aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl
diff options
context:
space:
mode:
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl')
-rw-r--r--roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl781
1 files changed, 781 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl
new file mode 100644
index 000000000..d0e398b50
--- /dev/null
+++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/modes/asm/ghashv8-armx.pl
@@ -0,0 +1,781 @@
+#! /usr/bin/env perl
+# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
+#
+# June 2014
+#
+# Initial version was developed in tight cooperation with Ard
+# Biesheuvel of Linaro from bits-n-pieces from other assembly modules.
+# Just like aesv8-armx.pl this module supports both AArch32 and
+# AArch64 execution modes.
+#
+# July 2014
+#
+# Implement 2x aggregated reduction [see ghash-x86.pl for background
+# information].
+#
+# November 2017
+#
+# AArch64 register bank to "accommodate" 4x aggregated reduction and
+# improve performance by 20-70% depending on processor.
+#
+# Current performance in cycles per processed byte:
+#
+# 64-bit PMULL 32-bit PMULL 32-bit NEON(*)
+# Apple A7 0.58 0.92 5.62
+# Cortex-A53 0.85 1.01 8.39
+# Cortex-A57 0.73 1.17 7.61
+# Denver 0.51 0.65 6.02
+# Mongoose 0.65 1.10 8.06
+# Kryo 0.76 1.16 8.00
+#
+# (*) presented for reference/comparison purposes;
+
+$flavour = shift;
+$output = shift;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
+die "can't locate arm-xlate.pl";
+
+open OUT,"| \"$^X\" $xlate $flavour $output";
+*STDOUT=*OUT;
+
+$Xi="x0"; # argument block
+$Htbl="x1";
+$inp="x2";
+$len="x3";
+
+$inc="x12";
+
+{
+my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
+my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
+
+$code=<<___;
+#include "arm_arch.h"
+
+#if __ARM_MAX_ARCH__>=7
+.text
+___
+$code.=".arch armv8-a+crypto\n" if ($flavour =~ /64/);
+$code.=<<___ if ($flavour !~ /64/);
+.fpu neon
+.code 32
+#undef __thumb2__
+___
+
+################################################################################
+# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
+#
+# input: 128-bit H - secret parameter E(K,0^128)
+# output: precomputed table filled with degrees of twisted H;
+# H is twisted to handle reverse bitness of GHASH;
+# only few of 16 slots of Htable[16] are used;
+# data is opaque to outside world (which allows to
+# optimize the code independently);
+#
+$code.=<<___;
+.global gcm_init_v8
+.type gcm_init_v8,%function
+.align 4
+gcm_init_v8:
+ vld1.64 {$t1},[x1] @ load input H
+ vmov.i8 $xC2,#0xe1
+ vshl.i64 $xC2,$xC2,#57 @ 0xc2.0
+ vext.8 $IN,$t1,$t1,#8
+ vshr.u64 $t2,$xC2,#63
+ vdup.32 $t1,${t1}[1]
+ vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01
+ vshr.u64 $t2,$IN,#63
+ vshr.s32 $t1,$t1,#31 @ broadcast carry bit
+ vand $t2,$t2,$t0
+ vshl.i64 $IN,$IN,#1
+ vext.8 $t2,$t2,$t2,#8
+ vand $t0,$t0,$t1
+ vorr $IN,$IN,$t2 @ H<<<=1
+ veor $H,$IN,$t0 @ twisted H
+ vst1.64 {$H},[x0],#16 @ store Htable[0]
+
+ @ calculate H^2
+ vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing
+ vpmull.p64 $Xl,$H,$H
+ veor $t0,$t0,$H
+ vpmull2.p64 $Xh,$H,$H
+ vpmull.p64 $Xm,$t0,$t0
+
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ veor $Xm,$Xm,$t2
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
+
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ veor $Xl,$Xm,$t2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ veor $H2,$Xl,$t2
+
+ vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing
+ veor $t1,$t1,$H2
+ vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
+ vst1.64 {$Hhl-$H2},[x0],#32 @ store Htable[1..2]
+___
+if ($flavour =~ /64/) {
