diff options
Diffstat (limited to 'roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/sha/keccak1600.c')
-rw-r--r-- | roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/sha/keccak1600.c | 1246 |
1 files changed, 1246 insertions, 0 deletions
diff --git a/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/sha/keccak1600.c b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/sha/keccak1600.c new file mode 100644 index 000000000..55a44023d --- /dev/null +++ b/roms/edk2/CryptoPkg/Library/OpensslLib/openssl/crypto/sha/keccak1600.c @@ -0,0 +1,1246 @@ +/* + * Copyright 2016-2019 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/e_os2.h> +#include <string.h> +#include <assert.h> + +size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, + size_t r); +void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); + +#if !defined(KECCAK1600_ASM) || !defined(SELFTEST) + +/* + * Choose some sensible defaults + */ +#if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \ + !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) +# define KECCAK_2X /* default to KECCAK_2X variant */ +#endif + +#if defined(__i386) || defined(__i386__) || defined(_M_IX86) +# define KECCAK_COMPLEMENTING_TRANSFORM +#endif + +#if defined(__x86_64__) || defined(__aarch64__) || \ + defined(__mips64) || defined(__ia64) || \ + (defined(__VMS) && !defined(__vax)) +/* + * These are available even in ILP32 flavours, but even then they are + * capable of performing 64-bit operations as efficiently as in *P64. + * Since it's not given that we can use sizeof(void *), just shunt it. + */ +# define BIT_INTERLEAVE (0) +#else +# define BIT_INTERLEAVE (sizeof(void *) < 8) +#endif + +#define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) + +static uint64_t ROL64(uint64_t val, int offset) +{ + if (offset == 0) { + return val; + } else if (!BIT_INTERLEAVE) { + return (val << offset) | (val >> (64-offset)); + } else { + uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; + + if (offset & 1) { + uint32_t tmp = hi; + + offset >>= 1; + hi = ROL32(lo, offset); + lo = ROL32(tmp, offset + 1); + } else { + offset >>= 1; + lo = ROL32(lo, offset); + hi = ROL32(hi, offset); + } + + return ((uint64_t)hi << 32) | lo; + } +} + +static const unsigned char rhotates[5][5] = { + { 0, 1, 62, 28, 27 }, + { 36, 44, 6, 55, 20 }, + { 3, 10, 43, 25, 39 }, + { 41, 45, 15, 21, 8 }, + { 18, 2, 61, 56, 14 } +}; + +static const uint64_t iotas[] = { + BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, + BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, + BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, + BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, + BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, + BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, + BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, + BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, + BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, + BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, + BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, + BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, + BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, + BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, + BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, + BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, + BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, + BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, + BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, + BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, + BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, + BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, + BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, + BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL +}; + +#if defined(KECCAK_REF) +/* + * This is straightforward or "maximum clarity" implementation aiming + * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: + * Permutation-Based Hash and Extendible-Output Functions" as much as + * possible. With one caveat. Because of the way C stores matrices, + * references to A[x,y] in the specification are presented as A[y][x]. + * Implementation unrolls inner x-loops so that modulo 5 operations are + * explicitly pre-computed. + */ +static void Theta(uint64_t A[5][5]) +{ + uint64_t C[5], D[5]; + size_t y; + + C[0] = A[0][0]; + C[1] = A[0][1]; + C[2] = A[0][2]; + C[3] = A[0][3]; + C[4] = A[0][4]; + + for (y = 1; y < 5; y++) { + C[0] ^= A[y][0]; + C[1] ^= A[y][1]; + C[2] ^= A[y][2]; + C[3] ^= A[y][3]; + C[4] ^= A[y][4]; + } + + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + