diff options
Diffstat (limited to 'roms/edk2/MdePkg/Include/Protocol/Kms.h')
-rw-r--r-- | roms/edk2/MdePkg/Include/Protocol/Kms.h | 1337 |
1 files changed, 1337 insertions, 0 deletions
diff --git a/roms/edk2/MdePkg/Include/Protocol/Kms.h b/roms/edk2/MdePkg/Include/Protocol/Kms.h new file mode 100644 index 000000000..7dac7efcd --- /dev/null +++ b/roms/edk2/MdePkg/Include/Protocol/Kms.h @@ -0,0 +1,1337 @@ +/** @file
+ The Key Management Service (KMS) protocol as defined in the UEFI 2.3.1 specification is to
+ provides services to generate, store, retrieve, and manage cryptographic keys.
+ The intention is to specify a simple generic protocol that could be used for many implementations.
+
+ A driver implementing the protocol may need to provide basic key service that consists of a
+ key store and cryptographic key generation capability. It may connect to an external key
+ server over the network, or to a Hardware Security Module (HSM) attached to the system it
+ runs on, or anything else that is capable of providing the key management service.
+
+ Copyright (c) 2011 - 2018, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#ifndef __KMS_H__
+#define __KMS_H__
+
+#define EFI_KMS_PROTOCOL_GUID \
+ { \
+ 0xEC3A978D, 0x7C4E, 0x48FA, {0x9A, 0xBE, 0x6A, 0xD9, 0x1C, 0xC8, 0xF8, 0x11 } \
+ }
+
+typedef struct _EFI_KMS_PROTOCOL EFI_KMS_PROTOCOL;
+
+//
+// Where appropriate, EFI_KMS_DATA_TYPE values may be combined using a bitwise 'OR'
+// operation to indicate support for multiple data types.
+//
+#define EFI_KMS_DATA_TYPE_NONE 0
+#define EFI_KMS_DATA_TYPE_BINARY 1
+#define EFI_KMS_DATA_TYPE_ASCII 2
+#define EFI_KMS_DATA_TYPE_UNICODE 4
+#define EFI_KMS_DATA_TYPE_UTF8 8
+
+
+//
+// The key formats recognized by the KMS protocol are defined by an EFI_GUID which specifies
+// a (key-algorithm, key-size) pair. The names of these GUIDs are in the format
+// EFI_KMS_KEY_(key-algorithm)_(key-size)_GUID, where the key-size is expressed in bits.
+// The key formats recognized fall into three categories, generic (no algorithm), hash algorithms,
+// and encrypted algorithms.
+//
+
+///
+/// The following GUIDs define formats that contain generic key data of a specific size in bits,
+/// but which is not associated with any specific key algorithm(s).
+///@{
+#define EFI_KMS_FORMAT_GENERIC_128_GUID \
+ { \
+ 0xec8a3d69, 0x6ddf, 0x4108, {0x94, 0x76, 0x73, 0x37, 0xfc, 0x52, 0x21, 0x36 } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_160_GUID \
+ { \
+ 0xa3b3e6f8, 0xefca, 0x4bc1, {0x88, 0xfb, 0xcb, 0x87, 0x33, 0x9b, 0x25, 0x79 } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_256_GUID \
+ { \
+ 0x70f64793, 0xc323, 0x4261, {0xac, 0x2c, 0xd8, 0x76, 0xf2, 0x7c, 0x53, 0x45 } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_512_GUID \
+ { \
+ 0x978fe043, 0xd7af, 0x422e, {0x8a, 0x92, 0x2b, 0x48, 0xe4, 0x63, 0xbd, 0xe6 } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_1024_GUID \
+ { \
+ 0x43be0b44, 0x874b, 0x4ead, {0xb0, 0x9c, 0x24, 0x1a, 0x4f, 0xbd, 0x7e, 0xb3 } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_2048_GUID \
+ { \
+ 0x40093f23, 0x630c, 0x4626, {0x9c, 0x48, 0x40, 0x37, 0x3b, 0x19, 0xcb, 0xbe } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_3072_GUID \
+ { \
+ 0xb9237513, 0x6c44, 0x4411, {0xa9, 0x90, 0x21, 0xe5, 0x56, 0xe0, 0x5a, 0xde } \
+ }
+#define EFI_KMS_FORMAT_GENERIC_DYNAMIC_GUID \
+ { \
+ 0x2156e996, 0x66de, 0x4b27, {0x9c, 0xc9, 0xb0, 0x9f, 0xac, 0x4d, 0x2, 0xbe } \
+ }
+///@}
+
+///
+/// These GUIDS define key data formats that contain data generated by basic hash algorithms
+/// with no cryptographic properties.
