ bswaptls(&shdr->sh_addralign);
+ bswaptls(&shdr->sh_entsize);
+ }
+}
+
+static void bswap_sym(struct elf_sym *sym)
+{
+ bswap32s(&sym->st_name);
+ bswaptls(&sym->st_value);
+ bswaptls(&sym->st_size);
+ bswap16s(&sym->st_shndx);
+}
+
+#ifdef TARGET_MIPS
+static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
+{
+ bswap16s(&abiflags->version);
+ bswap32s(&abiflags->ases);
+ bswap32s(&abiflags->isa_ext);
+ bswap32s(&abiflags->flags1);
+ bswap32s(&abiflags->flags2);
+}
+#endif
+#else
+static inline void bswap_ehdr(struct elfhdr *ehdr) { }
+static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
+static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
+static inline void bswap_sym(struct elf_sym *sym) { }
+#ifdef TARGET_MIPS
+static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
+#endif
+#endif
+
+#ifdef USE_ELF_CORE_DUMP
+static int elf_core_dump(int, const CPUArchState *);
+#endif /* USE_ELF_CORE_DUMP */
+static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
+
+/* Verify the portions of EHDR within E_IDENT for the target.
+ This can be performed before bswapping the entire header. */
+static bool elf_check_ident(struct elfhdr *ehdr)
+{
+ return (ehdr->e_ident[EI_MAG0] == ELFMAG0
+ && ehdr->e_ident[EI_MAG1] == ELFMAG1
+ && ehdr->e_ident[EI_MAG2] == ELFMAG2
+ && ehdr->e_ident[EI_MAG3] == ELFMAG3
+ && ehdr->e_ident[EI_CLASS] == ELF_CLASS
+ && ehdr->e_ident[EI_DATA] == ELF_DATA
+ && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
+}
+
+/* Verify the portions of EHDR outside of E_IDENT for the target.
+ This has to wait until after bswapping the header. */
+static bool elf_check_ehdr(struct elfhdr *ehdr)
+{
+ return (elf_check_arch(ehdr->e_machine)
+ && elf_check_abi(ehdr->e_flags)
+ && ehdr->e_ehsize == sizeof(struct elfhdr)
+ && ehdr->e_phentsize == sizeof(struct elf_phdr)
+ && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
+}
+
+/*
+ * 'copy_elf_strings()' copies argument/envelope strings from user
+ * memory to free pages in kernel mem. These are in a format ready
+ * to be put directly into the top of new user memory.
+ *
+ */
+static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
+ abi_ulong p, abi_ulong stack_limit)
+{
+ char *tmp;
+ int len, i;
+ abi_ulong top = p;
+
+ if (!p) {
+ return 0; /* bullet-proofing */
+ }
+
+ if (STACK_GROWS_DOWN) {
+ int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
+ for (i = argc - 1; i >= 0; --i) {
+ tmp = argv[i];
+ if (!tmp) {
+ fprintf(stderr, "VFS: argc is wrong");
+ exit(-1);
+ }
+ len = strlen(tmp) + 1;
+ tmp += len;
+
+ if (len > (p - stack_limit)) {
+ return 0;
+ }
+ while (len) {
+ int bytes_to_copy = (len > offset) ? offset : len;
+ tmp -= bytes_to_copy;
+ p -= bytes_to_copy;
+ offset -= bytes_to_copy;
+ len -= bytes_to_copy;
+
+ memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
+
+ if (offset == 0) {
+ memcpy_to_target(p, scratch, top - p);
+ top = p;
+ offset = TARGET_PAGE_SIZE;
+ }
+ }
+ }
+ if (p != top) {
+ memcpy_to_target(p, scratch + offset, top - p);
+ }
+ } else {
+ int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
+ for (i = 0; i < argc; ++i) {
+ tmp = argv[i];
+ if (!tmp) {
+ fprintf(stderr, "VFS: argc is wrong");
+ exit(-1);
+ }
+ len = strlen(tmp) + 1;
+ if (len > (stack_limit - p)) {
+ return 0;
+ }
+ while (len) {
+ int bytes_to_copy = (len > remaining) ? remaining : len;
+
+ memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
+
+ tmp += bytes_to_copy;
+ remaining -= bytes_to_copy;
+ p += bytes_to_copy;
+ len -= bytes_to_copy;
+
+ if (remaining == 0) {
+ memcpy_to_target(top, scratch, p - top);
+ top = p;
+ remaining = TARGET_PAGE_SIZE;
+ }
+ }
+ }
+ if (p != top) {
+ memcpy_to_target(top, scratch, p - top);
+ }
+ }
+
+ return p;
+}
+
+/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
+ * argument/environment space. Newer kernels (>2.6.33) allow more,
+ * dependent on stack size, but guarantee at least 32 pages for
+ * backwards compatibility.
+ */
+#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
+
+static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
+ struct image_info *info)
+{
+ abi_ulong size, error, guard;
+
+ size = guest_stack_size;
+ if (size < STACK_LOWER_LIMIT) {
+ size = STACK_LOWER_LIMIT;
+ }
+ guard = TARGET_PAGE_SIZE;
+ if (guard < qemu_real_host_page_size) {
+ guard = qemu_real_host_page_size;
+ }
+
+ error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (error == -1) {
+ perror("mmap stack");
+ exit(-1);
+ }
+
+ /* We reserve one extra page at the top of the stack as guard. */
+ if (STACK_GROWS_DOWN) {
+ target_mprotect(error, guard, PROT_NONE);
+ info->stack_limit = error + guard;
+ return info->stack_limit + size - sizeof(void *);
+ } else {
+ target_mprotect(error + size, guard, PROT_NONE);
+ info->stack_limit = error + size;
+ return error;
+ }
+}
+
+/* Map and zero the bss. We need to explicitly zero any fractional pages
+ after the data section (i.e. bss). */
+static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
+{
+ uintptr_t host_start, host_map_start, host_end;
+
+ last_bss = TARGET_PAGE_ALIGN(last_bss);
+
+ /* ??? There is confusion between qemu_real_host_page_size and
+ qemu_host_page_size here and elsewhere in target_mmap, which
+ may lead to the end of the data section mapping from the file
+ not being mapped. At least there was an explicit test and
+ comment for that here, suggesting that "the file size must
+ be known". The comment probably pre-dates the introduction
+ of the fstat system call in target_mmap which does in fact
+ find out the size. What isn't clear is if the workaround
+ here is still actually needed. For now, continue with it,
+ but merge it with the "normal" mmap that would allocate the bss. */
+
+ host_start = (uintptr_t) g2h_untagged(elf_bss);
+ host_end = (uintptr_t) g2h_untagged(last_bss);
+ host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
+
+ if (host_map_start < host_end) {
+ void *p = mmap((void *)host_map_start, host_end - host_map_start,
+ prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (p == MAP_FAILED) {
+ perror("cannot mmap brk");
+ exit(-1);
+ }
+ }
+
+ /* Ensure that the bss page(s) are valid */
+ if ((page_get_flags(last_bss-1) & prot) != prot) {
+ page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
+ }
+
+ if (host_start < host_map_start) {
+ memset((void *)host_start, 0, host_map_start - host_start);
+ }
+}
+
+#ifdef TARGET_ARM
+static int elf_is_fdpic(struct elfhdr *exec)
+{
+ return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
+}
+#else
+/* Default implementation, always false. */
+static int elf_is_fdpic(struct elfhdr *exec)
+{
+ return 0;
+}
+#endif
+
+static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
+{
+ uint16_t n;
+ struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
+
+ /* elf32_fdpic_loadseg */
+ n = info->nsegs;
+ while (n--) {
+ sp -= 12;
+ put_user_u32(loadsegs[n].addr, sp+0);
+ put_user_u32(loadsegs[n].p_vaddr, sp+4);
+ put_user_u32(loadsegs[n].p_memsz, sp+8);
+ }
+
+ /* elf32_fdpic_loadmap */
+ sp -= 4;
+ put_user_u16(0, sp+0); /* version */
+ put_user_u16(info->nsegs, sp+2); /* nsegs */
+
+ info->personality = PER_LINUX_FDPIC;
+ info->loadmap_addr = sp;
+
+ return sp;
+}
+
+static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
+ struct elfhdr *exec,
+ struct image_info *info,
+ struct image_info *interp_info)
+{
+ abi_ulong sp;
+ abi_ulong u_argc, u_argv, u_envp, u_auxv;
+ int size;
+ int i;
+ abi_ulong u_rand_bytes;
+ uint8_t k_rand_bytes[16];
+ abi_ulong u_platform;
+ const char *k_platform;
+ const int n = sizeof(elf_addr_t);
+
+ sp = p;
+
+ /* Needs to be before we load the env/argc/... */
+ if (elf_is_fdpic(exec)) {
+ /* Need 4 byte alignment for these structs */
+ sp &= ~3;
+ sp = loader_build_fdpic_loadmap(info, sp);
+ info->other_info = interp_info;
+ if (interp_info) {
+ interp_info->other_info = info;
+ sp = loader_build_fdpic_loadmap(interp_info, sp);
+ info->interpreter_loadmap_addr = interp_info->loadmap_addr;
+ info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
+ } else {
+ info->interpreter_loadmap_addr = 0;
+ info->interpreter_pt_dynamic_addr = 0;
+ }
+ }
+
+ u_platform = 0;
+ k_platform = ELF_PLATFORM;
+ if (k_platform) {
+ size_t len = strlen(k_platform) + 1;
+ if (STACK_GROWS_DOWN) {
+ sp -= (len + n - 1) & ~(n - 1);
+ u_platform = sp;
+ /* FIXME - check return value of memcpy_to_target() for failure */
+ memcpy_to_target(sp, k_platform, len);
+ } else {
+ memcpy_to_target(sp, k_platform, len);
+ u_platform = sp;
+ sp += len + 1;
+ }
+ }
+
+ /* Provide 16 byte alignment for the PRNG, and basic alignment for
+ * the argv and envp pointers.
