diff options
Diffstat (limited to 'roms/edk2/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c')
-rw-r--r-- | roms/edk2/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c | 1746 |
1 files changed, 1746 insertions, 0 deletions
diff --git a/roms/edk2/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c b/roms/edk2/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c new file mode 100644 index 000000000..b4cb48843 --- /dev/null +++ b/roms/edk2/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c @@ -0,0 +1,1746 @@ +/** @file
+ UEFI Heap Guard functions.
+
+Copyright (c) 2017-2018, Intel Corporation. All rights reserved.<BR>
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "DxeMain.h"
+#include "Imem.h"
+#include "HeapGuard.h"
+
+//
+// Global to avoid infinite reentrance of memory allocation when updating
+// page table attributes, which may need allocate pages for new PDE/PTE.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding = FALSE;
+
+//
+// Pointer to table tracking the Guarded memory with bitmap, in which '1'
+// is used to indicate memory guarded. '0' might be free memory or Guard
+// page itself, depending on status of memory adjacent to it.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap = 0;
+
+//
+// Current depth level of map table pointed by mGuardedMemoryMap.
+// mMapLevel must be initialized at least by 1. It will be automatically
+// updated according to the address of memory just tracked.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel = 1;
+
+//
+// Shift and mask for each level of map table
+//
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH]
+ = GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS;
+GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH]
+ = GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS;
+
+//
+// Used for promoting freed but not used pages.
+//
+GLOBAL_REMOVE_IF_UNREFERENCED EFI_PHYSICAL_ADDRESS mLastPromotedPage = BASE_4GB;
+
+/**
+ Set corresponding bits in bitmap table to 1 according to the address.
+
+ @param[in] Address Start address to set for.
+ @param[in] BitNumber Number of bits to set.
+ @param[in] BitMap Pointer to bitmap which covers the Address.
+
+ @return VOID.
+**/
+STATIC
+VOID
+SetBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN BitNumber,
+ IN UINT64 *BitMap
+ )
+{
+ UINTN Lsbs;
+ UINTN Qwords;
+ UINTN Msbs;
+ UINTN StartBit;
+ UINTN EndBit;
+
+ StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
+ EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+
+ if ((StartBit + BitNumber) >= GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
+ GUARDED_HEAP_MAP_ENTRY_BITS;
+ Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+ Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
+ } else {
+ Msbs = BitNumber;
+ Lsbs = 0;
+ Qwords = 0;
+ }
+
+ if (Msbs > 0) {
+ *BitMap |= LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
+ BitMap += 1;
+ }
+
+ if (Qwords > 0) {
+ SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES,
+ (UINT64)-1);
+ BitMap += Qwords;
+ }
+
+ if (Lsbs > 0) {
+ *BitMap |= (LShiftU64 (1, Lsbs) - 1);
+ }
+}
+
+/**
+ Set corresponding bits in bitmap table to 0 according to the address.
+
+ @param[in] Address Start address to set for.
+ @param[in] BitNumber Number of bits to set.
+ @param[in] BitMap Pointer to bitmap which covers the Address.
+
+ @return VOID.
+**/
+STATIC
+VOID
+ClearBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN BitNumber,
+ IN UINT64 *BitMap
+ )
+{
+ UINTN Lsbs;
+ UINTN Qwords;
+ UINTN Msbs;
+ UINTN StartBit;
+ UINTN EndBit;
+
+ StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
+ EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+
+ if ((StartBit + BitNumber) >= GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Msbs = (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) %
+ GUARDED_HEAP_MAP_ENTRY_BITS;
+ Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+ Qwords = (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS;
+ } else {
+ Msbs = BitNumber;
+ Lsbs = 0;
+ Qwords = 0;
+ }
+
+ if (Msbs > 0) {
+ *BitMap &= ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit);
+ BitMap += 1;
+ }
+
+ if (Qwords > 0) {
+ SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0);
+ BitMap += Qwords;
+ }
+
+ if (Lsbs > 0) {
+ *BitMap &= ~(LShiftU64 (1, Lsbs) - 1);
+ }
+}
+
+/**
+ Get corresponding bits in bitmap table according to the address.
+
+ The value of bit 0 corresponds to the status of memory at given Address.
+ No more than 64 bits can be retrieved in one call.
+
+ @param[in] Address Start address to retrieve bits for.
+ @param[in] BitNumber Number of bits to get.
+ @param[in] BitMap Pointer to bitmap which covers the Address.
+
+ @return An integer containing the bits information.
+**/
+STATIC
+UINT64
+GetBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN BitNumber,
+ IN UINT64 *BitMap
+ )
+{
+ UINTN StartBit;
+ UINTN EndBit;
+ UINTN Lsbs;
+ UINTN Msbs;
+ UINT64 Result;
+
+ ASSERT (BitNumber <= GUARDED_HEAP_MAP_ENTRY_BITS);
+
+ StartBit = (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address);
+ EndBit = (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+
+ if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Msbs = GUARDED_HEAP_MAP_ENTRY_BITS - StartBit;
+ Lsbs = (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS;
+ } else {
+ Msbs = BitNumber;
+ Lsbs = 0;
+ }
+
+ if (StartBit == 0 && BitNumber == GUARDED_HEAP_MAP_ENTRY_BITS) {
+ Result = *BitMap;
+ } else {
+ Result = RShiftU64((*BitMap), StartBit) & (LShiftU64(1, Msbs) - 1);
+ if (Lsbs > 0) {
+ BitMap += 1;
+ Result |= LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs);
+ }
+ }
+
+ return Result;
+}
+
+/**
+ Locate the pointer of bitmap from the guarded memory bitmap tables, which
+ covers the given Address.
+
+ @param[in] Address Start address to search the bitmap for.
+ @param[in] AllocMapUnit Flag to indicate memory allocation for the table.
+ @param[out] BitMap Pointer to bitmap which covers the Address.
+
+ @return The bit number from given Address to the end of current map table.