for (y = 0; y < 5; y++) { + A[y][0] ^= D[0]; + A[y][1] ^= D[1]; + A[y][2] ^= D[2]; + A[y][3] ^= D[3]; + A[y][4] ^= D[4]; + } +} + +static void Rho(uint64_t A[5][5]) +{ + size_t y; + + for (y = 0; y < 5; y++) { + A[y][0] = ROL64(A[y][0], rhotates[y][0]); + A[y][1] = ROL64(A[y][1], rhotates[y][1]); + A[y][2] = ROL64(A[y][2], rhotates[y][2]); + A[y][3] = ROL64(A[y][3], rhotates[y][3]); + A[y][4] = ROL64(A[y][4], rhotates[y][4]); + } +} + +static void Pi(uint64_t A[5][5]) +{ + uint64_t T[5][5]; + + /* + * T = A + * A[y][x] = T[x][(3*y+x)%5] + */ + memcpy(T, A, sizeof(T)); + + A[0][0] = T[0][0]; + A[0][1] = T[1][1]; + A[0][2] = T[2][2]; + A[0][3] = T[3][3]; + A[0][4] = T[4][4]; + + A[1][0] = T[0][3]; + A[1][1] = T[1][4]; + A[1][2] = T[2][0]; + A[1][3] = T[3][1]; + A[1][4] = T[4][2]; + + A[2][0] = T[0][1]; + A[2][1] = T[1][2]; + A[2][2] = T[2][3]; + A[2][3] = T[3][4]; + A[2][4] = T[4][0]; + + A[3][0] = T[0][4]; + A[3][1] = T[1][0]; + A[3][2] = T[2][1]; + A[3][3] = T[3][2]; + A[3][4] = T[4][3]; + + A[4][0] = T[0][2]; + A[4][1] = T[1][3]; + A[4][2] = T[2][4]; + A[4][3] = T[3][0]; + A[4][4] = T[4][1]; +} + +static void Chi(uint64_t A[5][5]) +{ + uint64_t C[5]; + size_t y; + + for (y = 0; y < 5; y++) { + C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); + C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); + C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); + C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); + C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); + + A[y][0] = C[0]; + A[y][1] = C[1]; + A[y][2] = C[2]; + A[y][3] = C[3]; + A[y][4] = C[4]; + } +} + +static void Iota(uint64_t A[5][5], size_t i) +{ + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + A[0][0] ^= iotas[i]; +} + +static void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i++) { + Theta(A); + Rho(A); + Pi(A); + Chi(A); + Iota(A, i); + } +} + +#elif defined(KECCAK_1X) +/* + * This implementation is optimization of above code featuring unroll + * of even y-loops, their fusion and code motion. It also minimizes + * temporary storage. Compiler would normally do all these things for + * you, purpose of manual optimization is to provide "unobscured" + * reference for assembly implementation [in case this approach is + * chosen for implementation on some platform]. In the nutshell it's + * equivalent of "plane-per-plane processing" approach discussed in + * section 2.4 of "Keccak implementation overview". + */ +static void Round(uint64_t A[5][5], size_t i) +{ + uint64_t C[5], E[2]; /* registers */ + uint64_t D[5], T[2][5]; /* memory */ + + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + +#if defined(__arm__) + D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; + D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; + D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; + D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; + D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; + + T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ + T[0][1] = A[0][1] ^ E[0]; /* D[1] */ + T[0][2] = A[0][2] ^ C[1]; /* D[2] */ + T[0][3] = A[0][3] ^ C[2]; /* D[3] */ + T[0][4] = A[0][4] ^ E[1]; /* D[4] */ + + C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ + C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ + C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ + C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ + C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ +#else + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ + T[0][1] = A[0][1] ^ D[1]; + T[0][2] = A[0][2] ^ D[2]; + T[0][3] = A[0][3] ^ D[3]; + T[0][4] = A[0][4] ^ D[4]; + + C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); + C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); + C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); + C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); +#endif + A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; + A[0][1] = C[1] ^ (~C[2] & C[3]); + A[0][2] = C[2] ^ (~C[3] & C[4]); + A[0][3] = C[3] ^ (~C[4] & C[0]); + A[0][4] = C[4] ^ (~C[0] & C[1]); + + T[1][0] = A[1][0] ^ (C[3] = D[0]); + T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ + T[1][2] = A[1][2] ^ (E[0] = D[2]); + T[1][3] = A[1][3] ^ (E[1] = D[3]); + T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ + + C[0] = ROL64(T[0][3], rhotates[0][3]); + C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ + C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ + C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ + C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ + + A[1][0] = C[0] ^ (~C[1] & C[2]); + A[1][1] = C[1] ^ (~C[2] & C[3]); + A[1][2] = C[2] ^ (~C[3] & C[4]); + A[1][3] = C[3] ^ (~C[4] & C[0]); + A[1][4] = C[4] ^ (~C[0] & C[1]); + + C[0] = ROL64(T[0][1], rhotates[0][1]); + C[1] = ROL64(T[1][2], rhotates[1][2]); + C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); + C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); + + A[2][0] = C[0] ^ (~C[1] & C[2]); + A[2][1] = C[1] ^ (~C[2] & C[3]); + A[2][2] = C[2] ^ (~C[3] & C[4]); + A[2][3] = C[3] ^ (~C[4] & C[0]); + A[2][4] = C[4] ^ (~C[0] & C[1]); + + C[0] = ROL64(T[0][4], rhotates[0][4]); + C[1] = ROL64(T[1][0], rhotates[1][0]); + C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ + C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); + + A[3][0] = C[0] ^ (~C[1] & C[2]); + A[3][1] = C[1] ^ (~C[2] & C[3]); + A[3][2] = C[2] ^ (~C[3] & C[4]); + A[3][3] = C[3] ^ (~C[4] & C[0]); + A[3][4] = C[4] ^ (~C[0] & C[1]); + + C[0] = ROL64(T[0][2], rhotates[0][2]); + C[1] = ROL64(T[1][3], rhotates[1][3]); + C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ + C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ + C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + A[4][0] = C[0] ^ (~C[1] & C[2]); + A[4][1] = C[1] ^ (~C[2] & C[3]); + A[4][2] = C[2] ^ (~C[3] & C[4]); + A[4][3] = C[3] ^ (~C[4] & C[0]); + A[4][4] = C[4] ^ (~C[0] & C[1]); +} + +static void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i++) { + Round(A, i); + } +} + +#elif defined(KECCAK_1X_ALT) +/* + * This is variant of above KECCAK_1X that reduces requirement for + * temporary storage even further, but at cost of more updates to A[][]. + * It's less suitable if A[][] is memory bound, but better if it's + * register bound. + */ + +static void Round(uint64_t A[5][5], size_t i) +{ + uint64_t C[5], D[5]; + + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + + D[1] = C[0] ^ ROL64(C[2], 1); + D[2] = C[1] ^ ROL64(C[3], 1); + D[3] = C[2] ^= ROL64(C[4], 1); + D[4] = C[3] ^= ROL64(C[0], 1); + D[0] = C[4] ^= ROL64(C[1], 1); + + A[0][1] ^= D[1]; + A[1][1] ^= D[1]; + A[2][1] ^= D[1]; + A[3][1] ^= D[1]; + A[4][1] ^= D[1]; + + A[0][2] ^= D[2]; + A[1][2] ^= D[2]; + A[2][2] ^= D[2]; + A[3][2] ^= D[2]; + A[4][2] ^= D[2]; + + A[0][3] ^= C[2]; + A[1][3] ^= C[2]; + A[2][3] ^= C[2]; + A[3][3] ^= C[2]; + A[4][3] ^= C[2]; + + A[0][4] ^= C[3]; + A[1][4] ^= C[3]; + A[2][4] ^= C[3]; + A[3][4] ^= C[3]; + A[4][4] ^= C[3]; + + A[0][0] ^= C[4]; + A[1][0] ^= C[4]; + A[2][0] ^= C[4]; + A[3][0] ^= C[4]; + A[4][0] ^= C[4]; + + C[1] = A[0][1]; + C[2] = A[0][2]; + C[3] = A[0][3]; + C[4] = A[0][4]; + + A[0][1] = ROL64(A[1][1], rhotates[1][1]); + A[0][2] = ROL64(A[2][2], rhotates[2][2]); + A[0][3] = ROL64(A[3][3], rhotates[3][3]); + A[0][4] = ROL64(A[4][4], rhotates[4][4]); + + A[1][1] = ROL64(A[1][4], rhotates[1][4]); + A[2][2] = ROL64(A[2][3], rhotates[2][3]); + A[3][3] = ROL64(A[3][2], rhotates[3][2]); + A[4][4] = ROL64(A[4][1], rhotates[4][1]); + + A[1][4] = ROL64(A[4][2], rhotates[4][2]); + A[2][3] = ROL64(A[3][4], rhotates[3][4]); + A[3][2] = ROL64(A[2][1], rhotates[2][1]); + A[4][1] = ROL64(A[1][3], rhotates[1][3]); + + A[4][2] = ROL64(A[2][4], rhotates[2][4]); + A[3][4] = ROL64(A[4][3], rhotates[4][3]); + A[2][1] = ROL64(A[1][2], rhotates[1][2]); + A[1][3] = ROL64(A[3][1], rhotates[3][1]); + + A[2][4] = ROL64(A[4][0], rhotates[4][0]); + A[4][3] = ROL64(A[3][0], rhotates[3][0]); + A[1][2] = ROL64(A[2][0], rhotates[2][0]); + A[3][1] = ROL64(A[1][0], rhotates[1][0]); + + A[1][0] = ROL64(C[3], rhotates[0][3]); + A[2][0] = ROL64(C[1], rhotates[0][1]); + A[3][0] = ROL64(C[4], rhotates[0][4]); + A[4][0] = ROL64(C[2], rhotates[0][2]); + + C[0] = A[0][0]; + C[1] = A[1][0]; + D[0] = A[0][1]; + D[1] = A[1][1]; + + A[0][0] ^= (~A[0][1] & A[0][2]); + A[1][0] ^= (~A[1][1] & A[1][2]); + A[0][1] ^= (~A[0][2] & A[0][3]); + A[1][1] ^= (~A[1][2] & A[1][3]); + A[0][2] ^= (~A[0][3] & A[0][4]); + A[1][2] ^= (~A[1][3] & A[1][4]); + A[0][3] ^= (~A[0][4] & C[0]); + A[1][3] ^= (~A[1][4] & C[1]); + A[0][4] ^= (~C[0] & D[0]); + A[1][4] ^= (~C[1] & D[1]); + + C[2] = A[2][0]; + C[3] = A[3][0]; + D[2] = A[2][1]; + D[3] = A[3][1]; + + A[2][0] ^= (~A[2][1] & A[2][2]); + A[3][0] ^= (~A[3][1] & A[3][2]); + A[2][1] ^= (~A[2][2] & A[2][3]); + A[3][1] ^= (~A[3][2] & A[3][3]); + A[2][2] ^= (~A[2][3] & A[2][4]); + A[3][2] ^= (~A[3][3] & A[3][4]); + A[2][3] ^= (~A[2][4] & C[2]); + A[3][3] ^= (~A[3][4] & C[3]); + A[2][4] ^= (~C[2] & D[2]); + A[3][4] ^= (~C[3] & D[3]); + + C[4] = A[4][0]; + D[4] = A[4][1]; + + A[4][0] ^= (~A[4][1] & A[4][2]); + A[4][1] ^= (~A[4][2] & A[4][3]); + A[4][2] ^= (~A[4][3] & A[4][4]); + A[4][3] ^= (~A[4][4] & C[4]); + A[4][4] ^= (~C[4] & D[4]); + A[0][0] ^= iotas[i]; +} + +static