+ */
+ if (STACK_GROWS_DOWN) {
+ sp = QEMU_ALIGN_DOWN(sp, 16);
+ } else {
+ sp = QEMU_ALIGN_UP(sp, 16);
+ }
+
+ /*
+ * Generate 16 random bytes for userspace PRNG seeding.
+ */
+ qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
+ if (STACK_GROWS_DOWN) {
+ sp -= 16;
+ u_rand_bytes = sp;
+ /* FIXME - check return value of memcpy_to_target() for failure */
+ memcpy_to_target(sp, k_rand_bytes, 16);
+ } else {
+ memcpy_to_target(sp, k_rand_bytes, 16);
+ u_rand_bytes = sp;
+ sp += 16;
+ }
+
+ size = (DLINFO_ITEMS + 1) * 2;
+ if (k_platform)
+ size += 2;
+#ifdef DLINFO_ARCH_ITEMS
+ size += DLINFO_ARCH_ITEMS * 2;
+#endif
+#ifdef ELF_HWCAP2
+ size += 2;
+#endif
+ info->auxv_len = size * n;
+
+ size += envc + argc + 2;
+ size += 1; /* argc itself */
+ size *= n;
+
+ /* Allocate space and finalize stack alignment for entry now. */
+ if (STACK_GROWS_DOWN) {
+ u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
+ sp = u_argc;
+ } else {
+ u_argc = sp;
+ sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
+ }
+
+ u_argv = u_argc + n;
+ u_envp = u_argv + (argc + 1) * n;
+ u_auxv = u_envp + (envc + 1) * n;
+ info->saved_auxv = u_auxv;
+ info->arg_start = u_argv;
+ info->arg_end = u_argv + argc * n;
+
+ /* This is correct because Linux defines
+ * elf_addr_t as Elf32_Off / Elf64_Off
+ */
+#define NEW_AUX_ENT(id, val) do { \
+ put_user_ual(id, u_auxv); u_auxv += n; \
+ put_user_ual(val, u_auxv); u_auxv += n; \
+ } while(0)
+
+#ifdef ARCH_DLINFO
+ /*
+ * ARCH_DLINFO must come first so platform specific code can enforce
+ * special alignment requirements on the AUXV if necessary (eg. PPC).
+ */
+ ARCH_DLINFO;
+#endif
+ /* There must be exactly DLINFO_ITEMS entries here, or the assert
+ * on info->auxv_len will trigger.
+ */
+ NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
+ NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
+ NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
+ if ((info->alignment & ~qemu_host_page_mask) != 0) {
+ /* Target doesn't support host page size alignment */
+ NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
+ } else {
+ NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
+ qemu_host_page_size)));
+ }
+ NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
+ NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
+ NEW_AUX_ENT(AT_ENTRY, info->entry);
+ NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
+ NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
+ NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
+ NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
+ NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
+ NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
+ NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
+ NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
+ NEW_AUX_ENT(AT_EXECFN, info->file_string);
+
+#ifdef ELF_HWCAP2
+ NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
+#endif
+
+ if (u_platform) {
+ NEW_AUX_ENT(AT_PLATFORM, u_platform);
+ }
+ NEW_AUX_ENT (AT_NULL, 0);
+#undef NEW_AUX_ENT
+
+ /* Check that our initial calculation of the auxv length matches how much
+ * we actually put into it.
+ */
+ assert(info->auxv_len == u_auxv - info->saved_auxv);
+
+ put_user_ual(argc, u_argc);
+
+ p = info->arg_strings;
+ for (i = 0; i < argc; ++i) {
+ put_user_ual(p, u_argv);
+ u_argv += n;
+ p += target_strlen(p) + 1;
+ }
+ put_user_ual(0, u_argv);
+
+ p = info->env_strings;
+ for (i = 0; i < envc; ++i) {
+ put_user_ual(p, u_envp);
+ u_envp += n;
+ p += target_strlen(p) + 1;
+ }
+ put_user_ual(0, u_envp);
+
+ return sp;
+}
+
+#ifndef ARM_COMMPAGE
+#define ARM_COMMPAGE 0
+#define init_guest_commpage() true
+#endif
+
+static void pgb_fail_in_use(const char *image_name)
+{
+ error_report("%s: requires virtual address space that is in use "
+ "(omit the -B option or choose a different value)",
+ image_name);
+ exit(EXIT_FAILURE);
+}
+
+static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
+ abi_ulong guest_hiaddr, long align)
+{
+ const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
+ void *addr, *test;
+
+ if (!QEMU_IS_ALIGNED(guest_base, align)) {
+ fprintf(stderr, "Requested guest base %p does not satisfy "
+ "host minimum alignment (0x%lx)\n",
+ (void *)guest_base, align);
+ exit(EXIT_FAILURE);
+ }
+
+ /* Sanity check the guest binary. */
+ if (reserved_va) {
+ if (guest_hiaddr > reserved_va) {
+ error_report("%s: requires more than reserved virtual "
+ "address space (0x%" PRIx64 " > 0x%lx)",
+ image_name, (uint64_t)guest_hiaddr, reserved_va);
+ exit(EXIT_FAILURE);
+ }
+ } else {
+#if HOST_LONG_BITS < TARGET_ABI_BITS
+ if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
+ error_report("%s: requires more virtual address space "
+ "than the host can provide (0x%" PRIx64 ")",
+ image_name, (uint64_t)guest_hiaddr - guest_base);
+ exit(EXIT_FAILURE);
+ }
+#endif
+ }
+
+ /*
+ * Expand the allocation to the entire reserved_va.
+ * Exclude the mmap_min_addr hole.
+ */
+ if (reserved_va) {
+ guest_loaddr = (guest_base >= mmap_min_addr ? 0
+ : mmap_min_addr - guest_base);
+ guest_hiaddr = reserved_va;
+ }
+
+ /* Reserve the address space for the binary, or reserved_va. */
+ test = g2h_untagged(guest_loaddr);
+ addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
+ if (test != addr) {
+ pgb_fail_in_use(image_name);
+ }
+}
+
+/**
+ * pgd_find_hole_fallback: potential mmap address
+ * @guest_size: size of available space
+ * @brk: location of break
+ * @align: memory alignment
+ *
+ * This is a fallback method for finding a hole in the host address
+ * space if we don't have the benefit of being able to access
+ * /proc/self/map. It can potentially take a very long time as we can
+ * only dumbly iterate up the host address space seeing if the
+ * allocation would work.
+ */
+static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
+ long align, uintptr_t offset)
+{
+ uintptr_t base;
+
+ /* Start (aligned) at the bottom and work our way up */
+ base = ROUND_UP(mmap_min_addr, align);
+
+ while (true) {
+ uintptr_t align_start, end;
+ align_start = ROUND_UP(base, align);
+ end = align_start + guest_size + offset;
+
+ /* if brk is anywhere in the range give ourselves some room to grow. */
+ if (align_start <= brk && brk < end) {
+ base = brk + (16 * MiB);
+ continue;
+ } else if (align_start + guest_size < align_start) {
+ /* we have run out of space */
+ return -1;
+ } else {
+ int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
+ MAP_FIXED_NOREPLACE;
+ void * mmap_start = mmap((void *) align_start, guest_size,
+ PROT_NONE, flags, -1, 0);
+ if (mmap_start != MAP_FAILED) {
+ munmap(mmap_start, guest_size);
+ if (mmap_start == (void *) align_start) {
+ return (uintptr_t) mmap_start + offset;
+ }
+ }
+ base += qemu_host_page_size;
+ }
+ }
+}
+
+/* Return value for guest_base, or -1 if no hole found. */
+static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
+ long align, uintptr_t offset)
+{
+ GSList *maps, *iter;
+ uintptr_t this_start, this_end, next_start, brk;
+ intptr_t ret = -1;
+
+ assert(QEMU_IS_ALIGNED(guest_loaddr, align));
+
+ maps = read_self_maps();
+
+ /* Read brk after we've read the maps, which will malloc. */
+ brk = (uintptr_t)sbrk(0);
+
+ if (!maps) {
+ ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
+ return ret == -1 ? -1 : ret - guest_loaddr;
+ }
+
+ /* The first hole is before the first map entry. */
+ this_start = mmap_min_addr;
+
+ for (iter = maps; iter;
+ this_start = next_start, iter = g_slist_next(iter)) {
+ uintptr_t align_start, hole_size;
+
+ this_end = ((MapInfo *)iter->data)->start;
+ next_start = ((MapInfo *)iter->data)->end;
+ align_start = ROUND_UP(this_start + offset, align);
+
+ /* Skip holes that are too small. */
+ if (align_start >= this_end) {
+ continue;
+ }
+ hole_size = this_end - align_start;
+ if (hole_size < guest_size) {
+ continue;
+ }
+
+ /* If this hole contains brk, give ourselves some room to grow. */
+ if (this_start <= brk && brk < this_end) {
+ hole_size -= guest_size;
+ if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
+ align_start += 1 * GiB;
+ } else if (hole_size >= 16 * MiB) {
+ align_start += 16 * MiB;
+ } else {
+ align_start = (this_end - guest_size) & -align;
+ if (align_start < this_start) {
+ continue;
+ }
+ }
+ }
+
+ /* Record the lowest successful match. */
+ if (ret < 0) {
+ ret = align_start - guest_loaddr;
+ }
+ /* If this hole contains the identity map, select it. */
+ if (align_start <= guest_loaddr &&
+ guest_loaddr + guest_size <= this_end) {
+ ret = 0;
+ }
+ /* If this hole ends above the identity map, stop looking. */
+ if (this_end >= guest_loaddr) {
+ break;
+ }
+ }
+ free_self_maps(maps);
+
+ return ret;
+}
+
+static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
+ abi_ulong orig_hiaddr, long align)
+{
+ uintptr_t loaddr = orig_loaddr;
+ uintptr_t hiaddr = orig_hiaddr;
+ uintptr_t offset = 0;
+ uintptr_t addr;
+
+ if (hiaddr != orig_hiaddr) {
+ error_report("%s: requires virtual address space that the "
+ "host cannot provide (0x%" PRIx64 ")",
+ image_name, (uint64_t)orig_hiaddr);
+ exit(EXIT_FAILURE);
+ }
+
+ loaddr &= -align;
+ if (ARM_COMMPAGE) {
+ /*
+ * Extend the allocation to include the commpage.