+**/
+UINTN
+FindGuardedMemoryMap (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN BOOLEAN AllocMapUnit,
+ OUT UINT64 **BitMap
+ )
+{
+ UINTN Level;
+ UINT64 *GuardMap;
+ UINT64 MapMemory;
+ UINTN Index;
+ UINTN Size;
+ UINTN BitsToUnitEnd;
+ EFI_STATUS Status;
+
+ MapMemory = 0;
+
+ //
+ // Adjust current map table depth according to the address to access
+ //
+ while (AllocMapUnit &&
+ mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH &&
+ RShiftU64 (
+ Address,
+ mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1]
+ ) != 0) {
+
+ if (mGuardedMemoryMap != 0) {
+ Size = (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + 1)
+ * GUARDED_HEAP_MAP_ENTRY_BYTES;
+ Status = CoreInternalAllocatePages (
+ AllocateAnyPages,
+ EfiBootServicesData,
+ EFI_SIZE_TO_PAGES (Size),
+ &MapMemory,
+ FALSE
+ );
+ ASSERT_EFI_ERROR (Status);
+ ASSERT (MapMemory != 0);
+
+ SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
+
+ *(UINT64 *)(UINTN)MapMemory = mGuardedMemoryMap;
+ mGuardedMemoryMap = MapMemory;
+ }
+
+ mMapLevel++;
+
+ }
+
+ GuardMap = &mGuardedMemoryMap;
+ for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
+ ++Level) {
+
+ if (*GuardMap == 0) {
+ if (!AllocMapUnit) {
+ GuardMap = NULL;
+ break;
+ }
+
+ Size = (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES;
+ Status = CoreInternalAllocatePages (
+ AllocateAnyPages,
+ EfiBootServicesData,
+ EFI_SIZE_TO_PAGES (Size),
+ &MapMemory,
+ FALSE
+ );
+ ASSERT_EFI_ERROR (Status);
+ ASSERT (MapMemory != 0);
+
+ SetMem ((VOID *)(UINTN)MapMemory, Size, 0);
+ *GuardMap = MapMemory;
+ }
+
+ Index = (UINTN)RShiftU64 (Address, mLevelShift[Level]);
+ Index &= mLevelMask[Level];
+ GuardMap = (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64));
+
+ }
+
+ BitsToUnitEnd = GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Address);
+ *BitMap = GuardMap;
+
+ return BitsToUnitEnd;
+}
+
+/**
+ Set corresponding bits in bitmap table to 1 according to given memory range.
+
+ @param[in] Address Memory address to guard from.
+ @param[in] NumberOfPages Number of pages to guard.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+SetGuardedMemoryBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN NumberOfPages
+ )
+{
+ UINT64 *BitMap;
+ UINTN Bits;
+ UINTN BitsToUnitEnd;
+
+ while (NumberOfPages > 0) {
+ BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
+ ASSERT (BitMap != NULL);
+
+ if (NumberOfPages > BitsToUnitEnd) {
+ // Cross map unit
+ Bits = BitsToUnitEnd;
+ } else {
+ Bits = NumberOfPages;
+ }
+
+ SetBits (Address, Bits, BitMap);
+
+ NumberOfPages -= Bits;
+ Address += EFI_PAGES_TO_SIZE (Bits);
+ }
+}
+
+/**
+ Clear corresponding bits in bitmap table according to given memory range.
+
+ @param[in] Address Memory address to unset from.
+ @param[in] NumberOfPages Number of pages to unset guard.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+ClearGuardedMemoryBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN NumberOfPages
+ )
+{
+ UINT64 *BitMap;
+ UINTN Bits;
+ UINTN BitsToUnitEnd;
+
+ while (NumberOfPages > 0) {
+ BitsToUnitEnd = FindGuardedMemoryMap (Address, TRUE, &BitMap);
+ ASSERT (BitMap != NULL);
+
+ if (NumberOfPages > BitsToUnitEnd) {
+ // Cross map unit
+ Bits = BitsToUnitEnd;
+ } else {
+ Bits = NumberOfPages;
+ }
+
+ ClearBits (Address, Bits, BitMap);
+
+ NumberOfPages -= Bits;
+ Address += EFI_PAGES_TO_SIZE (Bits);
+ }
+}
+
+/**
+ Retrieve corresponding bits in bitmap table according to given memory range.
+
+ @param[in] Address Memory address to retrieve from.
+ @param[in] NumberOfPages Number of pages to retrieve.
+
+ @return An integer containing the guarded memory bitmap.
+**/
+UINT64
+GetGuardedMemoryBits (
+ IN EFI_PHYSICAL_ADDRESS Address,
+ IN UINTN NumberOfPages
+ )
+{
+ UINT64 *BitMap;
+ UINTN Bits;
+ UINT64 Result;
+ UINTN Shift;
+ UINTN BitsToUnitEnd;
+
+ ASSERT (NumberOfPages <= GUARDED_HEAP_MAP_ENTRY_BITS);
+
+ Result = 0;
+ Shift = 0;
+ while (NumberOfPages > 0) {
+ BitsToUnitEnd = FindGuardedMemoryMap (Address, FALSE, &BitMap);
+
+ if (NumberOfPages > BitsToUnitEnd) {
+ // Cross map unit
+ Bits = BitsToUnitEnd;
+ } else {
+ Bits = NumberOfPages;
+ }
+
+ if (BitMap != NULL) {
+ Result |= LShiftU64 (GetBits (Address, Bits, BitMap), Shift);
+ }
+
+ Shift += Bits;
+ NumberOfPages -= Bits;
+ Address += EFI_PAGES_TO_SIZE (Bits);
+ }
+
+ return Result;
+}
+
+/**
+ Get bit value in bitmap table for the given address.
+
+ @param[in] Address The address to retrieve for.
+
+ @return 1 or 0.
