diff options
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl')
-rw-r--r-- | roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl | 781 |
1 files changed, 781 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl new file mode 100644 index 000000000..d0e398b50 --- /dev/null +++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl @@ -0,0 +1,781 @@ +#! /usr/bin/env perl +# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + +# +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication. +# +# June 2014 +# +# Initial version was developed in tight cooperation with Ard +# Biesheuvel of Linaro from bits-n-pieces from other assembly modules. +# Just like aesv8-armx.pl this module supports both AArch32 and +# AArch64 execution modes. +# +# July 2014 +# +# Implement 2x aggregated reduction [see ghash-x86.pl for background +# information]. +# +# November 2017 +# +# AArch64 register bank to "accommodate" 4x aggregated reduction and +# improve performance by 20-70% depending on processor. +# +# Current performance in cycles per processed byte: +# +# 64-bit PMULL 32-bit PMULL 32-bit NEON(*) +# Apple A7 0.58 0.92 5.62 +# Cortex-A53 0.85 1.01 8.39 +# Cortex-A57 0.73 1.17 7.61 +# Denver 0.51 0.65 6.02 +# Mongoose 0.65 1.10 8.06 +# Kryo 0.76 1.16 8.00 +# +# (*) presented for reference/comparison purposes; + +$flavour = shift; +$output = shift; + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or +( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or +die "can't locate arm-xlate.pl"; + +open OUT,"| \"$^X\" $xlate $flavour $output"; +*STDOUT=*OUT; + +$Xi="x0"; # argument block +$Htbl="x1"; +$inp="x2"; +$len="x3"; + +$inc="x12"; + +{ +my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); +my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14)); + +$code=<<___; +#include "arm_arch.h" + +#if __ARM_MAX_ARCH__>=7 +.text +___ +$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/); +$code.=<<___ if ($flavour !~ /64/); +.fpu neon +.code 32 +#undef __thumb2__ +___ + +################################################################################ +# void gcm_init_v8(u128 Htable[16],const u64 H[2]); +# +# input: 128-bit H - secret parameter E(K,0^128) +# output: precomputed table filled with degrees of twisted H; +# H is twisted to handle reverse bitness of GHASH; +# only few of 16 slots of Htable[16] are used; +# data is opaque to outside world (which allows to +# optimize the code independently); +# +$code.=<<___; +.global gcm_init_v8 +.type gcm_init_v8,%function +.align 4 +gcm_init_v8: + vld1.64 {$t1},[x1] @ load input H + vmov.i8 $xC2,#0xe1 + vshl.i64 $xC2,$xC2,#57 @ 0xc2.0 + vext.8 $IN,$t1,$t1,#8 + vshr.u64 $t2,$xC2,#63 + vdup.32 $t1,${t1}[1] + vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01 + vshr.u64 $t2,$IN,#63 + vshr.s32 $t1,$t1,#31 @ broadcast carry bit + vand $t2,$t2,$t0 + vshl.i64 $IN,$IN,#1 + vext.8 $t2,$t2,$t2,#8 + vand $t0,$t0,$t1 + vorr $IN,$IN,$t2 @ H<<<=1 + veor $H,$IN,$t0 @ twisted H + vst1.64 {$H},[x0],#16 @ store Htable[0] + + @ calculate H^2 + vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing + vpmull.p64 $Xl,$H,$H + veor $t0,$t0,$H + vpmull2.p64 $Xh,$H,$H + vpmull.p64 $Xm,$t0,$t0 + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase + + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $H2,$Xl,$t2 + + vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing + veor $t1,$t1,$H2 + vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed + vst1.64 {$Hhl-$H2},[x0],#32 @ store Htable[1..2] +___ +if ($flavour =~ /64/) { +my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7)); + +$code.