+ * For a 64-bit host, this is just 4GiB; for a 32-bit host we
+ * need to ensure there is space bellow the guest_base so we
+ * can map the commpage in the place needed when the address
+ * arithmetic wraps around.
+ */
+ if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
+ hiaddr = (uintptr_t) 4 << 30;
+ } else {
+ offset = -(ARM_COMMPAGE & -align);
+ }
+ }
+
+ addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
+ if (addr == -1) {
+ /*
+ * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
+ * that can satisfy both. But as the normal arm32 link base address
+ * is ~32k, and we extend down to include the commpage, making the
+ * overhead only ~96k, this is unlikely.
+ */
+ error_report("%s: Unable to allocate %#zx bytes of "
+ "virtual address space", image_name,
+ (size_t)(hiaddr - loaddr));
+ exit(EXIT_FAILURE);
+ }
+
+ guest_base = addr;
+}
+
+static void pgb_dynamic(const char *image_name, long align)
+{
+ /*
+ * The executable is dynamic and does not require a fixed address.
+ * All we need is a commpage that satisfies align.
+ * If we do not need a commpage, leave guest_base == 0.
+ */
+ if (ARM_COMMPAGE) {
+ uintptr_t addr, commpage;
+
+ /* 64-bit hosts should have used reserved_va. */
+ assert(sizeof(uintptr_t) == 4);
+
+ /*
+ * By putting the commpage at the first hole, that puts guest_base
+ * just above that, and maximises the positive guest addresses.
+ */
+ commpage = ARM_COMMPAGE & -align;
+ addr = pgb_find_hole(commpage, -commpage, align, 0);
+ assert(addr != -1);
+ guest_base = addr;
+ }
+}
+
+static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
+ abi_ulong guest_hiaddr, long align)
+{
+ int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
+ void *addr, *test;
+
+ if (guest_hiaddr > reserved_va) {
+ error_report("%s: requires more than reserved virtual "
+ "address space (0x%" PRIx64 " > 0x%lx)",
+ image_name, (uint64_t)guest_hiaddr, reserved_va);
+ exit(EXIT_FAILURE);
+ }
+
+ /* Widen the "image" to the entire reserved address space. */
+ pgb_static(image_name, 0, reserved_va, align);
+
+ /* osdep.h defines this as 0 if it's missing */
+ flags |= MAP_FIXED_NOREPLACE;
+
+ /* Reserve the memory on the host. */
+ assert(guest_base != 0);
+ test = g2h_untagged(0);
+ addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
+ if (addr == MAP_FAILED || addr != test) {
+ error_report("Unable to reserve 0x%lx bytes of virtual address "
+ "space at %p (%s) for use as guest address space (check your"
+ "virtual memory ulimit setting, min_mmap_addr or reserve less "
+ "using -R option)", reserved_va, test, strerror(errno));
+ exit(EXIT_FAILURE);
+ }
+}
+
+void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
+ abi_ulong guest_hiaddr)
+{
+ /* In order to use host shmat, we must be able to honor SHMLBA. */
+ uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
+
+ if (have_guest_base) {
+ pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
+ } else if (reserved_va) {
+ pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
+ } else if (guest_loaddr) {
+ pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
+ } else {
+ pgb_dynamic(image_name, align);
+ }
+
+ /* Reserve and initialize the commpage. */
+ if (!init_guest_commpage()) {
+ /*
+ * With have_guest_base, the user has selected the address and
+ * we are trying to work with that. Otherwise, we have selected
+ * free space and init_guest_commpage must succeeded.
+ */
+ assert(have_guest_base);
+ pgb_fail_in_use(image_name);
+ }
+
+ assert(QEMU_IS_ALIGNED(guest_base, align));
+ qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
+ "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
+}
+
+enum {
+ /* The string "GNU\0" as a magic number. */
+ GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
+ NOTE_DATA_SZ = 1 * KiB,
+ NOTE_NAME_SZ = 4,
+ ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
+};
+
+/*
+ * Process a single gnu_property entry.
+ * Return false for error.
+ */
+static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
+ struct image_info *info, bool have_prev_type,
+ uint32_t *prev_type, Error **errp)
+{
+ uint32_t pr_type, pr_datasz, step;
+
+ if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
+ goto error_data;
+ }
+ datasz -= *off;
+ data += *off / sizeof(uint32_t);
+
+ if (datasz < 2 * sizeof(uint32_t)) {
+ goto error_data;
+ }
+ pr_type = data[0];
+ pr_datasz = data[1];
+ data += 2;
+ datasz -= 2 * sizeof(uint32_t);
+ step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
+ if (step > datasz) {
+ goto error_data;
+ }
+
+ /* Properties are supposed to be unique and sorted on pr_type. */
+ if (have_prev_type && pr_type <= *prev_type) {
+ if (pr_type == *prev_type) {
+ error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
+ } else {
+ error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
+ }
+ return false;
+ }
+ *prev_type = pr_type;
+
+ if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
+ return false;
+ }
+
+ *off += 2 * sizeof(uint32_t) + step;
+ return true;
+
+ error_data:
+ error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
+ return false;
+}
+
+/* Process NT_GNU_PROPERTY_TYPE_0. */
+static bool parse_elf_properties(int image_fd,
+ struct image_info *info,
+ const struct elf_phdr *phdr,
+ char bprm_buf[BPRM_BUF_SIZE],
+ Error **errp)
+{
+ union {
+ struct elf_note nhdr;
+ uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
+ } note;
+
+ int n, off, datasz;
+ bool have_prev_type;
+ uint32_t prev_type;
+
+ /* Unless the arch requires properties, ignore them. */
+ if (!ARCH_USE_GNU_PROPERTY) {
+ return true;
+ }
+
+ /* If the properties are crazy large, that's too bad. */
+ n = phdr->p_filesz;
+ if (n > sizeof(note)) {
+ error_setg(errp, "PT_GNU_PROPERTY too large");
+ return false;
+ }
+ if (n < sizeof(note.nhdr)) {
+ error_setg(errp, "PT_GNU_PROPERTY too small");
+ return false;
+ }
+
+ if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
+ memcpy(&note, bprm_buf + phdr->p_offset, n);
+ } else {
+ ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
+ if (len != n) {
+ error_setg_errno(errp, errno, "Error reading file header");
+ return false;
+ }
+ }
+
+ /*
+ * The contents of a valid PT_GNU_PROPERTY is a sequence
+ * of uint32_t -- swap them all now.
+ */
+#ifdef BSWAP_NEEDED
+ for (int i = 0; i < n / 4; i++) {
+ bswap32s(note.data + i);
+ }
+#endif
+
+ /*
+ * Note that nhdr is 3 words, and that the "name" described by namesz
+ * immediately follows nhdr and is thus at the 4th word. Further, all
+ * of the inputs to the kernel's round_up are multiples of 4.
+ */
+ if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
+ note.nhdr.n_namesz != NOTE_NAME_SZ ||
+ note.data[3] != GNU0_MAGIC) {
+ error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
+ return false;
+ }
+ off = sizeof(note.nhdr) + NOTE_NAME_SZ;
+
+ datasz = note.nhdr.n_descsz + off;
+ if (datasz > n) {
+ error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
+ return false;
+ }
+
+ have_prev_type = false;
+ prev_type = 0;
+ while (1) {
+ if (off == datasz) {
+ return true; /* end, exit ok */
+ }
+ if (!parse_elf_property(note.data, &off, datasz, info,
+ have_prev_type, &prev_type, errp)) {
+ return false;
+ }
+ have_prev_type = true;
+ }
+}
+
+/* Load an ELF image into the address space.
