diff options
Diffstat (limited to 'roms/edk2/MdeModulePkg/Bus/Pci/XhciDxe/XhciSched.c')
-rw-r--r-- | roms/edk2/MdeModulePkg/Bus/Pci/XhciDxe/XhciSched.c | 4065 |
1 files changed, 4065 insertions, 0 deletions
diff --git a/roms/edk2/MdeModulePkg/Bus/Pci/XhciDxe/XhciSched.c b/roms/edk2/MdeModulePkg/Bus/Pci/XhciDxe/XhciSched.c new file mode 100644 index 000000000..ab8957c54 --- /dev/null +++ b/roms/edk2/MdeModulePkg/Bus/Pci/XhciDxe/XhciSched.c @@ -0,0 +1,4065 @@ +/** @file
+
+ XHCI transfer scheduling routines.
+
+Copyright (c) 2011 - 2018, Intel Corporation. All rights reserved.<BR>
+Copyright (c) Microsoft Corporation.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "Xhci.h"
+
+/**
+ Create a command transfer TRB to support XHCI command interfaces.
+
+ @param Xhc The XHCI Instance.
+ @param CmdTrb The cmd TRB to be executed.
+
+ @return Created URB or NULL.
+
+**/
+URB*
+XhcCreateCmdTrb (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN TRB_TEMPLATE *CmdTrb
+ )
+{
+ URB *Urb;
+
+ Urb = AllocateZeroPool (sizeof (URB));
+ if (Urb == NULL) {
+ return NULL;
+ }
+
+ Urb->Signature = XHC_URB_SIG;
+
+ Urb->Ring = &Xhc->CmdRing;
+ XhcSyncTrsRing (Xhc, Urb->Ring);
+ Urb->TrbNum = 1;
+ Urb->TrbStart = Urb->Ring->RingEnqueue;
+ CopyMem (Urb->TrbStart, CmdTrb, sizeof (TRB_TEMPLATE));
+ Urb->TrbStart->CycleBit = Urb->Ring->RingPCS & BIT0;
+ Urb->TrbEnd = Urb->TrbStart;
+
+ return Urb;
+}
+
+/**
+ Execute a XHCI cmd TRB pointed by CmdTrb.
+
+ @param Xhc The XHCI Instance.
+ @param CmdTrb The cmd TRB to be executed.
+ @param Timeout Indicates the maximum time, in millisecond, which the
+ transfer is allowed to complete.
+ @param EvtTrb The event TRB corresponding to the cmd TRB.
+
+ @retval EFI_SUCCESS The transfer was completed successfully.
+ @retval EFI_INVALID_PARAMETER Some parameters are invalid.
+ @retval EFI_TIMEOUT The transfer failed due to timeout.
+ @retval EFI_DEVICE_ERROR The transfer failed due to host controller error.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcCmdTransfer (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN TRB_TEMPLATE *CmdTrb,
+ IN UINTN Timeout,
+ OUT TRB_TEMPLATE **EvtTrb
+ )
+{
+ EFI_STATUS Status;
+ URB *Urb;
+
+ //
+ // Validate the parameters
+ //
+ if ((Xhc == NULL) || (CmdTrb == NULL)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Status = EFI_DEVICE_ERROR;
+
+ if (XhcIsHalt (Xhc) || XhcIsSysError (Xhc)) {
+ DEBUG ((EFI_D_ERROR, "XhcCmdTransfer: HC is halted\n"));
+ goto ON_EXIT;
+ }
+
+ //
+ // Create a new URB, then poll the execution status.
+ //
+ Urb = XhcCreateCmdTrb (Xhc, CmdTrb);
+
+ if (Urb == NULL) {
+ DEBUG ((EFI_D_ERROR, "XhcCmdTransfer: failed to create URB\n"));
+ Status = EFI_OUT_OF_RESOURCES;
+ goto ON_EXIT;
+ }
+
+ Status = XhcExecTransfer (Xhc, TRUE, Urb, Timeout);
+ *EvtTrb = Urb->EvtTrb;
+
+ if (Urb->Result == EFI_USB_NOERROR) {
+ Status = EFI_SUCCESS;
+ }
+
+ XhcFreeUrb (Xhc, Urb);
+
+ON_EXIT:
+ return Status;
+}
+
+/**
+ Create a new URB for a new transaction.
+
+ @param Xhc The XHCI Instance
+ @param BusAddr The logical device address assigned by UsbBus driver
+ @param EpAddr Endpoint addrress
+ @param DevSpeed The device speed
+ @param MaxPacket The max packet length of the endpoint
+ @param Type The transaction type
+ @param Request The standard USB request for control transfer
+ @param Data The user data to transfer
+ @param DataLen The length of data buffer
+ @param Callback The function to call when data is transferred
+ @param Context The context to the callback
+
+ @return Created URB or NULL
+
+**/
+URB*
+XhcCreateUrb (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 BusAddr,
+ IN UINT8 EpAddr,
+ IN UINT8 DevSpeed,
+ IN UINTN MaxPacket,
+ IN UINTN Type,
+ IN EFI_USB_DEVICE_REQUEST *Request,
+ IN VOID *Data,
+ IN UINTN DataLen,
+ IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
+ IN VOID *Context
+ )
+{
+ USB_ENDPOINT *Ep;
+ EFI_STATUS Status;
+ URB *Urb;
+
+ Urb = AllocateZeroPool (sizeof (URB));
+ if (Urb == NULL) {
+ return NULL;
+ }
+
+ Urb->Signature = XHC_URB_SIG;
+ InitializeListHead (&Urb->UrbList);
+
+ Ep = &Urb->Ep;
+ Ep->BusAddr = BusAddr;
+ Ep->EpAddr = (UINT8)(EpAddr & 0x0F);
+ Ep->Direction = ((EpAddr & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
+ Ep->DevSpeed = DevSpeed;
+ Ep->MaxPacket = MaxPacket;
+ Ep->Type = Type;
+
+ Urb->Request = Request;
+ Urb->Data = Data;
+ Urb->DataLen = DataLen;
+ Urb->Callback = Callback;
+ Urb->Context = Context;
+
+ Status = XhcCreateTransferTrb (Xhc, Urb);
+ ASSERT_EFI_ERROR (Status);
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcCreateUrb: XhcCreateTransferTrb Failed, Status = %r\n", Status));
+ FreePool (Urb);
+ Urb = NULL;
+ }
+
+ return Urb;
+}
+
+/**
+ Free an allocated URB.
+
+ @param Xhc The XHCI device.
+ @param Urb The URB to free.
+
+**/
+VOID
+XhcFreeUrb (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ if ((Xhc == NULL) || (Urb == NULL)) {
+ return;
+ }
+
+ if (Urb->DataMap != NULL) {
+ Xhc->PciIo->Unmap (Xhc->PciIo, Urb->DataMap);
+ }
+
+ FreePool (Urb);
+}
+
+/**
+ Create a transfer TRB.
+
+ @param Xhc The XHCI Instance
+ @param Urb The urb used to construct the transfer TRB.
+
+ @return Created TRB or NULL
+
+**/
+EFI_STATUS
+XhcCreateTransferTrb (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ VOID *OutputContext;
+ TRANSFER_RING *EPRing;
+ UINT8 EPType;
+ UINT8 SlotId;
+ UINT8 Dci;
+ TRB *TrbStart;
+ UINTN TotalLen;
+ UINTN Len;
+ UINTN TrbNum;
+ EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+ VOID *Map;
+ EFI_STATUS Status;
+
+ SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
+ if (SlotId == 0) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ Urb->Finished = FALSE;
+ Urb->StartDone = FALSE;
+ Urb->EndDone = FALSE;
+ Urb->Completed = 0;
+ Urb->Result = EFI_USB_NOERROR;
+
+ Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
+ ASSERT (Dci < 32);
+ EPRing = (TRANSFER_RING *)(UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
+ Urb->Ring = EPRing;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+ if (Xhc->HcCParams.Data.Csz == 0) {
+ EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType;
+ } else {
+ EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType;
+ }
+
+ //
+ // No need to remap.
+ //
+ if ((Urb->Data != NULL) && (Urb->DataMap == NULL)) {
+ if (((UINT8) (Urb->Ep.Direction)) == EfiUsbDataIn) {
+ MapOp = EfiPciIoOperationBusMasterWrite;
+ } else {
+ MapOp = EfiPciIoOperationBusMasterRead;
+ }
+
+ Len = Urb->DataLen;
+ Status = Xhc->PciIo->Map (Xhc->PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
+
+ if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
+ DEBUG ((EFI_D_ERROR, "XhcCreateTransferTrb: Fail to map Urb->Data.\n"));
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
+ Urb->DataMap = Map;
+ }
+
+ //
+ // Construct the TRB
+ //
+ XhcSyncTrsRing (Xhc, EPRing);
+ Urb->TrbStart = EPRing->RingEnqueue;
+ switch (EPType) {
+ case ED_CONTROL_BIDIR:
+ //
+ // For control transfer, create SETUP_STAGE_TRB first.
+ //
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ TrbStart->TrbCtrSetup.bmRequestType = Urb->Request->RequestType;
+ TrbStart->TrbCtrSetup.bRequest = Urb->Request->Request;
+ TrbStart->TrbCtrSetup.wValue = Urb->Request->Value;
+ TrbStart->TrbCtrSetup.wIndex = Urb->Request->Index;
+ TrbStart->TrbCtrSetup.wLength = Urb->Request->Length;
+ TrbStart->TrbCtrSetup.Length = 8;
+ TrbStart->TrbCtrSetup.IntTarget = 0;
+ TrbStart->TrbCtrSetup.IOC = 1;
+ TrbStart->TrbCtrSetup.IDT = 1;
+ TrbStart->TrbCtrSetup.Type = TRB_TYPE_SETUP_STAGE;
+ if (Urb->Ep.Direction == EfiUsbDataIn) {
+ TrbStart->TrbCtrSetup.TRT = 3;
+ } else if (Urb->Ep.Direction == EfiUsbDataOut) {
+ TrbStart->TrbCtrSetup.TRT = 2;
+ } else {
+ TrbStart->TrbCtrSetup.TRT = 0;
+ }
+ //
+ // Update the cycle bit
+ //
+ TrbStart->TrbCtrSetup.CycleBit = EPRing->RingPCS & BIT0;
+ Urb->TrbNum++;
+
+ //
+ // For control transfer, create DATA_STAGE_TRB.
+ //
+ if (Urb->DataLen > 0) {
+ XhcSyncTrsRing (Xhc, EPRing);
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->DataPhy);
+ TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->DataPhy);
+ TrbStart->TrbCtrData.Length = (UINT32) Urb->DataLen;
+ TrbStart->TrbCtrData.TDSize = 0;
+ TrbStart->TrbCtrData.IntTarget = 0;
+ TrbStart->TrbCtrData.ISP = 1;
+ TrbStart->TrbCtrData.IOC = 1;
+ TrbStart->TrbCtrData.IDT = 0;
+ TrbStart->TrbCtrData.CH = 0;
+ TrbStart->TrbCtrData.Type = TRB_TYPE_DATA_STAGE;
+ if (Urb->Ep.Direction == EfiUsbDataIn) {
+ TrbStart->TrbCtrData.DIR = 1;
+ } else if (Urb->Ep.Direction == EfiUsbDataOut) {
+ TrbStart->TrbCtrData.DIR = 0;
+ } else {
+ TrbStart->TrbCtrData.DIR = 0;
+ }
+ //
+ // Update the cycle bit
+ //
+ TrbStart->TrbCtrData.CycleBit = EPRing->RingPCS & BIT0;
+ Urb->TrbNum++;
+ }
+ //
+ // For control transfer, create STATUS_STAGE_TRB.
+ // Get the pointer to next TRB for status stage use
+ //
+ XhcSyncTrsRing (Xhc, EPRing);
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ TrbStart->TrbCtrStatus.IntTarget = 0;
+ TrbStart->TrbCtrStatus.IOC = 1;
+ TrbStart->TrbCtrStatus.CH = 0;
+ TrbStart->TrbCtrStatus.Type = TRB_TYPE_STATUS_STAGE;
+ if (Urb->Ep.Direction == EfiUsbDataIn) {
+ TrbStart->TrbCtrStatus.DIR = 0;
+ } else if (Urb->Ep.Direction == EfiUsbDataOut) {
+ TrbStart->TrbCtrStatus.DIR = 1;
+ } else {
+ TrbStart->TrbCtrStatus.DIR = 0;
+ }
+ //
+ // Update the cycle bit
+ //
+ TrbStart->TrbCtrStatus.CycleBit = EPRing->RingPCS & BIT0;
+ //
+ // Update the enqueue pointer
+ //
+ XhcSyncTrsRing (Xhc, EPRing);
+ Urb->TrbNum++;
+ Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
+
+ break;
+
+ case ED_BULK_OUT:
+ case ED_BULK_IN:
+ TotalLen = 0;
+ Len = 0;
+ TrbNum = 0;
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ while (TotalLen < Urb->DataLen) {
+ if ((TotalLen + 0x10000) >= Urb->DataLen) {
+ Len = Urb->DataLen - TotalLen;
+ } else {
+ Len = 0x10000;
+ }
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
+ TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
+ TrbStart->TrbNormal.Length = (UINT32) Len;
+ TrbStart->TrbNormal.TDSize = 0;
+ TrbStart->TrbNormal.IntTarget = 0;
+ TrbStart->TrbNormal.ISP = 1;
+ TrbStart->TrbNormal.IOC = 1;
+ TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL;
+ //
+ // Update the cycle bit
+ //
+ TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0;
+
+ XhcSyncTrsRing (Xhc, EPRing);
+ TrbNum++;
+ TotalLen += Len;
+ }
+
+ Urb->TrbNum = TrbNum;
+ Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
+ break;
+
+ case ED_INTERRUPT_OUT:
+ case ED_INTERRUPT_IN:
+ TotalLen = 0;
+ Len = 0;
+ TrbNum = 0;
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ while (TotalLen < Urb->DataLen) {
+ if ((TotalLen + 0x10000) >= Urb->DataLen) {
+ Len = Urb->DataLen - TotalLen;
+ } else {
+ Len = 0x10000;
+ }
+ TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
+ TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
+ TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
+ TrbStart->TrbNormal.Length = (UINT32) Len;
+ TrbStart->TrbNormal.TDSize = 0;
+ TrbStart->TrbNormal.IntTarget = 0;
+ TrbStart->TrbNormal.ISP = 1;
+ TrbStart->TrbNormal.IOC = 1;
+ TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL;
+ //
+ // Update the cycle bit
+ //
+ TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0;
+
+ XhcSyncTrsRing (Xhc, EPRing);
+ TrbNum++;
+ TotalLen += Len;
+ }
+
+ Urb->TrbNum = TrbNum;
+ Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart;
+ break;
+
+ default:
+ DEBUG ((EFI_D_INFO, "Not supported EPType 0x%x!\n",EPType));
+ ASSERT (FALSE);
+ break;
+ }
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Initialize the XHCI host controller for schedule.
+
+ @param Xhc The XHCI Instance to be initialized.
