diff options
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_gcd.c')
-rw-r--r-- | roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_gcd.c | 629 |
1 files changed, 629 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_gcd.c b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_gcd.c new file mode 100644 index 000000000..ef81acb77 --- /dev/null +++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_gcd.c @@ -0,0 +1,629 @@ +/* + * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include "internal/cryptlib.h" +#include "bn_local.h" + +/* solves ax == 1 (mod n) */ +static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, + BN_CTX *ctx); + +BIGNUM *BN_mod_inverse(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) +{ + BIGNUM *rv; + int noinv; + rv = int_bn_mod_inverse(in, a, n, ctx, &noinv); + if (noinv) + BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); + return rv; +} + +BIGNUM *int_bn_mod_inverse(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, + int *pnoinv) +{ + BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; + BIGNUM *ret = NULL; + int sign; + + /* This is invalid input so we don't worry about constant time here */ + if (BN_abs_is_word(n, 1) || BN_is_zero(n)) { + if (pnoinv != NULL) + *pnoinv = 1; + return NULL; + } + + if (pnoinv != NULL) + *pnoinv = 0; + + if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) + || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { + return BN_mod_inverse_no_branch(in, a, n, ctx); + } + + bn_check_top(a); + bn_check_top(n); + + BN_CTX_start(ctx); + A = BN_CTX_get(ctx); + B = BN_CTX_get(ctx); + X = BN_CTX_get(ctx); + D = BN_CTX_get(ctx); + M = BN_CTX_get(ctx); + Y = BN_CTX_get(ctx); + T = BN_CTX_get(ctx); + if (T == NULL) + goto err; + + if (in == NULL) + R = BN_new(); + else + R = in; + if (R == NULL) + goto err; + + BN_one(X); + BN_zero(Y); + if (BN_copy(B, a) == NULL) + goto err; + if (BN_copy(A, n) == NULL) + goto err; + A->neg = 0; + if (B->neg || (BN_ucmp(B, A) >= 0)) { + if (!BN_nnmod(B, B, A, ctx)) + goto err; + } + sign = -1; + /*- + * From B = a mod |n|, A = |n| it follows that + * + * 0 <= B < A, + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + */ + + if (BN_is_odd(n) && (BN_num_bits(n) <= 2048)) { + /* + * Binary inversion algorithm; requires odd modulus. This is faster + * than the general algorithm if the modulus is sufficiently small + * (about 400 .. 500 bits on 32-bit systems, but much more on 64-bit + * systems) + */ + int shift; + + while (!BN_is_zero(B)) { + /*- + * 0 < B < |n|, + * 0 < A <= |n|, + * (1) -sign*X*a == B (mod |n|), + * (2) sign*Y*a == A (mod |n|) + */ + + /* + * Now divide B by the maximum possible power of two in the + * integers, and divide X by the same value mod |n|. When we're + * done, (1) still holds. + */ + shift = 0; + while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */ + shift++; + + if (BN_is_odd(X)) { + if (!BN_uadd(X, X, n)) + goto err; + } + /* + * now X is even, so we can easily divide it by two + */ + if (!BN_rshift1(X, X)) + goto err; + } + if (shift > 0) { + if (!BN_rshift(B, B, shift)) + goto err; + } + + /* + * Same for A and Y. Afterwards, (2) still holds. + */ + shift = 0; + while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */ + shift++; + + if (BN_is_odd(Y)) { + if (!BN_uadd(Y, Y, n)) + goto err; + } + /* now Y is even */ + if (!BN_rshift1(Y, Y)) + goto err; + } + if (shift > 0) { + if (!BN_rshift(A, A, shift)) + goto err; + } + + /*- + * We still have (1) and (2). + * Both A and B are odd. + * The following computations ensure that + * + * 0 <= B < |n|, + * 0 < A < |n|, + * (1) -sign*X*a == B (mod |n|), + * (2) sign*Y*a == A (mod |n|), + * + * and that either A or B is even in the next iteration. + */ + if (BN_ucmp(B, A) >= 0) { + /* -sign*(X + Y)*a == B - A (mod |n|) */ + if (!BN_uadd(X, X, Y)) + goto err; + /* + * NB: we could use BN_mod_add_quick(X, X, Y, n), but that + * actually makes the algorithm slower + */ + if (!BN_usub(B, B, A)) + goto err; + } else { + /* sign*(X + Y)*a == A - B (mod |n|) */ + if (!BN_uadd(Y, Y, X)) + goto err; + /* + * as above, BN_mod_add_quick(Y, Y, X, n) would slow things down + */ + if (!BN_usub(A, A, B)) + goto err; + } + } + } else { + /* general inversion algorithm */ + + while (!BN_is_zero(B)) { + BIGNUM *tmp; + + /*- + * 0 < B < A, + * (*) -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|) + */ + + /* (D, M) := (A/B, A%B) ... */ + if (BN_num_bits(A) == BN_num_bits(B)) { + if (!BN_one(D)) + goto err; + if (!BN_sub(M, A, B)) + goto err; + } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { + /* A/B is 1, 2, or 3 */ + if (!BN_lshift1(T, B)) + goto err; + if (BN_ucmp(A, T) < 0) { + /* A < 2*B, so D=1 */ + if (!BN_one(D)) + goto err; + if (!BN_sub(M, A, B)) + goto err; + } else { + /* A >= 2*B, so D=2 or D=3 */ + if (!BN_sub(M, A, T)) + goto err; + if (!BN_add(D, T, B)) + goto err; /* use D (:= 3*B) as temp */ + if (BN_ucmp(A, D) < 0) { + /* A < 3*B, so D=2 */ + if (!BN_set_word(D, 2)) + goto err; + /* + * M (= A - 2*B) already has the correct value + */ + } else { + /* only D=3 remains */ + if (!BN_set_word(D, 3)) + goto err; + /* + * currently M = A - 2*B, but we need M = A - 3*B + */ + if (!BN_sub(M, M, B)) + goto err; + } + } + } else { + if (!BN_div(D, M, A, B, ctx)) + goto err; + } + + /*- + * Now + * A = D*B + M; + * thus we have + * (**) sign*Y*a == D*B + M (mod |n|). + */ + + tmp = A; /* keep the BIGNUM object, the value does not matter */ + + /* (A, B) := (B, A mod B) ... */ + A = B; + B = M; + /* ... so we have 0 <= B < A again */ + + /*- + * Since the former M is now B and the former B is now A, + * (**) translates into + * sign*Y*a == D*A + B (mod |n|), + * i.e. + * sign*Y*a - D*A == B (mod |n|). + * Similarly, (*) translates into + * -sign*X*a == A (mod |n|). + * + * Thus, + * sign*Y*a + D*sign*X*a == B (mod |n|), + * i.e. + * sign*(Y + D*X)*a == B (mod |n|). + * + * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + * Note that X and Y stay non-negative all the time. + */ + + /* + * most of the time D is very small, so we can optimize tmp := D*X+Y + */ + if (BN_is_one(D)) { + if (!BN_add(tmp, X, Y)) + goto err; + } else { + if (BN_is_word(D, 2)) { + if (!BN_lshift1(tmp, X)) + goto err; + } else if (BN_is_word(D, 4)) { + if (!BN_lshift(tmp, X, 2)) + goto err; + } else if (D->top == 1) { + if (!BN_copy(tmp, X)) + goto err; + if (!BN_mul_word(tmp, D->d[0])) + goto err; + } else { + if (!BN_mul(tmp, D, X, ctx)) + goto err; + } + if (!BN_add(tmp, tmp, Y)) + goto err; + } + + M = Y; /* keep the BIGNUM object, the value does not matter */ + Y = X; + X = tmp; + sign = -sign; + } + } + + /*- + * The while loop (Euclid's algorithm) ends when + * A == gcd(a,n); + * we have + * sign*Y*a == A (mod |n|), + * where Y is non-negative. + */ + + if (sign < 0) { + if (!BN_sub(Y, n, Y)) + goto err; + } + /* Now Y*a == A (mod |n|). */ + + if (BN_is_one(A)) { + /* Y*a == 1 (mod |n|) */ + if (!Y->neg && BN_ucmp(Y, n) < 0) { + if (!BN_copy(R, Y)) + goto err; + } else { + if (!BN_nnmod(R, Y, n, ctx)) + goto err; + } + } else { + if (pnoinv) + *pnoinv = 1; + goto err; + } + ret = R; + err: + if ((ret == NULL) && (in == NULL)) + BN_free(R); + BN_CTX_end(ctx); + bn_check_top(ret); + return ret; +} + +/* + * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does + * not contain branches that may leak sensitive information. + */ +static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, + const BIGNUM *a, const BIGNUM *n, + BN_CTX *ctx) +{ + BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; + BIGNUM *ret = NULL; + int sign; + + bn_check_top(a); + bn_check_top(n); + + BN_CTX_start(ctx); + A = BN_CTX_get(ctx); + B = BN_CTX_get(ctx); + X = BN_CTX_get(ctx); + D = BN_CTX_get(ctx); + M = BN_CTX_get(ctx); + Y = BN_CTX_get(ctx); + T = BN_CTX_get(ctx); + if (T == NULL) + goto err; + + if (in == NULL) + R = BN_new(); + else + R = in; + if (R == NULL) + goto err; + + BN_one(X); + BN_zero(Y); + if (BN_copy(B, a) == NULL) + goto err; + if (BN_copy(A, n) == NULL) + goto err; + A->neg = 0; + + if (B->neg || (BN_ucmp(B, A) >= 0)) { + /* + * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, + * BN_div_no_branch will be called eventually. + */ + { + BIGNUM local_B; + bn_init(&local_B); + BN_with_flags(&local_B, B, BN_FLG_CONSTTIME); + if (!BN_nnmod(B, &local_B, A, ctx)) + goto err; + /* Ensure local_B goes out of scope before any further use of B */ + } + } + sign = -1; + /*- + * From B = a mod |n|, A = |n| it follows that + * + * 0 <= B < A, + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + */ + + while (!BN_is_zero(B)) { + BIGNUM *tmp; + + /*- + * 0 < B < A, + * (*) -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|) + */ + + /* + * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, + * BN_div_no_branch will be called eventually. + */ + { + BIGNUM local_A; + bn_init(&local_A); + BN_with_flags(&local_A, A, BN_FLG_CONSTTIME); + + /* (D, M) := (A/B, A%B) ... */ + if (!BN_div(D, M, &local_A, B, ctx)) + goto err; + /* Ensure local_A goes out of scope before any further use of A */ + } + + /*- + * Now + * A = D*B + M; + * thus we have + * (**) sign*Y*a == D*B + M (mod |n|). + */ + + tmp = A; /* keep the BIGNUM object, the value does not + * matter */ + + /* (A, B) := (B, A mod B) ... */ + A = B; + B = M; + /* ... so we have 0 <= B < A again */ + + /*- + * Since the former M is now B and the former B is now A, + * (**) translates into + * sign*Y*a == D*A + B (mod |n|), + * i.e. + * sign*Y*a - D*A == B (mod |n|). + * Similarly, (*) translates into + * -sign*X*a == A (mod |n|). + * + * Thus, + * sign*Y*a + D*sign*X*a == B (mod |n|), + * i.e. + * sign*(Y + D*X)*a == B (mod |n|). + * + * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at + * -sign*X*a == B (mod |n|), + * sign*Y*a == A (mod |n|). + * Note that X and Y stay non-negative all the time. + */ + + if (!BN_mul(tmp, D, X, ctx)) + goto err; + if (!BN_add(tmp, tmp, Y)) + goto err; + + M = Y; /* keep the BIGNUM object, the value does not + * matter */ + Y = X; + X = tmp; + sign = -sign; + } + + /*- + * The while loop (Euclid's algorithm) ends when + * A == gcd(a,n); + * we have + * sign*Y*a == A (mod |n|), + * where Y is non-negative. + */ + + if (sign < 0) { + if (!BN_sub(Y, n, Y)) + goto err; + } + /* Now Y*a == A (mod |n|). */ + + if (BN_is_one(A)) { + /* Y*a == 1 (mod |n|) */ + if (!Y->neg && BN_ucmp(Y, n) < 0) { + if (!BN_copy(R, Y)) + goto err; + } else { + if (!BN_nnmod(R, Y, n, ctx)) + goto