aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c')
-rw-r--r--roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c391
1 files changed, 391 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c
new file mode 100644
index 000000000..d0cf3779f
--- /dev/null
+++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c
@@ -0,0 +1,391 @@
+/*
+ * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include <time.h>
+#include "internal/cryptlib.h"
+#include "bn_local.h"
+
+/*
+ * The quick sieve algorithm approach to weeding out primes is Philip
+ * Zimmermann's, as implemented in PGP. I have had a read of his comments
+ * and implemented my own version.
+ */
+#include "bn_prime.h"
+
+static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
+ const BIGNUM *a1_odd, int k, BN_CTX *ctx,
+ BN_MONT_CTX *mont);
+static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods);
+static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
+ const BIGNUM *add, const BIGNUM *rem,
+ BN_CTX *ctx);
+
+#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x))
+
+int BN_GENCB_call(BN_GENCB *cb, int a, int b)
+{
+ /* No callback means continue */
+ if (!cb)
+ return 1;
+ switch (cb->ver) {
+ case 1:
+ /* Deprecated-style callbacks */
+ if (!cb->cb.cb_1)
+ return 1;
+ cb->cb.cb_1(a, b, cb->arg);
+ return 1;
+ case 2:
+ /* New-style callbacks */
+ return cb->cb.cb_2(a, b, cb);
+ default:
+ break;
+ }
+ /* Unrecognised callback type */
+ return 0;
+}
+
+int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe,
+ const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb)
+{
+ BIGNUM *t;
+ int found = 0;
+ int i, j, c1 = 0;
+ BN_CTX *ctx = NULL;
+ prime_t *mods = NULL;
+ int checks = BN_prime_checks_for_size(bits);
+
+ if (bits < 2) {
+ /* There are no prime numbers this small. */
+ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
+ return 0;
+ } else if (add == NULL && safe && bits < 6 && bits != 3) {
+ /*
+ * The smallest safe prime (7) is three bits.
+ * But the following two safe primes with less than 6 bits (11, 23)
+ * are unreachable for BN_rand with BN_RAND_TOP_TWO.
+ */
+ BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL);
+ return 0;
+ }
+
+ mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES);
+ if (mods == NULL)
+ goto err;
+
+ ctx = BN_CTX_new();
+ if (ctx == NULL)
+ goto err;
+ BN_CTX_start(ctx);
+ t = BN_CTX_get(ctx);
+ if (t == NULL)
+ goto err;
+ loop:
+ /* make a random number and set the top and bottom bits */
+ if (add == NULL) {
+ if (!probable_prime(ret, bits, safe, mods))
+ goto err;
+ } else {
+ if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx))
+ goto err;
+ }
+
+ if (!BN_GENCB_call(cb, 0, c1++))
+ /* aborted */
+ goto err;
+
+ if (!safe) {
+ i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
+ if (i == -1)
+ goto err;
+ if (i == 0)
+ goto loop;
+ } else {
+ /*
+ * for "safe prime" generation, check that (p-1)/2 is prime. Since a
+ * prime is odd, We just need to divide by 2
+ */
+ if (!BN_rshift1(t, ret))
+ goto err;
+
+ for (i = 0; i < checks; i++) {
+ j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb);
+ if (j == -1)
+ goto err;
+ if (j == 0)
+ goto loop;
+
+ j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb);
+ if (j == -1)
+ goto err;
+ if (j == 0)
+ goto loop;
+
+ if (!BN_GENCB_call(cb, 2, c1 - 1))
+ goto err;
+ /* We have a safe prime test pass */
+ }
+ }
+ /* we have a prime :-) */
+ found = 1;
+ err:
+ OPENSSL_free(mods);
+ BN_CTX_end(ctx);
+ BN_CTX_free(ctx);
+ bn_check_top(ret);
+ return found;
+}
+
+int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
+ BN_GENCB *cb)
+{
+ return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb);
+}
+
+int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
+ int do_trial_division, BN_GENCB *cb)
+{
+ int i, j, ret = -1;
+ int k;
+ BN_CTX *ctx = NULL;
+ BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */
+ BN_MONT_CTX *mont = NULL;
+
+ /* Take care of the really small primes 2 & 3 */
+ if (BN_is_word(a, 2) || BN_is_word(a, 3))
+ return 1;
+
+ /* Check odd and bigger than 1 */
+ if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0)
+ return 0;
+
+ if (checks == BN_prime_checks)
+ checks = BN_prime_checks_for_size(BN_num_bits(a));
+
+ /* first look for small factors */
+ if (do_trial_division) {
+ for (i = 1; i < NUMPRIMES; i++) {
+ BN_ULONG mod = BN_mod_word(a, primes[i]);
+ if (mod == (BN_ULONG)-1)
+ goto err;
+ if (mod == 0)
+ return BN_is_word(a, primes[i]);
+ }
+ if (!BN_GENCB_call(cb, 1, -1))
+ goto err;
+ }
+
+ if (ctx_passed != NULL)
+ ctx = ctx_passed;
+ else if ((ctx = BN_CTX_new()) == NULL)
+ goto err;
+ BN_CTX_start(ctx);
+
+ A1 = BN_CTX_get(ctx);
+ A3 = BN_CTX_get(ctx);