void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i++) { + Round(A, i); + } +} + +#elif defined(KECCAK_2X) +/* + * This implementation is variant of KECCAK_1X above with outer-most + * round loop unrolled twice. This allows to take temporary storage + * out of round procedure and simplify references to it by alternating + * it with actual data (see round loop below). Originally it was meant + * rather as reference for an assembly implementation, but it seems to + * play best with compilers [as well as provide best instruction per + * processed byte ratio at minimal round unroll factor]... + */ +static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) +{ + uint64_t C[5], D[5]; + + assert(i < (sizeof(iotas) / sizeof(iotas[0]))); + + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); + C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); + C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); + C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; + R[0][1] = C[1] ^ (~C[2] | C[3]); + R[0][2] = C[2] ^ ( C[3] & C[4]); + R[0][3] = C[3] ^ ( C[4] | C[0]); + R[0][4] = C[4] ^ ( C[0] & C[1]); +#else + R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; + R[0][1] = C[1] ^ (~C[2] & C[3]); + R[0][2] = C[2] ^ (~C[3] & C[4]); + R[0][3] = C[3] ^ (~C[4] & C[0]); + R[0][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); + C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); + C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); + C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[1][0] = C[0] ^ (C[1] | C[2]); + R[1][1] = C[1] ^ (C[2] & C[3]); + R[1][2] = C[2] ^ (C[3] | ~C[4]); + R[1][3] = C[3] ^ (C[4] | C[0]); + R[1][4] = C[4] ^ (C[0] & C[1]); +#else + R[1][0] = C[0] ^ (~C[1] & C[2]); + R[1][1] = C[1] ^ (~C[2] & C[3]); + R[1][2] = C[2] ^ (~C[3] & C[4]); + R[1][3] = C[3] ^ (~C[4] & C[0]); + R[1][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); + C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); + C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); + C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[2][0] = C[0] ^ ( C[1] | C[2]); + R[2][1] = C[1] ^ ( C[2] & C[3]); + R[2][2] = C[2] ^ (~C[3] & C[4]); + R[2][3] = ~C[3] ^ ( C[4] | C[0]); + R[2][4] = C[4] ^ ( C[0] & C[1]); +#else + R[2][0] = C[0] ^ (~C[1] & C[2]); + R[2][1] = C[1] ^ (~C[2] & C[3]); + R[2][2] = C[2] ^ (~C[3] & C[4]); + R[2][3] = C[3] ^ (~C[4] & C[0]); + R[2][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); + C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); + C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); + C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[3][0] = C[0] ^ ( C[1] & C[2]); + R[3][1] = C[1] ^ ( C[2] | C[3]); + R[3][2] = C[2] ^ (~C[3] | C[4]); + R[3][3] = ~C[3] ^ ( C[4] & C[0]); + R[3][4] = C[4] ^ ( C[0] | C[1]); +#else + R[3][0] = C[0] ^ (~C[1] & C[2]); + R[3][1] = C[1] ^ (~C[2] & C[3]); + R[3][2] = C[2] ^ (~C[3] & C[4]); + R[3][3] = C[3] ^ (~C[4] & C[0]); + R[3][4] = C[4] ^ (~C[0] & C[1]); +#endif + + C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); + C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); + C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); + C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); + C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + R[4][0] = C[0] ^ (~C[1] & C[2]); + R[4][1] = ~C[1] ^ ( C[2] | C[3]); + R[4][2] = C[2] ^ ( C[3] & C[4]); + R[4][3] = C[3] ^ ( C[4] | C[0]); + R[4][4] = C[4] ^ ( C[0] & C[1]); +#else + R[4][0] = C[0] ^ (~C[1] & C[2]); + R[4][1] = C[1] ^ (~C[2] & C[3]); + R[4][2] = C[2] ^ (~C[3] & C[4]); + R[4][3] = C[3] ^ (~C[4] & C[0]); + R[4][4] = C[4] ^ (~C[0] & C[1]); +#endif +} + +static void KeccakF1600(uint64_t A[5][5]) +{ + uint64_t T[5][5]; + size_t i; + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + A[0][1] = ~A[0][1]; + A[0][2] = ~A[0][2]; + A[1][3] = ~A[1][3]; + A[2][2] = ~A[2][2]; + A[3][2] = ~A[3][2]; + A[4][0] = ~A[4][0]; +#endif + + for (i = 0; i < 24; i += 2) { + Round(T, A, i); + Round(A, T, i + 1); + } + +#ifdef KECCAK_COMPLEMENTING_TRANSFORM + A[0][1] = ~A[0][1]; + A[0][2] = ~A[0][2]; + A[1][3] = ~A[1][3]; + A[2][2] = ~A[2][2]; + A[3][2] = ~A[3][2]; + A[4][0] = ~A[4][0]; +#endif +} + +#else /* define KECCAK_INPLACE to compile this code path */ +/* + * This implementation is KECCAK_1X from above combined 4 times with + * a twist that allows to omit temporary storage and perform in-place + * processing. It's discussed in section 2.5 of "Keccak implementation + * overview". It's likely to be best suited for processors with large + * register bank... On the other hand processor with large register + * bank can as well use KECCAK_1X_ALT, it would be as fast but much + * more compact... + */ +static void FourRounds(uint64_t A[5][5], size_t i) +{ + uint64_t B[5], C[5], D[5]; + + assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); + + /* Round 4*n */ + C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; + C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; + C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; + C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; + C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; + + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); + + C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; + C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); + C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); + C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); + C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); + + C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); + + C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); + + C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); + + /* Round 4*n+1 */ + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); + + C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; + C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); + C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); + C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); + C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); + + C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); + + C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); + + C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); + + /* Round 4*n+2 */ + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); + + C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; + C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); + C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); + C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); + C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); + + C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); + + C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); + + C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); + C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); + C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); + C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); + C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); + + /* Round 4*n+3 */ + D[0] = ROL64(C[1], 1) ^ C[4]; + D[1] = ROL64(C[2], 1) ^ C[0]; + D[2] = ROL64(C[3], 1) ^ C[1]; + D[3] = ROL64(C[4], 1) ^ C[2]; + D[4] = ROL64(C[0], 1) ^ C[3]; + + B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ + B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); + B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); + B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); + B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); + + /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; + /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); + B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); + B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); + B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); + B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); + + /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); + B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); + B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); + B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); + B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); + + /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); + B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); + B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); + B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); + B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); + + /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); + + B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); + B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); + B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); + B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); + B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); + + /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); + /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); + /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); + /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); + /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); +} + +static