err; + } + } else { + BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); + goto err; + } + ret = R; + err: + if ((ret == NULL) && (in == NULL)) + BN_free(R); + BN_CTX_end(ctx); + bn_check_top(ret); + return ret; +} + +/*- + * This function is based on the constant-time GCD work by Bernstein and Yang: + * https://eprint.iacr.org/2019/266 + * Generalized fast GCD function to allow even inputs. + * The algorithm first finds the shared powers of 2 between + * the inputs, and removes them, reducing at least one of the + * inputs to an odd value. Then it proceeds to calculate the GCD. + * Before returning the resulting GCD, we take care of adding + * back the powers of two removed at the beginning. + * Note 1: we assume the bit length of both inputs is public information, + * since access to top potentially leaks this information. + */ +int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) +{ + BIGNUM *g, *temp = NULL; + BN_ULONG mask = 0; + int i, j, top, rlen, glen, m, bit = 1, delta = 1, cond = 0, shifts = 0, ret = 0; + + /* Note 2: zero input corner cases are not constant-time since they are + * handled immediately. An attacker can run an attack under this + * assumption without the need of side-channel information. */ + if (BN_is_zero(in_b)) { + ret = BN_copy(r, in_a) != NULL; + r->neg = 0; + return ret; + } + if (BN_is_zero(in_a)) { + ret = BN_copy(r, in_b) != NULL; + r->neg = 0; + return ret; + } + + bn_check_top(in_a); + bn_check_top(in_b); + + BN_CTX_start(ctx); + temp = BN_CTX_get(ctx); + g = BN_CTX_get(ctx); + + /* make r != 0, g != 0 even, so BN_rshift is not a potential nop */ + if (g == NULL + || !BN_lshift1(g, in_b) + || !BN_lshift1(r, in_a)) + goto err; + + /* find shared powers of two, i.e. "shifts" >= 1 */ + for (i = 0; i < r->dmax && i < g->dmax; i++) { + mask = ~(r->d[i] | g->d[i]); + for (j = 0; j < BN_BITS2; j++) { + bit &= mask; + shifts += bit; + mask >>= 1; + } + } + + /* subtract shared powers of two; shifts >= 1 */ + if (!BN_rshift(r, r, shifts) + || !BN_rshift(g, g, shifts)) + goto err; + + /* expand to biggest nword, with room for a possible extra word */ + top = 1 + ((r->top >= g->top) ? r->top : g->top); + if (bn_wexpand(r, top) == NULL + || bn_wexpand(g, top) == NULL + || bn_wexpand(temp, top) == NULL) + goto err; + + /* re arrange inputs s.t. r is odd */ + BN_consttime_swap((~r->d[0]) & 1, r, g, top); + + /* compute the number of iterations */ + rlen = BN_num_bits(r); + glen = BN_num_bits(g); + m = 4 + 3 * ((rlen >= glen) ? rlen : glen); + + for (i = 0; i < m; i++) { + /* conditionally flip signs if delta is positive and g is odd */ + cond = (-delta >> (8 * sizeof(delta) - 1)) & g->d[0] & 1 + /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ + & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))); + delta = (-cond & -delta) | ((cond - 1) & delta); + r->neg ^= cond; + /* swap */ + BN_consttime_swap(cond, r, g, top); + + /* elimination step */ + delta++; + if (!BN_add(temp, g, r)) + goto err; + BN_consttime_swap(g->d[0] & 1 /* g is odd */ + /* make sure g->top > 0 (i.e. if top == 0 then g == 0 always) */ + & (~((g->top - 1) >> (sizeof(g->top) * 8 - 1))), + g, temp, top); + if (!BN_rshift1(g, g)) + goto err; + } + + /* remove possible negative sign */ + r->neg = 0; + /* add powers of 2 removed, then correct the artificial shift */ + if (!BN_lshift(r, r, shifts) + || !BN_rshift1(r, r)) + goto err; + + ret = 1; + + err: + BN_CTX_end(ctx); + bn_check_top(r); + return ret; +} |