+///@{
+#define EFI_KMS_FORMAT_MD2_128_GUID \
+ { \
+ 0x78be11c4, 0xee44, 0x4a22, {0x9f, 0x05, 0x03, 0x85, 0x2e, 0xc5, 0xc9, 0x78 } \
+ }
+#define EFI_KMS_FORMAT_MDC2_128_GUID \
+ { \
+ 0xf7ad60f8, 0xefa8, 0x44a3, {0x91, 0x13, 0x23, 0x1f, 0x39, 0x9e, 0xb4, 0xc7 } \
+ }
+#define EFI_KMS_FORMAT_MD4_128_GUID \
+ { \
+ 0xd1c17aa1, 0xcac5, 0x400f, {0xbe, 0x17, 0xe2, 0xa2, 0xae, 0x06, 0x67, 0x7c } \
+ }
+#define EFI_KMS_FORMAT_MDC4_128_GUID \
+ { \
+ 0x3fa4f847, 0xd8eb, 0x4df4, {0xbd, 0x49, 0x10, 0x3a, 0x0a, 0x84, 0x7b, 0xbc } \
+ }
+#define EFI_KMS_FORMAT_MD5_128_GUID \
+ { \
+ 0xdcbc3662, 0x9cda, 0x4b52, {0xa0, 0x4c, 0x82, 0xeb, 0x1d, 0x23, 0x48, 0xc7 } \
+ }
+#define EFI_KMS_FORMAT_MD5SHA_128_GUID \
+ { \
+ 0x1c178237, 0x6897, 0x459e, {0x9d, 0x36, 0x67, 0xce, 0x8e, 0xf9, 0x4f, 0x76 } \
+ }
+#define EFI_KMS_FORMAT_SHA1_160_GUID \
+ { \
+ 0x453c5e5a, 0x482d, 0x43f0, {0x87, 0xc9, 0x59, 0x41, 0xf3, 0xa3, 0x8a, 0xc2 } \
+ }
+#define EFI_KMS_FORMAT_SHA256_256_GUID \
+ { \
+ 0x6bb4f5cd, 0x8022, 0x448d, {0xbc, 0x6d, 0x77, 0x1b, 0xae, 0x93, 0x5f, 0xc6 } \
+ }
+#define EFI_KMS_FORMAT_SHA512_512_GUID \
+ { \
+ 0x2f240e12, 0xe14d, 0x475c, {0x83, 0xb0, 0xef, 0xff, 0x22, 0xd7, 0x7b, 0xe7 } \
+ }
+///@}
+
+///
+/// These GUIDs define key data formats that contain data generated by cryptographic key algorithms.
+/// There may or may not be a separate data hashing algorithm associated with the key algorithm.
+///@{
+#define EFI_KMS_FORMAT_AESXTS_128_GUID \
+ { \
+ 0x4776e33f, 0xdb47, 0x479a, {0xa2, 0x5f, 0xa1, 0xcd, 0x0a, 0xfa, 0xb3, 0x8b } \
+ }
+#define EFI_KMS_FORMAT_AESXTS_256_GUID \
+ { \
+ 0xdc7e8613, 0xc4bb, 0x4db0, {0x84, 0x62, 0x13, 0x51, 0x13, 0x57, 0xab, 0xe2 } \
+ }
+#define EFI_KMS_FORMAT_AESCBC_128_GUID \
+ { \
+ 0xa0e8ee6a, 0x0e92, 0x44d4, {0x86, 0x1b, 0x0e, 0xaa, 0x4a, 0xca, 0x44, 0xa2 } \
+ }
+#define EFI_KMS_FORMAT_AESCBC_256_GUID \
+ { \
+ 0xd7e69789, 0x1f68, 0x45e8, {0x96, 0xef, 0x3b, 0x64, 0x07, 0xa5, 0xb2, 0xdc } \
+ }
+#define EFI_KMS_FORMAT_RSASHA1_1024_GUID \
+ { \
+ 0x56417bed, 0x6bbe, 0x4882, {0x86, 0xa0, 0x3a, 0xe8, 0xbb, 0x17, 0xf8, 0xf9 } \
+ }
+#define EFI_KMS_FORMAT_RSASHA1_2048_GUID \
+ { \
+ 0xf66447d4, 0x75a6, 0x463e, {0xa8, 0x19, 0x07, 0x7f, 0x2d, 0xda, 0x05, 0xe9 } \
+ }
+#define EFI_KMS_FORMAT_RSASHA256_2048_GUID \
+ { \
+ 0xa477af13, 0x877d, 0x4060, {0xba, 0xa1, 0x25, 0xd1, 0xbe, 0xa0, 0x8a, 0xd3 } \
+ }
+#define EFI_KMS_FORMAT_RSASHA256_3072_GUID \
+ { \
+ 0x4e1356c2, 0xeed, 0x463f, {0x81, 0x47, 0x99, 0x33, 0xab, 0xdb, 0xc7, 0xd5 } \
+ }
+///@}
+