=<<___; + @ calculate H^3 and H^4 + vpmull.p64 $Xl,$H, $H2 + vpmull.p64 $Yl,$H2,$H2 + vpmull2.p64 $Xh,$H, $H2 + vpmull2.p64 $Yh,$H2,$H2 + vpmull.p64 $Xm,$t0,$t1 + vpmull.p64 $Ym,$t1,$t1 + + vext.8 $t0,$Xl,$Xh,#8 @ Karatsuba post-processing + vext.8 $t1,$Yl,$Yh,#8 + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t0 + veor $t3,$Yl,$Yh + veor $Ym,$Ym,$t1 + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase + veor $Ym,$Ym,$t3 + vpmull.p64 $t3,$Yl,$xC2 + + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Yh#lo,$Ym#hi + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + vmov $Ym#hi,$Yl#lo + veor $Xl,$Xm,$t2 + veor $Yl,$Ym,$t3 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase + vext.8 $t3,$Yl,$Yl,#8 + vpmull.p64 $Xl,$Xl,$xC2 + vpmull.p64 $Yl,$Yl,$xC2 + veor $t2,$t2,$Xh + veor $t3,$t3,$Yh + veor $H, $Xl,$t2 @ H^3 + veor $H2,$Yl,$t3 @ H^4 + + vext.8 $t0,$H, $H,#8 @ Karatsuba pre-processing + vext.8 $t1,$H2,$H2,#8 + veor $t0,$t0,$H + veor $t1,$t1,$H2 + vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed + vst1.64 {$H-$H2},[x0] @ store Htable[3..5] +___ +} +$code.=<<___; + ret +.size gcm_init_v8,.-gcm_init_v8 +___ +################################################################################ +# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]); +# +# input: Xi - current hash value; +# Htable - table precomputed in gcm_init_v8; +# output: Xi - next hash value Xi; +# +$code.=<<___; +.global gcm_gmult_v8 +.type gcm_gmult_v8,%function +.align 4 +gcm_gmult_v8: + vld1.64 {$t1},[$Xi] @ load Xi + vmov.i8 $xC2,#0xe1 + vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ... + vshl.u64 $xC2,$xC2,#57 +#ifndef __ARMEB__ + vrev64.8 $t1,$t1 +#endif + vext.8 $IN,$t1,$t1,#8 + + vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo + veor $t1,$t1,$IN @ Karatsuba pre-processing + vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi + vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $Xl,$Xl,$t2 + +#ifndef __ARMEB__ + vrev64.8 $Xl,$Xl +#endif + vext.8 $Xl,$Xl,$Xl,#8 + vst1.64 {$Xl},[$Xi] @ write out Xi + + ret +.size gcm_gmult_v8,.-gcm_gmult_v8 +___ +################################################################################ +# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); +# +# input: table precomputed in gcm_init_v8; +# current hash value Xi; +# pointer to input data; +# length of input data in bytes, but divisible by block size; +# output: next hash value Xi; +# +$code.=<<___; +.global gcm_ghash_v8 +.type gcm_ghash_v8,%function +.align 4 +gcm_ghash_v8: +___ +$code.=<<___ if ($flavour =~ /64/); + cmp $len,#64 + b.hs .Lgcm_ghash_v8_4x +___ +$code.=<<___ if ($flavour !~ /64/); + vstmdb sp!,{d8-d15} @ 32-bit ABI says so +___ +$code.=<<___; + vld1.64 {$Xl},[$Xi] @ load [rotated] Xi + @ "[rotated]" means that + @ loaded value would have + @ to be rotated in order to + @ make it appear as in + @ algorithm specification + subs $len,$len,#32 @ see if $len is 32 or larger + mov $inc,#16 @ $inc is used as post- + @ increment for input pointer; + @ as loop is modulo-scheduled + @ $inc is zeroed just in time + @ to preclude overstepping + @ inp[len], which means that + @ last block[s] are actually + @ loaded twice, but last + @ copy is not processed + vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2 + vmov.i8 $xC2,#0xe1 + vld1.64 {$H2},[$Htbl] + cclr $inc,eq @ is it time to zero $inc? + vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi + vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0] + vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant +#ifndef __ARMEB__ + vrev64.8 $t0,$t0 + vrev64.8 $Xl,$Xl +#endif + vext.8 $IN,$t0,$t0,#8 @ rotate I[0] + b.lo .Lodd_tail_v8 @ $len was less than 32 +___ +{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7)); + ####### + # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = + # [(H*Ii+1) + (H*Xi+1)] mod P = + # [(H*Ii+1) + H^2*(Ii+Xi)] mod P + # +$code.