+**/
+UINTN
+EFIAPI
+GetGuardMapBit (
+ IN EFI_PHYSICAL_ADDRESS Address
+ )
+{
+ UINT64 *GuardMap;
+
+ FindGuardedMemoryMap (Address, FALSE, &GuardMap);
+ if (GuardMap != NULL) {
+ if (RShiftU64 (*GuardMap,
+ GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) {
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+
+/**
+ Check to see if the page at the given address is a Guard page or not.
+
+ @param[in] Address The address to check for.
+
+ @return TRUE The page at Address is a Guard page.
+ @return FALSE The page at Address is not a Guard page.
+**/
+BOOLEAN
+EFIAPI
+IsGuardPage (
+ IN EFI_PHYSICAL_ADDRESS Address
+ )
+{
+ UINT64 BitMap;
+
+ //
+ // There must be at least one guarded page before and/or after given
+ // address if it's a Guard page. The bitmap pattern should be one of
+ // 001, 100 and 101
+ //
+ BitMap = GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3);
+ return ((BitMap == BIT0) || (BitMap == BIT2) || (BitMap == (BIT2 | BIT0)));
+}
+
+
+/**
+ Check to see if the page at the given address is guarded or not.
+
+ @param[in] Address The address to check for.
+
+ @return TRUE The page at Address is guarded.
+ @return FALSE The page at Address is not guarded.
+**/
+BOOLEAN
+EFIAPI
+IsMemoryGuarded (
+ IN EFI_PHYSICAL_ADDRESS Address
+ )
+{
+ return (GetGuardMapBit (Address) == 1);
+}
+
+/**
+ Set the page at the given address to be a Guard page.
+
+ This is done by changing the page table attribute to be NOT PRSENT.
+
+ @param[in] BaseAddress Page address to Guard at
+
+ @return VOID
+**/
+VOID
+EFIAPI
+SetGuardPage (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress
+ )
+{
+ EFI_STATUS Status;
+
+ if (gCpu == NULL) {
+ return;
+ }
+
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ //
+ // Note: This might overwrite other attributes needed by other features,
+ // such as NX memory protection.
+ //
+ Status = gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, EFI_MEMORY_RP);
+ ASSERT_EFI_ERROR (Status);
+ mOnGuarding = FALSE;
+}
+
+/**
+ Unset the Guard page at the given address to the normal memory.
+
+ This is done by changing the page table attribute to be PRSENT.
+
+ @param[in] BaseAddress Page address to Guard at.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+UnsetGuardPage (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress
+ )
+{
+ UINT64 Attributes;
+ EFI_STATUS Status;
+
+ if (gCpu == NULL) {
+ return;
+ }
+
+ //
+ // Once the Guard page is unset, it will be freed back to memory pool. NX
+ // memory protection must be restored for this page if NX is enabled for free
+ // memory.
+ //
+ Attributes = 0;
+ if ((PcdGet64 (PcdDxeNxMemoryProtectionPolicy) & (1 << EfiConventionalMemory)) != 0) {
+ Attributes |= EFI_MEMORY_XP;
+ }
+
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ //
+ // Note: This might overwrite other attributes needed by other features,
+ // such as memory protection (NX). Please make sure they are not enabled
+ // at the same time.
+ //
+ Status = gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, Attributes);
+ ASSERT_EFI_ERROR (Status);
+ mOnGuarding = FALSE;
+}
+
+/**
+ Check to see if the memory at the given address should be guarded or not.
+
+ @param[in] MemoryType Memory type to check.
+ @param[in] AllocateType Allocation type to check.
+ @param[in] PageOrPool Indicate a page allocation or pool allocation.
+
+
+ @return TRUE The given type of memory should be guarded.
+ @return FALSE The given type of memory should not be guarded.
+**/
+BOOLEAN
+IsMemoryTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN EFI_ALLOCATE_TYPE AllocateType,
+ IN UINT8 PageOrPool
+ )
+{
+ UINT64 TestBit;
+ UINT64 ConfigBit;
+
+ if (AllocateType == AllocateAddress) {
+ return FALSE;
+ }
+
+ if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) == 0) {
+ return FALSE;
+ }
+
+ if (PageOrPool == GUARD_HEAP_TYPE_POOL) {
+ ConfigBit = PcdGet64 (PcdHeapGuardPoolType);
+ } else if (PageOrPool == GUARD_HEAP_TYPE_PAGE) {
+ ConfigBit = PcdGet64 (PcdHeapGuardPageType);
+ } else {
+ ConfigBit = (UINT64)-1;
+ }
+
+ if ((UINT32)MemoryType >= MEMORY_TYPE_OS_RESERVED_MIN) {
+ TestBit = BIT63;
+ } else if ((UINT32) MemoryType >= MEMORY_TYPE_OEM_RESERVED_MIN) {
+ TestBit = BIT62;
+ } else if (MemoryType < EfiMaxMemoryType) {
+ TestBit = LShiftU64 (1, MemoryType);
+ } else if (MemoryType == EfiMaxMemoryType) {
+ TestBit = (UINT64)-1;
+ } else {
+ TestBit = 0;
+ }
+
+ return ((ConfigBit & TestBit) != 0);
+}
+
+/**
+ Check to see if the pool at the given address should be guarded or not.
+
+ @param[in] MemoryType Pool type to check.
+
+
+ @return TRUE The given type of pool should be guarded.
+ @return FALSE The given type of pool should not be guarded.
+**/
+BOOLEAN
+IsPoolTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType
+ )
+{
+ return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages,
+ GUARD_HEAP_TYPE_POOL);
+}
+
+/**
+ Check to see if the page at the given address should be guarded or not.
+
+ @param[in] MemoryType Page type to check.
+ @param[in] AllocateType Allocation type to check.
+
+ @return TRUE The given type of page should be guarded.
+ @return FALSE The given type of page should not be guarded.
+**/
+BOOLEAN
+IsPageTypeToGuard (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN EFI_ALLOCATE_TYPE AllocateType
+ )
+{
+ return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PAGE);
+}
+
+/**
+ Check to see if the heap guard is enabled for page and/or pool allocation.
+
+ @param[in] GuardType Specify the sub-type(s) of Heap Guard.