+
+**/
+VOID
+XhcInitSched (
+ IN USB_XHCI_INSTANCE *Xhc
+ )
+{
+ VOID *Dcbaa;
+ EFI_PHYSICAL_ADDRESS DcbaaPhy;
+ UINT64 CmdRing;
+ EFI_PHYSICAL_ADDRESS CmdRingPhy;
+ UINTN Entries;
+ UINT32 MaxScratchpadBufs;
+ UINT64 *ScratchBuf;
+ EFI_PHYSICAL_ADDRESS ScratchPhy;
+ UINT64 *ScratchEntry;
+ EFI_PHYSICAL_ADDRESS ScratchEntryPhy;
+ UINT32 Index;
+ UINTN *ScratchEntryMap;
+ EFI_STATUS Status;
+
+ //
+ // Initialize memory management.
+ //
+ Xhc->MemPool = UsbHcInitMemPool (Xhc->PciIo);
+ ASSERT (Xhc->MemPool != NULL);
+
+ //
+ // Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
+ // to enable the device slots that system software is going to use.
+ //
+ Xhc->MaxSlotsEn = Xhc->HcSParams1.Data.MaxSlots;
+ ASSERT (Xhc->MaxSlotsEn >= 1 && Xhc->MaxSlotsEn <= 255);
+ XhcWriteOpReg (Xhc, XHC_CONFIG_OFFSET, Xhc->MaxSlotsEn);
+
+ //
+ // The Device Context Base Address Array entry associated with each allocated Device Slot
+ // shall contain a 64-bit pointer to the base of the associated Device Context.
+ // The Device Context Base Address Array shall contain MaxSlotsEn + 1 entries.
+ // Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
+ //
+ Entries = (Xhc->MaxSlotsEn + 1) * sizeof(UINT64);
+ Dcbaa = UsbHcAllocateMem (Xhc->MemPool, Entries);
+ ASSERT (Dcbaa != NULL);
+ ZeroMem (Dcbaa, Entries);
+
+ //
+ // A Scratchpad Buffer is a PAGESIZE block of system memory located on a PAGESIZE boundary.
+ // System software shall allocate the Scratchpad Buffer(s) before placing the xHC in to Run
+ // mode (Run/Stop(R/S) ='1').
+ //
+ MaxScratchpadBufs = ((Xhc->HcSParams2.Data.ScratchBufHi) << 5) | (Xhc->HcSParams2.Data.ScratchBufLo);
+ Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
+ ASSERT (MaxScratchpadBufs <= 1023);
+ if (MaxScratchpadBufs != 0) {
+ //
+ // Allocate the buffer to record the Mapping for each scratch buffer in order to Unmap them
+ //
+ ScratchEntryMap = AllocateZeroPool (sizeof (UINTN) * MaxScratchpadBufs);
+ ASSERT (ScratchEntryMap != NULL);
+ Xhc->ScratchEntryMap = ScratchEntryMap;
+
+ //
+ // Allocate the buffer to record the host address for each entry
+ //
+ ScratchEntry = AllocateZeroPool (sizeof (UINT64) * MaxScratchpadBufs);
+ ASSERT (ScratchEntry != NULL);
+ Xhc->ScratchEntry = ScratchEntry;
+
+ ScratchPhy = 0;
+ Status = UsbHcAllocateAlignedPages (
+ Xhc->PciIo,
+ EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)),
+ Xhc->PageSize,
+ (VOID **) &ScratchBuf,
+ &ScratchPhy,
+ &Xhc->ScratchMap
+ );
+ ASSERT_EFI_ERROR (Status);
+
+ ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64));
+ Xhc->ScratchBuf = ScratchBuf;
+
+ //
+ // Allocate each scratch buffer
+ //
+ for (Index = 0; Index < MaxScratchpadBufs; Index++) {
+ ScratchEntryPhy = 0;
+ Status = UsbHcAllocateAlignedPages (
+ Xhc->PciIo,
+ EFI_SIZE_TO_PAGES (Xhc->PageSize),
+ Xhc->PageSize,
+ (VOID **) &ScratchEntry[Index],
+ &ScratchEntryPhy,
+ (VOID **) &ScratchEntryMap[Index]
+ );
+ ASSERT_EFI_ERROR (Status);
+ ZeroMem ((VOID *)(UINTN)ScratchEntry[Index], Xhc->PageSize);
+ //
+ // Fill with the PCI device address
+ //
+ *ScratchBuf++ = ScratchEntryPhy;
+ }
+ //
+ // The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
+ // Device Context Base Address Array points to the Scratchpad Buffer Array.
+ //
+ *(UINT64 *)Dcbaa = (UINT64)(UINTN) ScratchPhy;
+ }
+
+ //
+ // Program the Device Context Base Address Array Pointer (DCBAAP) register (5.4.6) with
+ // a 64-bit address pointing to where the Device Context Base Address Array is located.
+ //
+ Xhc->DCBAA = (UINT64 *)(UINTN)Dcbaa;
+ //
+ // Some 3rd party XHCI external cards don't support single 64-bytes width register access,
+ // So divide it to two 32-bytes width register access.
+ //
+ DcbaaPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Dcbaa, Entries);
+ XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(DcbaaPhy));
+ XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (DcbaaPhy));
+
+ DEBUG ((EFI_D_INFO, "XhcInitSched:DCBAA=0x%x\n", (UINT64)(UINTN)Xhc->DCBAA));
+
+ //
+ // Define the Command Ring Dequeue Pointer by programming the Command Ring Control Register
+ // (5.4.5) with a 64-bit address pointing to the starting address of the first TRB of the Command Ring.
+ // Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command Ring Pointer shall
+ // always be '0'.
+ //
+ CreateTransferRing (Xhc, CMD_RING_TRB_NUMBER, &Xhc->CmdRing);
+ //
+ // The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty. As it fetches TRBs from a
+ // Transfer Ring it checks for a Cycle bit transition. If a transition detected, the ring is empty.
+ // So we set RCS as inverted PCS init value to let Command Ring empty
+ //
+ CmdRing = (UINT64)(UINTN)Xhc->CmdRing.RingSeg0;
+ CmdRingPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, (VOID *)(UINTN) CmdRing, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
+ ASSERT ((CmdRingPhy & 0x3F) == 0);
+ CmdRingPhy |= XHC_CRCR_RCS;
+ //
+ // Some 3rd party XHCI external cards don't support single 64-bytes width register access,
+ // So divide it to two 32-bytes width register access.
+ //
+ XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRingPhy));
+ XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRingPhy));
+
+ //
+ // Disable the 'interrupter enable' bit in USB_CMD
+ // and clear IE & IP bit in all Interrupter X Management Registers.
+ //
+ XhcClearOpRegBit (Xhc, XHC_USBCMD_OFFSET, XHC_USBCMD_INTE);
+ for (Index = 0; Index < (UINT16)(Xhc->HcSParams1.Data.MaxIntrs); Index++) {
+ XhcClearRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IE);
+ XhcSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IP);
+ }
+
+ //
+ // Allocate EventRing for Cmd, Ctrl, Bulk, Interrupt, AsynInterrupt transfer
+ //
+ CreateEventRing (Xhc, &Xhc->EventRing);
+ DEBUG ((DEBUG_INFO, "XhcInitSched: Created CMD ring [%p~%p) EVENT ring [%p~%p)\n",
+ Xhc->CmdRing.RingSeg0, (UINTN)Xhc->CmdRing.RingSeg0 + sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER,
+ Xhc->EventRing.EventRingSeg0, (UINTN)Xhc->EventRing.EventRingSeg0 + sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER
+ ));
+}
+
+/**
+ System software shall use a Reset Endpoint Command (section 4.11.4.7) to remove the Halted
+ condition in the xHC. After the successful completion of the Reset Endpoint Command, the Endpoint
+ Context is transitioned from the Halted to the Stopped state and the Transfer Ring of the endpoint is
+ reenabled. The next write to the Doorbell of the Endpoint will transition the Endpoint Context from the
+ Stopped to the Running state.
+
+ @param Xhc The XHCI Instance.
+ @param Urb The urb which makes the endpoint halted.
+
+ @retval EFI_SUCCESS The recovery is successful.
+ @retval Others Failed to recovery halted endpoint.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcRecoverHaltedEndpoint (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ EFI_STATUS Status;
+ UINT8 Dci;
+ UINT8 SlotId;
+
+ Status = EFI_SUCCESS;
+ SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
+ if (SlotId == 0) {
+ return EFI_DEVICE_ERROR;
+ }
+ Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
+ ASSERT (Dci < 32);
+
+ DEBUG ((EFI_D_INFO, "Recovery Halted Slot = %x,Dci = %x\n", SlotId, Dci));
+
+ //
+ // 1) Send Reset endpoint command to transit from halt to stop state
+ //
+ Status = XhcResetEndpoint(Xhc, SlotId, Dci);
+ if (EFI_ERROR(Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcRecoverHaltedEndpoint: Reset Endpoint Failed, Status = %r\n", Status));
+ goto Done;
+ }
+
+ //
+ // 2)Set dequeue pointer
+ //
+ Status = XhcSetTrDequeuePointer(Xhc, SlotId, Dci, Urb);
+ if (EFI_ERROR(Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcRecoverHaltedEndpoint: Set Transfer Ring Dequeue Pointer Failed, Status = %r\n", Status));
+ goto Done;
+ }
+
+ //
+ // 3)Ring the doorbell to transit from stop to active
+ //
+ XhcRingDoorBell (Xhc, SlotId, Dci);
+
+Done:
+ return Status;
+}
+
+/**
+ System software shall use a Stop Endpoint Command (section 4.6.9) and the Set TR Dequeue Pointer
+ Command (section 4.6.10) to remove the timed-out TDs from the xHC transfer ring. The next write to
+ the Doorbell of the Endpoint will transition the Endpoint Context from the Stopped to the Running
+ state.
+
+ @param Xhc The XHCI Instance.
+ @param Urb The urb which doesn't get completed in a specified timeout range.
+
+ @retval EFI_SUCCESS The dequeuing of the TDs is successful.
+ @retval EFI_ALREADY_STARTED The Urb is finished so no deque is needed.
+ @retval Others Failed to stop the endpoint and dequeue the TDs.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcDequeueTrbFromEndpoint (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ EFI_STATUS Status;
+ UINT8 Dci;
+ UINT8 SlotId;
+
+ Status = EFI_SUCCESS;
+ SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
+ if (SlotId == 0) {
+ return EFI_DEVICE_ERROR;
+ }
+ Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
+ ASSERT (Dci < 32);
+
+ DEBUG ((EFI_D_INFO, "Stop Slot = %x,Dci = %x\n", SlotId, Dci));
+
+ //
+ // 1) Send Stop endpoint command to stop xHC from executing of the TDs on the endpoint
+ //
+ Status = XhcStopEndpoint(Xhc, SlotId, Dci, Urb);
+ if (EFI_ERROR(Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcDequeueTrbFromEndpoint: Stop Endpoint Failed, Status = %r\n", Status));
+ goto Done;
+ }
+
+ //
+ // 2)Set dequeue pointer
+ //
+ if (Urb->Finished && Urb->Result == EFI_USB_NOERROR) {
+ //
+ // Return Already Started to indicate the pending URB is finished.
+ // This fixes BULK data loss when transfer is detected as timeout
+ // but finished just before stopping endpoint.
+ //
+ Status = EFI_ALREADY_STARTED;
+ DEBUG ((DEBUG_INFO, "XhcDequeueTrbFromEndpoint: Pending URB is finished: Length Actual/Expect = %d/%d!\n", Urb->Completed, Urb->DataLen));
+ } else {
+ Status = XhcSetTrDequeuePointer(Xhc, SlotId, Dci, Urb);
+ if (EFI_ERROR (Status)) {
+ DEBUG ((DEBUG_ERROR, "XhcDequeueTrbFromEndpoint: Set Transfer Ring Dequeue Pointer Failed, Status = %r\n", Status));
+ goto Done;
+ }
+ }
+
+ //
+ // 3)Ring the doorbell to transit from stop to active
+ //
+ XhcRingDoorBell (Xhc, SlotId, Dci);
+
+Done:
+ return Status;
+}
+
+/**
+ Create XHCI event ring.
+
+ @param Xhc The XHCI Instance.
+ @param EventRing The created event ring.
+
+**/
+VOID
+CreateEventRing (
+ IN USB_XHCI_INSTANCE *Xhc,
+ OUT EVENT_RING *EventRing
+ )
+{
+ VOID *Buf;
+ EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
+ UINTN Size;
+ EFI_PHYSICAL_ADDRESS ERSTPhy;
+ EFI_PHYSICAL_ADDRESS DequeuePhy;
+
+ ASSERT (EventRing != NULL);
+
+ Size = sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER;
+ Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
+ ASSERT (Buf != NULL);
+ ASSERT (((UINTN) Buf & 0x3F) == 0);
+ ZeroMem (Buf, Size);
+
+ EventRing->EventRingSeg0 = Buf;
+ EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
+ EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
+ EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
+
+ DequeuePhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size);
+
+ //
+ // Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
+ // and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
+ //
+ EventRing->EventRingCCS = 1;
+
+ Size = sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER;
+ Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
+ ASSERT (Buf != NULL);
+ ASSERT (((UINTN) Buf & 0x3F) == 0);
+ ZeroMem (Buf, Size);
+
+ ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
+ EventRing->ERSTBase = ERSTBase;
+ ERSTBase->PtrLo = XHC_LOW_32BIT (DequeuePhy);
+ ERSTBase->PtrHi = XHC_HIGH_32BIT (DequeuePhy);
+ ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
+
+ ERSTPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, ERSTBase, Size);
+
+ //
+ // Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
+ //
+ XhcWriteRuntimeReg (
+ Xhc,
+ XHC_ERSTSZ_OFFSET,
+ ERST_NUMBER
+ );
+ //
+ // Program the Interrupter Event Ring Dequeue Pointer (ERDP) register (5.5.2.3.3)
+ //
+ // Some 3rd party XHCI external cards don't support single 64-bytes width register access,
+ // So divide it to two 32-bytes width register access.
+ //
+ XhcWriteRuntimeReg (
+ Xhc,
+ XHC_ERDP_OFFSET,
+ XHC_LOW_32BIT((UINT64)(UINTN)DequeuePhy)
+ );
+ XhcWriteRuntimeReg (
+ Xhc,
+ XHC_ERDP_OFFSET + 4,
+ XHC_HIGH_32BIT((UINT64)(UINTN)DequeuePhy)
+ );
+ //
+ // Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register(5.5.2.3.2)
+ //
+ // Some 3rd party XHCI external cards don't support single 64-bytes width register access,
+ // So divide it to two 32-bytes width register access.
+ //
+ XhcWriteRuntimeReg (
+ Xhc,
+ XHC_ERSTBA_OFFSET,
+ XHC_LOW_32BIT((UINT64)(UINTN)ERSTPhy)
+ );
+ XhcWriteRuntimeReg (
+ Xhc,
+ XHC_ERSTBA_OFFSET + 4,
+ XHC_HIGH_32BIT((UINT64)(UINTN)ERSTPhy)
+ );
+ //
+ // Need set IMAN IE bit to enble the ring interrupt
+ //
+ XhcSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET, XHC_IMAN_IE);
+}
+
+/**
+ Create XHCI transfer ring.
