aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/ec/ec2_smpl.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/ec/ec2_smpl.c')
-rw-r--r--roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/ec/ec2_smpl.c969
1 files changed, 969 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/ec/ec2_smpl.c b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/ec/ec2_smpl.c
new file mode 100644
index 000000000..84e5537a0
--- /dev/null
+++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/ec/ec2_smpl.c
@@ -0,0 +1,969 @@
+/*
+ * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <openssl/err.h>
+
+#include "crypto/bn.h"
+#include "ec_local.h"
+
+#ifndef OPENSSL_NO_EC2M
+
+/*
+ * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members
+ * are handled by EC_GROUP_new.
+ */
+int ec_GF2m_simple_group_init(EC_GROUP *group)
+{
+ group->field = BN_new();
+ group->a = BN_new();
+ group->b = BN_new();
+
+ if (group->field == NULL || group->a == NULL || group->b == NULL) {
+ BN_free(group->field);
+ BN_free(group->a);
+ BN_free(group->b);
+ return 0;
+ }
+ return 1;
+}
+
+/*
+ * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are
+ * handled by EC_GROUP_free.
+ */
+void ec_GF2m_simple_group_finish(EC_GROUP *group)
+{
+ BN_free(group->field);
+ BN_free(group->a);
+ BN_free(group->b);
+}
+
+/*
+ * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other
+ * members are handled by EC_GROUP_clear_free.
+ */
+void ec_GF2m_simple_group_clear_finish(EC_GROUP *group)
+{
+ BN_clear_free(group->field);
+ BN_clear_free(group->a);
+ BN_clear_free(group->b);
+ group->poly[0] = 0;
+ group->poly[1] = 0;
+ group->poly[2] = 0;
+ group->poly[3] = 0;
+ group->poly[4] = 0;
+ group->poly[5] = -1;
+}
+
+/*
+ * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are
+ * handled by EC_GROUP_copy.
+ */
+int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
+{
+ if (!BN_copy(dest->field, src->field))
+ return 0;
+ if (!BN_copy(dest->a, src->a))
+ return 0;
+ if (!BN_copy(dest->b, src->b))
+ return 0;
+ dest->poly[0] = src->poly[0];
+ dest->poly[1] = src->poly[1];
+ dest->poly[2] = src->poly[2];
+ dest->poly[3] = src->poly[3];
+ dest->poly[4] = src->poly[4];
+ dest->poly[5] = src->poly[5];
+ if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
+ NULL)
+ return 0;
+ if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) ==
+ NULL)
+ return 0;
+ bn_set_all_zero(dest->a);
+ bn_set_all_zero(dest->b);
+ return 1;
+}
+
+/* Set the curve parameters of an EC_GROUP structure. */
+int ec_GF2m_simple_group_set_curve(EC_GROUP *group,
+ const BIGNUM *p, const BIGNUM *a,
+ const BIGNUM *b, BN_CTX *ctx)
+{
+ int ret = 0, i;
+
+ /* group->field */
+ if (!BN_copy(group->field, p))
+ goto err;
+ i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1;
+ if ((i != 5) && (i != 3)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD);
+ goto err;
+ }
+
+ /* group->a */
+ if (!BN_GF2m_mod_arr(group->a, a, group->poly))
+ goto err;
+ if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
+ == NULL)
+ goto err;
+ bn_set_all_zero(group->a);
+
+ /* group->b */
+ if (!BN_GF2m_mod_arr(group->b, b, group->poly))
+ goto err;
+ if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2)
+ == NULL)
+ goto err;
+ bn_set_all_zero(group->b);
+
+ ret = 1;
+ err:
+ return ret;
+}
+
+/*
+ * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL
+ * then there values will not be set but the method will return with success.
+ */
+int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p,
+ BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
+{
+ int ret = 0;
+
+ if (p != NULL) {
+ if (!BN_copy(p, group->field))
+ return 0;
+ }
+
+ if (a != NULL) {
+ if (!BN_copy(a, group->a))
+ goto err;
+ }
+
+ if (b != NULL) {
+ if (!BN_copy(b, group->b))
+ goto err;
+ }
+
+ ret = 1;
+
+ err:
+ return ret;
+}
+
+/*
+ * Gets the degree of the field. For a curve over GF(2^m) this is the value
+ * m.