=<<___; + vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1] +#ifndef __ARMEB__ + vrev64.8 $t1,$t1 +#endif + vext.8 $In,$t1,$t1,#8 + veor $IN,$IN,$Xl @ I[i]^=Xi + vpmull.p64 $Xln,$H,$In @ H·Ii+1 + veor $t1,$t1,$In @ Karatsuba pre-processing + vpmull2.p64 $Xhn,$H,$In + b .Loop_mod2x_v8 + +.align 4 +.Loop_mod2x_v8: + vext.8 $t2,$IN,$IN,#8 + subs $len,$len,#32 @ is there more data? + vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo + cclr $inc,lo @ is it time to zero $inc? + + vpmull.p64 $Xmn,$Hhl,$t1 + veor $t2,$t2,$IN @ Karatsuba pre-processing + vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi + veor $Xl,$Xl,$Xln @ accumulate + vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi) + vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2] + + veor $Xh,$Xh,$Xhn + cclr $inc,eq @ is it time to zero $inc? + veor $Xm,$Xm,$Xmn + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3] +#ifndef __ARMEB__ + vrev64.8 $t0,$t0 +#endif + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + +#ifndef __ARMEB__ + vrev64.8 $t1,$t1 +#endif + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + vext.8 $In,$t1,$t1,#8 + vext.8 $IN,$t0,$t0,#8 + veor $Xl,$Xm,$t2 + vpmull.p64 $Xln,$H,$In @ H·Ii+1 + veor $IN,$IN,$Xh @ accumulate $IN early + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $IN,$IN,$t2 + veor $t1,$t1,$In @ Karatsuba pre-processing + veor $IN,$IN,$Xl + vpmull2.p64 $Xhn,$H,$In + b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes + + veor $Xh,$Xh,$t2 + vext.8 $IN,$t0,$t0,#8 @ re-construct $IN + adds $len,$len,#32 @ re-construct $len + veor $Xl,$Xl,$Xh @ re-construct $Xl + b.eq .Ldone_v8 @ is $len zero? +___ +} +$code.=<<___; +.Lodd_tail_v8: + vext.8 $t2,$Xl,$Xl,#8 + veor $IN,$IN,$Xl @ inp^=Xi + veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi + + vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo + veor $t1,$t1,$IN @ Karatsuba pre-processing + vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi + vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + veor $Xm,$Xm,$t2 + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $Xl,$Xl,$t2 + +.Ldone_v8: +#ifndef __ARMEB__ + vrev64.8 $Xl,$Xl +#endif + vext.8 $Xl,$Xl,$Xl,#8 + vst1.64 {$Xl},[$Xi] @ write out Xi + +___ +$code.=<<___ if ($flavour !~ /64/); + vldmia sp!,{d8-d15} @ 32-bit ABI says so +___ +$code.=<<___; + ret +.size gcm_ghash_v8,.-gcm_ghash_v8 +___ + +if ($flavour =~ /64/) { # 4x subroutine +my ($I0,$j1,$j2,$j3, + $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23)); + +$code.=<<___; +.type gcm_ghash_v8_4x,%function +.align 4 +gcm_ghash_v8_4x: +.Lgcm_ghash_v8_4x: + vld1.64 {$Xl},[$Xi] @ load [rotated] Xi + vld1.64 {$H-$H2},[$Htbl],#48 @ load twisted H, ..., H^2 + vmov.i8 $xC2,#0xe1 + vld1.64 {$H3-$H4},[$Htbl] @ load twisted H^3, ..., H^4 + vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant + + vld1.64 {$I0-$j3},[$inp],#64 +#ifndef __ARMEB__ + vrev64.8 $Xl,$Xl + vrev64.8 $j1,$j1 + vrev64.8 $j2,$j2 + vrev64.8 $j3,$j3 + vrev64.8 $I0,$I0 +#endif + vext.8 $I3,$j3,$j3,#8 + vext.8 $I2,$j2,$j2,#8 + vext.8 $I1,$j1,$j1,#8 + + vpmull.p64 $Yl,$H,$I3 @ H·Ii+3 + veor $j3,$j3,$I3 + vpmull2.p64 $Yh,$H,$I3 + vpmull.p64 $Ym,$Hhl,$j3 + + vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2 + veor $j2,$j2,$I2 + vpmull2.p64 $I2,$H2,$I2 + vpmull2.p64 $j2,$Hhl,$j2 + + veor $Yl,$Yl,$t0 + veor $Yh,$Yh,$I2 + veor $Ym,$Ym,$j2 + + vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1 + veor $j1,$j1,$I1 + vpmull2.p64 $I1,$H3,$I1 + vpmull.p64 $j1,$H34,$j1 + + veor $Yl,$Yl,$j3 + veor $Yh,$Yh,$I1 + veor $Ym,$Ym,$j1 + + subs $len,$len,#128 + b.lo .Ltail4x + + b .Loop4x + +.align 4 +.Loop4x: + veor $t0,$I0,$Xl + vld1.64 {$I0-$j3},[$inp],#64 + vext.8 $IN,$t0,$t0,#8 +#ifndef __ARMEB__ + vrev64.8 $j1,$j1 + vrev64.8 $j2,$j2 + vrev64.8 $j3,$j3 + vrev64.8 $I0,$I0 +#endif + + vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii) + veor $t0,$t0,$IN + vpmull2.p64 $Xh,$H4,$IN + vext.8 $I3,$j3,$j3,#8 + vpmull2.p64 $Xm,$H34,$t0 + + veor $Xl,$Xl,$Yl + veor $Xh,$Xh,$Yh + vext.8 $I2,$j2,$j2,#8 + veor $Xm,$Xm,$Ym + vext.8 $I1,$j1,$j1,#8 + + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + vpmull.p64 $Yl,$H,$I3 @ H·Ii+3 + veor $j3,$j3,$I3 + veor $Xm,$Xm,$t1 + vpmull2.p64 $Yh,$H,$I3 + veor $Xm,$Xm,$t2 + vpmull.p64 $Ym,$Hhl,$j3 + + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2 + veor $j2,$j2,$I2 + vpmull2.p64 $I2,$H2,$I2 + veor $Xl,$Xm,$t2 + vpmull2.p64 $j2,$Hhl,$j2 + + veor $Yl,$Yl,$t0 + veor $Yh,$Yh,$I2 + veor $Ym,$Ym,$j2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1 + veor $j1,$j1,$I1 + veor $t2,$t2,$Xh + vpmull2.p64 $I1,$H3,$I1 + vpmull.p64 $j1,$H34,$j1 + + veor $Xl,$Xl,$t2 + veor $Yl,$Yl,$j3 + veor $Yh,$Yh,$I1 + vext.8 $Xl,$Xl,$Xl,#8 + veor $Ym,$Ym,$j1 + + subs $len,$len,#64 + b.hs .Loop4x + +.Ltail4x: + veor $t0,$I0,$Xl + vext.8 $IN,$t0,$t0,#8 + + vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii) + veor $t0,$t0,$IN + vpmull2.p64 $Xh,$H4,$IN + vpmull2.p64 $Xm,$H34,$t0 + + veor $Xl,$Xl,$Yl + veor $Xh,$Xh,$Yh + veor $Xm,$Xm,$Ym + + adds $len,$len,#64 + b.eq .Ldone4x + + cmp $len,#32 + b.lo .Lone + b.eq .Ltwo +.Lthree: + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + vld1.64 {$I0-$j2},[$inp] + veor $Xm,$Xm,$t2 +#ifndef __ARMEB__ + vrev64.8 $j1,$j1 + vrev64.8 $j2,$j2 + vrev64.8 $I0,$I0 +#endif + + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + vext.8 $I2,$j2,$j2,#8 + vext.8 $I1,$j1,$j1,#8 + veor $Xl,$Xm,$t2 + + vpmull.p64 $Yl,$H,$I2 @ H·Ii+2 + veor $j2,$j2,$I2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + vpmull2.p64 $Yh,$H,$I2 + vpmull.p64 $Ym,$Hhl,$j2 + veor $Xl,$Xl,$t2 + vpmull.p64 $j3,$H2,$I1 @ H^2·Ii+1 + veor $j1,$j1,$I1 + vext.8 $Xl,$Xl,$Xl,#8 + + vpmull2.p64 $I1,$H2,$I1 + veor $t0,$I0,$Xl + vpmull2.p64 $j1,$Hhl,$j1 + vext.8 $IN,$t0,$t0,#8 + + veor $Yl,$Yl,$j3 + veor $Yh,$Yh,$I1 + veor $Ym,$Ym,$j1 + + vpmull.p64 $Xl,$H3,$IN @ H^3·(Xi+Ii) + veor $t0,$t0,$IN + vpmull2.p64 $Xh,$H3,$IN + vpmull.p64 $Xm,$H34,$t0 + + veor $Xl,$Xl,$Yl + veor $Xh,$Xh,$Yh + veor $Xm,$Xm,$Ym + b .Ldone4x + +.align 4 +.Ltwo: + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + vld1.64 {$I0-$j1},[$inp] + veor $Xm,$Xm,$t2 +#ifndef __ARMEB__ + vrev64.8 $j1,$j1 + vrev64.8 $I0,$I0 +#endif + + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + vext.8 $I1,$j1,$j1,#8 + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $Xl,$Xl,$t2 + vext.8 $Xl,$Xl,$Xl,#8 + + vpmull.p64 $Yl,$H,$I1 @ H·Ii+1 + veor $j1,$j1,$I1 + + veor $t0,$I0,$Xl + vext.8 $IN,$t0,$t0,#8 + + vpmull2.p64 $Yh,$H,$I1 + vpmull.p64 $Ym,$Hhl,$j1 + + vpmull.p64 $Xl,$H2,$IN @ H^2·(Xi+Ii) + veor $t0,$t0,$IN + vpmull2.p64 $Xh,$H2,$IN + vpmull2.p64 $Xm,$Hhl,$t0 + + veor $Xl,$Xl,$Yl + veor $Xh,$Xh,$Yh + veor $Xm,$Xm,$Ym + b .Ldone4x + +.align 4 +.Lone: + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + vld1.64 {$I0},[$inp] + veor $Xm,$Xm,$t2 +#ifndef __ARMEB__ + vrev64.8 $I0,$I0 +#endif + + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $Xl,$Xl,$t2 + vext.8 $Xl,$Xl,$Xl,#8 + + veor $t0,$I0,$Xl + vext.8 $IN,$t0,$t0,#8 + + vpmull.p64 $Xl,$H,$IN + veor $t0,$t0,$IN + vpmull2.p64 $Xh,$H,$IN + vpmull.p64 $Xm,$Hhl,$t0 + +.Ldone4x: + vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing + veor $t2,$Xl,$Xh + veor $Xm,$Xm,$t1 + veor $Xm,$Xm,$t2 + + vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction + vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result + vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl + veor $Xl,$Xm,$t2 + + vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction + vpmull.p64 $Xl,$Xl,$xC2 + veor $t2,$t2,$Xh + veor $Xl,$Xl,$t2 + vext.8 $Xl,$Xl,$Xl,#8 + +#ifndef __ARMEB__ + vrev64.8 $Xl,$Xl +#endif + vst1.64 {$Xl},[$Xi] @ write out Xi + + ret +.size gcm_ghash_v8_4x,.-gcm_ghash_v8_4x +___ + +} +} + +$code.=<<___; +.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" +.align 2 +#endif +___ + +if ($flavour =~ /64/) { ######## 64-bit code + sub unvmov { + my $arg=shift; + + $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o && + sprintf "ins v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1, + $3<8?$3:$3+8,($4 eq "lo")?0:1; + } + foreach(split("\n",$code)) { + s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or + s/vmov\.i8/movi/o or # fix up legacy mnemonics + s/vmov\s+(.*)/unvmov($1)/geo or + s/vext\.8/ext/o or + s/vshr\.s/sshr\.s/o or + s/vshr/ushr/o or + s/^(\s+)v/$1/o or # strip off v prefix + s/\bbx\s+lr\b/ret/o; + + s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers + s/@\s/\/\//o; # old->new style commentary + + # fix up remaining legacy suffixes + s/\.[ui]?8(\s)/$1/o; + s/\.[uis]?32//o and s/\.16b/\.4s/go; + m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument + m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments + s/\.[uisp]?64//o and s/\.16b/\.2d/go; + s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o; + + print $_,"\n"; + } +} else { ######## 32-bit code + sub unvdup32 { + my $arg=shift; + + $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o && + sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1; + } + sub unvpmullp64 { + my ($mnemonic,$arg)=@_; + + if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) { + my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19) + |(($2&7)<<17)|(($2&8)<<4) + |(($3&7)<<1) |(($3&8)<<2); + $word |= 0x00010001 if ($mnemonic =~ "2"); + # since ARMv7 instructions are always encoded little-endian. + # correct solution is to use .inst directive, but older + # assemblers don't implement it:-( + sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s", + $word&0xff,($word>>8)&0xff, + ($word>>16)&0xff,($word>>24)&0xff, + $mnemonic,$arg; + } + } + + foreach(split("\n",$code)) { + s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers + s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers + s/\/\/\s?/@ /o; # new->old style commentary + + # fix up remaining new-style suffixes + s/\],#[0-9]+/]!/o; + + s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or + s/vdup\.32\s+(.*)/unvdup32($1)/geo or + s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or + s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or + s/^(\s+)b\./$1b/o or + s/^(\s+)ret/$1bx\tlr/o; + + print $_,"\n"; + } +} + +close STDOUT or die "error closing STDOUT: $!"; # enforce flush |