+
+ @param Xhc The XHCI Instance.
+ @param TrbNum The number of TRB in the ring.
+ @param TransferRing The created transfer ring.
+
+**/
+VOID
+CreateTransferRing (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINTN TrbNum,
+ OUT TRANSFER_RING *TransferRing
+ )
+{
+ VOID *Buf;
+ LINK_TRB *EndTrb;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ Buf = UsbHcAllocateMem (Xhc->MemPool, sizeof (TRB_TEMPLATE) * TrbNum);
+ ASSERT (Buf != NULL);
+ ASSERT (((UINTN) Buf & 0x3F) == 0);
+ ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum);
+
+ TransferRing->RingSeg0 = Buf;
+ TransferRing->TrbNumber = TrbNum;
+ TransferRing->RingEnqueue = (TRB_TEMPLATE *) TransferRing->RingSeg0;
+ TransferRing->RingDequeue = (TRB_TEMPLATE *) TransferRing->RingSeg0;
+ TransferRing->RingPCS = 1;
+ //
+ // 4.9.2 Transfer Ring Management
+ // To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring to
+ // point to the first TRB in the ring.
+ //
+ EndTrb = (LINK_TRB *) ((UINTN)Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1));
+ EndTrb->Type = TRB_TYPE_LINK;
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, sizeof (TRB_TEMPLATE) * TrbNum);
+ EndTrb->PtrLo = XHC_LOW_32BIT (PhyAddr);
+ EndTrb->PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ //
+ // Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
+ //
+ EndTrb->TC = 1;
+ //
+ // Set Cycle bit as other TRB PCS init value
+ //
+ EndTrb->CycleBit = 0;
+}
+
+/**
+ Free XHCI event ring.
+
+ @param Xhc The XHCI Instance.
+ @param EventRing The event ring to be freed.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcFreeEventRing (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN EVENT_RING *EventRing
+)
+{
+ if(EventRing->EventRingSeg0 == NULL) {
+ return EFI_SUCCESS;
+ }
+
+ //
+ // Free EventRing Segment 0
+ //
+ UsbHcFreeMem (Xhc->MemPool, EventRing->EventRingSeg0, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
+
+ //
+ // Free ESRT table
+ //
+ UsbHcFreeMem (Xhc->MemPool, EventRing->ERSTBase, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
+ return EFI_SUCCESS;
+}
+
+/**
+ Free the resouce allocated at initializing schedule.
+
+ @param Xhc The XHCI Instance.
+
+**/
+VOID
+XhcFreeSched (
+ IN USB_XHCI_INSTANCE *Xhc
+ )
+{
+ UINT32 Index;
+ UINT64 *ScratchEntry;
+
+ if (Xhc->ScratchBuf != NULL) {
+ ScratchEntry = Xhc->ScratchEntry;
+ for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
+ //
+ // Free Scratchpad Buffers
+ //
+ UsbHcFreeAlignedPages (Xhc->PciIo, (VOID*)(UINTN)ScratchEntry[Index], EFI_SIZE_TO_PAGES (Xhc->PageSize), (VOID *) Xhc->ScratchEntryMap[Index]);
+ }
+ //
+ // Free Scratchpad Buffer Array
+ //
+ UsbHcFreeAlignedPages (Xhc->PciIo, Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)), Xhc->ScratchMap);
+ FreePool (Xhc->ScratchEntryMap);
+ FreePool (Xhc->ScratchEntry);
+ }
+
+ if (Xhc->CmdRing.RingSeg0 != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
+ Xhc->CmdRing.RingSeg0 = NULL;
+ }
+
+ XhcFreeEventRing (Xhc,&Xhc->EventRing);
+
+ if (Xhc->DCBAA != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, Xhc->DCBAA, (Xhc->MaxSlotsEn + 1) * sizeof(UINT64));
+ Xhc->DCBAA = NULL;
+ }
+
+ //
+ // Free memory pool at last
+ //
+ if (Xhc->MemPool != NULL) {
+ UsbHcFreeMemPool (Xhc->MemPool);
+ Xhc->MemPool = NULL;
+ }
+}
+
+/**
+ Check if the Trb is a transaction of the URB.
+
+ @param Xhc The XHCI Instance.
+ @param Trb The TRB to be checked
+ @param Urb The URB to be checked.
+
+ @retval TRUE It is a transaction of the URB.
+ @retval FALSE It is not any transaction of the URB.
+
+**/
+BOOLEAN
+IsTransferRingTrb (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN TRB_TEMPLATE *Trb,
+ IN URB *Urb
+ )
+{
+ LINK_TRB *LinkTrb;
+ TRB_TEMPLATE *CheckedTrb;
+ UINTN Index;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ CheckedTrb = Urb->TrbStart;
+ for (Index = 0; Index < Urb->TrbNum; Index++) {
+ if (Trb == CheckedTrb) {
+ return TRUE;
+ }
+ CheckedTrb++;
+ //
+ // If the checked TRB is the link TRB at the end of the transfer ring,
+ // recircle it to the head of the ring.
+ //
+ if (CheckedTrb->Type == TRB_TYPE_LINK) {
+ LinkTrb = (LINK_TRB *) CheckedTrb;
+ PhyAddr = (EFI_PHYSICAL_ADDRESS)(LinkTrb->PtrLo | LShiftU64 ((UINT64) LinkTrb->PtrHi, 32));
+ CheckedTrb = (TRB_TEMPLATE *)(UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *)(UINTN) PhyAddr, sizeof (TRB_TEMPLATE));
+ ASSERT (CheckedTrb == Urb->Ring->RingSeg0);
+ }
+ }
+
+ return FALSE;
+}
+
+/**
+ Check if the Trb is a transaction of the URBs in XHCI's asynchronous transfer list.
+
+ @param Xhc The XHCI Instance.
+ @param Trb The TRB to be checked.
+ @param Urb The pointer to the matched Urb.
+
+ @retval TRUE The Trb is matched with a transaction of the URBs in the async list.
+ @retval FALSE The Trb is not matched with any URBs in the async list.
+
+**/
+BOOLEAN
+IsAsyncIntTrb (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN TRB_TEMPLATE *Trb,
+ OUT URB **Urb
+ )
+{
+ LIST_ENTRY *Entry;
+ LIST_ENTRY *Next;
+ URB *CheckedUrb;
+
+ BASE_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
+ CheckedUrb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
+ if (IsTransferRingTrb (Xhc, Trb, CheckedUrb)) {
+ *Urb = CheckedUrb;
+ return TRUE;
+ }
+ }
+
+ return FALSE;
+}
+
+
+/**
+ Check the URB's execution result and update the URB's
+ result accordingly.
+
+ @param Xhc The XHCI Instance.
+ @param Urb The URB to check result.
+
+ @return Whether the result of URB transfer is finialized.
+
+**/
+BOOLEAN
+XhcCheckUrbResult (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ EVT_TRB_TRANSFER *EvtTrb;
+ TRB_TEMPLATE *TRBPtr;
+ UINTN Index;
+ UINT8 TRBType;
+ EFI_STATUS Status;
+ URB *AsyncUrb;
+ URB *CheckedUrb;
+ UINT64 XhcDequeue;
+ UINT32 High;
+ UINT32 Low;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ASSERT ((Xhc != NULL) && (Urb != NULL));
+
+ Status = EFI_SUCCESS;
+ AsyncUrb = NULL;
+
+ if (Urb->Finished) {
+ goto EXIT;
+ }
+
+ EvtTrb = NULL;
+
+ if (XhcIsHalt (Xhc) || XhcIsSysError (Xhc)) {
+ Urb->Result |= EFI_USB_ERR_SYSTEM;
+ goto EXIT;
+ }
+
+ //
+ // Traverse the event ring to find out all new events from the previous check.
+ //
+ XhcSyncEventRing (Xhc, &Xhc->EventRing);
+ for (Index = 0; Index < Xhc->EventRing.TrbNumber; Index++) {
+ Status = XhcCheckNewEvent (Xhc, &Xhc->EventRing, ((TRB_TEMPLATE **)&EvtTrb));
+ if (Status == EFI_NOT_READY) {
+ //
+ // All new events are handled, return directly.
+ //
+ goto EXIT;
+ }
+
+ //
+ // Only handle COMMAND_COMPLETETION_EVENT and TRANSFER_EVENT.
+ //
+ if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) {
+ continue;
+ }
+
+ //
+ // Need convert pci device address to host address
+ //
+ PhyAddr = (EFI_PHYSICAL_ADDRESS)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
+ TRBPtr = (TRB_TEMPLATE *)(UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *)(UINTN) PhyAddr, sizeof (TRB_TEMPLATE));
+
+ //
+ // Update the status of URB including the pending URB, the URB that is currently checked,
+ // and URBs in the XHCI's async interrupt transfer list.
+ // This way is used to avoid that those completed async transfer events don't get
+ // handled in time and are flushed by newer coming events.
+ //
+ if (Xhc->PendingUrb != NULL && IsTransferRingTrb (Xhc, TRBPtr, Xhc->PendingUrb)) {
+ CheckedUrb = Xhc->PendingUrb;
+ } else if (IsTransferRingTrb (Xhc, TRBPtr, Urb)) {
+ CheckedUrb = Urb;
+ } else if (IsAsyncIntTrb (Xhc, TRBPtr, &AsyncUrb)) {
+ CheckedUrb = AsyncUrb;
+ } else {
+ continue;
+ }
+
+ switch (EvtTrb->Completecode) {
+ case TRB_COMPLETION_STALL_ERROR:
+ CheckedUrb->Result |= EFI_USB_ERR_STALL;
+ CheckedUrb->Finished = TRUE;
+ DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: STALL_ERROR! Completecode = %x\n",EvtTrb->Completecode));
+ goto EXIT;
+
+ case TRB_COMPLETION_BABBLE_ERROR:
+ CheckedUrb->Result |= EFI_USB_ERR_BABBLE;
+ CheckedUrb->Finished = TRUE;
+ DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: BABBLE_ERROR! Completecode = %x\n",EvtTrb->Completecode));
+ goto EXIT;
+
+ case TRB_COMPLETION_DATA_BUFFER_ERROR:
+ CheckedUrb->Result |= EFI_USB_ERR_BUFFER;
+ CheckedUrb->Finished = TRUE;
+ DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: ERR_BUFFER! Completecode = %x\n",EvtTrb->Completecode));
+ goto EXIT;
+
+ case TRB_COMPLETION_USB_TRANSACTION_ERROR:
+ CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT;
+ CheckedUrb->Finished = TRUE;
+ DEBUG ((EFI_D_ERROR, "XhcCheckUrbResult: TRANSACTION_ERROR! Completecode = %x\n",EvtTrb->Completecode));
+ goto EXIT;
+
+ case TRB_COMPLETION_STOPPED:
+ case TRB_COMPLETION_STOPPED_LENGTH_INVALID:
+ CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT;
+ CheckedUrb->Finished = TRUE;
+ //
+ // The pending URB is timeout and force stopped when stopping endpoint.
+ // Continue the loop to receive the Command Complete Event for stopping endpoint.
+ //
+ continue;
+
+ case TRB_COMPLETION_SHORT_PACKET:
+ case TRB_COMPLETION_SUCCESS:
+ if (EvtTrb->Completecode == TRB_COMPLETION_SHORT_PACKET) {
+ DEBUG ((EFI_D_VERBOSE, "XhcCheckUrbResult: short packet happens!\n"));
+ }
+
+ TRBType = (UINT8) (TRBPtr->Type);
+ if ((TRBType == TRB_TYPE_DATA_STAGE) ||
+ (TRBType == TRB_TYPE_NORMAL) ||
+ (TRBType == TRB_TYPE_ISOCH)) {
+ CheckedUrb->Completed += (((TRANSFER_TRB_NORMAL*)TRBPtr)->Length - EvtTrb->Length);
+ }
+
+ break;
+
+ default:
+ DEBUG ((EFI_D_ERROR, "Transfer Default Error Occur! Completecode = 0x%x!\n",EvtTrb->Completecode));
+ CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT;
+ CheckedUrb->Finished = TRUE;
+ goto EXIT;
+ }
+
+ //
+ // Only check first and end Trb event address
+ //
+ if (TRBPtr == CheckedUrb->TrbStart) {
+ CheckedUrb->StartDone = TRUE;
+ }
+
+ if (TRBPtr == CheckedUrb->TrbEnd) {
+ CheckedUrb->EndDone = TRUE;
+ }
+
+ if (CheckedUrb->StartDone && CheckedUrb->EndDone) {
+ CheckedUrb->Finished = TRUE;
+ CheckedUrb->EvtTrb = (TRB_TEMPLATE *)EvtTrb;
+ }
+ }
+
+EXIT:
+
+ //
+ // Advance event ring to last available entry
+ //
+ // Some 3rd party XHCI external cards don't support single 64-bytes width register access,
+ // So divide it to two 32-bytes width register access.
+ //
+ Low = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET);
+ High = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4);
+ XhcDequeue = (UINT64)(LShiftU64((UINT64)High, 32) | Low);
+
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->EventRing.EventRingDequeue, sizeof (TRB_TEMPLATE));
+
+ if ((XhcDequeue & (~0x0F)) != (PhyAddr & (~0x0F))) {
+ //
+ // Some 3rd party XHCI external cards don't support single 64-bytes width register access,
+ // So divide it to two 32-bytes width register access.
+ //
+ XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (PhyAddr) | BIT3);
+ XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (PhyAddr));
+ }
+
+ return Urb->Finished;
+}
+
+
+/**
+ Execute the transfer by polling the URB. This is a synchronous operation.
+
+ @param Xhc The XHCI Instance.
+ @param CmdTransfer The executed URB is for cmd transfer or not.
+ @param Urb The URB to execute.
+ @param Timeout The time to wait before abort, in millisecond.
+
+ @return EFI_DEVICE_ERROR The transfer failed due to transfer error.
+ @return EFI_TIMEOUT The transfer failed due to time out.
+ @return EFI_SUCCESS The transfer finished OK.
+
+**/
+EFI_STATUS
+XhcExecTransfer (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN BOOLEAN CmdTransfer,
+ IN URB *Urb,
+ IN UINTN Timeout
+ )
+{
+ EFI_STATUS Status;
+ UINTN Index;
+ UINT64 Loop;
+ UINT8 SlotId;
+ UINT8 Dci;
+ BOOLEAN Finished;
+
+ if (CmdTransfer) {
+ SlotId = 0;
+ Dci = 0;
+ } else {
+ SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
+ if (SlotId == 0) {
+ return EFI_DEVICE_ERROR;
+ }
+ Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
+ ASSERT (Dci < 32);
+ }
+
+ Status = EFI_SUCCESS;
+ Loop = Timeout * XHC_1_MILLISECOND;
+ if (Timeout == 0) {
+ Loop = 0xFFFFFFFF;
+ }
+
+ XhcRingDoorBell (Xhc, SlotId, Dci);
+
+ for (Index = 0; Index < Loop; Index++) {
+ Finished = XhcCheckUrbResult (Xhc, Urb);
+ if (Finished) {
+ break;
+ }
+ gBS->Stall (XHC_1_MICROSECOND);
+ }
+
+ if (Index == Loop) {
+ Urb->Result = EFI_USB_ERR_TIMEOUT;
+ Status = EFI_TIMEOUT;
+ } else if (Urb->Result != EFI_USB_NOERROR) {
+ Status = EFI_DEVICE_ERROR;
+ }
+
+ return Status;
+}
+
+/**
+ Delete a single asynchronous interrupt transfer for
+ the device and endpoint.