+
+ IMAGE_NAME is the filename of the image, to use in error messages.
+ IMAGE_FD is the open file descriptor for the image.
+
+ BPRM_BUF is a copy of the beginning of the file; this of course
+ contains the elf file header at offset 0. It is assumed that this
+ buffer is sufficiently aligned to present no problems to the host
+ in accessing data at aligned offsets within the buffer.
+
+ On return: INFO values will be filled in, as necessary or available. */
+
+static void load_elf_image(const char *image_name, int image_fd,
+ struct image_info *info, char **pinterp_name,
+ char bprm_buf[BPRM_BUF_SIZE])
+{
+ struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
+ struct elf_phdr *phdr;
+ abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
+ int i, retval, prot_exec;
+ Error *err = NULL;
+
+ /* First of all, some simple consistency checks */
+ if (!elf_check_ident(ehdr)) {
+ error_setg(&err, "Invalid ELF image for this architecture");
+ goto exit_errmsg;
+ }
+ bswap_ehdr(ehdr);
+ if (!elf_check_ehdr(ehdr)) {
+ error_setg(&err, "Invalid ELF image for this architecture");
+ goto exit_errmsg;
+ }
+
+ i = ehdr->e_phnum * sizeof(struct elf_phdr);
+ if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
+ phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
+ } else {
+ phdr = (struct elf_phdr *) alloca(i);
+ retval = pread(image_fd, phdr, i, ehdr->e_phoff);
+ if (retval != i) {
+ goto exit_read;
+ }
+ }
+ bswap_phdr(phdr, ehdr->e_phnum);
+
+ info->nsegs = 0;
+ info->pt_dynamic_addr = 0;
+
+ mmap_lock();
+
+ /*
+ * Find the maximum size of the image and allocate an appropriate
+ * amount of memory to handle that. Locate the interpreter, if any.
+ */
+ loaddr = -1, hiaddr = 0;
+ info->alignment = 0;
+ for (i = 0; i < ehdr->e_phnum; ++i) {
+ struct elf_phdr *eppnt = phdr + i;
+ if (eppnt->p_type == PT_LOAD) {
+ abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
+ if (a < loaddr) {
+ loaddr = a;
+ }
+ a = eppnt->p_vaddr + eppnt->p_memsz;
+ if (a > hiaddr) {
+ hiaddr = a;
+ }
+ ++info->nsegs;
+ info->alignment |= eppnt->p_align;
+ } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
+ g_autofree char *interp_name = NULL;
+
+ if (*pinterp_name) {
+ error_setg(&err, "Multiple PT_INTERP entries");
+ goto exit_errmsg;
+ }
+
+ interp_name = g_malloc(eppnt->p_filesz);
+
+ if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
+ memcpy(interp_name, bprm_buf + eppnt->p_offset,
+ eppnt->p_filesz);
+ } else {
+ retval = pread(image_fd, interp_name, eppnt->p_filesz,
+ eppnt->p_offset);
+ if (retval != eppnt->p_filesz) {
+ goto exit_read;
+ }
+ }
+ if (interp_name[eppnt->p_filesz - 1] != 0) {
+ error_setg(&err, "Invalid PT_INTERP entry");
+ goto exit_errmsg;
+ }
+ *pinterp_name = g_steal_pointer(&interp_name);
+ } else if (eppnt->p_type == PT_GNU_PROPERTY) {
+ if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
+ goto exit_errmsg;
+ }
+ }
+ }
+
+ if (pinterp_name != NULL) {
+ /*
+ * This is the main executable.
+ *
+ * Reserve extra space for brk.
+ * We hold on to this space while placing the interpreter
+ * and the stack, lest they be placed immediately after
+ * the data segment and block allocation from the brk.
+ *
+ * 16MB is chosen as "large enough" without being so large
+ * as to allow the result to not fit with a 32-bit guest on
+ * a 32-bit host.
+ */
+ info->reserve_brk = 16 * MiB;
+ hiaddr += info->reserve_brk;
+
+ if (ehdr->e_type == ET_EXEC) {
+ /*
+ * Make sure that the low address does not conflict with
+ * MMAP_MIN_ADDR or the QEMU application itself.
+ */
+ probe_guest_base(image_name, loaddr, hiaddr);
+ } else {
+ /*
+ * The binary is dynamic, but we still need to
+ * select guest_base. In this case we pass a size.
+ */
+ probe_guest_base(image_name, 0, hiaddr - loaddr);
+ }
+ }
+
+ /*
+ * Reserve address space for all of this.
+ *
+ * In the case of ET_EXEC, we supply MAP_FIXED so that we get
+ * exactly the address range that is required.
+ *
+ * Otherwise this is ET_DYN, and we are searching for a location
+ * that can hold the memory space required. If the image is
+ * pre-linked, LOADDR will be non-zero, and the kernel should
+ * honor that address if it happens to be free.
+ *
+ * In both cases, we will overwrite pages in this range with mappings
+ * from the executable.
+ */
+ load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
+ MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
+ (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
+ -1, 0);
+ if (load_addr == -1) {
+ goto exit_mmap;
+ }
+ load_bias = load_addr - loaddr;
+
+ if (elf_is_fdpic(ehdr)) {
+ struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
+ g_malloc(sizeof(*loadsegs) * info->nsegs);
+
+ for (i = 0; i < ehdr->e_phnum; ++i) {
+ switch (phdr[i].p_type) {
+ case PT_DYNAMIC:
+ info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
+ break;
+ case PT_LOAD:
+ loadsegs->addr = phdr[i].p_vaddr + load_bias;
+ loadsegs->p_vaddr = phdr[i].p_vaddr;
+ loadsegs->p_memsz = phdr[i].p_memsz;
+ ++loadsegs;
+ break;
+ }
+ }
+ }
+
+ info->load_bias = load_bias;
+ info->code_offset = load_bias;
+ info->data_offset = load_bias;
+ info->load_addr = load_addr;
+ info->entry = ehdr->e_entry + load_bias;
+ info->start_code = -1;
+ info->end_code = 0;
+ info->start_data = -1;
+ info->end_data = 0;
+ info->brk = 0;
+ info->elf_flags = ehdr->e_flags;
+
+ prot_exec = PROT_EXEC;
+#ifdef TARGET_AARCH64
+ /*
+ * If the BTI feature is present, this indicates that the executable
+ * pages of the startup binary should be mapped with PROT_BTI, so that
+ * branch targets are enforced.
+ *
+ * The startup binary is either the interpreter or the static executable.
+ * The interpreter is responsible for all pages of a dynamic executable.
+ *
+ * Elf notes are backward compatible to older cpus.
+ * Do not enable BTI unless it is supported.
+ */
+ if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
+ && (pinterp_name == NULL || *pinterp_name == 0)
+ && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
+ prot_exec |= TARGET_PROT_BTI;
+ }
+#endif
+
+ for (i = 0; i < ehdr->e_phnum; i++) {
+ struct elf_phdr *eppnt = phdr + i;
+ if (eppnt->p_type == PT_LOAD) {
+ abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
+ int elf_prot = 0;
+
+ if (eppnt->p_flags & PF_R) {
+ elf_prot |= PROT_READ;
+ }
+ if (eppnt->p_flags & PF_W) {
+ elf_prot |= PROT_WRITE;
+ }
+ if (eppnt->p_flags & PF_X) {
+ elf_prot |= prot_exec;
+ }
+
+ vaddr = load_bias + eppnt->p_vaddr;
+ vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
+ vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
+
+ vaddr_ef = vaddr + eppnt->p_filesz;
+ vaddr_em = vaddr + eppnt->p_memsz;
+
+ /*
+ * Some segments may be completely empty, with a non-zero p_memsz
+ * but no backing file segment.
+ */
+ if (eppnt->p_filesz != 0) {
+ vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
+ error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
+ MAP_PRIVATE | MAP_FIXED,
+ image_fd, eppnt->p_offset - vaddr_po);
+
+ if (error == -1) {
+ goto exit_mmap;
+ }
+
+ /*
+ * If the load segment requests extra zeros (e.g. bss), map it.