+my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7));
+
+$code.=<<___;
+ @ calculate H^3 and H^4
+ vpmull.p64 $Xl,$H, $H2
+ vpmull.p64 $Yl,$H2,$H2
+ vpmull2.p64 $Xh,$H, $H2
+ vpmull2.p64 $Yh,$H2,$H2
+ vpmull.p64 $Xm,$t0,$t1
+ vpmull.p64 $Ym,$t1,$t1
+
+ vext.8 $t0,$Xl,$Xh,#8 @ Karatsuba post-processing
+ vext.8 $t1,$Yl,$Yh,#8
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t0
+ veor $t3,$Yl,$Yh
+ veor $Ym,$Ym,$t1
+ veor $Xm,$Xm,$t2
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase
+ veor $Ym,$Ym,$t3
+ vpmull.p64 $t3,$Yl,$xC2
+
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Yh#lo,$Ym#hi
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ vmov $Ym#hi,$Yl#lo
+ veor $Xl,$Xm,$t2
+ veor $Yl,$Ym,$t3
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase
+ vext.8 $t3,$Yl,$Yl,#8
+ vpmull.p64 $Xl,$Xl,$xC2
+ vpmull.p64 $Yl,$Yl,$xC2
+ veor $t2,$t2,$Xh
+ veor $t3,$t3,$Yh
+ veor $H, $Xl,$t2 @ H^3
+ veor $H2,$Yl,$t3 @ H^4
+
+ vext.8 $t0,$H, $H,#8 @ Karatsuba pre-processing
+ vext.8 $t1,$H2,$H2,#8
+ veor $t0,$t0,$H
+ veor $t1,$t1,$H2
+ vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed
+ vst1.64 {$H-$H2},[x0] @ store Htable[3..5]
+___
+}
+$code.=<<___;
+ ret
+.size gcm_init_v8,.-gcm_init_v8
+___
+################################################################################
+# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
+#
+# input: Xi - current hash value;
+# Htable - table precomputed in gcm_init_v8;
+# output: Xi - next hash value Xi;
+#
+$code.=<<___;
+.global gcm_gmult_v8
+.type gcm_gmult_v8,%function
+.align 4
+gcm_gmult_v8:
+ vld1.64 {$t1},[$Xi] @ load Xi
+ vmov.i8 $xC2,#0xe1
+ vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ...
+ vshl.u64 $xC2,$xC2,#57
+#ifndef __ARMEB__
+ vrev64.8 $t1,$t1
+#endif
+ vext.8 $IN,$t1,$t1,#8
+
+ vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
+ veor $t1,$t1,$IN @ Karatsuba pre-processing
+ vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
+ vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
+
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ veor $Xm,$Xm,$t2
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ veor $Xl,$Xm,$t2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ veor $Xl,$Xl,$t2
+
+#ifndef __ARMEB__
+ vrev64.8 $Xl,$Xl
+#endif
+ vext.8 $Xl,$Xl,$Xl,#8
+ vst1.64 {$Xl},[$Xi] @ write out Xi
+
+ ret
+.size gcm_gmult_v8,.-gcm_gmult_v8
+___
+################################################################################
+# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+#
+# input: table precomputed in gcm_init_v8;
+# current hash value Xi;
+# pointer to input data;
+# length of input data in bytes, but divisible by block size;
+# output: next hash value Xi;
+#
+$code.=<<___;
+.global gcm_ghash_v8
+.type gcm_ghash_v8,%function
+.align 4
+gcm_ghash_v8:
+___
+$code.=<<___ if ($flavour =~ /64/);
+ cmp $len,#64
+ b.hs .Lgcm_ghash_v8_4x
+___
+$code.=<<___ if ($flavour !~ /64/);
+ vstmdb sp!,{d8-d15} @ 32-bit ABI says so
+___
+$code.=<<___;
+ vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
+ @ "[rotated]" means that
+ @ loaded value would have
+ @ to be rotated in order to
+ @ make it appear as in
+ @ algorithm specification
+ subs $len,$len,#32 @ see if $len is 32 or larger
+ mov $inc,#16 @ $inc is used as post-
+ @ increment for input pointer;
+ @ as loop is modulo-scheduled
+ @ $inc is zeroed just in time
+ @ to preclude overstepping
+ @ inp[len], which means that
+ @ last block[s] are actually
+ @ loaded twice, but last
+ @ copy is not processed
+ vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2
+ vmov.i8 $xC2,#0xe1
+ vld1.64 {$H2},[$Htbl]
+ cclr $inc,eq @ is it time to zero $inc?
+ vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi
+ vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0]
+ vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
+#ifndef __ARMEB__
+ vrev64.8 $t0,$t0
+ vrev64.8 $Xl,$Xl
+#endif
+ vext.8 $IN,$t0,$t0,#8 @ rotate I[0]
+ b.lo .Lodd_tail_v8 @ $len was less than 32
+___
+{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
+ #######
+ # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+ # [(H*Ii+1) + (H*Xi+1)] mod P =
+ # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
+ #
+$code.=<<___;
+ vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1]
+#ifndef __ARMEB__
+ vrev64.8 $t1,$t1
+#endif
+ vext.8 $In,$t1,$t1,#8
+ veor $IN,$IN,$Xl @ I[i]^=Xi
+ vpmull.p64 $Xln,$H,$In @ H·Ii+1
+ veor $t1,$t1,$In @ Karatsuba pre-processing
+ vpmull2.p64 $Xhn,$H,$In
+ b .Loop_mod2x_v8
+
+.align 4
+.Loop_mod2x_v8:
+ vext.8 $t2,$IN,$IN,#8
+ subs $len,$len,#32 @ is there more data?
+ vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo
+ cclr $inc,lo @ is it time to zero $inc?
+
+ vpmull.p64 $Xmn,$Hhl,$t1
+ veor $t2,$t2,$IN @ Karatsuba pre-processing
+ vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi
+ veor $Xl,$Xl,$Xln @ accumulate
+ vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
+ vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2]
+
+ veor $Xh,$Xh,$Xhn
+ cclr $inc,eq @ is it time to zero $inc?
+ veor $Xm,$Xm,$Xmn
+
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3]
+#ifndef __ARMEB__
+ vrev64.8 $t0,$t0
+#endif
+ veor $Xm,$Xm,$t2
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+
+#ifndef __ARMEB__
+ vrev64.8 $t1,$t1
+#endif
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ vext.8 $In,$t1,$t1,#8
+ vext.8 $IN,$t0,$t0,#8
+ veor $Xl,$Xm,$t2
+ vpmull.p64 $Xln,$H,$In @ H·Ii+1
+ veor $IN,$IN,$Xh @ accumulate $IN early
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $IN,$IN,$t2
+ veor $t1,$t1,$In @ Karatsuba pre-processing
+ veor $IN,$IN,$Xl
+ vpmull2.p64 $Xhn,$H,$In
+ b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes
+
+ veor $Xh,$Xh,$t2
+ vext.8 $IN,$t0,$t0,#8 @ re-construct $IN
+ adds $len,$len,#32 @ re-construct $len
+ veor $Xl,$Xl,$Xh @ re-construct $Xl
+ b.eq .Ldone_v8 @ is $len zero?