+
+ @return TRUE/FALSE.
+**/
+BOOLEAN
+IsHeapGuardEnabled (
+ UINT8 GuardType
+ )
+{
+ return IsMemoryTypeToGuard (EfiMaxMemoryType, AllocateAnyPages, GuardType);
+}
+
+/**
+ Set head Guard and tail Guard for the given memory range.
+
+ @param[in] Memory Base address of memory to set guard for.
+ @param[in] NumberOfPages Memory size in pages.
+
+ @return VOID
+**/
+VOID
+SetGuardForMemory (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS GuardPage;
+
+ //
+ // Set tail Guard
+ //
+ GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
+ if (!IsGuardPage (GuardPage)) {
+ SetGuardPage (GuardPage);
+ }
+
+ // Set head Guard
+ GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
+ if (!IsGuardPage (GuardPage)) {
+ SetGuardPage (GuardPage);
+ }
+
+ //
+ // Mark the memory range as Guarded
+ //
+ SetGuardedMemoryBits (Memory, NumberOfPages);
+}
+
+/**
+ Unset head Guard and tail Guard for the given memory range.
+
+ @param[in] Memory Base address of memory to unset guard for.
+ @param[in] NumberOfPages Memory size in pages.
+
+ @return VOID
+**/
+VOID
+UnsetGuardForMemory (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NumberOfPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS GuardPage;
+ UINT64 GuardBitmap;
+
+ if (NumberOfPages == 0) {
+ return;
+ }
+
+ //
+ // Head Guard must be one page before, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // -------------------
+ // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
+ // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
+ // 1 X -> Don't free first page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // -------------------
+ // Start -> -1 -2
+ //
+ GuardPage = Memory - EFI_PAGES_TO_SIZE (1);
+ GuardBitmap = GetGuardedMemoryBits (Memory - EFI_PAGES_TO_SIZE (2), 2);
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // Head Guard exists.
+ //
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // If the head Guard is not a tail Guard of adjacent memory block,
+ // unset it.
+ //
+ UnsetGuardPage (GuardPage);
+ }
+ } else {
+ //
+ // Pages before memory to free are still in Guard. It's a partial free
+ // case. Turn first page of memory block to free into a new Guard.
+ //
+ SetGuardPage (Memory);
+ }
+
+ //
+ // Tail Guard must be the page after this memory block to free, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // --------------------
+ // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
+ // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
+ // X 1 -> Don't free last page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // --------------------
+ // +1 +0 <- End
+ //
+ GuardPage = Memory + EFI_PAGES_TO_SIZE (NumberOfPages);
+ GuardBitmap = GetGuardedMemoryBits (GuardPage, 2);
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // Tail Guard exists.
+ //
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // If the tail Guard is not a head Guard of adjacent memory block,
+ // free it; otherwise, keep it.
+ //
+ UnsetGuardPage (GuardPage);
+ }
+ } else {
+ //
+ // Pages after memory to free are still in Guard. It's a partial free
+ // case. We need to keep one page to be a head Guard.
+ //
+ SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1));
+ }
+
+ //
+ // No matter what, we just clear the mark of the Guarded memory.
+ //
+ ClearGuardedMemoryBits(Memory, NumberOfPages);
+}
+
+/**
+ Adjust address of free memory according to existing and/or required Guard.
+
+ This function will check if there're existing Guard pages of adjacent
+ memory blocks, and try to use it as the Guard page of the memory to be
+ allocated.
+
+ @param[in] Start Start address of free memory block.
+ @param[in] Size Size of free memory block.
+ @param[in] SizeRequested Size of memory to allocate.
+
+ @return The end address of memory block found.
+ @return 0 if no enough space for the required size of memory and its Guard.
+**/
+UINT64
+AdjustMemoryS (
+ IN UINT64 Start,
+ IN UINT64 Size,
+ IN UINT64 SizeRequested
+ )
+{
+ UINT64 Target;
+
+ //
+ // UEFI spec requires that allocated pool must be 8-byte aligned. If it's
+ // indicated to put the pool near the Tail Guard, we need extra bytes to
+ // make sure alignment of the returned pool address.
+ //
+ if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) == 0) {
+ SizeRequested = ALIGN_VALUE(SizeRequested, 8);
+ }
+
+ Target = Start + Size - SizeRequested;
+ ASSERT (Target >= Start);
+ if (Target == 0) {
+ return 0;
+ }
+
+ if (!IsGuardPage (Start + Size)) {
+ // No Guard at tail to share. One more page is needed.
+ Target -= EFI_PAGES_TO_SIZE (1);
+ }
+
+ // Out of range?
+ if (Target < Start) {
+ return 0;
+ }
+
+ // At the edge?
+ if (Target == Start) {
+ if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) {
+ // No enough space for a new head Guard if no Guard at head to share.
+ return 0;
+ }
+ }
+
+ // OK, we have enough pages for memory and its Guards. Return the End of the
+ // free space.
+ return Target + SizeRequested - 1;
+}
+
+/**
+ Adjust the start address and number of pages to free according to Guard.
+
+ The purpose of this function is to keep the shared Guard page with adjacent
+ memory block if it's still in guard, or free it if no more sharing. Another
+ is to reserve pages as Guard pages in partial page free situation.
+
+ @param[in,out] Memory Base address of memory to free.
+ @param[in,out] NumberOfPages Size of memory to free.
+
+ @return VOID.
+**/
+VOID
+AdjustMemoryF (
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN OUT UINTN *NumberOfPages
+ )
+{
+ EFI_PHYSICAL_ADDRESS Start;
+ EFI_PHYSICAL_ADDRESS MemoryToTest;
+ UINTN PagesToFree;
+ UINT64 GuardBitmap;
+
+ if (Memory == NULL || NumberOfPages == NULL || *NumberOfPages == 0) {
+ return;
+ }
+
+ Start = *Memory;
+ PagesToFree = *NumberOfPages;
+
+ //
+ // Head Guard must be one page before, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // -------------------
+ // Head Guard -> 0 1 -> Don't free Head Guard (shared Guard)
+ // Head Guard -> 0 0 -> Free Head Guard either (not shared Guard)
+ // 1 X -> Don't free first page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // -------------------
+ // Start -> -1 -2
+ //
+ MemoryToTest = Start - EFI_PAGES_TO_SIZE (2);
+ GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // Head Guard exists.