+ */
+ if (eppnt->p_filesz < eppnt->p_memsz) {
+ zero_bss(vaddr_ef, vaddr_em, elf_prot);
+ }
+ } else if (eppnt->p_memsz != 0) {
+ vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
+ error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
+ MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
+ -1, 0);
+
+ if (error == -1) {
+ goto exit_mmap;
+ }
+ }
+
+ /* Find the full program boundaries. */
+ if (elf_prot & PROT_EXEC) {
+ if (vaddr < info->start_code) {
+ info->start_code = vaddr;
+ }
+ if (vaddr_ef > info->end_code) {
+ info->end_code = vaddr_ef;
+ }
+ }
+ if (elf_prot & PROT_WRITE) {
+ if (vaddr < info->start_data) {
+ info->start_data = vaddr;
+ }
+ if (vaddr_ef > info->end_data) {
+ info->end_data = vaddr_ef;
+ }
+ }
+ if (vaddr_em > info->brk) {
+ info->brk = vaddr_em;
+ }
+#ifdef TARGET_MIPS
+ } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
+ Mips_elf_abiflags_v0 abiflags;
+ if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
+ error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
+ goto exit_errmsg;
+ }
+ if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
+ memcpy(&abiflags, bprm_buf + eppnt->p_offset,
+ sizeof(Mips_elf_abiflags_v0));
+ } else {
+ retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
+ eppnt->p_offset);
+ if (retval != sizeof(Mips_elf_abiflags_v0)) {
+ goto exit_read;
+ }
+ }
+ bswap_mips_abiflags(&abiflags);
+ info->fp_abi = abiflags.fp_abi;
+#endif
+ }
+ }
+
+ if (info->end_data == 0) {
+ info->start_data = info->end_code;
+ info->end_data = info->end_code;
+ }
+
+ if (qemu_log_enabled()) {
+ load_symbols(ehdr, image_fd, load_bias);
+ }
+
+ mmap_unlock();
+
+ close(image_fd);
+ return;
+
+ exit_read:
+ if (retval >= 0) {
+ error_setg(&err, "Incomplete read of file header");
+ } else {
+ error_setg_errno(&err, errno, "Error reading file header");
+ }
+ goto exit_errmsg;
+ exit_mmap:
+ error_setg_errno(&err, errno, "Error mapping file");
+ goto exit_errmsg;
+ exit_errmsg:
+ error_reportf_err(err, "%s: ", image_name);
+ exit(-1);
+}
+
+static void load_elf_interp(const char *filename, struct image_info *info,
+ char bprm_buf[BPRM_BUF_SIZE])
+{
+ int fd, retval;
+ Error *err = NULL;
+
+ fd = open(path(filename), O_RDONLY);
+ if (fd < 0) {
+ error_setg_file_open(&err, errno, filename);
+ error_report_err(err);
+ exit(-1);
+ }
+
+ retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
+ if (retval < 0) {
+ error_setg_errno(&err, errno, "Error reading file header");
+ error_reportf_err(err, "%s: ", filename);
+ exit(-1);
+ }
+
+ if (retval < BPRM_BUF_SIZE) {
+ memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
+ }
+
+ load_elf_image(filename, fd, info, NULL, bprm_buf);
+}
+
+static int symfind(const void *s0, const void *s1)
+{
+ target_ulong addr = *(target_ulong *)s0;
+ struct elf_sym *sym = (struct elf_sym *)s1;
+ int result = 0;
+ if (addr < sym->st_value) {
+ result = -1;
+ } else if (addr >= sym->st_value + sym->st_size) {
+ result = 1;
+ }
+ return result;
+}
+
+static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
+{
+#if ELF_CLASS == ELFCLASS32
+ struct elf_sym *syms = s->disas_symtab.elf32;
+#else
+ struct elf_sym *syms = s->disas_symtab.elf64;
+#endif
+
+ // binary search
+ struct elf_sym *sym;
+
+ sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
+ if (sym != NULL) {
+ return s->disas_strtab + sym->st_name;
+ }
+
+ return "";
+}
+
+/* FIXME: This should use elf_ops.h */
+static int symcmp(const void *s0, const void *s1)
+{
+ struct elf_sym *sym0 = (struct elf_sym *)s0;
+ struct elf_sym *sym1 = (struct elf_sym *)s1;
+ return (sym0->st_value < sym1->st_value)
+ ? -1
+ : ((sym0->st_value > sym1->st_value) ? 1 : 0);
+}
+
+/* Best attempt to load symbols from this ELF object. */
+static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
+{
+ int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
+ uint64_t segsz;
+ struct elf_shdr *shdr;
+ char *strings = NULL;
+ struct syminfo *s = NULL;
+ struct elf_sym *new_syms, *syms = NULL;
+
+ shnum = hdr->e_shnum;
+ i = shnum * sizeof(struct elf_shdr);
+ shdr = (struct elf_shdr *)alloca(i);
+ if (pread(fd, shdr, i, hdr->e_shoff) != i) {
+ return;
+ }
+
+ bswap_shdr(shdr, shnum);
+ for (i = 0; i < shnum; ++i) {
+ if (shdr[i].sh_type == SHT_SYMTAB) {
+ sym_idx = i;
+ str_idx = shdr[i].sh_link;
+ goto found;
+ }
+ }
+
+ /* There will be no symbol table if the file was stripped. */
+ return;
+
+ found:
+ /* Now know where the strtab and symtab are. Snarf them. */
+ s = g_try_new(struct syminfo, 1);
+ if (!s) {
+ goto give_up;
+ }
+
+ segsz = shdr[str_idx].sh_size;
+ s->disas_strtab = strings = g_try_malloc(segsz);
+ if (!strings ||
+ pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
+ goto give_up;
+ }
+
+ segsz = shdr[sym_idx].sh_size;
+ syms = g_try_malloc(segsz);
+ if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
+ goto give_up;
+ }
+
+ if (segsz / sizeof(struct elf_sym) > INT_MAX) {
+ /* Implausibly large symbol table: give up rather than ploughing
+ * on with the number of symbols calculation overflowing
+ */
+ goto give_up;
+ }
+ nsyms = segsz / sizeof(struct elf_sym);
+ for (i = 0; i < nsyms; ) {
+ bswap_sym(syms + i);
+ /* Throw away entries which we do not need. */
+ if (syms[i].st_shndx == SHN_UNDEF
+ || syms[i].st_shndx >= SHN_LORESERVE
+ || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
+ if (i < --nsyms) {
+ syms[i] = syms[nsyms];
+ }
+ } else {
+#if defined(TARGET_ARM) || defined (TARGET_MIPS)
+ /* The bottom address bit marks a Thumb or MIPS16 symbol. */
+ syms[i].st_value &= ~(target_ulong)1;
+#endif
+ syms[i].st_value += load_bias;
+ i++;
+ }
+ }
+
+ /* No "useful" symbol. */
+ if (nsyms == 0) {
+ goto give_up;
+ }
+
+ /* Attempt to free the storage associated with the local symbols
+ that we threw away. Whether or not this has any effect on the
+ memory allocation depends on the malloc implementation and how
+ many symbols we managed to discard. */
+ new_syms = g_try_renew(struct elf_sym, syms, nsyms);
+ if (new_syms == NULL) {
+ goto give_up;
+ }
+ syms = new_syms;
+
+ qsort(syms, nsyms, sizeof(*syms), symcmp);
+
+ s->disas_num_syms = nsyms;
+#if ELF_CLASS == ELFCLASS32
+ s->disas_symtab.elf32 = syms;
+#else
+ s->disas_symtab.elf64 = syms;
+#endif
+ s->lookup_symbol = lookup_symbolxx;
+ s->next = syminfos;
+ syminfos = s;
+
+ return;
+
+give_up:
+ g_free(s);
+ g_free(strings);
+ g_free(syms);
+}
+
+uint32_t get_elf_eflags(int fd)
+{
+ struct elfhdr ehdr;
+ off_t offset;
+ int ret;
+
+ /* Read ELF header */
+ offset = lseek(fd, 0, SEEK_SET);
+ if (offset == (off_t) -1) {
+ return 0;
+ }
+ ret = read(fd, &ehdr, sizeof(ehdr));
+ if (ret < sizeof(ehdr)) {
+ return 0;
+ }
+ offset = lseek(fd, offset, SEEK_SET);
+ if (offset == (off_t) -1) {
+ return 0;
+ }
+
+ /* Check ELF signature */
+ if (!elf_check_ident(&ehdr)) {
+ return 0;
+ }
+
+ /* check header */
+ bswap_ehdr(&ehdr);
+ if (!elf_check_ehdr(&ehdr)) {
+ return 0;
+ }
+
+ /* return architecture id */
+ return ehdr.e_flags;
+}
+
+int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
+{
+ struct image_info interp_info;
+ struct elfhdr elf_ex;
+ char *elf_interpreter = NULL;
+ char *scratch;
+
+ memset(&interp_info, 0, sizeof(interp_info));
+#ifdef TARGET_MIPS
+ interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
+#endif
+
+ info->start_mmap = (abi_ulong)ELF_START_MMAP;
+
+ load_elf_image(bprm->filename, bprm->fd, info,
+ &elf_interpreter, bprm->buf);
+
+ /* ??? We need a copy of the elf header for passing to create_elf_tables.