+ A1_odd = BN_CTX_get(ctx);
+ check = BN_CTX_get(ctx);
+ if (check == NULL)
+ goto err;
+
+ /* compute A1 := a - 1 */
+ if (!BN_copy(A1, a) || !BN_sub_word(A1, 1))
+ goto err;
+ /* compute A3 := a - 3 */
+ if (!BN_copy(A3, a) || !BN_sub_word(A3, 3))
+ goto err;
+
+ /* write A1 as A1_odd * 2^k */
+ k = 1;
+ while (!BN_is_bit_set(A1, k))
+ k++;
+ if (!BN_rshift(A1_odd, A1, k))
+ goto err;
+
+ /* Montgomery setup for computations mod a */
+ mont = BN_MONT_CTX_new();
+ if (mont == NULL)
+ goto err;
+ if (!BN_MONT_CTX_set(mont, a, ctx))
+ goto err;
+
+ for (i = 0; i < checks; i++) {
+ /* 1 < check < a-1 */
+ if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2))
+ goto err;
+
+ j = witness(check, a, A1, A1_odd, k, ctx, mont);
+ if (j == -1)
+ goto err;
+ if (j) {
+ ret = 0;
+ goto err;
+ }
+ if (!BN_GENCB_call(cb, 1, i))
+ goto err;
+ }
+ ret = 1;
+ err:
+ if (ctx != NULL) {
+ BN_CTX_end(ctx);
+ if (ctx_passed == NULL)
+ BN_CTX_free(ctx);
+ }
+ BN_MONT_CTX_free(mont);
+
+ return ret;
+}
+
+static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
+ const BIGNUM *a1_odd, int k, BN_CTX *ctx,
+ BN_MONT_CTX *mont)
+{
+ if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
+ return -1;
+ if (BN_is_one(w))
+ return 0; /* probably prime */
+ if (BN_cmp(w, a1) == 0)
+ return 0; /* w == -1 (mod a), 'a' is probably prime */
+ while (--k) {
+ if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
+ return -1;
+ if (BN_is_one(w))
+ return 1; /* 'a' is composite, otherwise a previous 'w'
+ * would have been == -1 (mod 'a') */
+ if (BN_cmp(w, a1) == 0)
+ return 0; /* w == -1 (mod a), 'a' is probably prime */
+ }
+ /*
+ * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and
+ * it is neither -1 nor +1 -- so 'a' cannot be prime
+ */
+ bn_check_top(w);
+ return 1;
+}
+
+static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods)
+{
+ int i;
+ BN_ULONG delta;
+ BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
+
+ again:
+ /* TODO: Not all primes are private */
+ if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD))
+ return 0;
+ if (safe && !BN_set_bit(rnd, 1))
+ return 0;
+ /* we now have a random number 'rnd' to test. */
+ for (i = 1; i < NUMPRIMES; i++) {
+ BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
+ if (mod == (BN_ULONG)-1)
+ return 0;
+ mods[i] = (prime_t) mod;
+ }
+ delta = 0;
+ loop:
+ for (i = 1; i < NUMPRIMES; i++) {
+ /*
+ * check that rnd is a prime and also that
+ * gcd(rnd-1,primes) == 1 (except for 2)
+ * do the second check only if we are interested in safe primes
+ * in the case that the candidate prime is a single word then
+ * we check only the primes up to sqrt(rnd)
+ */
+ if (bits <= 31 && delta <= 0x7fffffff
+ && square(primes[i]) > BN_get_word(rnd) + delta)
+ break;
+ if (safe ? (mods[i] + delta) % primes[i] <= 1
+ : (mods[i] + delta) % primes[i] == 0) {
+ delta += safe ? 4 : 2;
+ if (delta > maxdelta)
+ goto again;
+ goto loop;
+ }
+ }
+ if (!BN_add_word(rnd, delta))
+ return 0;
+ if (BN_num_bits(rnd) != bits)
+ goto again;
+ bn_check_top(rnd);
+ return 1;
+}
+
+static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods,
+ const BIGNUM *add, const BIGNUM *rem,
+ BN_CTX *ctx)
+{
+ int i, ret = 0;
+ BIGNUM *t1;
+ BN_ULONG delta;
+ BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
+
+ BN_CTX_start(ctx);
+ if ((t1 = BN_CTX_get(ctx)) == NULL)
+ goto err;
+
+ if (maxdelta > BN_MASK2 - BN_get_word(add))
+ maxdelta = BN_MASK2 - BN_get_word(add);
+
+ again:
+ if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
+ goto err;
+
+ /* we need ((rnd-rem) % add) == 0 */
+
+ if (!BN_mod(t1, rnd, add, ctx))
+ goto err;
+ if (!BN_sub(rnd, rnd, t1))
+ goto err;
+ if (rem == NULL) {
+ if (!BN_add_word(rnd, safe ? 3u : 1u))
+ goto err;
+ } else {
+ if (!BN_add(rnd, rnd, rem))
+ goto err;
+ }
+
+ if (BN_num_bits(rnd) < bits
+ || BN_get_word(rnd) < (safe ? 5u : 3u)) {
+ if (!BN_add(rnd, rnd, add))
+ goto err;
+ }
+
+ /* we now have a random number 'rnd' to test. */
+ for (i = 1; i < NUMPRIMES; i++) {
+ BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
+ if (mod == (BN_ULONG)-1)
+ goto err;
+ mods[i] = (prime_t) mod;
+ }
+ delta = 0;
+ loop:
+ for (i = 1; i < NUMPRIMES; i++) {
+ /* check that rnd is a prime */
+ if (bits <= 31 && delta <= 0x7fffffff
+ && square(primes[i]) > BN_get_word(rnd) + delta)
+ break;
+ /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */
+ if (safe ? (mods[i] + delta) % primes[i] <= 1
+ : (mods[i] + delta) % primes[i] == 0) {
+ delta += BN_get_word(add);
+ if (delta > maxdelta)
+ goto again;
+ goto loop;
+ }
+ }
+ if (!BN_add_word(rnd, delta))
+ goto err;
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ bn_check_top(rnd);
+ return ret;
+}