+ //
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // If the head Guard is not a tail Guard of adjacent memory block,
+ // free it; otherwise, keep it.
+ //
+ Start -= EFI_PAGES_TO_SIZE (1);
+ PagesToFree += 1;
+ }
+ } else {
+ //
+ // No Head Guard, and pages before memory to free are still in Guard. It's a
+ // partial free case. We need to keep one page to be a tail Guard.
+ //
+ Start += EFI_PAGES_TO_SIZE (1);
+ PagesToFree -= 1;
+ }
+
+ //
+ // Tail Guard must be the page after this memory block to free, if any.
+ //
+ // MSB-> 1 0 <-LSB
+ // --------------------
+ // 1 0 <- Tail Guard -> Don't free Tail Guard (shared Guard)
+ // 0 0 <- Tail Guard -> Free Tail Guard either (not shared Guard)
+ // X 1 -> Don't free last page (need a new Guard)
+ // (it'll be turned into a Guard page later)
+ // --------------------
+ // +1 +0 <- End
+ //
+ MemoryToTest = Start + EFI_PAGES_TO_SIZE (PagesToFree);
+ GuardBitmap = GetGuardedMemoryBits (MemoryToTest, 2);
+ if ((GuardBitmap & BIT0) == 0) {
+ //
+ // Tail Guard exists.
+ //
+ if ((GuardBitmap & BIT1) == 0) {
+ //
+ // If the tail Guard is not a head Guard of adjacent memory block,
+ // free it; otherwise, keep it.
+ //
+ PagesToFree += 1;
+ }
+ } else if (PagesToFree > 0) {
+ //
+ // No Tail Guard, and pages after memory to free are still in Guard. It's a
+ // partial free case. We need to keep one page to be a head Guard.
+ //
+ PagesToFree -= 1;
+ }
+
+ *Memory = Start;
+ *NumberOfPages = PagesToFree;
+}
+
+/**
+ Adjust the base and number of pages to really allocate according to Guard.
+
+ @param[in,out] Memory Base address of free memory.
+ @param[in,out] NumberOfPages Size of memory to allocate.
+
+ @return VOID.
+**/
+VOID
+AdjustMemoryA (
+ IN OUT EFI_PHYSICAL_ADDRESS *Memory,
+ IN OUT UINTN *NumberOfPages
+ )
+{
+ //
+ // FindFreePages() has already taken the Guard into account. It's safe to
+ // adjust the start address and/or number of pages here, to make sure that
+ // the Guards are also "allocated".
+ //
+ if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) {
+ // No tail Guard, add one.
+ *NumberOfPages += 1;
+ }
+
+ if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) {
+ // No head Guard, add one.
+ *Memory -= EFI_PAGE_SIZE;
+ *NumberOfPages += 1;
+ }
+}
+
+/**
+ Adjust the pool head position to make sure the Guard page is adjavent to
+ pool tail or pool head.
+
+ @param[in] Memory Base address of memory allocated.
+ @param[in] NoPages Number of pages actually allocated.
+ @param[in] Size Size of memory requested.
+ (plus pool head/tail overhead)
+
+ @return Address of pool head.
+**/
+VOID *
+AdjustPoolHeadA (
+ IN EFI_PHYSICAL_ADDRESS Memory,
+ IN UINTN NoPages,
+ IN UINTN Size
+ )
+{
+ if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
+ //
+ // Pool head is put near the head Guard
+ //
+ return (VOID *)(UINTN)Memory;
+ }
+
+ //
+ // Pool head is put near the tail Guard
+ //
+ Size = ALIGN_VALUE (Size, 8);
+ return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size);
+}
+
+/**
+ Get the page base address according to pool head address.
+
+ @param[in] Memory Head address of pool to free.
+
+ @return Address of pool head.
+**/
+VOID *
+AdjustPoolHeadF (
+ IN EFI_PHYSICAL_ADDRESS Memory
+ )
+{
+ if (Memory == 0 || (PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) != 0) {
+ //
+ // Pool head is put near the head Guard
+ //
+ return (VOID *)(UINTN)Memory;
+ }
+
+ //
+ // Pool head is put near the tail Guard
+ //
+ return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK);
+}
+
+/**
+ Allocate or free guarded memory.
+
+ @param[in] Start Start address of memory to allocate or free.
+ @param[in] NumberOfPages Memory size in pages.
+ @param[in] NewType Memory type to convert to.
+
+ @return VOID.
+**/
+EFI_STATUS
+CoreConvertPagesWithGuard (
+ IN UINT64 Start,
+ IN UINTN NumberOfPages,
+ IN EFI_MEMORY_TYPE NewType
+ )
+{
+ UINT64 OldStart;
+ UINTN OldPages;
+
+ if (NewType == EfiConventionalMemory) {
+ OldStart = Start;
+ OldPages = NumberOfPages;
+
+ AdjustMemoryF (&Start, &NumberOfPages);
+ //
+ // It's safe to unset Guard page inside memory lock because there should
+ // be no memory allocation occurred in updating memory page attribute at
+ // this point. And unsetting Guard page before free will prevent Guard
+ // page just freed back to pool from being allocated right away before
+ // marking it usable (from non-present to present).
+ //
+ UnsetGuardForMemory (OldStart, OldPages);
+ if (NumberOfPages == 0) {
+ return EFI_SUCCESS;
+ }
+ } else {
+ AdjustMemoryA (&Start, &NumberOfPages);
+ }
+
+ return CoreConvertPages (Start, NumberOfPages, NewType);
+}
+
+/**
+ Set all Guard pages which cannot be set before CPU Arch Protocol installed.