+ If we do nothing, we'll have overwritten this when we re-use bprm->buf
+ when we load the interpreter. */
+ elf_ex = *(struct elfhdr *)bprm->buf;
+
+ /* Do this so that we can load the interpreter, if need be. We will
+ change some of these later */
+ bprm->p = setup_arg_pages(bprm, info);
+
+ scratch = g_new0(char, TARGET_PAGE_SIZE);
+ if (STACK_GROWS_DOWN) {
+ bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
+ bprm->p, info->stack_limit);
+ info->file_string = bprm->p;
+ bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
+ bprm->p, info->stack_limit);
+ info->env_strings = bprm->p;
+ bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
+ bprm->p, info->stack_limit);
+ info->arg_strings = bprm->p;
+ } else {
+ info->arg_strings = bprm->p;
+ bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
+ bprm->p, info->stack_limit);
+ info->env_strings = bprm->p;
+ bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
+ bprm->p, info->stack_limit);
+ info->file_string = bprm->p;
+ bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
+ bprm->p, info->stack_limit);
+ }
+
+ g_free(scratch);
+
+ if (!bprm->p) {
+ fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
+ exit(-1);
+ }
+
+ if (elf_interpreter) {
+ load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
+
+ /* If the program interpreter is one of these two, then assume
+ an iBCS2 image. Otherwise assume a native linux image. */
+
+ if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
+ || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
+ info->personality = PER_SVR4;
+
+ /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
+ and some applications "depend" upon this behavior. Since
+ we do not have the power to recompile these, we emulate
+ the SVr4 behavior. Sigh. */
+ target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
+ MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ }
+#ifdef TARGET_MIPS
+ info->interp_fp_abi = interp_info.fp_abi;
+#endif
+ }
+
+ /*
+ * TODO: load a vdso, which would also contain the signal trampolines.
+ * Otherwise, allocate a private page to hold them.
+ */
+ if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
+ abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANON, -1, 0);
+ if (tramp_page == -1) {
+ return -errno;
+ }
+
+ setup_sigtramp(tramp_page);
+ target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
+ }
+
+ bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
+ info, (elf_interpreter ? &interp_info : NULL));
+ info->start_stack = bprm->p;
+
+ /* If we have an interpreter, set that as the program's entry point.
+ Copy the load_bias as well, to help PPC64 interpret the entry
+ point as a function descriptor. Do this after creating elf tables
+ so that we copy the original program entry point into the AUXV. */
+ if (elf_interpreter) {
+ info->load_bias = interp_info.load_bias;
+ info->entry = interp_info.entry;
+ g_free(elf_interpreter);
+ }
+
+#ifdef USE_ELF_CORE_DUMP
+ bprm->core_dump = &elf_core_dump;
+#endif
+
+ /*
+ * If we reserved extra space for brk, release it now.
+ * The implementation of do_brk in syscalls.c expects to be able
+ * to mmap pages in this space.
+ */
+ if (info->reserve_brk) {
+ abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
+ abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
+ target_munmap(start_brk, end_brk - start_brk);
+ }
+
+ return 0;
+}
+
+#ifdef USE_ELF_CORE_DUMP
+/*
+ * Definitions to generate Intel SVR4-like core files.
+ * These mostly have the same names as the SVR4 types with "target_elf_"
+ * tacked on the front to prevent clashes with linux definitions,
+ * and the typedef forms have been avoided. This is mostly like
+ * the SVR4 structure, but more Linuxy, with things that Linux does
+ * not support and which gdb doesn't really use excluded.
+ *
+ * Fields we don't dump (their contents is zero) in linux-user qemu
+ * are marked with XXX.
+ *
+ * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
+ *
+ * Porting ELF coredump for target is (quite) simple process. First you
+ * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
+ * the target resides):
+ *
+ * #define USE_ELF_CORE_DUMP
+ *
+ * Next you define type of register set used for dumping. ELF specification
+ * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
+ *
+ * typedef <target_regtype> target_elf_greg_t;
+ * #define ELF_NREG <number of registers>
+ * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
+ *
+ * Last step is to implement target specific function that copies registers
+ * from given cpu into just specified register set. Prototype is:
+ *
+ * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
+ * const CPUArchState *env);
+ *
+ * Parameters:
+ * regs - copy register values into here (allocated and zeroed by caller)
+ * env - copy registers from here
+ *
+ * Example for ARM target is provided in this file.
+ */
+
+/* An ELF note in memory */
+struct memelfnote {
+ const char *name;
+ size_t namesz;
+ size_t namesz_rounded;
+ int type;
+ size_t datasz;
+ size_t datasz_rounded;
+ void *data;
+ size_t notesz;
+};
+
+struct target_elf_siginfo {
+ abi_int si_signo; /* signal number */
+ abi_int si_code; /* extra code */
+ abi_int si_errno; /* errno */
+};
+
+struct target_elf_prstatus {
+ struct target_elf_siginfo pr_info; /* Info associated with signal */
+ abi_short pr_cursig; /* Current signal */
+ abi_ulong pr_sigpend; /* XXX */
+ abi_ulong pr_sighold; /* XXX */
+ target_pid_t pr_pid;
+ target_pid_t pr_ppid;
+ target_pid_t pr_pgrp;
+ target_pid_t pr_sid;
+ struct target_timeval pr_utime; /* XXX User time */
+ struct target_timeval pr_stime; /* XXX System time */
+ struct target_timeval pr_cutime; /* XXX Cumulative user time */
+ struct target_timeval pr_cstime; /* XXX Cumulative system time */
+ target_elf_gregset_t pr_reg; /* GP registers */
+ abi_int pr_fpvalid; /* XXX */
+};
+
+#define ELF_PRARGSZ (80) /* Number of chars for args */
+
+struct target_elf_prpsinfo {
+ char pr_state; /* numeric process state */
+ char pr_sname; /* char for pr_state */
+ char pr_zomb; /* zombie */
+ char pr_nice; /* nice val */
+ abi_ulong pr_flag; /* flags */
+ target_uid_t pr_uid;
+ target_gid_t pr_gid;
+ target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
+ /* Lots missing */
+ char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
+ char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
+};
+
+/* Here is the structure in which status of each thread is captured. */
+struct elf_thread_status {
+ QTAILQ_ENTRY(elf_thread_status) ets_link;
+ struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
+#if 0
+ elf_fpregset_t fpu; /* NT_PRFPREG */
+ struct task_struct *thread;
+ elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
+#endif
+ struct memelfnote notes[1];
+ int num_notes;
+};
+
+struct elf_note_info {
+ struct memelfnote *notes;
+ struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
+ struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
+
+ QTAILQ_HEAD(, elf_thread_status) thread_list;
+#if 0
+ /*
+ * Current version of ELF coredump doesn't support
+ * dumping fp regs etc.
+ */
+ elf_fpregset_t *fpu;
+ elf_fpxregset_t *xfpu;
+ int thread_status_size;
+#endif
+ int notes_size;
+ int numnote;
+};
+
+struct vm_area_struct {
+ target_ulong vma_start; /* start vaddr of memory region */
+ target_ulong vma_end; /* end vaddr of memory region */
+ abi_ulong vma_flags; /* protection etc. flags for the region */
+ QTAILQ_ENTRY(vm_area_struct) vma_link;
+};
+
+struct mm_struct {
+ QTAILQ_HEAD(, vm_area_struct) mm_mmap;
+ int mm_count; /* number of mappings */
+};
+
+static struct mm_struct *vma_init(void);
+static void vma_delete(struct mm_struct *);
+static int vma_add_mapping(struct mm_struct *, target_ulong,
+ target_ulong, abi_ulong);
+static int vma_get_mapping_count(const struct mm_struct *);
+static struct vm_area_struct *vma_first(const struct mm_struct *);
+static struct vm_area_struct *vma_next(struct vm_area_struct *);
+static abi_ulong vma_dump_size(const struct vm_area_struct *);
+static int vma_walker(void *priv, target_ulong start, target_ulong end,
+ unsigned long flags);
+
+static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
+static void fill_note(struct memelfnote *, const char *, int,
+ unsigned int, void *);
+static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
+static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
+static void fill_auxv_note(struct memelfnote *, const TaskState *);
+static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
+static size_t note_size(const struct memelfnote *);
+static void free_note_info(struct elf_note_info *);
+static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
+static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
+
+static int dump_write(int, const void *, size_t);
+static int write_note(struct memelfnote *, int);
+static int write_note_info(struct elf_note_info *, int);
+
+#ifdef BSWAP_NEEDED
+static void bswap_prstatus(struct target_elf_prstatus *prstatus)
+{
+ prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
+ prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
+ prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
+ prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
+ prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
+ prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
+ prstatus->pr_pid = tswap32(prstatus->pr_pid);
+ prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
+ prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
+ prstatus->pr_sid = tswap32(prstatus->pr_sid);
+ /* cpu times are not filled, so we skip them */
+ /* regs should be in correct format already */
+ prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
+}
+
+static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
+{
+ psinfo->pr_flag = tswapal(psinfo->pr_flag);
+ psinfo->pr_uid = tswap16(psinfo->pr_uid);
+ psinfo->pr_gid = tswap16(psinfo->pr_gid);
+ psinfo->pr_pid = tswap32(psinfo->pr_pid);
+ psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
+ psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
+ psinfo->pr_sid = tswap32(psinfo->pr_sid);
+}
+
+static void bswap_note(struct elf_note *en)
+{
+ bswap32s(&en->n_namesz);
+ bswap32s(&en->n_descsz);
+ bswap32s(&en->n_type);
+}
+#else
+static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
+static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
+static inline void bswap_note(struct elf_note *en) { }
+#endif /* BSWAP_NEEDED */
+
+/*
+ * Minimal support for linux memory regions. These are needed
+ * when we are finding out what memory exactly belongs to
+ * emulated process. No locks needed here, as long as
+ * thread that received the signal is stopped.