+ */
+int ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
+{
+ return BN_num_bits(group->field) - 1;
+}
+
+/*
+ * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an
+ * elliptic curve <=> b != 0 (mod p)
+ */
+int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group,
+ BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *b;
+ BN_CTX *new_ctx = NULL;
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT,
+ ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+ }
+ BN_CTX_start(ctx);
+ b = BN_CTX_get(ctx);
+ if (b == NULL)
+ goto err;
+
+ if (!BN_GF2m_mod_arr(b, group->b, group->poly))
+ goto err;
+
+ /*
+ * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
+ * curve <=> b != 0 (mod p)
+ */
+ if (BN_is_zero(b))
+ goto err;
+
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/* Initializes an EC_POINT. */
+int ec_GF2m_simple_point_init(EC_POINT *point)
+{
+ point->X = BN_new();
+ point->Y = BN_new();
+ point->Z = BN_new();
+
+ if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
+ BN_free(point->X);
+ BN_free(point->Y);
+ BN_free(point->Z);
+ return 0;
+ }
+ return 1;
+}
+
+/* Frees an EC_POINT. */
+void ec_GF2m_simple_point_finish(EC_POINT *point)
+{
+ BN_free(point->X);
+ BN_free(point->Y);
+ BN_free(point->Z);
+}
+
+/* Clears and frees an EC_POINT. */
+void ec_GF2m_simple_point_clear_finish(EC_POINT *point)
+{
+ BN_clear_free(point->X);
+ BN_clear_free(point->Y);
+ BN_clear_free(point->Z);
+ point->Z_is_one = 0;
+}
+
+/*
+ * Copy the contents of one EC_POINT into another. Assumes dest is
+ * initialized.
+ */
+int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
+{
+ if (!BN_copy(dest->X, src->X))
+ return 0;
+ if (!BN_copy(dest->Y, src->Y))
+ return 0;
+ if (!BN_copy(dest->Z, src->Z))
+ return 0;
+ dest->Z_is_one = src->Z_is_one;
+ dest->curve_name = src->curve_name;
+
+ return 1;
+}
+
+/*
+ * Set an EC_POINT to the point at infinity. A point at infinity is
+ * represented by having Z=0.
+ */
+int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group,
+ EC_POINT *point)
+{
+ point->Z_is_one = 0;
+ BN_zero(point->Z);
+ return 1;
+}
+
+/*
+ * Set the coordinates of an EC_POINT using affine coordinates. Note that
+ * the simple implementation only uses affine coordinates.
+ */
+int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group,
+ EC_POINT *point,
+ const BIGNUM *x,
+ const BIGNUM *y, BN_CTX *ctx)
+{
+ int ret = 0;
+ if (x == NULL || y == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES,
+ ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+
+ if (!BN_copy(point->X, x))
+ goto err;
+ BN_set_negative(point->X, 0);
+ if (!BN_copy(point->Y, y))
+ goto err;
+ BN_set_negative(point->Y, 0);
+ if (!BN_copy(point->Z, BN_value_one()))
+ goto err;
+ BN_set_negative(point->Z, 0);
+ point->Z_is_one = 1;
+ ret = 1;
+
+ err:
+ return ret;
+}
+
+/*
+ * Gets the affine coordinates of an EC_POINT. Note that the simple
+ * implementation only uses affine coordinates.
+ */
+int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
+ const EC_POINT *point,
+ BIGNUM *x, BIGNUM *y,
+ BN_CTX *ctx)
+{
+ int ret = 0;
+
+ if (EC_POINT_is_at_infinity(group, point)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
+ EC_R_POINT_AT_INFINITY);
+ return 0;
+ }
+
+ if (BN_cmp(point->Z, BN_value_one())) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES,
+ ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
+ return 0;
+ }
+ if (x != NULL) {
+ if (!BN_copy(x, point->X))
+ goto err;
+ BN_set_negative(x, 0);
+ }
+ if (y != NULL) {
+ if (!BN_copy(y, point->Y))
+ goto err;
+ BN_set_negative(y, 0);
+ }
+ ret = 1;
+
+ err:
+ return ret;
+}
+
+/*
+ * Computes a + b and stores the result in r. r could be a or b, a could be
+ * b. Uses algorithm A.10.2 of IEEE P1363.