+
+ @param Xhc The XHCI Instance.
+ @param BusAddr The logical device address assigned by UsbBus driver.
+ @param EpNum The endpoint of the target.
+
+ @retval EFI_SUCCESS An asynchronous transfer is removed.
+ @retval EFI_NOT_FOUND No transfer for the device is found.
+
+**/
+EFI_STATUS
+XhciDelAsyncIntTransfer (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 BusAddr,
+ IN UINT8 EpNum
+ )
+{
+ LIST_ENTRY *Entry;
+ LIST_ENTRY *Next;
+ URB *Urb;
+ EFI_USB_DATA_DIRECTION Direction;
+ EFI_STATUS Status;
+
+ Direction = ((EpNum & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut;
+ EpNum &= 0x0F;
+
+ Urb = NULL;
+
+ BASE_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
+ Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
+ if ((Urb->Ep.BusAddr == BusAddr) &&
+ (Urb->Ep.EpAddr == EpNum) &&
+ (Urb->Ep.Direction == Direction)) {
+ //
+ // Device doesn't finish the IntTransfer until real data comes
+ // So the TRB should be removed as well.
+ //
+ Status = XhcDequeueTrbFromEndpoint (Xhc, Urb);
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhciDelAsyncIntTransfer: XhcDequeueTrbFromEndpoint failed\n"));
+ }
+
+ RemoveEntryList (&Urb->UrbList);
+ FreePool (Urb->Data);
+ XhcFreeUrb (Xhc, Urb);
+ return EFI_SUCCESS;
+ }
+ }
+
+ return EFI_NOT_FOUND;
+}
+
+/**
+ Remove all the asynchronous interrutp transfers.
+
+ @param Xhc The XHCI Instance.
+
+**/
+VOID
+XhciDelAllAsyncIntTransfers (
+ IN USB_XHCI_INSTANCE *Xhc
+ )
+{
+ LIST_ENTRY *Entry;
+ LIST_ENTRY *Next;
+ URB *Urb;
+ EFI_STATUS Status;
+
+ BASE_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
+ Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
+
+ //
+ // Device doesn't finish the IntTransfer until real data comes
+ // So the TRB should be removed as well.
+ //
+ Status = XhcDequeueTrbFromEndpoint (Xhc, Urb);
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhciDelAllAsyncIntTransfers: XhcDequeueTrbFromEndpoint failed\n"));
+ }
+
+ RemoveEntryList (&Urb->UrbList);
+ FreePool (Urb->Data);
+ XhcFreeUrb (Xhc, Urb);
+ }
+}
+
+/**
+ Insert a single asynchronous interrupt transfer for
+ the device and endpoint.
+
+ @param Xhc The XHCI Instance
+ @param BusAddr The logical device address assigned by UsbBus driver
+ @param EpAddr Endpoint addrress
+ @param DevSpeed The device speed
+ @param MaxPacket The max packet length of the endpoint
+ @param DataLen The length of data buffer
+ @param Callback The function to call when data is transferred
+ @param Context The context to the callback
+
+ @return Created URB or NULL
+
+**/
+URB *
+XhciInsertAsyncIntTransfer (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 BusAddr,
+ IN UINT8 EpAddr,
+ IN UINT8 DevSpeed,
+ IN UINTN MaxPacket,
+ IN UINTN DataLen,
+ IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
+ IN VOID *Context
+ )
+{
+ VOID *Data;
+ URB *Urb;
+
+ Data = AllocateZeroPool (DataLen);
+ if (Data == NULL) {
+ DEBUG ((DEBUG_ERROR, "%a: failed to allocate buffer\n", __FUNCTION__));
+ return NULL;
+ }
+
+ Urb = XhcCreateUrb (
+ Xhc,
+ BusAddr,
+ EpAddr,
+ DevSpeed,
+ MaxPacket,
+ XHC_INT_TRANSFER_ASYNC,
+ NULL,
+ Data,
+ DataLen,
+ Callback,
+ Context
+ );
+ if (Urb == NULL) {
+ DEBUG ((DEBUG_ERROR, "%a: failed to create URB\n", __FUNCTION__));
+ FreePool (Data);
+ return NULL;
+ }
+
+ //
+ // New asynchronous transfer must inserted to the head.
+ // Check the comments in XhcMoniteAsyncRequests
+ //
+ InsertHeadList (&Xhc->AsyncIntTransfers, &Urb->UrbList);
+
+ return Urb;
+}
+
+/**
+ Update the queue head for next round of asynchronous transfer
+
+ @param Xhc The XHCI Instance.
+ @param Urb The URB to update
+
+**/
+VOID
+XhcUpdateAsyncRequest (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ EFI_STATUS Status;
+
+ if (Urb->Result == EFI_USB_NOERROR) {
+ Status = XhcCreateTransferTrb (Xhc, Urb);
+ if (EFI_ERROR (Status)) {
+ return;
+ }
+ Status = RingIntTransferDoorBell (Xhc, Urb);
+ if (EFI_ERROR (Status)) {
+ return;
+ }
+ }
+}
+
+/**
+ Flush data from PCI controller specific address to mapped system
+ memory address.
+
+ @param Xhc The XHCI device.
+ @param Urb The URB to unmap.
+
+ @retval EFI_SUCCESS Success to flush data to mapped system memory.
+ @retval EFI_DEVICE_ERROR Fail to flush data to mapped system memory.
+
+**/
+EFI_STATUS
+XhcFlushAsyncIntMap (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ EFI_STATUS Status;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+ EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
+ EFI_PCI_IO_PROTOCOL *PciIo;
+ UINTN Len;
+ VOID *Map;
+
+ PciIo = Xhc->PciIo;
+ Len = Urb->DataLen;
+
+ if (Urb->Ep.Direction == EfiUsbDataIn) {
+ MapOp = EfiPciIoOperationBusMasterWrite;
+ } else {
+ MapOp = EfiPciIoOperationBusMasterRead;
+ }
+
+ if (Urb->DataMap != NULL) {
+ Status = PciIo->Unmap (PciIo, Urb->DataMap);
+ if (EFI_ERROR (Status)) {
+ goto ON_ERROR;
+ }
+ }
+
+ Urb->DataMap = NULL;
+
+ Status = PciIo->Map (PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
+ if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
+ goto ON_ERROR;
+ }
+
+ Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
+ Urb->DataMap = Map;
+ return EFI_SUCCESS;
+
+ON_ERROR:
+ return EFI_DEVICE_ERROR;
+}
+
+/**
+ Interrupt transfer periodic check handler.
+
+ @param Event Interrupt event.
+ @param Context Pointer to USB_XHCI_INSTANCE.
+
+**/
+VOID
+EFIAPI
+XhcMonitorAsyncRequests (
+ IN EFI_EVENT Event,
+ IN VOID *Context
+ )
+{
+ USB_XHCI_INSTANCE *Xhc;
+ LIST_ENTRY *Entry;
+ LIST_ENTRY *Next;
+ UINT8 *ProcBuf;
+ URB *Urb;
+ UINT8 SlotId;
+ EFI_STATUS Status;
+ EFI_TPL OldTpl;
+
+ OldTpl = gBS->RaiseTPL (XHC_TPL);
+
+ Xhc = (USB_XHCI_INSTANCE*) Context;
+
+ BASE_LIST_FOR_EACH_SAFE (Entry, Next, &Xhc->AsyncIntTransfers) {
+ Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
+
+ //
+ // Make sure that the device is available before every check.
+ //
+ SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
+ if (SlotId == 0) {
+ continue;
+ }
+
+ //
+ // Check the result of URB execution. If it is still
+ // active, check the next one.
+ //
+ XhcCheckUrbResult (Xhc, Urb);
+
+ if (!Urb->Finished) {
+ continue;
+ }
+
+ //
+ // Flush any PCI posted write transactions from a PCI host
+ // bridge to system memory.
+ //
+ Status = XhcFlushAsyncIntMap (Xhc, Urb);
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcMonitorAsyncRequests: Fail to Flush AsyncInt Mapped Memeory\n"));
+ }
+
+ //
+ // Allocate a buffer then copy the transferred data for user.
+ // If failed to allocate the buffer, update the URB for next
+ // round of transfer. Ignore the data of this round.
+ //
+ ProcBuf = NULL;
+ if (Urb->Result == EFI_USB_NOERROR) {
+ //
+ // Make sure the data received from HW is no more than expected.
+ //
+ if (Urb->Completed <= Urb->DataLen) {
+ ProcBuf = AllocateZeroPool (Urb->Completed);
+ }
+
+ if (ProcBuf == NULL) {
+ XhcUpdateAsyncRequest (Xhc, Urb);
+ continue;
+ }
+
+ CopyMem (ProcBuf, Urb->Data, Urb->Completed);
+ }
+
+ //
+ // Leave error recovery to its related device driver. A
+ // common case of the error recovery is to re-submit the
+ // interrupt transfer which is linked to the head of the
+ // list. This function scans from head to tail. So the
+ // re-submitted interrupt transfer's callback function
+ // will not be called again in this round. Don't touch this
+ // URB after the callback, it may have been removed by the
+ // callback.
+ //
+ if (Urb->Callback != NULL) {
+ //
+ // Restore the old TPL, USB bus maybe connect device in
+ // his callback. Some drivers may has a lower TPL restriction.
+ //
+ gBS->RestoreTPL (OldTpl);
+ (Urb->Callback) (ProcBuf, Urb->Completed, Urb->Context, Urb->Result);
+ OldTpl = gBS->RaiseTPL (XHC_TPL);
+ }
+
+ if (ProcBuf != NULL) {
+ gBS->FreePool (ProcBuf);
+ }
+
+ XhcUpdateAsyncRequest (Xhc, Urb);
+ }
+ gBS->RestoreTPL (OldTpl);
+}
+
+/**
+ Monitor the port status change. Enable/Disable device slot if there is a device attached/detached.
+
+ @param Xhc The XHCI Instance.
+ @param ParentRouteChart The route string pointed to the parent device if it exists.
+ @param Port The port to be polled.
+ @param PortState The port state.
+
+ @retval EFI_SUCCESS Successfully enable/disable device slot according to port state.
+ @retval Others Should not appear.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcPollPortStatusChange (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN USB_DEV_ROUTE ParentRouteChart,
+ IN UINT8 Port,
+ IN EFI_USB_PORT_STATUS *PortState
+ )
+{
+ EFI_STATUS Status;
+ UINT8 Speed;
+ UINT8 SlotId;
+ USB_DEV_ROUTE RouteChart;
+
+ Status = EFI_SUCCESS;
+
+ if ((PortState->PortChangeStatus & (USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE | USB_PORT_STAT_C_OVERCURRENT | USB_PORT_STAT_C_RESET)) == 0) {
+ return EFI_SUCCESS;
+ }
+
+ if (ParentRouteChart.Dword == 0) {
+ RouteChart.Route.RouteString = 0;
+ RouteChart.Route.RootPortNum = Port + 1;
+ RouteChart.Route.TierNum = 1;
+ } else {
+ if(Port < 14) {
+ RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (Port << (4 * (ParentRouteChart.Route.TierNum - 1)));
+ } else {
+ RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (15 << (4 * (ParentRouteChart.Route.TierNum - 1)));
+ }
+ RouteChart.Route.RootPortNum = ParentRouteChart.Route.RootPortNum;
+ RouteChart.Route.TierNum = ParentRouteChart.Route.TierNum + 1;
+ }
+
+ SlotId = XhcRouteStringToSlotId (Xhc, RouteChart);
+ if (SlotId != 0) {
+ if (Xhc->HcCParams.Data.Csz == 0) {
+ Status = XhcDisableSlotCmd (Xhc, SlotId);
+ } else {
+ Status = XhcDisableSlotCmd64 (Xhc, SlotId);
+ }
+ }
+
+ if (((PortState->PortStatus & USB_PORT_STAT_ENABLE) != 0) &&
+ ((PortState->PortStatus & USB_PORT_STAT_CONNECTION) != 0)) {
+ //
+ // Has a device attached, Identify device speed after port is enabled.
+ //
+ Speed = EFI_USB_SPEED_FULL;
+ if ((PortState->PortStatus & USB_PORT_STAT_LOW_SPEED) != 0) {
+ Speed = EFI_USB_SPEED_LOW;
+ } else if ((PortState->PortStatus & USB_PORT_STAT_HIGH_SPEED) != 0) {
+ Speed = EFI_USB_SPEED_HIGH;
+ } else if ((PortState->PortStatus & USB_PORT_STAT_SUPER_SPEED) != 0) {
+ Speed = EFI_USB_SPEED_SUPER;
+ }
+ //
+ // Execute Enable_Slot cmd for attached device, initialize device context and assign device address.
+ //
+ SlotId = XhcRouteStringToSlotId (Xhc, RouteChart);
+ if ((SlotId == 0) && ((PortState->PortChangeStatus & USB_PORT_STAT_C_RESET) != 0)) {
+ if (Xhc->HcCParams.Data.Csz == 0) {
+ Status = XhcInitializeDeviceSlot (Xhc, ParentRouteChart, Port, RouteChart, Speed);
+ } else {
+ Status = XhcInitializeDeviceSlot64 (Xhc, ParentRouteChart, Port, RouteChart, Speed);
+ }
+ }
+ }
+
+ return Status;
+}
+
+
+/**
+ Calculate the device context index by endpoint address and direction.
+
+ @param EpAddr The target endpoint number.
+ @param Direction The direction of the target endpoint.
+
+ @return The device context index of endpoint.
+
+**/
+UINT8
+XhcEndpointToDci (
+ IN UINT8 EpAddr,
+ IN UINT8 Direction
+ )
+{
+ UINT8 Index;
+
+ if (EpAddr == 0) {
+ return 1;
+ } else {
+ Index = (UINT8) (2 * EpAddr);
+ if (Direction == EfiUsbDataIn) {
+ Index += 1;
+ }
+ return Index;
+ }
+}
+
+/**
+ Find out the actual device address according to the requested device address from UsbBus.
+
+ @param Xhc The XHCI Instance.
+ @param BusDevAddr The requested device address by UsbBus upper driver.
+
+ @return The actual device address assigned to the device.
+
+**/
+UINT8
+EFIAPI
+XhcBusDevAddrToSlotId (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 BusDevAddr
+ )
+{
+ UINT8 Index;
+
+ for (Index = 0; Index < 255; Index++) {
+ if (Xhc->UsbDevContext[Index + 1].Enabled &&
+ (Xhc->UsbDevContext[Index + 1].SlotId != 0) &&
+ (Xhc->UsbDevContext[Index + 1].BusDevAddr == BusDevAddr)) {
+ break;
+ }
+ }
+
+ if (Index == 255) {
+ return 0;
+ }
+
+ return Xhc->UsbDevContext[Index + 1].SlotId;
+}
+
+/**
+ Find out the slot id according to the device's route string.