+**/
+VOID
+SetAllGuardPages (
+ VOID
+ )
+{
+ UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 TableEntry;
+ UINT64 Address;
+ UINT64 GuardPage;
+ INTN Level;
+ UINTN Index;
+ BOOLEAN OnGuarding;
+
+ if (mGuardedMemoryMap == 0 ||
+ mMapLevel == 0 ||
+ mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
+ return;
+ }
+
+ CopyMem (Entries, mLevelMask, sizeof (Entries));
+ CopyMem (Shifts, mLevelShift, sizeof (Shifts));
+
+ SetMem (Tables, sizeof(Tables), 0);
+ SetMem (Addresses, sizeof(Addresses), 0);
+ SetMem (Indices, sizeof(Indices), 0);
+
+ Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Tables[Level] = mGuardedMemoryMap;
+ Address = 0;
+ OnGuarding = FALSE;
+
+ DEBUG_CODE (
+ DumpGuardedMemoryBitmap ();
+ );
+
+ while (TRUE) {
+ if (Indices[Level] > Entries[Level]) {
+ Tables[Level] = 0;
+ Level -= 1;
+ } else {
+
+ TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
+ Address = Addresses[Level];
+
+ if (TableEntry == 0) {
+
+ OnGuarding = FALSE;
+
+ } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+
+ Level += 1;
+ Tables[Level] = TableEntry;
+ Addresses[Level] = Address;
+ Indices[Level] = 0;
+
+ continue;
+
+ } else {
+
+ Index = 0;
+ while (Index < GUARDED_HEAP_MAP_ENTRY_BITS) {
+ if ((TableEntry & 1) == 1) {
+ if (OnGuarding) {
+ GuardPage = 0;
+ } else {
+ GuardPage = Address - EFI_PAGE_SIZE;
+ }
+ OnGuarding = TRUE;
+ } else {
+ if (OnGuarding) {
+ GuardPage = Address;
+ } else {
+ GuardPage = 0;
+ }
+ OnGuarding = FALSE;
+ }
+
+ if (GuardPage != 0) {
+ SetGuardPage (GuardPage);
+ }
+
+ if (TableEntry == 0) {
+ break;
+ }
+
+ TableEntry = RShiftU64 (TableEntry, 1);
+ Address += EFI_PAGE_SIZE;
+ Index += 1;
+ }
+ }
+ }
+
+ if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
+ break;
+ }
+
+ Indices[Level] += 1;
+ Address = (Level == 0) ? 0 : Addresses[Level - 1];
+ Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
+
+ }
+}
+
+/**
+ Find the address of top-most guarded free page.
+
+ @param[out] Address Start address of top-most guarded free page.
+
+ @return VOID.
+**/
+VOID
+GetLastGuardedFreePageAddress (
+ OUT EFI_PHYSICAL_ADDRESS *Address
+ )
+{
+ EFI_PHYSICAL_ADDRESS AddressGranularity;
+ EFI_PHYSICAL_ADDRESS BaseAddress;
+ UINTN Level;
+ UINT64 Map;
+ INTN Index;
+
+ ASSERT (mMapLevel >= 1);
+
+ BaseAddress = 0;
+ Map = mGuardedMemoryMap;
+ for (Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Level < GUARDED_HEAP_MAP_TABLE_DEPTH;
+ ++Level) {
+ AddressGranularity = LShiftU64 (1, mLevelShift[Level]);
+
+ //
+ // Find the non-NULL entry at largest index.
+ //
+ for (Index = (INTN)mLevelMask[Level]; Index >= 0 ; --Index) {
+ if (((UINT64 *)(UINTN)Map)[Index] != 0) {
+ BaseAddress += MultU64x32 (AddressGranularity, (UINT32)Index);
+ Map = ((UINT64 *)(UINTN)Map)[Index];
+ break;
+ }
+ }
+ }
+
+ //
+ // Find the non-zero MSB then get the page address.
+ //
+ while (Map != 0) {
+ Map = RShiftU64 (Map, 1);
+ BaseAddress += EFI_PAGES_TO_SIZE (1);
+ }
+
+ *Address = BaseAddress;
+}
+
+/**
+ Record freed pages.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+MarkFreedPages (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ )
+{
+ SetGuardedMemoryBits (BaseAddress, Pages);
+}
+
+/**
+ Record freed pages as well as mark them as not-present.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+GuardFreedPages (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ )
+{
+ EFI_STATUS Status;
+
+ //
+ // Legacy memory lower than 1MB might be accessed with no allocation. Leave
+ // them alone.
+ //
+ if (BaseAddress < BASE_1MB) {
+ return;
+ }
+
+ MarkFreedPages (BaseAddress, Pages);
+ if (gCpu != NULL) {
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ //
+ // Note: This might overwrite other attributes needed by other features,
+ // such as NX memory protection.
+ //
+ Status = gCpu->SetMemoryAttributes (
+ gCpu,
+ BaseAddress,
+ EFI_PAGES_TO_SIZE (Pages),
+ EFI_MEMORY_RP
+ );
+ //
+ // Normally we should ASSERT the returned Status. But there might be memory
+ // alloc/free involved in SetMemoryAttributes(), which might fail this
+ // calling. It's rare case so it's OK to let a few tiny holes be not-guarded.
+ //
+ if (EFI_ERROR (Status)) {
+ DEBUG ((DEBUG_WARN, "Failed to guard freed pages: %p (%lu)\n", BaseAddress, (UINT64)Pages));
+ }
+ mOnGuarding = FALSE;
+ }
+}
+
+/**
+ Record freed pages as well as mark them as not-present, if enabled.
+
+ @param[in] BaseAddress Base address of just freed pages.
+ @param[in] Pages Number of freed pages.
+
+ @return VOID.
+**/
+VOID
+EFIAPI
+GuardFreedPagesChecked (
+ IN EFI_PHYSICAL_ADDRESS BaseAddress,
+ IN UINTN Pages
+ )
+{
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ GuardFreedPages (BaseAddress, Pages);
+ }
+}
+
+/**
+ Mark all pages freed before CPU Arch Protocol as not-present.