+ */
+
+static struct mm_struct *vma_init(void)
+{
+ struct mm_struct *mm;
+
+ if ((mm = g_malloc(sizeof (*mm))) == NULL)
+ return (NULL);
+
+ mm->mm_count = 0;
+ QTAILQ_INIT(&mm->mm_mmap);
+
+ return (mm);
+}
+
+static void vma_delete(struct mm_struct *mm)
+{
+ struct vm_area_struct *vma;
+
+ while ((vma = vma_first(mm)) != NULL) {
+ QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
+ g_free(vma);
+ }
+ g_free(mm);
+}
+
+static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
+ target_ulong end, abi_ulong flags)
+{
+ struct vm_area_struct *vma;
+
+ if ((vma = g_malloc0(sizeof (*vma))) == NULL)
+ return (-1);
+
+ vma->vma_start = start;
+ vma->vma_end = end;
+ vma->vma_flags = flags;
+
+ QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
+ mm->mm_count++;
+
+ return (0);
+}
+
+static struct vm_area_struct *vma_first(const struct mm_struct *mm)
+{
+ return (QTAILQ_FIRST(&mm->mm_mmap));
+}
+
+static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
+{
+ return (QTAILQ_NEXT(vma, vma_link));
+}
+
+static int vma_get_mapping_count(const struct mm_struct *mm)
+{
+ return (mm->mm_count);
+}
+
+/*
+ * Calculate file (dump) size of given memory region.
+ */
+static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
+{
+ /* if we cannot even read the first page, skip it */
+ if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
+ return (0);
+
+ /*
+ * Usually we don't dump executable pages as they contain
+ * non-writable code that debugger can read directly from
+ * target library etc. However, thread stacks are marked
+ * also executable so we read in first page of given region
+ * and check whether it contains elf header. If there is
+ * no elf header, we dump it.
+ */
+ if (vma->vma_flags & PROT_EXEC) {
+ char page[TARGET_PAGE_SIZE];
+
+ if (copy_from_user(page, vma->vma_start, sizeof (page))) {
+ return 0;
+ }
+ if ((page[EI_MAG0] == ELFMAG0) &&
+ (page[EI_MAG1] == ELFMAG1) &&
+ (page[EI_MAG2] == ELFMAG2) &&
+ (page[EI_MAG3] == ELFMAG3)) {
+ /*
+ * Mappings are possibly from ELF binary. Don't dump
+ * them.
+ */
+ return (0);
+ }
+ }
+
+ return (vma->vma_end - vma->vma_start);
+}
+
+static int vma_walker(void *priv, target_ulong start, target_ulong end,
+ unsigned long flags)
+{
+ struct mm_struct *mm = (struct mm_struct *)priv;
+
+ vma_add_mapping(mm, start, end, flags);
+ return (0);
+}
+
+static void fill_note(struct memelfnote *note, const char *name, int type,
+ unsigned int sz, void *data)
+{
+ unsigned int namesz;
+
+ namesz = strlen(name) + 1;
+ note->name = name;
+ note->namesz = namesz;
+ note->namesz_rounded = roundup(namesz, sizeof (int32_t));
+ note->type = type;
+ note->datasz = sz;
+ note->datasz_rounded = roundup(sz, sizeof (int32_t));
+
+ note->data = data;
+
+ /*
+ * We calculate rounded up note size here as specified by
+ * ELF document.
+ */
+ note->notesz = sizeof (struct elf_note) +
+ note->namesz_rounded + note->datasz_rounded;
+}
+
+static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
+ uint32_t flags)
+{
+ (void) memset(elf, 0, sizeof(*elf));
+
+ (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
+ elf->e_ident[EI_CLASS] = ELF_CLASS;
+ elf->e_ident[EI_DATA] = ELF_DATA;
+ elf->e_ident[EI_VERSION] = EV_CURRENT;
+ elf->e_ident[EI_OSABI] = ELF_OSABI;
+
+ elf->e_type = ET_CORE;
+ elf->e_machine = machine;
+ elf->e_version = EV_CURRENT;
+ elf->e_phoff = sizeof(struct elfhdr);
+ elf->e_flags = flags;
+ elf->e_ehsize = sizeof(struct elfhdr);
+ elf->e_phentsize = sizeof(struct elf_phdr);
+ elf->e_phnum = segs;
+
+ bswap_ehdr(elf);
+}
+
+static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
+{
+ phdr->p_type = PT_NOTE;
+ phdr->p_offset = offset;
+ phdr->p_vaddr = 0;
+ phdr->p_paddr = 0;
+ phdr->p_filesz = sz;
+ phdr->p_memsz = 0;
+ phdr->p_flags = 0;
+ phdr->p_align = 0;
+
+ bswap_phdr(phdr, 1);
+}
+
+static size_t note_size(const struct memelfnote *note)
+{
+ return (note->notesz);
+}
+
+static void fill_prstatus(struct target_elf_prstatus *prstatus,
+ const TaskState *ts, int signr)
+{
+ (void) memset(prstatus, 0, sizeof (*prstatus));
+ prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
+ prstatus->pr_pid = ts->ts_tid;
+ prstatus->pr_ppid = getppid();
+ prstatus->pr_pgrp = getpgrp();
+ prstatus->pr_sid = getsid(0);
+
+ bswap_prstatus(prstatus);
+}
+
+static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
+{
+ char *base_filename;
+ unsigned int i, len;
+
+ (void) memset(psinfo, 0, sizeof (*psinfo));
+
+ len = ts->info->env_strings - ts->info->arg_strings;
+ if (len >= ELF_PRARGSZ)
+ len = ELF_PRARGSZ - 1;
+ if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
+ return -EFAULT;
+ }
+ for (i = 0; i < len; i++)
+ if (psinfo->pr_psargs[i] == 0)
+ psinfo->pr_psargs[i] = ' ';
+ psinfo->pr_psargs[len] = 0;
+
+ psinfo->pr_pid = getpid();
+ psinfo->pr_ppid = getppid();
+ psinfo->pr_pgrp = getpgrp();
+ psinfo->pr_sid = getsid(0);
+ psinfo->pr_uid = getuid();
+ psinfo->pr_gid = getgid();
+
+ base_filename = g_path_get_basename(ts->bprm->filename);
+ /*
+ * Using strncpy here is fine: at max-length,
+ * this field is not NUL-terminated.
+ */
+ (void) strncpy(psinfo->pr_fname, base_filename,
+ sizeof(psinfo->pr_fname));
+
+ g_free(base_filename);
+ bswap_psinfo(psinfo);
+ return (0);
+}
+
+static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
+{
+ elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
+ elf_addr_t orig_auxv = auxv;
+ void *ptr;
+ int len = ts->info->auxv_len;
+
+ /*
+ * Auxiliary vector is stored in target process stack. It contains
+ * {type, value} pairs that we need to dump into note. This is not
+ * strictly necessary but we do it here for sake of completeness.
+ */
+
+ /* read in whole auxv vector and copy it to memelfnote */
+ ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
+ if (ptr != NULL) {
+ fill_note(note, "CORE", NT_AUXV, len, ptr);
+ unlock_user(ptr, auxv, len);
+ }
+}
+
+/*
+ * Constructs name of coredump file. We have following convention
+ * for the name:
+ * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
+ *
+ * Returns the filename
+ */
+static char *core_dump_filename(const TaskState *ts)
+{
+ g_autoptr(GDateTime) now = g_date_time_new_now_local();
+ g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
+ g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
+
+ return g_strdup_printf("qemu_%s_%s_%d.core",
+ base_filename, nowstr, (int)getpid());
+}
+
+static int dump_write(int fd, const void *ptr, size_t size)
+{
+ const char *bufp = (const char *)ptr;
+ ssize_t bytes_written, bytes_left;
+ struct rlimit dumpsize;
+ off_t pos;
+
+ bytes_written = 0;
+ getrlimit(RLIMIT_CORE, &dumpsize);
+ if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
+ if (errno == ESPIPE) { /* not a seekable stream */
+ bytes_left = size;
+ } else {
+ return pos;
+ }
+ } else {
+ if (dumpsize.rlim_cur <= pos) {
+ return -1;
+ } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
+ bytes_left = size;
+ } else {
+ size_t limit_left=dumpsize.rlim_cur - pos;
+ bytes_left = limit_left >= size ? size : limit_left ;
+ }
+ }
+
+ /*
+ * In normal conditions, single write(2) should do but
+ * in case of socket etc. this mechanism is more portable.