+
+ @param Xhc The XHCI Instance.
+ @param RouteString The route string described the device location.
+
+ @return The slot id used by the device.
+
+**/
+UINT8
+EFIAPI
+XhcRouteStringToSlotId (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN USB_DEV_ROUTE RouteString
+ )
+{
+ UINT8 Index;
+
+ for (Index = 0; Index < 255; Index++) {
+ if (Xhc->UsbDevContext[Index + 1].Enabled &&
+ (Xhc->UsbDevContext[Index + 1].SlotId != 0) &&
+ (Xhc->UsbDevContext[Index + 1].RouteString.Dword == RouteString.Dword)) {
+ break;
+ }
+ }
+
+ if (Index == 255) {
+ return 0;
+ }
+
+ return Xhc->UsbDevContext[Index + 1].SlotId;
+}
+
+/**
+ Synchronize the specified event ring to update the enqueue and dequeue pointer.
+
+ @param Xhc The XHCI Instance.
+ @param EvtRing The event ring to sync.
+
+ @retval EFI_SUCCESS The event ring is synchronized successfully.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSyncEventRing (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN EVENT_RING *EvtRing
+ )
+{
+ UINTN Index;
+ TRB_TEMPLATE *EvtTrb1;
+
+ ASSERT (EvtRing != NULL);
+
+ //
+ // Calculate the EventRingEnqueue and EventRingCCS.
+ // Note: only support single Segment
+ //
+ EvtTrb1 = EvtRing->EventRingDequeue;
+
+ for (Index = 0; Index < EvtRing->TrbNumber; Index++) {
+ if (EvtTrb1->CycleBit != EvtRing->EventRingCCS) {
+ break;
+ }
+
+ EvtTrb1++;
+
+ if ((UINTN)EvtTrb1 >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) {
+ EvtTrb1 = EvtRing->EventRingSeg0;
+ EvtRing->EventRingCCS = (EvtRing->EventRingCCS) ? 0 : 1;
+ }
+ }
+
+ if (Index < EvtRing->TrbNumber) {
+ EvtRing->EventRingEnqueue = EvtTrb1;
+ } else {
+ ASSERT (FALSE);
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Synchronize the specified transfer ring to update the enqueue and dequeue pointer.
+
+ @param Xhc The XHCI Instance.
+ @param TrsRing The transfer ring to sync.
+
+ @retval EFI_SUCCESS The transfer ring is synchronized successfully.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSyncTrsRing (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN TRANSFER_RING *TrsRing
+ )
+{
+ UINTN Index;
+ TRB_TEMPLATE *TrsTrb;
+
+ ASSERT (TrsRing != NULL);
+ //
+ // Calculate the latest RingEnqueue and RingPCS
+ //
+ TrsTrb = TrsRing->RingEnqueue;
+ ASSERT (TrsTrb != NULL);
+
+ for (Index = 0; Index < TrsRing->TrbNumber; Index++) {
+ if (TrsTrb->CycleBit != (TrsRing->RingPCS & BIT0)) {
+ break;
+ }
+ TrsTrb++;
+ if ((UINT8) TrsTrb->Type == TRB_TYPE_LINK) {
+ ASSERT (((LINK_TRB*)TrsTrb)->TC != 0);
+ //
+ // set cycle bit in Link TRB as normal
+ //
+ ((LINK_TRB*)TrsTrb)->CycleBit = TrsRing->RingPCS & BIT0;
+ //
+ // Toggle PCS maintained by software
+ //
+ TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
+ TrsTrb = (TRB_TEMPLATE *) TrsRing->RingSeg0; // Use host address
+ }
+ }
+
+ ASSERT (Index != TrsRing->TrbNumber);
+
+ if (TrsTrb != TrsRing->RingEnqueue) {
+ TrsRing->RingEnqueue = TrsTrb;
+ }
+
+ //
+ // Clear the Trb context for enqueue, but reserve the PCS bit
+ //
+ TrsTrb->Parameter1 = 0;
+ TrsTrb->Parameter2 = 0;
+ TrsTrb->Status = 0;
+ TrsTrb->RsvdZ1 = 0;
+ TrsTrb->Type = 0;
+ TrsTrb->Control = 0;
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Check if there is a new generated event.
+
+ @param Xhc The XHCI Instance.
+ @param EvtRing The event ring to check.
+ @param NewEvtTrb The new event TRB found.
+
+ @retval EFI_SUCCESS Found a new event TRB at the event ring.
+ @retval EFI_NOT_READY The event ring has no new event.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcCheckNewEvent (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN EVENT_RING *EvtRing,
+ OUT TRB_TEMPLATE **NewEvtTrb
+ )
+{
+ ASSERT (EvtRing != NULL);
+
+ *NewEvtTrb = EvtRing->EventRingDequeue;
+
+ if (EvtRing->EventRingDequeue == EvtRing->EventRingEnqueue) {
+ return EFI_NOT_READY;
+ }
+
+ EvtRing->EventRingDequeue++;
+ //
+ // If the dequeue pointer is beyond the ring, then roll-back it to the begining of the ring.
+ //
+ if ((UINTN)EvtRing->EventRingDequeue >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) {
+ EvtRing->EventRingDequeue = EvtRing->EventRingSeg0;
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Ring the door bell to notify XHCI there is a transaction to be executed.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id of the target device.
+ @param Dci The device context index of the target slot or endpoint.
+
+ @retval EFI_SUCCESS Successfully ring the door bell.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcRingDoorBell (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 Dci
+ )
+{
+ if (SlotId == 0) {
+ XhcWriteDoorBellReg (Xhc, 0, 0);
+ } else {
+ XhcWriteDoorBellReg (Xhc, SlotId * sizeof (UINT32), Dci);
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Ring the door bell to notify XHCI there is a transaction to be executed through URB.
+
+ @param Xhc The XHCI Instance.
+ @param Urb The URB to be rung.
+
+ @retval EFI_SUCCESS Successfully ring the door bell.
+
+**/
+EFI_STATUS
+RingIntTransferDoorBell (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN URB *Urb
+ )
+{
+ UINT8 SlotId;
+ UINT8 Dci;
+
+ SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
+ Dci = XhcEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction));
+ XhcRingDoorBell (Xhc, SlotId, Dci);
+ return EFI_SUCCESS;
+}
+
+/**
+ Assign and initialize the device slot for a new device.
+
+ @param Xhc The XHCI Instance.
+ @param ParentRouteChart The route string pointed to the parent device.
+ @param ParentPort The port at which the device is located.
+ @param RouteChart The route string pointed to the device.
+ @param DeviceSpeed The device speed.
+
+ @retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcInitializeDeviceSlot (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN USB_DEV_ROUTE ParentRouteChart,
+ IN UINT16 ParentPort,
+ IN USB_DEV_ROUTE RouteChart,
+ IN UINT8 DeviceSpeed
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ INPUT_CONTEXT *InputContext;
+ DEVICE_CONTEXT *OutputContext;
+ TRANSFER_RING *EndpointTransferRing;
+ CMD_TRB_ADDRESS_DEVICE CmdTrbAddr;
+ UINT8 DeviceAddress;
+ CMD_TRB_ENABLE_SLOT CmdTrb;
+ UINT8 SlotId;
+ UINT8 ParentSlotId;
+ DEVICE_CONTEXT *ParentDeviceContext;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
+ CmdTrb.CycleBit = 1;
+ CmdTrb.Type = TRB_TYPE_EN_SLOT;
+
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrb,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcInitializeDeviceSlot: Enable Slot Failed, Status = %r\n", Status));
+ return Status;
+ }
+ ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
+ DEBUG ((EFI_D_INFO, "Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
+ SlotId = (UINT8)EvtTrb->SlotId;
+ ASSERT (SlotId != 0);
+
+ ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
+ Xhc->UsbDevContext[SlotId].Enabled = TRUE;
+ Xhc->UsbDevContext[SlotId].SlotId = SlotId;
+ Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
+ Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
+
+ //
+ // 4.3.3 Device Slot Initialization
+ // 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
+ //
+ InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT));
+ ASSERT (InputContext != NULL);
+ ASSERT (((UINTN) InputContext & 0x3F) == 0);
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
+
+ Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
+
+ //
+ // 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
+ // flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
+ // Context are affected by the command.
+ //
+ InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
+
+ //
+ // 3) Initialize the Input Slot Context data structure
+ //
+ InputContext->Slot.RouteString = RouteChart.Route.RouteString;
+ InputContext->Slot.Speed = DeviceSpeed + 1;
+ InputContext->Slot.ContextEntries = 1;
+ InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum;
+
+ if (RouteChart.Route.RouteString) {
+ //
+ // The device is behind of hub device.
+ //
+ ParentSlotId = XhcRouteStringToSlotId(Xhc, ParentRouteChart);
+ ASSERT (ParentSlotId != 0);
+ //
+ //if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context
+ //
+ ParentDeviceContext = (DEVICE_CONTEXT *)Xhc->UsbDevContext[ParentSlotId].OutputContext;
+ if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
+ (ParentDeviceContext->Slot.TTHubSlotId == 0)) {
+ if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
+ //
+ // Full/Low device attached to High speed hub port that isolates the high speed signaling
+ // environment from Full/Low speed signaling environment for a device
+ //
+ InputContext->Slot.TTPortNum = ParentPort;
+ InputContext->Slot.TTHubSlotId = ParentSlotId;
+ }
+ } else {
+ //
+ // Inherit the TT parameters from parent device.
+ //
+ InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
+ InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
+ //
+ // If the device is a High speed device then down the speed to be the same as its parent Hub
+ //
+ if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
+ InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
+ }
+ }
+ }
+
+ //
+ // 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
+ //
+ EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
+ CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]);
+ //
+ // 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
+ //
+ InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
+
+ if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
+ InputContext->EP[0].MaxPacketSize = 512;
+ } else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
+ InputContext->EP[0].MaxPacketSize = 64;
+ } else {
+ InputContext->EP[0].MaxPacketSize = 8;
+ }
+ //
+ // Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
+ // 1KB, and Bulk and Isoch endpoints 3KB.
+ //
+ InputContext->EP[0].AverageTRBLength = 8;
+ InputContext->EP[0].MaxBurstSize = 0;
+ InputContext->EP[0].Interval = 0;
+ InputContext->EP[0].MaxPStreams = 0;
+ InputContext->EP[0].Mult = 0;
+ InputContext->EP[0].CErr = 3;
+
+ //
+ // Init the DCS(dequeue cycle state) as the transfer ring's CCS
+ //
+ PhyAddr = UsbHcGetPciAddrForHostAddr (
+ Xhc->MemPool,
+ ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
+ sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
+ );
+ InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
+ InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
+
+ //
+ // 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
+ //
+ OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT));
+ ASSERT (OutputContext != NULL);
+ ASSERT (((UINTN) OutputContext & 0x3F) == 0);
+ ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT));
+
+ Xhc->UsbDevContext[SlotId].OutputContext = OutputContext;
+ //
+ // 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
+ // a pointer to the Output Device Context data structure (6.2.1).
+ //
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT));
+ //
+ // Fill DCBAA with PCI device address
+ //
+ Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
+
+ //
+ // 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
+ // Context data structure described above.
+ //
+ // Delay 10ms to meet TRSTRCY delay requirement in usb 2.0 spec chapter 7.1.7.5 before sending SetAddress() request
+ // to device.
+ //
+ gBS->Stall (XHC_RESET_RECOVERY_DELAY);
+ ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
+ CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbAddr.CycleBit = 1;
+ CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
+ CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbAddr,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (!EFI_ERROR (Status)) {
+ DeviceAddress = (UINT8) ((DEVICE_CONTEXT *) OutputContext)->Slot.DeviceAddress;
+ DEBUG ((EFI_D_INFO, " Address %d assigned successfully\n", DeviceAddress));
+ Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
+ }
+
+ return Status;
+}
+
+/**
+ Assign and initialize the device slot for a new device.
+
+ @param Xhc The XHCI Instance.
+ @param ParentRouteChart The route string pointed to the parent device.
+ @param ParentPort The port at which the device is located.
+ @param RouteChart The route string pointed to the device.
+ @param DeviceSpeed The device speed.
+
+ @retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcInitializeDeviceSlot64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN USB_DEV_ROUTE ParentRouteChart,
+ IN UINT16 ParentPort,
+ IN USB_DEV_ROUTE RouteChart,
+ IN UINT8 DeviceSpeed
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ INPUT_CONTEXT_64 *InputContext;
+ DEVICE_CONTEXT_64 *OutputContext;
+ TRANSFER_RING *EndpointTransferRing;
+ CMD_TRB_ADDRESS_DEVICE CmdTrbAddr;
+ UINT8 DeviceAddress;
+ CMD_TRB_ENABLE_SLOT CmdTrb;
+ UINT8 SlotId;
+ UINT8 ParentSlotId;
+ DEVICE_CONTEXT_64 *ParentDeviceContext;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
+ CmdTrb.CycleBit = 1;
+ CmdTrb.Type = TRB_TYPE_EN_SLOT;
+
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrb,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcInitializeDeviceSlot64: Enable Slot Failed, Status = %r\n", Status));
+ return Status;
+ }
+ ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn);
+ DEBUG ((EFI_D_INFO, "Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId));
+ SlotId = (UINT8)EvtTrb->SlotId;
+ ASSERT (SlotId != 0);
+
+ ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT));
+ Xhc->UsbDevContext[SlotId].Enabled = TRUE;
+ Xhc->UsbDevContext[SlotId].SlotId = SlotId;
+ Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword;
+ Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword;
+
+ //
+ // 4.3.3 Device Slot Initialization
+ // 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
+ //
+ InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT_64));
+ ASSERT (InputContext != NULL);
+ ASSERT (((UINTN) InputContext & 0x3F) == 0);
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
+
+ Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext;
+
+ //
+ // 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1
+ // flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input
+ // Context are affected by the command.
+ //
+ InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1);
+
+ //
+ // 3) Initialize the Input Slot Context data structure
+ //
+ InputContext->Slot.RouteString = RouteChart.Route.RouteString;
+ InputContext->Slot.Speed = DeviceSpeed + 1;
+ InputContext->Slot.ContextEntries = 1;
+ InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum;
+
+ if (RouteChart.Route.RouteString) {
+ //
+ // The device is behind of hub device.
+ //
+ ParentSlotId = XhcRouteStringToSlotId(Xhc, ParentRouteChart);
+ ASSERT (ParentSlotId != 0);
+ //
+ //if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context
+ //
+ ParentDeviceContext = (DEVICE_CONTEXT_64 *)Xhc->UsbDevContext[ParentSlotId].OutputContext;
+ if ((ParentDeviceContext->Slot.TTPortNum == 0) &&
+ (ParentDeviceContext->Slot.TTHubSlotId == 0)) {
+ if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) {
+ //
+ // Full/Low device attached to High speed hub port that isolates the high speed signaling
+ // environment from Full/Low speed signaling environment for a device
+ //
+ InputContext->Slot.TTPortNum = ParentPort;
+ InputContext->Slot.TTHubSlotId = ParentSlotId;
+ }
+ } else {
+ //
+ // Inherit the TT parameters from parent device.