void KeccakF1600(uint64_t A[5][5]) +{ + size_t i; + + for (i = 0; i < 24; i += 4) { + FourRounds(A, i); + } +} + +#endif + +static uint64_t BitInterleave(uint64_t Ai) +{ + if (BIT_INTERLEAVE) { + uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; + uint32_t t0, t1; + + t0 = lo & 0x55555555; + t0 |= t0 >> 1; t0 &= 0x33333333; + t0 |= t0 >> 2; t0 &= 0x0f0f0f0f; + t0 |= t0 >> 4; t0 &= 0x00ff00ff; + t0 |= t0 >> 8; t0 &= 0x0000ffff; + + t1 = hi & 0x55555555; + t1 |= t1 >> 1; t1 &= 0x33333333; + t1 |= t1 >> 2; t1 &= 0x0f0f0f0f; + t1 |= t1 >> 4; t1 &= 0x00ff00ff; + t1 |= t1 >> 8; t1 <<= 16; + + lo &= 0xaaaaaaaa; + lo |= lo << 1; lo &= 0xcccccccc; + lo |= lo << 2; lo &= 0xf0f0f0f0; + lo |= lo << 4; lo &= 0xff00ff00; + lo |= lo << 8; lo >>= 16; + + hi &= 0xaaaaaaaa; + hi |= hi << 1; hi &= 0xcccccccc; + hi |= hi << 2; hi &= 0xf0f0f0f0; + hi |= hi << 4; hi &= 0xff00ff00; + hi |= hi << 8; hi &= 0xffff0000; + + Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); + } + + return Ai; +} + +static uint64_t BitDeinterleave(uint64_t Ai) +{ + if (BIT_INTERLEAVE) { + uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; + uint32_t t0, t1; + + t0 = lo & 0x0000ffff; + t0 |= t0 << 8; t0 &= 0x00ff00ff; + t0 |= t0 << 4; t0 &= 0x0f0f0f0f; + t0 |= t0 << 2; t0 &= 0x33333333; + t0 |= t0 << 1; t0 &= 0x55555555; + + t1 = hi << 16; + t1 |= t1 >> 8; t1 &= 0xff00ff00; + t1 |= t1 >> 4; t1 &= 0xf0f0f0f0; + t1 |= t1 >> 2; t1 &= 0xcccccccc; + t1 |= t1 >> 1; t1 &= 0xaaaaaaaa; + + lo >>= 16; + lo |= lo << 8; lo &= 0x00ff00ff; + lo |= lo << 4; lo &= 0x0f0f0f0f; + lo |= lo << 2; lo &= 0x33333333; + lo |= lo << 1; lo &= 0x55555555; + + hi &= 0xffff0000; + hi |= hi >> 8; hi &= 0xff00ff00; + hi |= hi >> 4; hi &= 0xf0f0f0f0; + hi |= hi >> 2; hi &= 0xcccccccc; + hi |= hi >> 1; hi &= 0xaaaaaaaa; + + Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); + } + + return Ai; +} + +/* + * SHA3_absorb can be called multiple times, but at each invocation + * largest multiple of |r| out of |len| bytes are processed. Then + * remaining amount of bytes is returned. This is done to spare caller + * trouble of calculating the largest multiple of |r|. |r| can be viewed + * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, + * 72, but can also be (1600 - 448)/8 = 144. All this means that message + * padding and intermediate sub-block buffering, byte- or bitwise, is + * caller's responsibility. + */ +size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, + size_t r) +{ + uint64_t *A_flat = (uint64_t *)A; + size_t i, w = r / 8; + + assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); + + while (len >= r) { + for (i = 0; i < w; i++) { + uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | + (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | + (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | + (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; + inp += 8; + + A_flat[i] ^= BitInterleave(Ai); + } + KeccakF1600(A); + len -= r; + } + + return len; +} + +/* + * SHA3_squeeze is called once at the end to generate |out| hash value + * of |len| bytes. + */ +void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) +{ + uint64_t *A_flat = (uint64_t *)A; + size_t i, w = r / 8; + + assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); + + while (len != 0) { + for (i = 0; i < w && len != 0; i++) { + uint64_t Ai = BitDeinterleave(A_flat[i]); + + if (len < 8) { + for (i = 0; i < len; i++) { + *out++ = (unsigned char)Ai; + Ai >>= 8; + } + return; + } + + out[0] = (unsigned char)(Ai); + out[1] = (unsigned char)(Ai >> 8); + out[2] = (unsigned char)(Ai >> 16); + out[3] = (unsigned char)(Ai >> 24); + out[4] = (unsigned char)(Ai >> 32); + out[5] = (unsigned char)(Ai >> 40); + out[6] = (unsigned char)(Ai >> 48); + out[7] = (unsigned char)(Ai >> 56); + out += 8; + len -= 8; + } + if (len) + KeccakF1600(A); + } +} +#endif + +#ifdef SELFTEST +/* + * Post-padding one-shot implementations would look as following: + * + * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); + * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); + * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); + * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); + * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); + * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); + */ + +void SHA3_sponge(const unsigned char *inp, size_t len, + unsigned char *out, size_t d, size_t r) +{ + uint64_t