+#define EFI_KMS_ATTRIBUTE_TYPE_NONE 0x00
+#define EFI_KMS_ATTRIBUTE_TYPE_INTEGER 0x01
+#define EFI_KMS_ATTRIBUTE_TYPE_LONG_INTEGER 0x02
+#define EFI_KMS_ATTRIBUTE_TYPE_BIG_INTEGER 0x03
+#define EFI_KMS_ATTRIBUTE_TYPE_ENUMERATION 0x04
+#define EFI_KMS_ATTRIBUTE_TYPE_BOOLEAN 0x05
+#define EFI_KMS_ATTRIBUTE_TYPE_BYTE_STRING 0x06
+#define EFI_KMS_ATTRIBUTE_TYPE_TEXT_STRING 0x07
+#define EFI_KMS_ATTRIBUTE_TYPE_DATE_TIME 0x08
+#define EFI_KMS_ATTRIBUTE_TYPE_INTERVAL 0x09
+#define EFI_KMS_ATTRIBUTE_TYPE_STRUCTURE 0x0A
+#define EFI_KMS_ATTRIBUTE_TYPE_DYNAMIC 0x0B
+
+typedef struct {
+ ///
+ /// Length in bytes of the KeyData.
+ ///
+ UINT32 KeySize;
+ ///
+ /// The data of the key.
+ ///
+ UINT8 KeyData[1];
+} EFI_KMS_FORMAT_GENERIC_DYNAMIC;
+
+typedef struct {
+ ///
+ /// The size in bytes for the client identifier.
+ ///
+ UINT16 ClientIdSize;
+ ///
+ /// Pointer to a valid client identifier.
+ ///
+ VOID *ClientId;
+ ///
+ /// The client name string type used by this client. The string type set here must be one of
+ /// the string types reported in the ClientNameStringTypes field of the KMS protocol. If the
+ /// KMS does not support client names, this field should be set to EFI_KMS_DATA_TYPE_NONE.
+ ///
+ UINT8 ClientNameType;
+ ///
+ /// The size in characters for the client name. This field will be ignored if
+ /// ClientNameStringType is set to EFI_KMS_DATA_TYPE_NONE. Otherwise, it must contain
+ /// number of characters contained in the ClientName field.
+ ///
+ UINT8 ClientNameCount;
+ ///
+ /// Pointer to a client name. This field will be ignored if ClientNameStringType is set to
+ /// EFI_KMS_DATA_TYPE_NONE. Otherwise, it must point to a valid string of the specified type.
+ ///
+ VOID *ClientName;
+} EFI_KMS_CLIENT_INFO;
+
+typedef struct {
+ ///
+ /// The size of the KeyIdentifier field in bytes. This field is limited to the range 0 to 255.
+ ///
+ UINT8 KeyIdentifierSize;
+ ///
+ /// Pointer to an array of KeyIdentifierType elements.
+ ///
+ VOID *KeyIdentifier;
+ ///
+ /// An EFI_GUID which specifies the algorithm and key value size for this key.
+ ///
+ EFI_GUID KeyFormat;
+ ///
+ /// Pointer to a key value for a key specified by the KeyFormat field. A NULL value for this
+ /// field indicates that no key is available.
+ ///
+ VOID *KeyValue;
+ ///
+ /// Specifies the results of KMS operations performed with this descriptor. This field is used
+ /// to indicate the status of individual operations when a KMS function is called with multiple
+ /// EFI_KMS_KEY_DESCRIPTOR structures.