+ //
+ InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum;
+ InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId;
+ //
+ // If the device is a High speed device then down the speed to be the same as its parent Hub
+ //
+ if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
+ InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed;
+ }
+ }
+ }
+
+ //
+ // 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint.
+ //
+ EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING));
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing;
+ CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]);
+ //
+ // 5) Initialize the Input default control Endpoint 0 Context (6.2.3).
+ //
+ InputContext->EP[0].EPType = ED_CONTROL_BIDIR;
+
+ if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
+ InputContext->EP[0].MaxPacketSize = 512;
+ } else if (DeviceSpeed == EFI_USB_SPEED_HIGH) {
+ InputContext->EP[0].MaxPacketSize = 64;
+ } else {
+ InputContext->EP[0].MaxPacketSize = 8;
+ }
+ //
+ // Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints
+ // 1KB, and Bulk and Isoch endpoints 3KB.
+ //
+ InputContext->EP[0].AverageTRBLength = 8;
+ InputContext->EP[0].MaxBurstSize = 0;
+ InputContext->EP[0].Interval = 0;
+ InputContext->EP[0].MaxPStreams = 0;
+ InputContext->EP[0].Mult = 0;
+ InputContext->EP[0].CErr = 3;
+
+ //
+ // Init the DCS(dequeue cycle state) as the transfer ring's CCS
+ //
+ PhyAddr = UsbHcGetPciAddrForHostAddr (
+ Xhc->MemPool,
+ ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
+ sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
+ );
+ InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
+ InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
+
+ //
+ // 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
+ //
+ OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT_64));
+ ASSERT (OutputContext != NULL);
+ ASSERT (((UINTN) OutputContext & 0x3F) == 0);
+ ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64));
+
+ Xhc->UsbDevContext[SlotId].OutputContext = OutputContext;
+ //
+ // 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
+ // a pointer to the Output Device Context data structure (6.2.1).
+ //
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT_64));
+ //
+ // Fill DCBAA with PCI device address
+ //
+ Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
+
+ //
+ // 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
+ // Context data structure described above.
+ //
+ // Delay 10ms to meet TRSTRCY delay requirement in usb 2.0 spec chapter 7.1.7.5 before sending SetAddress() request
+ // to device.
+ //
+ gBS->Stall (XHC_RESET_RECOVERY_DELAY);
+ ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
+ CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbAddr.CycleBit = 1;
+ CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
+ CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbAddr,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (!EFI_ERROR (Status)) {
+ DeviceAddress = (UINT8) ((DEVICE_CONTEXT_64 *) OutputContext)->Slot.DeviceAddress;
+ DEBUG ((EFI_D_INFO, " Address %d assigned successfully\n", DeviceAddress));
+ Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress;
+ }
+ return Status;
+}
+
+
+/**
+ Disable the specified device slot.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be disabled.
+
+ @retval EFI_SUCCESS Successfully disable the device slot.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcDisableSlotCmd (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId
+ )
+{
+ EFI_STATUS Status;
+ TRB_TEMPLATE *EvtTrb;
+ CMD_TRB_DISABLE_SLOT CmdTrbDisSlot;
+ UINT8 Index;
+ VOID *RingSeg;
+
+ //
+ // Disable the device slots occupied by these devices on its downstream ports.
+ // Entry 0 is reserved.
+ //
+ for (Index = 0; Index < 255; Index++) {
+ if (!Xhc->UsbDevContext[Index + 1].Enabled ||
+ (Xhc->UsbDevContext[Index + 1].SlotId == 0) ||
+ (Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) {
+ continue;
+ }
+
+ Status = XhcDisableSlotCmd (Xhc, Xhc->UsbDevContext[Index + 1].SlotId);
+
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: failed to disable child, ignore error\n"));
+ Xhc->UsbDevContext[Index + 1].SlotId = 0;
+ }
+ }
+
+ //
+ // Construct the disable slot command
+ //
+ DEBUG ((EFI_D_INFO, "Disable device slot %d!\n", SlotId));
+
+ ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
+ CmdTrbDisSlot.CycleBit = 1;
+ CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
+ CmdTrbDisSlot.SlotId = SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: Disable Slot Command Failed, Status = %r\n", Status));
+ return Status;
+ }
+ //
+ // Free the slot's device context entry
+ //
+ Xhc->DCBAA[SlotId] = 0;
+
+ //
+ // Free the slot related data structure
+ //
+ for (Index = 0; Index < 31; Index++) {
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
+ RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
+ if (RingSeg != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
+ }
+ FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
+ }
+ }
+
+ for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
+ if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
+ FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]);
+ }
+ }
+
+ if (Xhc->UsbDevContext[SlotId].ActiveAlternateSetting != NULL) {
+ FreePool (Xhc->UsbDevContext[SlotId].ActiveAlternateSetting);
+ }
+
+ if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
+ }
+
+ if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT));
+ }
+ //
+ // Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
+ // asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
+ // remove urb from XHCI's asynchronous transfer list.
+ //
+ Xhc->UsbDevContext[SlotId].Enabled = FALSE;
+ Xhc->UsbDevContext[SlotId].SlotId = 0;
+
+ return Status;
+}
+
+/**
+ Disable the specified device slot.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be disabled.
+
+ @retval EFI_SUCCESS Successfully disable the device slot.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcDisableSlotCmd64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId
+ )
+{
+ EFI_STATUS Status;
+ TRB_TEMPLATE *EvtTrb;
+ CMD_TRB_DISABLE_SLOT CmdTrbDisSlot;
+ UINT8 Index;
+ VOID *RingSeg;
+
+ //
+ // Disable the device slots occupied by these devices on its downstream ports.
+ // Entry 0 is reserved.
+ //
+ for (Index = 0; Index < 255; Index++) {
+ if (!Xhc->UsbDevContext[Index + 1].Enabled ||
+ (Xhc->UsbDevContext[Index + 1].SlotId == 0) ||
+ (Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) {
+ continue;
+ }
+
+ Status = XhcDisableSlotCmd64 (Xhc, Xhc->UsbDevContext[Index + 1].SlotId);
+
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: failed to disable child, ignore error\n"));
+ Xhc->UsbDevContext[Index + 1].SlotId = 0;
+ }
+ }
+
+ //
+ // Construct the disable slot command
+ //
+ DEBUG ((EFI_D_INFO, "Disable device slot %d!\n", SlotId));
+
+ ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot));
+ CmdTrbDisSlot.CycleBit = 1;
+ CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT;
+ CmdTrbDisSlot.SlotId = SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcDisableSlotCmd: Disable Slot Command Failed, Status = %r\n", Status));
+ return Status;
+ }
+ //
+ // Free the slot's device context entry
+ //
+ Xhc->DCBAA[SlotId] = 0;
+
+ //
+ // Free the slot related data structure
+ //
+ for (Index = 0; Index < 31; Index++) {
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
+ RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
+ if (RingSeg != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
+ }
+ FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
+ }
+ }
+
+ for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) {
+ if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) {
+ FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]);
+ }
+ }
+
+ if (Xhc->UsbDevContext[SlotId].ActiveAlternateSetting != NULL) {
+ FreePool (Xhc->UsbDevContext[SlotId].ActiveAlternateSetting);
+ }
+
+ if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
+ }
+
+ if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT_64));
+ }
+ //
+ // Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
+ // asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to
+ // remove urb from XHCI's asynchronous transfer list.
+ //
+ Xhc->UsbDevContext[SlotId].Enabled = FALSE;
+ Xhc->UsbDevContext[SlotId].SlotId = 0;
+
+ return Status;
+}
+
+/**
+ Initialize endpoint context in input context.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param DeviceSpeed The device's speed.
+ @param InputContext The pointer to the input context.
+ @param IfDesc The pointer to the usb device interface descriptor.
+
+ @return The maximum device context index of endpoint.
+
+**/
+UINT8
+EFIAPI
+XhcInitializeEndpointContext (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 DeviceSpeed,
+ IN INPUT_CONTEXT *InputContext,
+ IN USB_INTERFACE_DESCRIPTOR *IfDesc
+ )
+{
+ USB_ENDPOINT_DESCRIPTOR *EpDesc;
+ UINTN NumEp;
+ UINTN EpIndex;
+ UINT8 EpAddr;
+ UINT8 Direction;
+ UINT8 Dci;
+ UINT8 MaxDci;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+ UINT8 Interval;
+ TRANSFER_RING *EndpointTransferRing;
+
+ MaxDci = 0;
+
+ NumEp = IfDesc->NumEndpoints;
+
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)(IfDesc + 1);
+ for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
+ while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ if (EpDesc->Length < sizeof (USB_ENDPOINT_DESCRIPTOR)) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ }
+
+ EpAddr = (UINT8)(EpDesc->EndpointAddress & 0x0F);
+ Direction = (UINT8)((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
+
+ Dci = XhcEndpointToDci (EpAddr, Direction);
+ ASSERT (Dci < 32);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+
+ InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
+ InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
+
+ if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
+ //
+ // 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
+ //
+ InputContext->EP[Dci-1].MaxBurstSize = 0x0;
+ } else {
+ InputContext->EP[Dci-1].MaxBurstSize = 0x0;
+ }
+
+ switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
+ case USB_ENDPOINT_BULK:
+ if (Direction == EfiUsbDataIn) {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_BULK_IN;
+ } else {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
+ }
+
+ InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
+ EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
+ CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
+ DEBUG ((DEBUG_INFO, "Endpoint[%x]: Created BULK ring [%p~%p)\n",
+ EpDesc->EndpointAddress,
+ EndpointTransferRing->RingSeg0,
+ (UINTN) EndpointTransferRing->RingSeg0 + TR_RING_TRB_NUMBER * sizeof (TRB_TEMPLATE)
+ ));
+ }
+
+ break;
+ case USB_ENDPOINT_ISO:
+ if (Direction == EfiUsbDataIn) {
+ InputContext->EP[Dci-1].CErr = 0;
+ InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
+ } else {
+ InputContext->EP[Dci-1].CErr = 0;
+ InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
+ }
+ //
+ // Get the bInterval from descriptor and init the the interval field of endpoint context.
+ // Refer to XHCI 1.1 spec section 6.2.3.6.
+ //
+ if (DeviceSpeed == EFI_USB_SPEED_FULL) {
+ Interval = EpDesc->Interval;
+ ASSERT (Interval >= 1 && Interval <= 16);
+ InputContext->EP[Dci-1].Interval = Interval + 2;
+ } else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
+ Interval = EpDesc->Interval;
+ ASSERT (Interval >= 1 && Interval <= 16);
+ InputContext->EP[Dci-1].Interval = Interval - 1;
+ }
+
+ //
+ // Do not support isochronous transfer now.
+ //
+ DEBUG ((EFI_D_INFO, "XhcInitializeEndpointContext: Unsupport ISO EP found, Transfer ring is not allocated.\n"));
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ case USB_ENDPOINT_INTERRUPT:
+ if (Direction == EfiUsbDataIn) {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
+ } else {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
+ }
+ InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
+ InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
+ //
+ // Get the bInterval from descriptor and init the the interval field of endpoint context
+ //
+ if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
+ Interval = EpDesc->Interval;
+ //
+ // Calculate through the bInterval field of Endpoint descriptor.
+ //
+ ASSERT (Interval != 0);
+ InputContext->EP[Dci-1].Interval = (UINT32)HighBitSet32((UINT32)Interval) + 3;
+ } else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
+ Interval = EpDesc->Interval;
+ ASSERT (Interval >= 1 && Interval <= 16);
+ //
+ // Refer to XHCI 1.0 spec section 6.2.3.6, table 61
+ //
+ InputContext->EP[Dci-1].Interval = Interval - 1;
+ InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
+ InputContext->EP[Dci-1].MaxESITPayload = 0x0002;
+ InputContext->EP[Dci-1].MaxBurstSize = 0x0;
+ InputContext->EP[Dci-1].CErr = 3;
+ }
+
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
+ EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
+ CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
+ DEBUG ((DEBUG_INFO, "Endpoint[%x]: Created INT ring [%p~%p)\n",
+ EpDesc->EndpointAddress,
+ EndpointTransferRing->RingSeg0,
+ (UINTN) EndpointTransferRing->RingSeg0 + TR_RING_TRB_NUMBER * sizeof (TRB_TEMPLATE)
+ ));
+ }
+ break;
+
+ case USB_ENDPOINT_CONTROL:
+ //
+ // Do not support control transfer now.
+ //
+ DEBUG ((EFI_D_INFO, "XhcInitializeEndpointContext: Unsupport Control EP found, Transfer ring is not allocated.\n"));
+ default:
+ DEBUG ((EFI_D_INFO, "XhcInitializeEndpointContext: Unknown EP found, Transfer ring is not allocated.\n"));
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ }
+
+ PhyAddr = UsbHcGetPciAddrForHostAddr (
+ Xhc->MemPool,
+ ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
+ sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
+ );
+ PhyAddr &= ~((EFI_PHYSICAL_ADDRESS)0x0F);
+ PhyAddr |= (EFI_PHYSICAL_ADDRESS)((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
+ InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
+ InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
+
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ return MaxDci;
+}
+
+/**
+ Initialize endpoint context in input context.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param DeviceSpeed The device's speed.
+ @param InputContext The pointer to the input context.
+ @param IfDesc The pointer to the usb device interface descriptor.
+
+ @return The maximum device context index of endpoint.
+
+**/
+UINT8
+EFIAPI
+XhcInitializeEndpointContext64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 DeviceSpeed,
+ IN INPUT_CONTEXT_64 *InputContext,
+ IN USB_INTERFACE_DESCRIPTOR *IfDesc
+ )
+{
+ USB_ENDPOINT_DESCRIPTOR *EpDesc;
+ UINTN NumEp;
+ UINTN EpIndex;
+ UINT8 EpAddr;
+ UINT8 Direction;
+ UINT8 Dci;
+ UINT8 MaxDci;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+ UINT8 Interval;
+ TRANSFER_RING *EndpointTransferRing;
+
+ MaxDci = 0;
+
+ NumEp = IfDesc->NumEndpoints;
+
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)(IfDesc + 1);
+ for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
+ while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ if (EpDesc->Length < sizeof (USB_ENDPOINT_DESCRIPTOR)) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ }
+
+ EpAddr = (UINT8)(EpDesc->EndpointAddress & 0x0F);
+ Direction = (UINT8)((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
+
+ Dci = XhcEndpointToDci (EpAddr, Direction);
+ ASSERT (Dci < 32);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+
+ InputContext->InputControlContext.Dword2 |= (BIT0 << Dci);
+ InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize;
+
+ if (DeviceSpeed == EFI_USB_SPEED_SUPER) {
+ //
+ // 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor.