+
+**/
+VOID
+GuardAllFreedPages (
+ VOID
+ )
+{
+ UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 TableEntry;
+ UINT64 Address;
+ UINT64 GuardPage;
+ INTN Level;
+ UINT64 BitIndex;
+ UINTN GuardPageNumber;
+
+ if (mGuardedMemoryMap == 0 ||
+ mMapLevel == 0 ||
+ mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
+ return;
+ }
+
+ CopyMem (Entries, mLevelMask, sizeof (Entries));
+ CopyMem (Shifts, mLevelShift, sizeof (Shifts));
+
+ SetMem (Tables, sizeof(Tables), 0);
+ SetMem (Addresses, sizeof(Addresses), 0);
+ SetMem (Indices, sizeof(Indices), 0);
+
+ Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Tables[Level] = mGuardedMemoryMap;
+ Address = 0;
+ GuardPage = (UINT64)-1;
+ GuardPageNumber = 0;
+
+ while (TRUE) {
+ if (Indices[Level] > Entries[Level]) {
+ Tables[Level] = 0;
+ Level -= 1;
+ } else {
+ TableEntry = ((UINT64 *)(UINTN)(Tables[Level]))[Indices[Level]];
+ Address = Addresses[Level];
+
+ if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+ Level += 1;
+ Tables[Level] = TableEntry;
+ Addresses[Level] = Address;
+ Indices[Level] = 0;
+
+ continue;
+ } else {
+ BitIndex = 1;
+ while (BitIndex != 0) {
+ if ((TableEntry & BitIndex) != 0) {
+ if (GuardPage == (UINT64)-1) {
+ GuardPage = Address;
+ }
+ ++GuardPageNumber;
+ } else if (GuardPageNumber > 0) {
+ GuardFreedPages (GuardPage, GuardPageNumber);
+ GuardPageNumber = 0;
+ GuardPage = (UINT64)-1;
+ }
+
+ if (TableEntry == 0) {
+ break;
+ }
+
+ Address += EFI_PAGES_TO_SIZE (1);
+ BitIndex = LShiftU64 (BitIndex, 1);
+ }
+ }
+ }
+
+ if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
+ break;
+ }
+
+ Indices[Level] += 1;
+ Address = (Level == 0) ? 0 : Addresses[Level - 1];
+ Addresses[Level] = Address | LShiftU64 (Indices[Level], Shifts[Level]);
+
+ }
+
+ //
+ // Update the maximum address of freed page which can be used for memory
+ // promotion upon out-of-memory-space.
+ //
+ GetLastGuardedFreePageAddress (&Address);
+ if (Address != 0) {
+ mLastPromotedPage = Address;
+ }
+}
+
+/**
+ This function checks to see if the given memory map descriptor in a memory map
+ can be merged with any guarded free pages.
+
+ @param MemoryMapEntry A pointer to a descriptor in MemoryMap.
+ @param MaxAddress Maximum address to stop the merge.
+
+ @return VOID
+
+**/
+VOID
+MergeGuardPages (
+ IN EFI_MEMORY_DESCRIPTOR *MemoryMapEntry,
+ IN EFI_PHYSICAL_ADDRESS MaxAddress
+ )
+{
+ EFI_PHYSICAL_ADDRESS EndAddress;
+ UINT64 Bitmap;
+ INTN Pages;
+
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED) ||
+ MemoryMapEntry->Type >= EfiMemoryMappedIO) {
+ return;
+ }
+
+ Bitmap = 0;
+ Pages = EFI_SIZE_TO_PAGES ((UINTN)(MaxAddress - MemoryMapEntry->PhysicalStart));
+ Pages -= (INTN)MemoryMapEntry->NumberOfPages;
+ while (Pages > 0) {
+ if (Bitmap == 0) {
+ EndAddress = MemoryMapEntry->PhysicalStart +
+ EFI_PAGES_TO_SIZE ((UINTN)MemoryMapEntry->NumberOfPages);
+ Bitmap = GetGuardedMemoryBits (EndAddress, GUARDED_HEAP_MAP_ENTRY_BITS);
+ }
+
+ if ((Bitmap & 1) == 0) {
+ break;
+ }
+
+ Pages--;
+ MemoryMapEntry->NumberOfPages++;
+ Bitmap = RShiftU64 (Bitmap, 1);
+ }
+}
+
+/**
+ Put part (at most 64 pages a time) guarded free pages back to free page pool.
+
+ Freed memory guard is used to detect Use-After-Free (UAF) memory issue, which
+ makes use of 'Used then throw away' way to detect any illegal access to freed
+ memory. The thrown-away memory will be marked as not-present so that any access
+ to those memory (after free) will be caught by page-fault exception.
+
+ The problem is that this will consume lots of memory space. Once no memory
+ left in pool to allocate, we have to restore part of the freed pages to their
+ normal function. Otherwise the whole system will stop functioning.
+
+ @param StartAddress Start address of promoted memory.
+ @param EndAddress End address of promoted memory.
+
+ @return TRUE Succeeded to promote memory.
+ @return FALSE No free memory found.
+
+**/
+BOOLEAN
+PromoteGuardedFreePages (
+ OUT EFI_PHYSICAL_ADDRESS *StartAddress,
+ OUT EFI_PHYSICAL_ADDRESS *EndAddress
+ )
+{
+ EFI_STATUS Status;
+ UINTN AvailablePages;
+ UINT64 Bitmap;
+ EFI_PHYSICAL_ADDRESS Start;
+
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ return FALSE;
+ }
+
+ //
+ // Similar to memory allocation service, always search the freed pages in
+ // descending direction.
+ //
+ Start = mLastPromotedPage;
+ AvailablePages = 0;
+ while (AvailablePages == 0) {
+ Start -= EFI_PAGES_TO_SIZE (GUARDED_HEAP_MAP_ENTRY_BITS);
+ //
+ // If the address wraps around, try the really freed pages at top.