+ */
+int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
+ const EC_POINT *b, BN_CTX *ctx)
+{
+ BN_CTX *new_ctx = NULL;
+ BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
+ int ret = 0;
+
+ if (EC_POINT_is_at_infinity(group, a)) {
+ if (!EC_POINT_copy(r, b))
+ return 0;
+ return 1;
+ }
+
+ if (EC_POINT_is_at_infinity(group, b)) {
+ if (!EC_POINT_copy(r, a))
+ return 0;
+ return 1;
+ }
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+ }
+
+ BN_CTX_start(ctx);
+ x0 = BN_CTX_get(ctx);
+ y0 = BN_CTX_get(ctx);
+ x1 = BN_CTX_get(ctx);
+ y1 = BN_CTX_get(ctx);
+ x2 = BN_CTX_get(ctx);
+ y2 = BN_CTX_get(ctx);
+ s = BN_CTX_get(ctx);
+ t = BN_CTX_get(ctx);
+ if (t == NULL)
+ goto err;
+
+ if (a->Z_is_one) {
+ if (!BN_copy(x0, a->X))
+ goto err;
+ if (!BN_copy(y0, a->Y))
+ goto err;
+ } else {
+ if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
+ goto err;
+ }
+ if (b->Z_is_one) {
+ if (!BN_copy(x1, b->X))
+ goto err;
+ if (!BN_copy(y1, b->Y))
+ goto err;
+ } else {
+ if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
+ goto err;
+ }
+
+ if (BN_GF2m_cmp(x0, x1)) {
+ if (!BN_GF2m_add(t, x0, x1))
+ goto err;
+ if (!BN_GF2m_add(s, y0, y1))
+ goto err;
+ if (!group->meth->field_div(group, s, s, t, ctx))
+ goto err;
+ if (!group->meth->field_sqr(group, x2, s, ctx))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, group->a))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, s))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, t))
+ goto err;
+ } else {
+ if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
+ if (!EC_POINT_set_to_infinity(group, r))
+ goto err;
+ ret = 1;
+ goto err;
+ }
+ if (!group->meth->field_div(group, s, y1, x1, ctx))
+ goto err;
+ if (!BN_GF2m_add(s, s, x1))
+ goto err;
+
+ if (!group->meth->field_sqr(group, x2, s, ctx))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, s))
+ goto err;
+ if (!BN_GF2m_add(x2, x2, group->a))
+ goto err;
+ }
+
+ if (!BN_GF2m_add(y2, x1, x2))
+ goto err;
+ if (!group->meth->field_mul(group, y2, y2, s, ctx))
+ goto err;
+ if (!BN_GF2m_add(y2, y2, x2))
+ goto err;
+ if (!BN_GF2m_add(y2, y2, y1))
+ goto err;
+
+ if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
+ goto err;
+
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/*
+ * Computes 2 * a and stores the result in r. r could be a. Uses algorithm
+ * A.10.2 of IEEE P1363.
+ */
+int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
+ BN_CTX *ctx)
+{
+ return ec_GF2m_simple_add(group, r, a, a, ctx);
+}
+
+int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
+{
+ if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
+ /* point is its own inverse */
+ return 1;
+
+ if (!EC_POINT_make_affine(group, point, ctx))
+ return 0;
+ return BN_GF2m_add(point->Y, point->X, point->Y);
+}
+
+/* Indicates whether the given point is the point at infinity. */
+int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group,
+ const EC_POINT *point)
+{
+ return BN_is_zero(point->Z);
+}
+
+/*-
+ * Determines whether the given EC_POINT is an actual point on the curve defined
+ * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
+ * y^2 + x*y = x^3 + a*x^2 + b.
+ */
+int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
+ BN_CTX *ctx)
+{
+ int ret = -1;
+ BN_CTX *new_ctx = NULL;
+ BIGNUM *lh, *y2;
+ int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
+ const BIGNUM *, BN_CTX *);
+ int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
+
+ if (EC_POINT_is_at_infinity(group, point))
+ return 1;
+
+ field_mul = group->meth->field_mul;
+ field_sqr = group->meth->field_sqr;
+
+ /* only support affine coordinates */
+ if (!point->Z_is_one)
+ return -1;
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return -1;
+ }
+
+ BN_CTX_start(ctx);
+ y2 = BN_CTX_get(ctx);
+ lh = BN_CTX_get(ctx);
+ if (lh == NULL)
+ goto err;
+
+ /*-
+ * We have a curve defined by a Weierstrass equation
+ * y^2 + x*y = x^3 + a*x^2 + b.