A[5][5]; + + memset(A, 0, sizeof(A)); + SHA3_absorb(A, inp, len, r); + SHA3_squeeze(A, out, d, r); +} + +# include <stdio.h> + +int main() +{ + /* + * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing + */ + unsigned char test[168] = { '\xf3', '\x3' }; + unsigned char out[512]; + size_t i; + static const unsigned char result[512] = { + 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, + 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, + 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, + 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, + 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, + 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, + 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, + 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, + 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, + 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, + 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, + 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, + 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, + 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, + 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, + 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, + 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, + 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, + 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, + 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, + 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, + 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, + 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, + 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, + 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, + 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, + 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, + 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, + 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, + 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, + 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, + 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, + 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, + 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, + 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, + 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, + 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, + 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, + 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, + 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, + 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, + 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, + 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, + 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, + 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, + 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, + 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, + 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, + 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, + 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, + 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, + 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, + 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, + 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, + 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, + 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, + 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, + 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, + 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, + 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, + 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, + 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, + 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, + 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 + }; + + test[167] = '\x80'; + SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); + + /* + * Rationale behind keeping output [formatted as below] is that + * one should be able to redirect it to a file, then copy-n-paste + * final "output val" from official example to another file, and + * compare the two with diff(1). + */ + for (i = 0; i < sizeof(out);) { + printf("%02X", out[i]); + printf(++i % 16 && i != sizeof(out) ? " " : "\n"); + } + + if (memcmp(out,result,sizeof(out))) { + fprintf(stderr,"failure\n"); + return 1; + } else { + fprintf(stderr,"success\n"); + return 0; + } +} +#endif |