+ //
+ if (Start > mLastPromotedPage) {
+ GetLastGuardedFreePageAddress (&Start);
+ ASSERT (Start != 0);
+ Start -= EFI_PAGES_TO_SIZE (GUARDED_HEAP_MAP_ENTRY_BITS);
+ }
+
+ Bitmap = GetGuardedMemoryBits (Start, GUARDED_HEAP_MAP_ENTRY_BITS);
+ while (Bitmap > 0) {
+ if ((Bitmap & 1) != 0) {
+ ++AvailablePages;
+ } else if (AvailablePages == 0) {
+ Start += EFI_PAGES_TO_SIZE (1);
+ } else {
+ break;
+ }
+
+ Bitmap = RShiftU64 (Bitmap, 1);
+ }
+ }
+
+ if (AvailablePages != 0) {
+ DEBUG ((DEBUG_INFO, "Promoted pages: %lX (%lx)\r\n", Start, (UINT64)AvailablePages));
+ ClearGuardedMemoryBits (Start, AvailablePages);
+
+ if (gCpu != NULL) {
+ //
+ // Set flag to make sure allocating memory without GUARD for page table
+ // operation; otherwise infinite loops could be caused.
+ //
+ mOnGuarding = TRUE;
+ Status = gCpu->SetMemoryAttributes (gCpu, Start, EFI_PAGES_TO_SIZE(AvailablePages), 0);
+ ASSERT_EFI_ERROR (Status);
+ mOnGuarding = FALSE;
+ }
+
+ mLastPromotedPage = Start;
+ *StartAddress = Start;
+ *EndAddress = Start + EFI_PAGES_TO_SIZE (AvailablePages) - 1;
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+/**
+ Notify function used to set all Guard pages before CPU Arch Protocol installed.
+**/
+VOID
+HeapGuardCpuArchProtocolNotify (
+ VOID
+ )
+{
+ ASSERT (gCpu != NULL);
+
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL) &&
+ IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ DEBUG ((DEBUG_ERROR, "Heap guard and freed memory guard cannot be enabled at the same time.\n"));
+ CpuDeadLoop ();
+ }
+
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_PAGE|GUARD_HEAP_TYPE_POOL)) {
+ SetAllGuardPages ();
+ }
+
+ if (IsHeapGuardEnabled (GUARD_HEAP_TYPE_FREED)) {
+ GuardAllFreedPages ();
+ }
+}
+
+/**
+ Helper function to convert a UINT64 value in binary to a string.
+
+ @param[in] Value Value of a UINT64 integer.
+ @param[out] BinString String buffer to contain the conversion result.
+
+ @return VOID.
+**/
+VOID
+Uint64ToBinString (
+ IN UINT64 Value,
+ OUT CHAR8 *BinString
+ )
+{
+ UINTN Index;
+
+ if (BinString == NULL) {
+ return;
+ }
+
+ for (Index = 64; Index > 0; --Index) {
+ BinString[Index - 1] = '0' + (Value & 1);
+ Value = RShiftU64 (Value, 1);
+ }
+ BinString[64] = '\0';
+}
+
+/**
+ Dump the guarded memory bit map.
+**/
+VOID
+EFIAPI
+DumpGuardedMemoryBitmap (
+ VOID
+ )
+{
+ UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH];
+ UINT64 TableEntry;
+ UINT64 Address;
+ INTN Level;
+ UINTN RepeatZero;
+ CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1];
+ CHAR8 *Ruler1;
+ CHAR8 *Ruler2;
+
+ if (!IsHeapGuardEnabled (GUARD_HEAP_TYPE_ALL)) {
+ return;
+ }
+
+ if (mGuardedMemoryMap == 0 ||
+ mMapLevel == 0 ||
+ mMapLevel > GUARDED_HEAP_MAP_TABLE_DEPTH) {
+ return;
+ }
+
+ Ruler1 = " 3 2 1 0";
+ Ruler2 = "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210";
+
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "============================="
+ " Guarded Memory Bitmap "
+ "==============================\r\n"));
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1));
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2));
+
+ CopyMem (Entries, mLevelMask, sizeof (Entries));
+ CopyMem (Shifts, mLevelShift, sizeof (Shifts));
+
+ SetMem (Indices, sizeof(Indices), 0);
+ SetMem (Tables, sizeof(Tables), 0);
+ SetMem (Addresses, sizeof(Addresses), 0);
+
+ Level = GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel;
+ Tables[Level] = mGuardedMemoryMap;
+ Address = 0;
+ RepeatZero = 0;
+
+ while (TRUE) {
+ if (Indices[Level] > Entries[Level]) {
+
+ Tables[Level] = 0;
+ Level -= 1;
+ RepeatZero = 0;
+
+ DEBUG ((
+ HEAP_GUARD_DEBUG_LEVEL,
+ "========================================="
+ "=========================================\r\n"
+ ));
+
+ } else {
+
+ TableEntry = ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]];
+ Address = Addresses[Level];
+
+ if (TableEntry == 0) {
+
+ if (Level == GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+ if (RepeatZero == 0) {
+ Uint64ToBinString(TableEntry, String);
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
+ } else if (RepeatZero == 1) {
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n"));
+ }
+ RepeatZero += 1;
+ }
+
+ } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) {
+
+ Level += 1;
+ Tables[Level] = TableEntry;
+ Addresses[Level] = Address;
+ Indices[Level] = 0;
+ RepeatZero = 0;
+
+ continue;
+
+ } else {
+
+ RepeatZero = 0;
+ Uint64ToBinString(TableEntry, String);
+ DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String));
+
+ }
+ }
+
+ if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) {
+ break;
+ }
+
+ Indices[Level] += 1;
+ Address = (Level == 0) ? 0 : Addresses[Level - 1];
+ Addresses[Level] = Address | LShiftU64(Indices[Level], Shifts[Level]);
+
+ }
+}
+
|