+ * <=> x^3 + a*x^2 + x*y + b + y^2 = 0
+ * <=> ((x + a) * x + y ) * x + b + y^2 = 0
+ */
+ if (!BN_GF2m_add(lh, point->X, group->a))
+ goto err;
+ if (!field_mul(group, lh, lh, point->X, ctx))
+ goto err;
+ if (!BN_GF2m_add(lh, lh, point->Y))
+ goto err;
+ if (!field_mul(group, lh, lh, point->X, ctx))
+ goto err;
+ if (!BN_GF2m_add(lh, lh, group->b))
+ goto err;
+ if (!field_sqr(group, y2, point->Y, ctx))
+ goto err;
+ if (!BN_GF2m_add(lh, lh, y2))
+ goto err;
+ ret = BN_is_zero(lh);
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/*-
+ * Indicates whether two points are equal.
+ * Return values:
+ * -1 error
+ * 0 equal (in affine coordinates)
+ * 1 not equal
+ */
+int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
+ const EC_POINT *b, BN_CTX *ctx)
+{
+ BIGNUM *aX, *aY, *bX, *bY;
+ BN_CTX *new_ctx = NULL;
+ int ret = -1;
+
+ if (EC_POINT_is_at_infinity(group, a)) {
+ return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
+ }
+
+ if (EC_POINT_is_at_infinity(group, b))
+ return 1;
+
+ if (a->Z_is_one && b->Z_is_one) {
+ return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
+ }
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return -1;
+ }
+
+ BN_CTX_start(ctx);
+ aX = BN_CTX_get(ctx);
+ aY = BN_CTX_get(ctx);
+ bX = BN_CTX_get(ctx);
+ bY = BN_CTX_get(ctx);
+ if (bY == NULL)
+ goto err;
+
+ if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
+ goto err;
+ if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
+ goto err;
+ ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/* Forces the given EC_POINT to internally use affine coordinates. */
+int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
+ BN_CTX *ctx)
+{
+ BN_CTX *new_ctx = NULL;
+ BIGNUM *x, *y;
+ int ret = 0;
+
+ if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
+ return 1;
+
+ if (ctx == NULL) {
+ ctx = new_ctx = BN_CTX_new();
+ if (ctx == NULL)
+ return 0;
+ }
+
+ BN_CTX_start(ctx);
+ x = BN_CTX_get(ctx);
+ y = BN_CTX_get(ctx);
+ if (y == NULL)
+ goto err;
+
+ if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
+ goto err;
+ if (!BN_copy(point->X, x))
+ goto err;
+ if (!BN_copy(point->Y, y))
+ goto err;
+ if (!BN_one(point->Z))
+ goto err;
+ point->Z_is_one = 1;
+
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ BN_CTX_free(new_ctx);
+ return ret;
+}
+
+/*
+ * Forces each of the EC_POINTs in the given array to use affine coordinates.
+ */
+int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
+ EC_POINT *points[], BN_CTX *ctx)
+{
+ size_t i;
+
+ for (i = 0; i < num; i++) {
+ if (!group->meth->make_affine(group, points[i], ctx))
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Wrapper to simple binary polynomial field multiplication implementation. */
+int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
+{
+ return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
+}
+
+/* Wrapper to simple binary polynomial field squaring implementation. */
+int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, BN_CTX *ctx)
+{
+ return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
+}
+
+/* Wrapper to simple binary polynomial field division implementation. */
+int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
+{
+ return BN_GF2m_mod_div(r, a, b, group->field, ctx);
+}
+
+/*-
+ * Lopez-Dahab ladder, pre step.
+ * See e.g. "Guide to ECC" Alg 3.40.
+ * Modified to blind s and r independently.
+ * s:= p, r := 2p
+ */
+static
+int ec_GF2m_simple_ladder_pre(const EC_GROUP *group,
+ EC_POINT *r, EC_POINT *s,
+ EC_POINT *p, BN_CTX *ctx)
+{
+ /* if p is not affine, something is wrong */
+ if (p->Z_is_one == 0)
+ return 0;
+
+ /* s blinding: make sure lambda (s->Z here) is not zero */
+ do {
+ if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1,
+ BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
+ return 0;
+ }
+ } while (BN_is_zero(s->Z));
+
+ /* if field_encode defined convert between representations */
+ if ((group->meth->field_encode != NULL
+ && !group->meth->field_encode(group, s->Z, s->Z, ctx))
+ || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx))
+ return 0;
+
+ /* r blinding: make sure lambda (r->Y here for storage) is not zero */
+ do {
+ if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1,
+ BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB);
+ return 0;
+ }
+ } while (BN_is_zero(r->Y));
+
+ if ((group->meth->field_encode != NULL
+ && !group->meth->field_encode(group, r->Y, r->Y, ctx))
+ || !group->meth->field_sqr(group, r->Z, p->X, ctx)
+ || !group->meth->field_sqr(group, r->X, r->Z, ctx)
+ || !BN_GF2m_add(r->X, r->X, group->b)
+ || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
+ || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx))
+ return 0;
+
+ s->Z_is_one = 0;
+ r->Z_is_one = 0;
+
+ return 1;
+}
+
+/*-
+ * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords.
+ * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
+ * s := r + s, r := 2r
+ */
+static
+int ec_GF2m_simple_ladder_step(const EC_GROUP *group,
+ EC_POINT *r, EC_POINT *s,
+ EC_POINT *p, BN_CTX *ctx)
+{
+ if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx)
+ || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx)
+ || !group->meth->field_sqr(group, s->Y, r->Z, ctx)
+ || !group->meth->field_sqr(group, r->Z, r->X, ctx)
+ || !BN_GF2m_add(s->Z, r->Y, s->X)
+ || !group->meth->field_sqr(group, s->Z, s->Z, ctx)
+ || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx)
+ || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx)
+ || !BN_GF2m_add(s->X, s->X, r->Y)
+ || !group->meth->field_sqr(group, r->Y, r->Z, ctx)
+ || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx)
+ || !group->meth->field_sqr(group, s->Y, s->Y, ctx)
+ || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx)
+ || !BN_GF2m_add(r->X, r->Y, s->Y))
+ return 0;
+
+ return 1;
+}
+
+/*-
+ * Recover affine (x,y) result from Lopez-Dahab r and s, affine p.
+ * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m)
+ * without Precomputation" (Lopez and Dahab, CHES 1999),
+ * Appendix Alg Mxy.
+ */
+static
+int ec_GF2m_simple_ladder_post(const EC_GROUP *group,
+ EC_POINT *r, EC_POINT *s,
+ EC_POINT *p, BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *t0, *t1, *t2 = NULL;
+
+ if (BN_is_zero(r->Z))
+ return EC_POINT_set_to_infinity(group, r);
+
+ if (BN_is_zero(s->Z)) {
+ if (!EC_POINT_copy(r, p)
+ || !EC_POINT_invert(group, r, ctx)) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB);
+ return 0;
+ }
+ return 1;
+ }
+
+ BN_CTX_start(ctx);
+ t0 = BN_CTX_get(ctx);
+ t1 = BN_CTX_get(ctx);
+ t2 = BN_CTX_get(ctx);
+ if (t2 == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+
+ if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
+ || !group->meth->field_mul(group, t1, p->X, r->Z, ctx)
+ || !BN_GF2m_add(t1, r->X, t1)
+ || !group->meth->field_mul(group, t2, p->X, s->Z, ctx)
+ || !group->meth->field_mul(group, r->Z, r->X, t2, ctx)
+ || !BN_GF2m_add(t2, t2, s->X)
+ || !group->meth->field_mul(group, t1, t1, t2, ctx)
+ || !group->meth->field_sqr(group, t2, p->X, ctx)
+ || !BN_GF2m_add(t2, p->Y, t2)
+ || !group->meth->field_mul(group, t2, t2, t0, ctx)
+ || !BN_GF2m_add(t1, t2, t1)
+ || !group->meth->field_mul(group, t2, p->X, t0, ctx)
+ || !group->meth->field_inv(group, t2, t2, ctx)
+ || !group->meth->field_mul(group, t1, t1, t2, ctx)
+ || !group->meth->field_mul(group, r->X, r->Z, t2, ctx)
+ || !BN_GF2m_add(t2, p->X, r->X)
+ || !group->meth->field_mul(group, t2, t2, t1, ctx)
+ || !BN_GF2m_add(r->Y, p->Y, t2)
+ || !BN_one(r->Z))
+ goto err;
+
+ r->Z_is_one = 1;
+
+ /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
+ BN_set_negative(r->X, 0);
+ BN_set_negative(r->Y, 0);
+
+ ret = 1;
+
+ err:
+ BN_CTX_end(ctx);
+ return ret;
+}
+
+static
+int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r,
+ const BIGNUM *scalar, size_t num,
+ const EC_POINT *points[],
+ const BIGNUM *scalars[],
+ BN_CTX *ctx)
+{
+ int ret = 0;
+ EC_POINT *t = NULL;
+
+ /*-
+ * We limit use of the ladder only to the following cases:
+ * - r := scalar * G
+ * Fixed point mul: scalar != NULL && num == 0;
+ * - r := scalars[0] * points[0]
+ * Variable point mul: scalar == NULL && num == 1;
+ * - r := scalar * G + scalars[0] * points[0]
+ * used, e.g., in ECDSA verification: scalar != NULL && num == 1
+ *
+ * In any other case (num > 1) we use the default wNAF implementation.
