diff options
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c')
-rw-r--r-- | roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c new file mode 100644 index 000000000..d0cf3779f --- /dev/null +++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/bn/bn_prime.c @@ -0,0 +1,391 @@ +/* + * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <stdio.h> +#include <time.h> +#include "internal/cryptlib.h" +#include "bn_local.h" + +/* + * The quick sieve algorithm approach to weeding out primes is Philip + * Zimmermann's, as implemented in PGP. I have had a read of his comments + * and implemented my own version. + */ +#include "bn_prime.h" + +static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, + const BIGNUM *a1_odd, int k, BN_CTX *ctx, + BN_MONT_CTX *mont); +static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods); +static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, + const BIGNUM *add, const BIGNUM *rem, + BN_CTX *ctx); + +#define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) + +int BN_GENCB_call(BN_GENCB *cb, int a, int b) +{ + /* No callback means continue */ + if (!cb) + return 1; + switch (cb->ver) { + case 1: + /* Deprecated-style callbacks */ + if (!cb->cb.cb_1) + return 1; + cb->cb.cb_1(a, b, cb->arg); + return 1; + case 2: + /* New-style callbacks */ + return cb->cb.cb_2(a, b, cb); + default: + break; + } + /* Unrecognised callback type */ + return 0; +} + +int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, + const BIGNUM *add, const BIGNUM *rem, BN_GENCB *cb) +{ + BIGNUM *t; + int found = 0; + int i, j, c1 = 0; + BN_CTX *ctx = NULL; + prime_t *mods = NULL; + int checks = BN_prime_checks_for_size(bits); + + if (bits < 2) { + /* There are no prime numbers this small. */ + BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); + return 0; + } else if (add == NULL && safe && bits < 6 && bits != 3) { + /* + * The smallest safe prime (7) is three bits. + * But the following two safe primes with less than 6 bits (11, 23) + * are unreachable for BN_rand with BN_RAND_TOP_TWO. + */ + BNerr(BN_F_BN_GENERATE_PRIME_EX, BN_R_BITS_TOO_SMALL); + return 0; + } + + mods = OPENSSL_zalloc(sizeof(*mods) * NUMPRIMES); + if (mods == NULL) + goto err; + + ctx = BN_CTX_new(); + if (ctx == NULL) + goto err; + BN_CTX_start(ctx); + t = BN_CTX_get(ctx); + if (t == NULL) + goto err; + loop: + /* make a random number and set the top and bottom bits */ + if (add == NULL) { + if (!probable_prime(ret, bits, safe, mods)) + goto err; + } else { + if (!probable_prime_dh(ret, bits, safe, mods, add, rem, ctx)) + goto err; + } + + if (!BN_GENCB_call(cb, 0, c1++)) + /* aborted */ + goto err; + + if (!safe) { + i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); + if (i == -1) + goto err; + if (i == 0) + goto loop; + } else { + /* + * for "safe prime" generation, check that (p-1)/2 is prime. Since a + * prime is odd, We just need to divide by 2 + */ + if (!BN_rshift1(t, ret)) + goto err; + + for (i = 0; i < checks; i++) { + j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb); + if (j == -1) + goto err; + if (j == 0) + goto loop; + + j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb); + if (j == -1) + goto err; + if (j == 0) + goto loop; + + if (!BN_GENCB_call(cb, 2, c1 - 1)) + goto err; + /* We have a safe prime test pass */ + } + } + /* we have a prime :-) */ + found = 1; + err: + OPENSSL_free(mods); + BN_CTX_end(ctx); + BN_CTX_free(ctx); + bn_check_top(ret); + return found; +} + +int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, + BN_GENCB *cb) +{ + return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); +} + +int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, + int do_trial_division, BN_GENCB *cb) +{ + int i, j, ret = -1; + int k; + BN_CTX *ctx = NULL; + BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */ + BN_MONT_CTX *mont = NULL; + + /* Take care of the really small primes 2 & 3 */ + if (BN_is_word(a, 2) || BN_is_word(a, 3)) + return 1; + + /* Check odd and bigger than 1 */ + if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0) + return 0; + + if (checks == BN_prime_checks) + checks = BN_prime_checks_for_size(BN_num_bits(a)); + + /* first look for small factors */ + if (do_trial_division) { + for (i = 1; i < NUMPRIMES; i++) { + BN_ULONG mod = BN_mod_word(a, primes[i]); + if (mod == (BN_ULONG)-1) + goto err; + if (mod == 0) + return BN_is_word(a, primes[i]); + } + if (!BN_GENCB_call(cb, 1, -1)) + goto err; + } + + if (ctx_passed != NULL) + ctx = ctx_passed; + else if ((ctx = BN_CTX_new()) == NULL) + goto err; + BN_CTX_start(ctx); + + A1 = BN_CTX_get(ctx); + A3 = BN_CTX_get(ctx); + A1_odd = BN_CTX_get(ctx); + check = BN_CTX_get(ctx); + if (check == NULL) + goto err; + + /* compute A1 := a - 1 */ + if (!BN_copy(A1, a) || !BN_sub_word(A1, 1)) + goto err; + /* compute A3 := a - 3 */ + if (!BN_copy(A3, a) || !BN_sub_word(A3, 3)) + goto err; + + /* write A1 as A1_odd * 2^k */ + k = 1; + while (!BN_is_bit_set(A1, k)) + k++; + if (!BN_rshift(A1_odd, A1, k)) + goto err; + + /* Montgomery setup for computations mod a */ + mont = BN_MONT_CTX_new(); + if (mont == NULL) + goto err; + if (!BN_MONT_CTX_set(mont, a, ctx)) + goto err; + + for (i = 0; i < checks; i++) { + /* 1 < check < a-1 */ + if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2)) + goto err; + + j = witness(check, a, A1, A1_odd, k, ctx, mont); + if (j == -1) + goto err; + if (j) { + ret = 0; + goto err; + } + if (!BN_GENCB_call(cb, 1, i)) + goto err; + } + ret = 1; + err: + if (ctx != NULL) { + BN_CTX_end(ctx); + if (ctx_passed == NULL) + BN_CTX_free(ctx); + } + BN_MONT_CTX_free(mont); + + return ret; +} + +static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, + const BIGNUM *a1_odd, int k, BN_CTX *ctx, + BN_MONT_CTX *mont) +{ + if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ + return -1; + if (BN_is_one(w)) + return 0; /* probably prime */ + if (BN_cmp(w, a1) == 0) + return 0; /* w == -1 (mod a), 'a' is probably prime */ + while (--k) { + if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ + return -1; + if (BN_is_one(w)) + return 1; /* 'a' is composite, otherwise a previous 'w' + * would have been == -1 (mod 'a') */ + if (BN_cmp(w, a1) == 0) + return 0; /* w == -1 (mod a), 'a' is probably prime */ + } + /* + * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and + * it is neither -1 nor +1 -- so 'a' cannot be prime + */ + bn_check_top(w); + return 1; +} + +static int probable_prime(BIGNUM *rnd, int bits, int safe, prime_t *mods) +{ + int i; + BN_ULONG delta; + BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; + + again: + /* TODO: Not all primes are private */ + if (!BN_priv_rand(rnd, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ODD)) + return 0; + if (safe && !BN_set_bit(rnd, 1)) + return 0; + /* we now have a random number 'rnd' to test. */ + for (i = 1; i < NUMPRIMES; i++) { + BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); + if (mod == (BN_ULONG)-1) + return 0; + mods[i] = (prime_t) mod; + } + delta = 0; + loop: + for (i = 1; i < NUMPRIMES; i++) { + /* + * check that rnd is a prime and also that + * gcd(rnd-1,primes) == 1 (except for 2) + * do the second check only if we are interested in safe primes + * in the case that the candidate prime is a single word then + * we check only the primes up to sqrt(rnd) + */ + if (bits <= 31 && delta <= 0x7fffffff + && square(primes[i]) > BN_get_word(rnd) + delta) + break; + if (safe ? (mods[i] + delta) % primes[i] <= 1 + : (mods[i] + delta) % primes[i] == 0) { + delta += safe ? 4 : 2; + if (delta > maxdelta) + goto again; + goto loop; + } + } + if (!BN_add_word(rnd, delta)) + return 0; + if (BN_num_bits(rnd) != bits) + goto again; + bn_check_top(rnd); + return 1; +} + +static int probable_prime_dh(BIGNUM *rnd, int bits, int safe, prime_t *mods, + const BIGNUM *add, const BIGNUM *rem, + BN_CTX *ctx) +{ + int i, ret = 0; + BIGNUM *t1; + BN_ULONG delta; + BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; + + BN_CTX_start(ctx); + if ((t1 = BN_CTX_get(ctx)) == NULL) + goto err; + + if (maxdelta > BN_MASK2 - BN_get_word(add)) + maxdelta = BN_MASK2 - BN_get_word(add); + + again: + if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) + goto err; + + /* we need ((rnd-rem) % add) == 0 */ + + if (!BN_mod(t1, rnd, add, ctx)) + goto err; + if (!BN_sub(rnd, rnd, t1)) + goto err; + if (rem == NULL) { + if (!BN_add_word(rnd, safe ? 3u : 1u)) + goto err; + } else { + if (!BN_add(rnd, rnd, rem)) + goto err; + } + + if (BN_num_bits(rnd) < bits + || BN_get_word(rnd) < (safe ? 5u : 3u)) { + if (!BN_add(rnd, rnd, add)) + goto err; + } + + /* we now have a random number 'rnd' to test. */ + for (i = 1; i < NUMPRIMES; i++) { + BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]); + if (mod == (BN_ULONG)-1) + goto err; + mods[i] = (prime_t) mod; + } + delta = 0; + loop: + for (i = 1; i < NUMPRIMES; i++) { + /* check that rnd is a prime */ + if (bits <= 31 && delta <= 0x7fffffff + && square(primes[i]) > BN_get_word(rnd) + delta) + break; + /* rnd mod p == 1 implies q = (rnd-1)/2 is divisible by p */ + if (safe ? (mods[i] + delta) % primes[i] <= 1 + : (mods[i] + delta) % primes[i] == 0) { + delta += BN_get_word(add); + if (delta > maxdelta) + goto again; + goto loop; + } + } + if (!BN_add_word(rnd, delta)) + goto err; + ret = 1; + + err: + BN_CTX_end(ctx); + bn_check_top(rnd); + return ret; +} |