+ //
+ InputContext->EP[Dci-1].MaxBurstSize = 0x0;
+ } else {
+ InputContext->EP[Dci-1].MaxBurstSize = 0x0;
+ }
+
+ switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) {
+ case USB_ENDPOINT_BULK:
+ if (Direction == EfiUsbDataIn) {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_BULK_IN;
+ } else {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_BULK_OUT;
+ }
+
+ InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
+ EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
+ CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
+ DEBUG ((DEBUG_INFO, "Endpoint64[%x]: Created BULK ring [%p~%p)\n",
+ EpDesc->EndpointAddress,
+ EndpointTransferRing->RingSeg0,
+ (UINTN) EndpointTransferRing->RingSeg0 + TR_RING_TRB_NUMBER * sizeof (TRB_TEMPLATE)
+ ));
+ }
+
+ break;
+ case USB_ENDPOINT_ISO:
+ if (Direction == EfiUsbDataIn) {
+ InputContext->EP[Dci-1].CErr = 0;
+ InputContext->EP[Dci-1].EPType = ED_ISOCH_IN;
+ } else {
+ InputContext->EP[Dci-1].CErr = 0;
+ InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT;
+ }
+ //
+ // Get the bInterval from descriptor and init the the interval field of endpoint context.
+ // Refer to XHCI 1.1 spec section 6.2.3.6.
+ //
+ if (DeviceSpeed == EFI_USB_SPEED_FULL) {
+ Interval = EpDesc->Interval;
+ ASSERT (Interval >= 1 && Interval <= 16);
+ InputContext->EP[Dci-1].Interval = Interval + 2;
+ } else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
+ Interval = EpDesc->Interval;
+ ASSERT (Interval >= 1 && Interval <= 16);
+ InputContext->EP[Dci-1].Interval = Interval - 1;
+ }
+
+ //
+ // Do not support isochronous transfer now.
+ //
+ DEBUG ((EFI_D_INFO, "XhcInitializeEndpointContext64: Unsupport ISO EP found, Transfer ring is not allocated.\n"));
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ case USB_ENDPOINT_INTERRUPT:
+ if (Direction == EfiUsbDataIn) {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN;
+ } else {
+ InputContext->EP[Dci-1].CErr = 3;
+ InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT;
+ }
+ InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
+ InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize;
+ //
+ // Get the bInterval from descriptor and init the the interval field of endpoint context
+ //
+ if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) {
+ Interval = EpDesc->Interval;
+ //
+ // Calculate through the bInterval field of Endpoint descriptor.
+ //
+ ASSERT (Interval != 0);
+ InputContext->EP[Dci-1].Interval = (UINT32)HighBitSet32((UINT32)Interval) + 3;
+ } else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) {
+ Interval = EpDesc->Interval;
+ ASSERT (Interval >= 1 && Interval <= 16);
+ //
+ // Refer to XHCI 1.0 spec section 6.2.3.6, table 61
+ //
+ InputContext->EP[Dci-1].Interval = Interval - 1;
+ InputContext->EP[Dci-1].AverageTRBLength = 0x1000;
+ InputContext->EP[Dci-1].MaxESITPayload = 0x0002;
+ InputContext->EP[Dci-1].MaxBurstSize = 0x0;
+ InputContext->EP[Dci-1].CErr = 3;
+ }
+
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) {
+ EndpointTransferRing = AllocateZeroPool(sizeof (TRANSFER_RING));
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing;
+ CreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]);
+ DEBUG ((DEBUG_INFO, "Endpoint64[%x]: Created INT ring [%p~%p)\n",
+ EpDesc->EndpointAddress,
+ EndpointTransferRing->RingSeg0,
+ (UINTN) EndpointTransferRing->RingSeg0 + TR_RING_TRB_NUMBER * sizeof (TRB_TEMPLATE)
+ ));
+ }
+ break;
+
+ case USB_ENDPOINT_CONTROL:
+ //
+ // Do not support control transfer now.
+ //
+ DEBUG ((EFI_D_INFO, "XhcInitializeEndpointContext64: Unsupport Control EP found, Transfer ring is not allocated.\n"));
+ default:
+ DEBUG ((EFI_D_INFO, "XhcInitializeEndpointContext64: Unknown EP found, Transfer ring is not allocated.\n"));
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ }
+
+ PhyAddr = UsbHcGetPciAddrForHostAddr (
+ Xhc->MemPool,
+ ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
+ sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
+ );
+ PhyAddr &= ~((EFI_PHYSICAL_ADDRESS)0x0F);
+ PhyAddr |= (EFI_PHYSICAL_ADDRESS)((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
+ InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
+ InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
+
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ return MaxDci;
+}
+
+/**
+ Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param DeviceSpeed The device's speed.
+ @param ConfigDesc The pointer to the usb device configuration descriptor.
+
+ @retval EFI_SUCCESS Successfully configure all the device endpoints.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSetConfigCmd (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 DeviceSpeed,
+ IN USB_CONFIG_DESCRIPTOR *ConfigDesc
+ )
+{
+ EFI_STATUS Status;
+ USB_INTERFACE_DESCRIPTOR *IfDesc;
+ UINT8 Index;
+ UINT8 Dci;
+ UINT8 MaxDci;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
+ INPUT_CONTEXT *InputContext;
+ DEVICE_CONTEXT *OutputContext;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ //
+ // 4.6.6 Configure Endpoint
+ //
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
+ CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT));
+
+ ASSERT (ConfigDesc != NULL);
+
+ MaxDci = 0;
+
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
+ for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
+ while ((IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) || (IfDesc->AlternateSetting != 0)) {
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ }
+
+ if (IfDesc->Length < sizeof (USB_INTERFACE_DESCRIPTOR)) {
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ continue;
+ }
+
+ Dci = XhcInitializeEndpointContext (Xhc, SlotId, DeviceSpeed, InputContext, IfDesc);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ }
+
+ InputContext->InputControlContext.Dword2 |= BIT0;
+ InputContext->Slot.ContextEntries = MaxDci;
+ //
+ // configure endpoint
+ //
+ ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
+ CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbCfgEP.CycleBit = 1;
+ CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
+ CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "Configure Endpoint\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcSetConfigCmd: Config Endpoint Failed, Status = %r\n", Status));
+ } else {
+ Xhc->UsbDevContext[SlotId].ActiveConfiguration = ConfigDesc->ConfigurationValue;
+ }
+
+ return Status;
+}
+
+/**
+ Configure all the device endpoints through XHCI's Configure_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param DeviceSpeed The device's speed.
+ @param ConfigDesc The pointer to the usb device configuration descriptor.
+
+ @retval EFI_SUCCESS Successfully configure all the device endpoints.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSetConfigCmd64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 DeviceSpeed,
+ IN USB_CONFIG_DESCRIPTOR *ConfigDesc
+ )
+{
+ EFI_STATUS Status;
+ USB_INTERFACE_DESCRIPTOR *IfDesc;
+ UINT8 Index;
+ UINT8 Dci;
+ UINT8 MaxDci;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
+ INPUT_CONTEXT_64 *InputContext;
+ DEVICE_CONTEXT_64 *OutputContext;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ //
+ // 4.6.6 Configure Endpoint
+ //
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
+ CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT_64));
+
+ ASSERT (ConfigDesc != NULL);
+
+ MaxDci = 0;
+
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
+ for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) {
+ while ((IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) || (IfDesc->AlternateSetting != 0)) {
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ }
+
+ if (IfDesc->Length < sizeof (USB_INTERFACE_DESCRIPTOR)) {
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ continue;
+ }
+
+ Dci = XhcInitializeEndpointContext64 (Xhc, SlotId, DeviceSpeed, InputContext, IfDesc);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ }
+
+ InputContext->InputControlContext.Dword2 |= BIT0;
+ InputContext->Slot.ContextEntries = MaxDci;
+ //
+ // configure endpoint
+ //
+ ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
+ CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbCfgEP.CycleBit = 1;
+ CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
+ CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "Configure Endpoint\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcSetConfigCmd64: Config Endpoint Failed, Status = %r\n", Status));
+ } else {
+ Xhc->UsbDevContext[SlotId].ActiveConfiguration = ConfigDesc->ConfigurationValue;
+ }
+
+ return Status;
+}
+
+/**
+ Stop endpoint through XHCI's Stop_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param Dci The device context index of endpoint.
+ @param PendingUrb The pending URB to check completion status when stopping the end point.
+
+ @retval EFI_SUCCESS Stop endpoint successfully.
+ @retval Others Failed to stop endpoint.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcStopEndpoint (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 Dci,
+ IN URB *PendingUrb OPTIONAL
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ CMD_TRB_STOP_ENDPOINT CmdTrbStopED;
+
+ DEBUG ((EFI_D_INFO, "XhcStopEndpoint: Slot = 0x%x, Dci = 0x%x\n", SlotId, Dci));
+
+ //
+ // When XhcCheckUrbResult waits for the Stop_Endpoint completion, it also checks
+ // the PendingUrb completion status, because it's possible that the PendingUrb is
+ // finished just before stopping the end point, but after the looping check.
+ //
+ // The PendingUrb could be passed to XhcCmdTransfer to XhcExecTransfer to XhcCheckUrbResult
+ // through function parameter, but That will cause every consumer of XhcCmdTransfer,
+ // XhcExecTransfer and XhcCheckUrbResult pass a NULL PendingUrb.
+ // But actually only XhcCheckUrbResult is aware of the PendingUrb.
+ // So we choose to save the PendingUrb into the USB_XHCI_INSTANCE and use it in XhcCheckUrbResult.
+ //
+ ASSERT (Xhc->PendingUrb == NULL);
+ Xhc->PendingUrb = PendingUrb;
+ //
+ // Reset the URB result from Timeout to NoError.
+ // The USB result will be:
+ // changed to Timeout when Stop/StopInvalidLength Transfer Event is received, or
+ // remain NoError when Success/ShortPacket Transfer Event is received.
+ //
+ if (PendingUrb != NULL) {
+ PendingUrb->Result = EFI_USB_NOERROR;
+ }
+
+ //
+ // Send stop endpoint command to transit Endpoint from running to stop state
+ //
+ ZeroMem (&CmdTrbStopED, sizeof (CmdTrbStopED));
+ CmdTrbStopED.CycleBit = 1;
+ CmdTrbStopED.Type = TRB_TYPE_STOP_ENDPOINT;
+ CmdTrbStopED.EDID = Dci;
+ CmdTrbStopED.SlotId = SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbStopED,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR(Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcStopEndpoint: Stop Endpoint Failed, Status = %r\n", Status));
+ }
+
+ Xhc->PendingUrb = NULL;
+
+ return Status;
+}
+
+/**
+ Reset endpoint through XHCI's Reset_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param Dci The device context index of endpoint.
+
+ @retval EFI_SUCCESS Reset endpoint successfully.
+ @retval Others Failed to reset endpoint.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcResetEndpoint (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 Dci
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ CMD_TRB_RESET_ENDPOINT CmdTrbResetED;
+
+ DEBUG ((EFI_D_INFO, "XhcResetEndpoint: Slot = 0x%x, Dci = 0x%x\n", SlotId, Dci));
+
+ //
+ // Send stop endpoint command to transit Endpoint from running to stop state
+ //
+ ZeroMem (&CmdTrbResetED, sizeof (CmdTrbResetED));
+ CmdTrbResetED.CycleBit = 1;
+ CmdTrbResetED.Type = TRB_TYPE_RESET_ENDPOINT;
+ CmdTrbResetED.EDID = Dci;
+ CmdTrbResetED.SlotId = SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbResetED,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR(Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcResetEndpoint: Reset Endpoint Failed, Status = %r\n", Status));
+ }
+
+ return Status;
+}
+
+/**
+ Set transfer ring dequeue pointer through XHCI's Set_Tr_Dequeue_Pointer cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param Dci The device context index of endpoint.
+ @param Urb The dequeue pointer of the transfer ring specified
+ by the urb to be updated.
+
+ @retval EFI_SUCCESS Set transfer ring dequeue pointer succeeds.
+ @retval Others Failed to set transfer ring dequeue pointer.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSetTrDequeuePointer (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 Dci,
+ IN URB *Urb
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ CMD_SET_TR_DEQ_POINTER CmdSetTRDeq;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ DEBUG ((EFI_D_INFO, "XhcSetTrDequeuePointer: Slot = 0x%x, Dci = 0x%x, Urb = 0x%x\n", SlotId, Dci, Urb));
+
+ //
+ // Send stop endpoint command to transit Endpoint from running to stop state
+ //
+ ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Urb->Ring->RingEnqueue, sizeof (CMD_SET_TR_DEQ_POINTER));
+ CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (PhyAddr) | Urb->Ring->RingPCS;
+ CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdSetTRDeq.CycleBit = 1;
+ CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
+ CmdSetTRDeq.Endpoint = Dci;
+ CmdSetTRDeq.SlotId = SlotId;
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdSetTRDeq,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR(Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcSetTrDequeuePointer: Set TR Dequeue Pointer Failed, Status = %r\n", Status));
+ }
+
+ return Status;
+}
+
+/**
+ Set interface through XHCI's Configure_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param DeviceSpeed The device's speed.
+ @param ConfigDesc The pointer to the usb device configuration descriptor.
+ @param Request USB device request to send.
+
+ @retval EFI_SUCCESS Successfully set interface.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSetInterface (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 DeviceSpeed,
+ IN USB_CONFIG_DESCRIPTOR *ConfigDesc,
+ IN EFI_USB_DEVICE_REQUEST *Request
+ )
+{
+ EFI_STATUS Status;
+ USB_INTERFACE_DESCRIPTOR *IfDescActive;
+ USB_INTERFACE_DESCRIPTOR *IfDescSet;
+ USB_INTERFACE_DESCRIPTOR *IfDesc;
+ USB_ENDPOINT_DESCRIPTOR *EpDesc;
+ UINTN NumEp;
+ UINTN EpIndex;
+ UINT8 EpAddr;
+ UINT8 Direction;
+ UINT8 Dci;
+ UINT8 MaxDci;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+ VOID *RingSeg;
+
+ CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
+ INPUT_CONTEXT *InputContext;
+ DEVICE_CONTEXT *OutputContext;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+
+ Status = EFI_SUCCESS;
+
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+ //
+ // XHCI 4.6.6 Configure Endpoint
+ // When this command is used to "Set an Alternate Interface on a device", software shall set the Drop
+ // Context and Add Context flags as follows:
+ // 1) If an endpoint is not modified by the Alternate Interface setting, then software shall set the Drop
+ // Context and Add Context flags to '0'.
+ //
+ // Except the interface indicated by Reqeust->Index, no impact to other interfaces.
+ // So the default Drop Context and Add Context flags can be '0' to cover 1).
+ //
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
+ CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT));
+
+ ASSERT (ConfigDesc != NULL);
+
+ MaxDci = 0;
+
+ IfDescActive = NULL;
+ IfDescSet = NULL;
+
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
+ while ((UINTN) IfDesc < ((UINTN) ConfigDesc + ConfigDesc->TotalLength)) {
+ if ((IfDesc->DescriptorType == USB_DESC_TYPE_INTERFACE) && (IfDesc->Length >= sizeof (USB_INTERFACE_DESCRIPTOR))) {
+ if (IfDesc->InterfaceNumber == (UINT8) Request->Index) {
+ if (IfDesc->AlternateSetting == Xhc->UsbDevContext[SlotId].ActiveAlternateSetting[IfDesc->InterfaceNumber]) {
+ //
+ // Find out the active interface descriptor.