+ */
+ do {
+ bytes_written = write(fd, bufp, bytes_left);
+ if (bytes_written < 0) {
+ if (errno == EINTR)
+ continue;
+ return (-1);
+ } else if (bytes_written == 0) { /* eof */
+ return (-1);
+ }
+ bufp += bytes_written;
+ bytes_left -= bytes_written;
+ } while (bytes_left > 0);
+
+ return (0);
+}
+
+static int write_note(struct memelfnote *men, int fd)
+{
+ struct elf_note en;
+
+ en.n_namesz = men->namesz;
+ en.n_type = men->type;
+ en.n_descsz = men->datasz;
+
+ bswap_note(&en);
+
+ if (dump_write(fd, &en, sizeof(en)) != 0)
+ return (-1);
+ if (dump_write(fd, men->name, men->namesz_rounded) != 0)
+ return (-1);
+ if (dump_write(fd, men->data, men->datasz_rounded) != 0)
+ return (-1);
+
+ return (0);
+}
+
+static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
+{
+ CPUState *cpu = env_cpu((CPUArchState *)env);
+ TaskState *ts = (TaskState *)cpu->opaque;
+ struct elf_thread_status *ets;
+
+ ets = g_malloc0(sizeof (*ets));
+ ets->num_notes = 1; /* only prstatus is dumped */
+ fill_prstatus(&ets->prstatus, ts, 0);
+ elf_core_copy_regs(&ets->prstatus.pr_reg, env);
+ fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
+ &ets->prstatus);
+
+ QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
+
+ info->notes_size += note_size(&ets->notes[0]);
+}
+
+static void init_note_info(struct elf_note_info *info)
+{
+ /* Initialize the elf_note_info structure so that it is at
+ * least safe to call free_note_info() on it. Must be
+ * called before calling fill_note_info().
+ */
+ memset(info, 0, sizeof (*info));
+ QTAILQ_INIT(&info->thread_list);
+}
+
+static int fill_note_info(struct elf_note_info *info,
+ long signr, const CPUArchState *env)
+{
+#define NUMNOTES 3
+ CPUState *cpu = env_cpu((CPUArchState *)env);
+ TaskState *ts = (TaskState *)cpu->opaque;
+ int i;
+
+ info->notes = g_new0(struct memelfnote, NUMNOTES);
+ if (info->notes == NULL)
+ return (-ENOMEM);
+ info->prstatus = g_malloc0(sizeof (*info->prstatus));
+ if (info->prstatus == NULL)
+ return (-ENOMEM);
+ info->psinfo = g_malloc0(sizeof (*info->psinfo));
+ if (info->prstatus == NULL)
+ return (-ENOMEM);
+
+ /*
+ * First fill in status (and registers) of current thread
+ * including process info & aux vector.
+ */
+ fill_prstatus(info->prstatus, ts, signr);
+ elf_core_copy_regs(&info->prstatus->pr_reg, env);
+ fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
+ sizeof (*info->prstatus), info->prstatus);
+ fill_psinfo(info->psinfo, ts);
+ fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
+ sizeof (*info->psinfo), info->psinfo);
+ fill_auxv_note(&info->notes[2], ts);
+ info->numnote = 3;
+
+ info->notes_size = 0;
+ for (i = 0; i < info->numnote; i++)
+ info->notes_size += note_size(&info->notes[i]);
+
+ /* read and fill status of all threads */
+ cpu_list_lock();
+ CPU_FOREACH(cpu) {
+ if (cpu == thread_cpu) {
+ continue;
+ }
+ fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
+ }
+ cpu_list_unlock();
+
+ return (0);
+}
+
+static void free_note_info(struct elf_note_info *info)
+{
+ struct elf_thread_status *ets;
+
+ while (!QTAILQ_EMPTY(&info->thread_list)) {
+ ets = QTAILQ_FIRST(&info->thread_list);
+ QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
+ g_free(ets);
+ }
+
+ g_free(info->prstatus);
+ g_free(info->psinfo);
+ g_free(info->notes);
+}
+
+static int write_note_info(struct elf_note_info *info, int fd)
+{
+ struct elf_thread_status *ets;
+ int i, error = 0;
+
+ /* write prstatus, psinfo and auxv for current thread */
+ for (i = 0; i < info->numnote; i++)
+ if ((error = write_note(&info->notes[i], fd)) != 0)
+ return (error);
+
+ /* write prstatus for each thread */
+ QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
+ if ((error = write_note(&ets->notes[0], fd)) != 0)
+ return (error);
+ }
+
+ return (0);
+}
+
+/*
+ * Write out ELF coredump.
+ *
+ * See documentation of ELF object file format in:
+ * http://www.caldera.com/developers/devspecs/gabi41.pdf
+ *
+ * Coredump format in linux is following:
+ *
+ * 0 +----------------------+ \
+ * | ELF header | ET_CORE |
+ * +----------------------+ |
+ * | ELF program headers | |--- headers
+ * | - NOTE section | |
+ * | - PT_LOAD sections | |
+ * +----------------------+ /
+ * | NOTEs: |
+ * | - NT_PRSTATUS |
+ * | - NT_PRSINFO |
+ * | - NT_AUXV |
+ * +----------------------+ <-- aligned to target page
+ * | Process memory dump |
+ * : :
+ * . .
+ * : :
+ * | |
+ * +----------------------+
+ *
+ * NT_PRSTATUS -> struct elf_prstatus (per thread)
+ * NT_PRSINFO -> struct elf_prpsinfo
+ * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
+ *
+ * Format follows System V format as close as possible. Current
+ * version limitations are as follows:
+ * - no floating point registers are dumped
+ *
+ * Function returns 0 in case of success, negative errno otherwise.
+ *
+ * TODO: make this work also during runtime: it should be
+ * possible to force coredump from running process and then
+ * continue processing. For example qemu could set up SIGUSR2
+ * handler (provided that target process haven't registered
+ * handler for that) that does the dump when signal is received.
+ */
+static int elf_core_dump(int signr, const CPUArchState *env)
+{
+ const CPUState *cpu = env_cpu((CPUArchState *)env);
+ const TaskState *ts = (const TaskState *)cpu->opaque;
+ struct vm_area_struct *vma = NULL;
+ g_autofree char *corefile = NULL;
+ struct elf_note_info info;
+ struct elfhdr elf;
+ struct elf_phdr phdr;
+ struct rlimit dumpsize;
+ struct mm_struct *mm = NULL;
+ off_t offset = 0, data_offset = 0;
+ int segs = 0;
+ int fd = -1;
+
+ init_note_info(&info);
+
+ errno = 0;
+ getrlimit(RLIMIT_CORE, &dumpsize);
+ if (dumpsize.rlim_cur == 0)
+ return 0;
+
+ corefile = core_dump_filename(ts);
+
+ if ((fd = open(corefile, O_WRONLY | O_CREAT,
+ S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
+ return (-errno);
+
+ /*
+ * Walk through target process memory mappings and
+ * set up structure containing this information. After
+ * this point vma_xxx functions can be used.
+ */
+ if ((mm = vma_init()) == NULL)
+ goto out;
+
+ walk_memory_regions(mm, vma_walker);
+ segs = vma_get_mapping_count(mm);
+
+ /*
+ * Construct valid coredump ELF header. We also
+ * add one more segment for notes.
+ */
+ fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
+ if (dump_write(fd, &elf, sizeof (elf)) != 0)
+ goto out;
+
+ /* fill in the in-memory version of notes */
+ if (fill_note_info(&info, signr, env) < 0)
+ goto out;
+
+ offset += sizeof (elf); /* elf header */
+ offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
+
+ /* write out notes program header */
+ fill_elf_note_phdr(&phdr, info.notes_size, offset);
+
+ offset += info.notes_size;
+ if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
+ goto out;
+
+ /*
+ * ELF specification wants data to start at page boundary so
+ * we align it here.
+ */
+ data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
+
+ /*
+ * Write program headers for memory regions mapped in
+ * the target process.
+ */
+ for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
+ (void) memset(&phdr, 0, sizeof (phdr));
+
+ phdr.p_type = PT_LOAD;
+ phdr.p_offset = offset;
+ phdr.p_vaddr = vma->vma_start;
+ phdr.p_paddr = 0;
+ phdr.p_filesz = vma_dump_size(vma);
+ offset += phdr.p_filesz;
+ phdr.p_memsz = vma->vma_end - vma->vma_start;
+ phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
+ if (vma->vma_flags & PROT_WRITE)
+ phdr.p_flags |= PF_W;
+ if (vma->vma_flags & PROT_EXEC)
+ phdr.p_flags |= PF_X;
+ phdr.p_align = ELF_EXEC_PAGESIZE;
+
+ bswap_phdr(&phdr, 1);
+ if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
+ goto out;
+ }
+ }
+
+ /*
+ * Next we write notes just after program headers. No
+ * alignment needed here.
+ */
+ if (write_note_info(&info, fd) < 0)
+ goto out;
+
+ /* align data to page boundary */
+ if (lseek(fd, data_offset, SEEK_SET) != data_offset)
+ goto out;
+
+ /*
+ * Finally we can dump process memory into corefile as well.
+ */
+ for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
+ abi_ulong addr;
+ abi_ulong end;
+
+ end = vma->vma_start + vma_dump_size(vma);
+
+ for (addr = vma->vma_start; addr < end;
+ addr += TARGET_PAGE_SIZE) {
+ char page[TARGET_PAGE_SIZE];
+ int error;
+
+ /*
+ * Read in page from target process memory and
+ * write it to coredump file.
+ */
+ error = copy_from_user(page, addr, sizeof (page));
+ if (error != 0) {
+ (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
+ addr);
+ errno = -error;
+ goto out;
+ }
+ if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
+ goto out;
+ }
+ }
+
+ out:
+ free_note_info(&info);
+ if (mm != NULL)
+ vma_delete(mm);
+ (void) close(fd);
+
+ if (errno != 0)
+ return (-errno);
+ return (0);
+}
+#endif /* USE_ELF_CORE_DUMP */
+
+void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
+{
+ init_thread(regs, infop);
+}