+ /// KeyStatus codes returned for the individual key requests are:
+ /// EFI_SUCCESS Successfully processed this key.
+ /// EFI_WARN_STALE_DATA Successfully processed this key, however, the key's parameters
+ /// exceed internal policies/limits and should be replaced.
+ /// EFI_COMPROMISED_DATA Successfully processed this key, but the key may have been
+ /// compromised and must be replaced.
+ /// EFI_UNSUPPORTED Key format is not supported by the service.
+ /// EFI_OUT_OF_RESOURCES Could not allocate resources for the key processing.
+ /// EFI_TIMEOUT Timed out waiting for device or key server.
+ /// EFI_DEVICE_ERROR Device or key server error.
+ /// EFI_INVALID_PARAMETER KeyFormat is invalid.
+ /// EFI_NOT_FOUND The key does not exist on the KMS.
+ ///
+ EFI_STATUS KeyStatus;
+} EFI_KMS_KEY_DESCRIPTOR;
+
+typedef struct {
+ ///
+ /// Part of a tag-type-length triplet that identifies the KeyAttributeData formatting. The
+ /// definition of the value is outside the scope of this standard and may be defined by the KMS.
+ ///
+ UINT16 Tag;
+ ///
+ /// Part of a tag-type-length triplet that identifies the KeyAttributeData formatting. The
+ /// definition of the value is outside the scope of this standard and may be defined by the KMS.
+ ///
+ UINT16 Type;
+ ///
+ /// Length in bytes of the KeyAttributeData.
+ ///
+ UINT32 Length;
+ ///
+ /// An array of bytes to hold the attribute data associated with the KeyAttributeIdentifier.
+ ///
+ UINT8 KeyAttributeData[1];
+} EFI_KMS_DYNAMIC_FIELD;
+
+typedef struct {
+ ///
+ /// The number of members in the EFI_KMS_DYNAMIC_ATTRIBUTE structure.
+ ///
+ UINT32 FieldCount;
+ ///
+ /// An array of EFI_KMS_DYNAMIC_FIELD structures.
+ ///
+ EFI_KMS_DYNAMIC_FIELD Field[1];
+} EFI_KMS_DYNAMIC_ATTRIBUTE;
+
+typedef struct {
+ ///
+ /// The data type used for the KeyAttributeIdentifier field. Values for this field are defined
+ /// by the EFI_KMS_DATA_TYPE constants, except that EFI_KMS_DATA_TYPE_BINARY is not
+ /// valid for this field.
+ ///
+ UINT8 KeyAttributeIdentifierType;
+ ///
+ /// The length of the KeyAttributeIdentifier field in units defined by KeyAttributeIdentifierType
+ /// field. This field is limited to the range 0 to 255.
+ ///
+ UINT8 KeyAttributeIdentifierCount;
+ ///
+ /// Pointer to an array of KeyAttributeIdentifierType elements. For string types, there must
+ /// not be a null-termination element at the end of the array.
+ ///
+ VOID *KeyAttributeIdentifier;
+ ///
+ /// The instance number of this attribute. If there is only one instance, the value is set to
+ /// one. If this value is set to 0xFFFF (all binary 1's) then this field should be ignored if an
+ /// output or treated as a wild card matching any value if it is an input. If the attribute is
+ /// stored with this field, it will match any attribute request regardless of the setting of the
+ /// field in the request. If set to 0xFFFF in the request, it will match any attribute with the
+ /// same KeyAttributeIdentifier.
+ ///
+ UINT16 KeyAttributeInstance;
+ ///
+ /// The data type of the KeyAttributeValue (e.g. struct, bool, etc.). See the list of
+ /// KeyAttributeType definitions.
+ ///
+ UINT16 KeyAttributeType;
+ ///
+ /// The size in bytes of the KeyAttribute field. A value of zero for this field indicates that no
+ /// key attribute value is available.
+ ///
+ UINT16 KeyAttributeValueSize;
+ ///
+ /// Pointer to a key attribute value for the attribute specified by the KeyAttributeIdentifier
+ /// field. If the KeyAttributeValueSize field is zero, then this field must be NULL.
+ ///
+ VOID *KeyAttributeValue;
+ ///
+ /// KeyAttributeStatusSpecifies the results of KMS operations performed with this attribute.