+___
+}
+$code.=<<___;
+.Lodd_tail_v8:
+ vext.8 $t2,$Xl,$Xl,#8
+ veor $IN,$IN,$Xl @ inp^=Xi
+ veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi
+
+ vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo
+ veor $t1,$t1,$IN @ Karatsuba pre-processing
+ vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi
+ vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi)
+
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ veor $Xm,$Xm,$t2
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ veor $Xl,$Xm,$t2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ veor $Xl,$Xl,$t2
+
+.Ldone_v8:
+#ifndef __ARMEB__
+ vrev64.8 $Xl,$Xl
+#endif
+ vext.8 $Xl,$Xl,$Xl,#8
+ vst1.64 {$Xl},[$Xi] @ write out Xi
+
+___
+$code.=<<___ if ($flavour !~ /64/);
+ vldmia sp!,{d8-d15} @ 32-bit ABI says so
+___
+$code.=<<___;
+ ret
+.size gcm_ghash_v8,.-gcm_ghash_v8
+___
+
+if ($flavour =~ /64/) { # 4x subroutine
+my ($I0,$j1,$j2,$j3,
+ $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23));
+
+$code.=<<___;
+.type gcm_ghash_v8_4x,%function
+.align 4
+gcm_ghash_v8_4x:
+.Lgcm_ghash_v8_4x:
+ vld1.64 {$Xl},[$Xi] @ load [rotated] Xi
+ vld1.64 {$H-$H2},[$Htbl],#48 @ load twisted H, ..., H^2
+ vmov.i8 $xC2,#0xe1
+ vld1.64 {$H3-$H4},[$Htbl] @ load twisted H^3, ..., H^4
+ vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant
+
+ vld1.64 {$I0-$j3},[$inp],#64
+#ifndef __ARMEB__
+ vrev64.8 $Xl,$Xl
+ vrev64.8 $j1,$j1
+ vrev64.8 $j2,$j2
+ vrev64.8 $j3,$j3
+ vrev64.8 $I0,$I0
+#endif
+ vext.8 $I3,$j3,$j3,#8
+ vext.8 $I2,$j2,$j2,#8
+ vext.8 $I1,$j1,$j1,#8
+
+ vpmull.p64 $Yl,$H,$I3 @ H·Ii+3
+ veor $j3,$j3,$I3
+ vpmull2.p64 $Yh,$H,$I3
+ vpmull.p64 $Ym,$Hhl,$j3
+
+ vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2
+ veor $j2,$j2,$I2
+ vpmull2.p64 $I2,$H2,$I2
+ vpmull2.p64 $j2,$Hhl,$j2
+
+ veor $Yl,$Yl,$t0
+ veor $Yh,$Yh,$I2
+ veor $Ym,$Ym,$j2
+
+ vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1
+ veor $j1,$j1,$I1
+ vpmull2.p64 $I1,$H3,$I1
+ vpmull.p64 $j1,$H34,$j1
+
+ veor $Yl,$Yl,$j3
+ veor $Yh,$Yh,$I1
+ veor $Ym,$Ym,$j1
+
+ subs $len,$len,#128
+ b.lo .Ltail4x
+
+ b .Loop4x
+
+.align 4
+.Loop4x:
+ veor $t0,$I0,$Xl
+ vld1.64 {$I0-$j3},[$inp],#64
+ vext.8 $IN,$t0,$t0,#8
+#ifndef __ARMEB__
+ vrev64.8 $j1,$j1
+ vrev64.8 $j2,$j2
+ vrev64.8 $j3,$j3
+ vrev64.8 $I0,$I0
+#endif
+
+ vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii)
+ veor $t0,$t0,$IN
+ vpmull2.p64 $Xh,$H4,$IN
+ vext.8 $I3,$j3,$j3,#8
+ vpmull2.p64 $Xm,$H34,$t0
+
+ veor $Xl,$Xl,$Yl
+ veor $Xh,$Xh,$Yh
+ vext.8 $I2,$j2,$j2,#8
+ veor $Xm,$Xm,$Ym
+ vext.8 $I1,$j1,$j1,#8
+
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ vpmull.p64 $Yl,$H,$I3 @ H·Ii+3
+ veor $j3,$j3,$I3
+ veor $Xm,$Xm,$t1
+ vpmull2.p64 $Yh,$H,$I3
+ veor $Xm,$Xm,$t2
+ vpmull.p64 $Ym,$Hhl,$j3
+
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2
+ veor $j2,$j2,$I2
+ vpmull2.p64 $I2,$H2,$I2
+ veor $Xl,$Xm,$t2
+ vpmull2.p64 $j2,$Hhl,$j2
+
+ veor $Yl,$Yl,$t0