+ *
+ * We also let the default implementation handle degenerate cases like group
+ * order or cofactor set to 0.
+ */
+ if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor))
+ return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
+
+ if (scalar != NULL && num == 0)
+ /* Fixed point multiplication */
+ return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
+
+ if (scalar == NULL && num == 1)
+ /* Variable point multiplication */
+ return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
+
+ /*-
+ * Double point multiplication:
+ * r := scalar * G + scalars[0] * points[0]
+ */
+
+ if ((t = EC_POINT_new(group)) == NULL) {
+ ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE);
+ return 0;
+ }
+
+ if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx)
+ || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx)
+ || !EC_POINT_add(group, r, t, r, ctx))
+ goto err;
+
+ ret = 1;
+
+ err:
+ EC_POINT_free(t);
+ return ret;
+}
+
+/*-
+ * Computes the multiplicative inverse of a in GF(2^m), storing the result in r.
+ * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
+ * SCA hardening is with blinding: BN_GF2m_mod_inv does that.
+ */
+static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r,
+ const BIGNUM *a, BN_CTX *ctx)
+{
+ int ret;
+
+ if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx)))
+ ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
+ return ret;
+}
+
+const EC_METHOD *EC_GF2m_simple_method(void)
+{
+ static const EC_METHOD ret = {
+ EC_FLAGS_DEFAULT_OCT,
+ NID_X9_62_characteristic_two_field,
+ ec_GF2m_simple_group_init,
+ ec_GF2m_simple_group_finish,
+ ec_GF2m_simple_group_clear_finish,
+ ec_GF2m_simple_group_copy,
+ ec_GF2m_simple_group_set_curve,
+ ec_GF2m_simple_group_get_curve,
+ ec_GF2m_simple_group_get_degree,
+ ec_group_simple_order_bits,
+ ec_GF2m_simple_group_check_discriminant,
+ ec_GF2m_simple_point_init,
+ ec_GF2m_simple_point_finish,
+ ec_GF2m_simple_point_clear_finish,
+ ec_GF2m_simple_point_copy,
+ ec_GF2m_simple_point_set_to_infinity,
+ 0, /* set_Jprojective_coordinates_GFp */
+ 0, /* get_Jprojective_coordinates_GFp */
+ ec_GF2m_simple_point_set_affine_coordinates,
+ ec_GF2m_simple_point_get_affine_coordinates,
+ 0, /* point_set_compressed_coordinates */
+ 0, /* point2oct */
+ 0, /* oct2point */
+ ec_GF2m_simple_add,
+ ec_GF2m_simple_dbl,
+ ec_GF2m_simple_invert,
+ ec_GF2m_simple_is_at_infinity,
+ ec_GF2m_simple_is_on_curve,
+ ec_GF2m_simple_cmp,
+ ec_GF2m_simple_make_affine,
+ ec_GF2m_simple_points_make_affine,
+ ec_GF2m_simple_points_mul,
+ 0, /* precompute_mult */
+ 0, /* have_precompute_mult */
+ ec_GF2m_simple_field_mul,
+ ec_GF2m_simple_field_sqr,
+ ec_GF2m_simple_field_div,
+ ec_GF2m_simple_field_inv,
+ 0, /* field_encode */
+ 0, /* field_decode */
+ 0, /* field_set_to_one */
+ ec_key_simple_priv2oct,
+ ec_key_simple_oct2priv,
+ 0, /* set private */
+ ec_key_simple_generate_key,
+ ec_key_simple_check_key,
+ ec_key_simple_generate_public_key,
+ 0, /* keycopy */
+ 0, /* keyfinish */
+ ecdh_simple_compute_key,
+ 0, /* field_inverse_mod_ord */
+ 0, /* blind_coordinates */
+ ec_GF2m_simple_ladder_pre,
+ ec_GF2m_simple_ladder_step,
+ ec_GF2m_simple_ladder_post
+ };
+
+ return &ret;
+}
+
+#endif