+ //
+ IfDescActive = IfDesc;
+ } else if (IfDesc->AlternateSetting == (UINT8) Request->Value) {
+ //
+ // Find out the interface descriptor to set.
+ //
+ IfDescSet = IfDesc;
+ }
+ }
+ }
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ }
+
+ //
+ // XHCI 4.6.6 Configure Endpoint
+ // When this command is used to "Set an Alternate Interface on a device", software shall set the Drop
+ // Context and Add Context flags as follows:
+ // 2) If an endpoint previously disabled, is enabled by the Alternate Interface setting, then software shall set
+ // the Drop Context flag to '0' and Add Context flag to '1', and initialize the Input Endpoint Context.
+ // 3) If an endpoint previously enabled, is disabled by the Alternate Interface setting, then software shall set
+ // the Drop Context flag to '1' and Add Context flag to '0'.
+ // 4) If a parameter of an enabled endpoint is modified by an Alternate Interface setting, the Drop Context
+ // and Add Context flags shall be set to '1'.
+ //
+ // Below codes are to cover 2), 3) and 4).
+ //
+
+ if ((IfDescActive != NULL) && (IfDescSet != NULL)) {
+ NumEp = IfDescActive->NumEndpoints;
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *) (IfDescActive + 1);
+ for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
+ while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ if (EpDesc->Length < sizeof (USB_ENDPOINT_DESCRIPTOR)) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ }
+
+ EpAddr = (UINT8) (EpDesc->EndpointAddress & 0x0F);
+ Direction = (UINT8) ((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
+
+ Dci = XhcEndpointToDci (EpAddr, Direction);
+ ASSERT (Dci < 32);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 1) Stop any Running Transfer Rings affected by the Alternate Interface setting.
+ //
+ Status = XhcStopEndpoint (Xhc, SlotId, Dci, NULL);
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 2) Free Transfer Rings of all endpoints that will be affected by the Alternate Interface setting.
+ //
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1] != NULL) {
+ RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1])->RingSeg0;
+ if (RingSeg != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
+ }
+ FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1]);
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1] = NULL;
+ }
+
+ //
+ // Set the Drop Context flag to '1'.
+ //
+ InputContext->InputControlContext.Dword1 |= (BIT0 << Dci);
+
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 3) Clear all the Endpoint Context fields of each endpoint that will be disabled by the Alternate
+ // Interface setting, to '0'.
+ //
+ // The step 3) has been covered by the ZeroMem () to InputContext at the start of the function.
+ //
+
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 4) For each endpoint enabled by the Configure Endpoint Command:
+ // a. Allocate a Transfer Ring.
+ // b. Initialize the Transfer Ring Segment(s) by clearing all fields of all TRBs to '0'.
+ // c. Initialize the Endpoint Context data structure.
+ //
+ Dci = XhcInitializeEndpointContext (Xhc, SlotId, DeviceSpeed, InputContext, IfDescSet);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+
+ InputContext->InputControlContext.Dword2 |= BIT0;
+ InputContext->Slot.ContextEntries = MaxDci;
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 5) Issue and successfully complete a Configure Endpoint Command.
+ //
+ ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
+ CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbCfgEP.CycleBit = 1;
+ CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
+ CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "SetInterface: Configure Endpoint\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "SetInterface: Config Endpoint Failed, Status = %r\n", Status));
+ } else {
+ //
+ // Update the active AlternateSetting.
+ //
+ Xhc->UsbDevContext[SlotId].ActiveAlternateSetting[(UINT8) Request->Index] = (UINT8) Request->Value;
+ }
+ }
+
+ return Status;
+}
+
+/**
+ Set interface through XHCI's Configure_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param DeviceSpeed The device's speed.
+ @param ConfigDesc The pointer to the usb device configuration descriptor.
+ @param Request USB device request to send.
+
+ @retval EFI_SUCCESS Successfully set interface.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcSetInterface64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 DeviceSpeed,
+ IN USB_CONFIG_DESCRIPTOR *ConfigDesc,
+ IN EFI_USB_DEVICE_REQUEST *Request
+ )
+{
+ EFI_STATUS Status;
+ USB_INTERFACE_DESCRIPTOR *IfDescActive;
+ USB_INTERFACE_DESCRIPTOR *IfDescSet;
+ USB_INTERFACE_DESCRIPTOR *IfDesc;
+ USB_ENDPOINT_DESCRIPTOR *EpDesc;
+ UINTN NumEp;
+ UINTN EpIndex;
+ UINT8 EpAddr;
+ UINT8 Direction;
+ UINT8 Dci;
+ UINT8 MaxDci;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+ VOID *RingSeg;
+
+ CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
+ INPUT_CONTEXT_64 *InputContext;
+ DEVICE_CONTEXT_64 *OutputContext;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+
+ Status = EFI_SUCCESS;
+
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+ //
+ // XHCI 4.6.6 Configure Endpoint
+ // When this command is used to "Set an Alternate Interface on a device", software shall set the Drop
+ // Context and Add Context flags as follows:
+ // 1) If an endpoint is not modified by the Alternate Interface setting, then software shall set the Drop
+ // Context and Add Context flags to '0'.
+ //
+ // Except the interface indicated by Reqeust->Index, no impact to other interfaces.
+ // So the default Drop Context and Add Context flags can be '0' to cover 1).
+ //
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
+ CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT_64));
+
+ ASSERT (ConfigDesc != NULL);
+
+ MaxDci = 0;
+
+ IfDescActive = NULL;
+ IfDescSet = NULL;
+
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)(ConfigDesc + 1);
+ while ((UINTN) IfDesc < ((UINTN) ConfigDesc + ConfigDesc->TotalLength)) {
+ if ((IfDesc->DescriptorType == USB_DESC_TYPE_INTERFACE) && (IfDesc->Length >= sizeof (USB_INTERFACE_DESCRIPTOR))) {
+ if (IfDesc->InterfaceNumber == (UINT8) Request->Index) {
+ if (IfDesc->AlternateSetting == Xhc->UsbDevContext[SlotId].ActiveAlternateSetting[IfDesc->InterfaceNumber]) {
+ //
+ // Find out the active interface descriptor.
+ //
+ IfDescActive = IfDesc;
+ } else if (IfDesc->AlternateSetting == (UINT8) Request->Value) {
+ //
+ // Find out the interface descriptor to set.
+ //
+ IfDescSet = IfDesc;
+ }
+ }
+ }
+ IfDesc = (USB_INTERFACE_DESCRIPTOR *)((UINTN)IfDesc + IfDesc->Length);
+ }
+
+ //
+ // XHCI 4.6.6 Configure Endpoint
+ // When this command is used to "Set an Alternate Interface on a device", software shall set the Drop
+ // Context and Add Context flags as follows:
+ // 2) If an endpoint previously disabled, is enabled by the Alternate Interface setting, then software shall set
+ // the Drop Context flag to '0' and Add Context flag to '1', and initialize the Input Endpoint Context.
+ // 3) If an endpoint previously enabled, is disabled by the Alternate Interface setting, then software shall set
+ // the Drop Context flag to '1' and Add Context flag to '0'.
+ // 4) If a parameter of an enabled endpoint is modified by an Alternate Interface setting, the Drop Context
+ // and Add Context flags shall be set to '1'.
+ //
+ // Below codes are to cover 2), 3) and 4).
+ //
+
+ if ((IfDescActive != NULL) && (IfDescSet != NULL)) {
+ NumEp = IfDescActive->NumEndpoints;
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *) (IfDescActive + 1);
+ for (EpIndex = 0; EpIndex < NumEp; EpIndex++) {
+ while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ if (EpDesc->Length < sizeof (USB_ENDPOINT_DESCRIPTOR)) {
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ continue;
+ }
+
+ EpAddr = (UINT8) (EpDesc->EndpointAddress & 0x0F);
+ Direction = (UINT8) ((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut);
+
+ Dci = XhcEndpointToDci (EpAddr, Direction);
+ ASSERT (Dci < 32);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 1) Stop any Running Transfer Rings affected by the Alternate Interface setting.
+ //
+ Status = XhcStopEndpoint (Xhc, SlotId, Dci, NULL);
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 2) Free Transfer Rings of all endpoints that will be affected by the Alternate Interface setting.
+ //
+ if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1] != NULL) {
+ RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1])->RingSeg0;
+ if (RingSeg != NULL) {
+ UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
+ }
+ FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1]);
+ Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci - 1] = NULL;
+ }
+
+ //
+ // Set the Drop Context flag to '1'.
+ //
+ InputContext->InputControlContext.Dword1 |= (BIT0 << Dci);
+
+ EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
+ }
+
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 3) Clear all the Endpoint Context fields of each endpoint that will be disabled by the Alternate
+ // Interface setting, to '0'.
+ //
+ // The step 3) has been covered by the ZeroMem () to InputContext at the start of the function.
+ //
+
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 4) For each endpoint enabled by the Configure Endpoint Command:
+ // a. Allocate a Transfer Ring.
+ // b. Initialize the Transfer Ring Segment(s) by clearing all fields of all TRBs to '0'.
+ // c. Initialize the Endpoint Context data structure.
+ //
+ Dci = XhcInitializeEndpointContext64 (Xhc, SlotId, DeviceSpeed, InputContext, IfDescSet);
+ if (Dci > MaxDci) {
+ MaxDci = Dci;
+ }
+
+ InputContext->InputControlContext.Dword2 |= BIT0;
+ InputContext->Slot.ContextEntries = MaxDci;
+ //
+ // XHCI 4.3.6 - Setting Alternate Interfaces
+ // 5) Issue and successfully complete a Configure Endpoint Command.
+ //
+ ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
+ CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbCfgEP.CycleBit = 1;
+ CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
+ CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "SetInterface64: Configure Endpoint\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "SetInterface64: Config Endpoint Failed, Status = %r\n", Status));
+ } else {
+ //
+ // Update the active AlternateSetting.
+ //
+ Xhc->UsbDevContext[SlotId].ActiveAlternateSetting[(UINT8) Request->Index] = (UINT8) Request->Value;
+ }
+ }
+
+ return Status;
+}
+
+/**
+ Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be evaluated.
+ @param MaxPacketSize The max packet size supported by the device control transfer.
+
+ @retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcEvaluateContext (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT32 MaxPacketSize
+ )
+{
+ EFI_STATUS Status;
+ CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ INPUT_CONTEXT *InputContext;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
+
+ //
+ // 4.6.7 Evaluate Context
+ //
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
+
+ InputContext->InputControlContext.Dword2 |= BIT1;
+ InputContext->EP[0].MaxPacketSize = MaxPacketSize;
+
+ ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
+ CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbEvalu.CycleBit = 1;
+ CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
+ CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "Evaluate context\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcEvaluateContext: Evaluate Context Failed, Status = %r\n", Status));
+ }
+ return Status;
+}
+
+/**
+ Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be evaluated.
+ @param MaxPacketSize The max packet size supported by the device control transfer.
+
+ @retval EFI_SUCCESS Successfully evaluate the device endpoint 0.
+
+**/
+EFI_STATUS
+EFIAPI
+XhcEvaluateContext64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT32 MaxPacketSize
+ )
+{
+ EFI_STATUS Status;
+ CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ INPUT_CONTEXT_64 *InputContext;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
+
+ //
+ // 4.6.7 Evaluate Context
+ //
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
+
+ InputContext->InputControlContext.Dword2 |= BIT1;
+ InputContext->EP[0].MaxPacketSize = MaxPacketSize;
+
+ ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
+ CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbEvalu.CycleBit = 1;
+ CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
+ CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "Evaluate context\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcEvaluateContext64: Evaluate Context Failed, Status = %r\n", Status));
+ }
+ return Status;
+}
+
+
+/**
+ Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param PortNum The total number of downstream port supported by the hub.
+ @param TTT The TT think time of the hub device.
+ @param MTT The multi-TT of the hub device.
+
+ @retval EFI_SUCCESS Successfully configure the hub device's slot context.
+
+**/
+EFI_STATUS
+XhcConfigHubContext (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 PortNum,
+ IN UINT8 TTT,
+ IN UINT8 MTT
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ INPUT_CONTEXT *InputContext;
+ DEVICE_CONTEXT *OutputContext;
+ CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+
+ //
+ // 4.6.7 Evaluate Context
+ //
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
+
+ InputContext->InputControlContext.Dword2 |= BIT0;
+
+ //
+ // Copy the slot context from OutputContext to Input context
+ //
+ CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT));
+ InputContext->Slot.Hub = 1;
+ InputContext->Slot.PortNum = PortNum;
+ InputContext->Slot.TTT = TTT;
+ InputContext->Slot.MTT = MTT;
+
+ ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
+ CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbCfgEP.CycleBit = 1;
+ CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
+ CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcConfigHubContext: Config Endpoint Failed, Status = %r\n", Status));
+ }
+ return Status;
+}
+
+/**
+ Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd.
+
+ @param Xhc The XHCI Instance.
+ @param SlotId The slot id to be configured.
+ @param PortNum The total number of downstream port supported by the hub.
+ @param TTT The TT think time of the hub device.
+ @param MTT The multi-TT of the hub device.
+
+ @retval EFI_SUCCESS Successfully configure the hub device's slot context.
+
+**/
+EFI_STATUS
+XhcConfigHubContext64 (
+ IN USB_XHCI_INSTANCE *Xhc,
+ IN UINT8 SlotId,
+ IN UINT8 PortNum,
+ IN UINT8 TTT,
+ IN UINT8 MTT
+ )
+{
+ EFI_STATUS Status;
+ EVT_TRB_COMMAND_COMPLETION *EvtTrb;
+ INPUT_CONTEXT_64 *InputContext;
+ DEVICE_CONTEXT_64 *OutputContext;
+ CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
+ EFI_PHYSICAL_ADDRESS PhyAddr;
+
+ ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
+ InputContext = Xhc->UsbDevContext[SlotId].InputContext;
+ OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
+
+ //
+ // 4.6.7 Evaluate Context
+ //
+ ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
+
+ InputContext->InputControlContext.Dword2 |= BIT0;
+
+ //
+ // Copy the slot context from OutputContext to Input context
+ //
+ CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT_64));
+ InputContext->Slot.Hub = 1;
+ InputContext->Slot.PortNum = PortNum;
+ InputContext->Slot.TTT = TTT;
+ InputContext->Slot.MTT = MTT;
+
+ ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
+ PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
+ CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
+ CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
+ CmdTrbCfgEP.CycleBit = 1;
+ CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
+ CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
+ DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n"));
+ Status = XhcCmdTransfer (
+ Xhc,
+ (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP,
+ XHC_GENERIC_TIMEOUT,
+ (TRB_TEMPLATE **) (UINTN) &EvtTrb
+ );
+ if (EFI_ERROR (Status)) {
+ DEBUG ((EFI_D_ERROR, "XhcConfigHubContext64: Config Endpoint Failed, Status = %r\n", Status));
+ }
+ return Status;
+}
+
+
|