+ veor $Yh,$Yh,$I2
+ veor $Ym,$Ym,$j2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1
+ veor $j1,$j1,$I1
+ veor $t2,$t2,$Xh
+ vpmull2.p64 $I1,$H3,$I1
+ vpmull.p64 $j1,$H34,$j1
+
+ veor $Xl,$Xl,$t2
+ veor $Yl,$Yl,$j3
+ veor $Yh,$Yh,$I1
+ vext.8 $Xl,$Xl,$Xl,#8
+ veor $Ym,$Ym,$j1
+
+ subs $len,$len,#64
+ b.hs .Loop4x
+
+.Ltail4x:
+ veor $t0,$I0,$Xl
+ vext.8 $IN,$t0,$t0,#8
+
+ vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii)
+ veor $t0,$t0,$IN
+ vpmull2.p64 $Xh,$H4,$IN
+ vpmull2.p64 $Xm,$H34,$t0
+
+ veor $Xl,$Xl,$Yl
+ veor $Xh,$Xh,$Yh
+ veor $Xm,$Xm,$Ym
+
+ adds $len,$len,#64
+ b.eq .Ldone4x
+
+ cmp $len,#32
+ b.lo .Lone
+ b.eq .Ltwo
+.Lthree:
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ vld1.64 {$I0-$j2},[$inp]
+ veor $Xm,$Xm,$t2
+#ifndef __ARMEB__
+ vrev64.8 $j1,$j1
+ vrev64.8 $j2,$j2
+ vrev64.8 $I0,$I0
+#endif
+
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ vext.8 $I2,$j2,$j2,#8
+ vext.8 $I1,$j1,$j1,#8
+ veor $Xl,$Xm,$t2
+
+ vpmull.p64 $Yl,$H,$I2 @ H·Ii+2
+ veor $j2,$j2,$I2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ vpmull2.p64 $Yh,$H,$I2
+ vpmull.p64 $Ym,$Hhl,$j2
+ veor $Xl,$Xl,$t2
+ vpmull.p64 $j3,$H2,$I1 @ H^2·Ii+1
+ veor $j1,$j1,$I1
+ vext.8 $Xl,$Xl,$Xl,#8
+
+ vpmull2.p64 $I1,$H2,$I1
+ veor $t0,$I0,$Xl
+ vpmull2.p64 $j1,$Hhl,$j1
+ vext.8 $IN,$t0,$t0,#8
+
+ veor $Yl,$Yl,$j3
+ veor $Yh,$Yh,$I1
+ veor $Ym,$Ym,$j1
+
+ vpmull.p64 $Xl,$H3,$IN @ H^3·(Xi+Ii)
+ veor $t0,$t0,$IN
+ vpmull2.p64 $Xh,$H3,$IN
+ vpmull.p64 $Xm,$H34,$t0
+
+ veor $Xl,$Xl,$Yl
+ veor $Xh,$Xh,$Yh
+ veor $Xm,$Xm,$Ym
+ b .Ldone4x
+
+.align 4
+.Ltwo:
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ vld1.64 {$I0-$j1},[$inp]
+ veor $Xm,$Xm,$t2
+#ifndef __ARMEB__
+ vrev64.8 $j1,$j1
+ vrev64.8 $I0,$I0
+#endif
+
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ vext.8 $I1,$j1,$j1,#8
+ veor $Xl,$Xm,$t2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ veor $Xl,$Xl,$t2
+ vext.8 $Xl,$Xl,$Xl,#8
+
+ vpmull.p64 $Yl,$H,$I1 @ H·Ii+1
+ veor $j1,$j1,$I1
+
+ veor $t0,$I0,$Xl
+ vext.8 $IN,$t0,$t0,#8
+
+ vpmull2.p64 $Yh,$H,$I1
+ vpmull.p64 $Ym,$Hhl,$j1
+
+ vpmull.p64 $Xl,$H2,$IN @ H^2·(Xi+Ii)
+ veor $t0,$t0,$IN
+ vpmull2.p64 $Xh,$H2,$IN
+ vpmull2.p64 $Xm,$Hhl,$t0
+
+ veor $Xl,$Xl,$Yl
+ veor $Xh,$Xh,$Yh
+ veor $Xm,$Xm,$Ym
+ b .Ldone4x
+
+.align 4
+.Lone:
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ vld1.64 {$I0},[$inp]
+ veor $Xm,$Xm,$t2
+#ifndef __ARMEB__
+ vrev64.8 $I0,$I0
+#endif
+
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ veor $Xl,$Xm,$t2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ veor $Xl,$Xl,$t2
+ vext.8 $Xl,$Xl,$Xl,#8
+
+ veor $t0,$I0,$Xl
+ vext.8 $IN,$t0,$t0,#8
+
+ vpmull.p64 $Xl,$H,$IN
+ veor $t0,$t0,$IN
+ vpmull2.p64 $Xh,$H,$IN
+ vpmull.p64 $Xm,$Hhl,$t0
+
+.Ldone4x:
+ vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing
+ veor $t2,$Xl,$Xh
+ veor $Xm,$Xm,$t1
+ veor $Xm,$Xm,$t2
+
+ vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction
+ vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result
+ vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl
+ veor $Xl,$Xm,$t2
+
+ vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction
+ vpmull.p64 $Xl,$Xl,$xC2
+ veor $t2,$t2,$Xh
+ veor $Xl,$Xl,$t2
+ vext.8 $Xl,$Xl,$Xl,#8
+
+#ifndef __ARMEB__
+ vrev64.8 $Xl,$Xl
+#endif
+ vst1.64 {$Xl},[$Xi] @ write out Xi
+
+ ret
+.size gcm_ghash_v8_4x,.-gcm_ghash_v8_4x
+___
+
+}
+}
+
+$code.=<<___;
+.asciz "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
+.align 2
+#endif
+___
+
+if ($flavour =~ /64/) { ######## 64-bit code
+ sub unvmov {
+ my $arg=shift;
+
+ $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
+ sprintf "ins v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1,
+ $3<8?$3:$3+8,($4 eq "lo")?0:1;
+ }
+ foreach(split("\n",$code)) {
+ s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or
+ s/vmov\.i8/movi/o or # fix up legacy mnemonics
+ s/vmov\s+(.*)/unvmov($1)/geo or
+ s/vext\.8/ext/o or
+ s/vshr\.s/sshr\.s/o or
+ s/vshr/ushr/o or
+ s/^(\s+)v/$1/o or # strip off v prefix
+ s/\bbx\s+lr\b/ret/o;
+
+ s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers
+ s/@\s/\/\//o; # old->new style commentary
+
+ # fix up remaining legacy suffixes
+ s/\.[ui]?8(\s)/$1/o;
+ s/\.[uis]?32//o and s/\.16b/\.4s/go;
+ m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument
+ m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments
+ s/\.[uisp]?64//o and s/\.16b/\.2d/go;
+ s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
+
+ print $_,"\n";
+ }
+} else { ######## 32-bit code
+ sub unvdup32 {
+ my $arg=shift;
+
+ $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
+ sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
+ }
+ sub unvpmullp64 {
+ my ($mnemonic,$arg)=@_;
+
+ if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
+ my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
+ |(($2&7)<<17)|(($2&8)<<4)
+ |(($3&7)<<1) |(($3&8)<<2);
+ $word |= 0x00010001 if ($mnemonic =~ "2");
+ # since ARMv7 instructions are always encoded little-endian.
+ # correct solution is to use .inst directive, but older
+ # assemblers don't implement it:-(
+ sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
+ $word&0xff,($word>>8)&0xff,
+ ($word>>16)&0xff,($word>>24)&0xff,
+ $mnemonic,$arg;
+ }
+ }
+
+ foreach(split("\n",$code)) {
+ s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers
+ s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers
+ s/\/\/\s?/@ /o; # new->old style commentary
+
+ # fix up remaining new-style suffixes
+ s/\],#[0-9]+/]!/o;
+
+ s/cclr\s+([^,]+),\s*([a-z]+)/mov$2 $1,#0/o or
+ s/vdup\.32\s+(.*)/unvdup32($1)/geo or
+ s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or
+ s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
+ s/^(\s+)b\./$1b/o or
+ s/^(\s+)ret/$1bx\tlr/o;
+
+ print $_,"\n";
+ }
+}
+
+close STDOUT or die "error closing STDOUT: $!"; # enforce flush