+ /// This field is used to indicate the status of individual operations when a KMS function is
+ /// called with multiple EFI_KMS_KEY_ATTRIBUTE structures.
+ /// KeyAttributeStatus codes returned for the individual key attribute requests are:
+ /// EFI_SUCCESS Successfully processed this request.
+ /// EFI_WARN_STALE_DATA Successfully processed this request, however, the key's
+ /// parameters exceed internal policies/limits and should be replaced.
+ /// EFI_COMPROMISED_DATA Successfully processed this request, but the key may have been
+ /// compromised and must be replaced.
+ /// EFI_UNSUPPORTED Key attribute format is not supported by the service.
+ /// EFI_OUT_OF_RESOURCES Could not allocate resources for the request processing.
+ /// EFI_TIMEOUT Timed out waiting for device or key server.
+ /// EFI_DEVICE_ERROR Device or key server error.
+ /// EFI_INVALID_PARAMETER A field in the EFI_KMS_KEY_ATTRIBUTE structure is invalid.
+ /// EFI_NOT_FOUND The key attribute does not exist on the KMS.
+ ///
+ EFI_STATUS KeyAttributeStatus;
+} EFI_KMS_KEY_ATTRIBUTE;
+
+/**
+ Get the current status of the key management service.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+
+ @retval EFI_SUCCESS The KMS is ready for use.
+ @retval EFI_NOT_READY No connection to the KMS is available.
+ @retval EFI_NO_MAPPING No valid connection configuration exists for the KMS.
+ @retval EFI_NO_RESPONSE No response was received from the KMS.
+ @retval EFI_DEVICE_ERROR An error occurred when attempting to access the KMS.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_GET_SERVICE_STATUS) (
+ IN EFI_KMS_PROTOCOL *This
+ );
+
+/**
+ Register client information with the supported KMS.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS The client information has been accepted by the KMS.
+ @retval EFI_NOT_READY No connection to the KMS is available.
+ @retval EFI_NO_RESPONSE There was no response from the device or the key server.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server.
+ @retval EFI_DEVICE_ERROR An error occurred when attempting to access the KMS.
+ @retval EFI_OUT_OF_RESOURCES Required resources were not available to perform the function.
+ @retval EFI_INVALID_PARAMETER This is NULL.
+ @retval EFI_UNSUPPORTED The KMS does not support the use of client identifiers.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_REGISTER_CLIENT) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Request that the KMS generate one or more new keys and associate them with key identifiers.
+ The key value(s) is returned to the caller.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in, out] KeyDescriptorCount Pointer to a count of the number of key descriptors to be
+ processed by this operation. On return, this number
+ will be updated with the number of key descriptors
+ successfully processed.
+ @param[in, out] KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR
+ structures which describe the keys to be generated.
+ On input, the KeyIdentifierSize and the KeyIdentifier
+ may specify an identifier to be used for the key,
+ but this is not required. The KeyFormat field must
+ specify a key format GUID reported as supported by
+ the KeyFormats field of the EFI_KMS_PROTOCOL.
+ The value for this field in the first key descriptor will
+ be considered the default value for subsequent key
+ descriptors requested in this operation if those key
+ descriptors have a NULL GUID in the key format field.
+ On output, the KeyIdentifierSize and KeyIdentifier fields
+ will specify an identifier for the key which will be either
+ the original identifier if one was provided, or an identifier
+ generated either by the KMS or the KMS protocol
+ implementation. The KeyFormat field will be updated
+ with the GUID used to generate the key if it was a
+ NULL GUID, and the KeyValue field will contain a pointer
+ to memory containing the key value for the generated
+ key. Memory for both the KeyIdentifier and the KeyValue
+ fields will be allocated with the BOOT_SERVICES_DATA
+ type and must be freed by the caller when it is no longer
+ needed. Also, the KeyStatus field must reflect the result
+ of the request relative to that key.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully generated and retrieved all requested keys.
+ @retval EFI_UNSUPPORTED This function is not supported by the KMS. --OR--
+ One (or more) of the key requests submitted is not supported by
+ the KMS. Check individual key request(s) to see which ones
+ may have been processed.
+ @retval EFI_OUT_OF_RESOURCES Required resources were not available to perform the function.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ request(s) to see which ones may have been processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either no id was
+ provided or an invalid id was provided.
+ @retval EFI_DEVICE_ERROR An error occurred when attempting to access the KMS. Check
+ individual key request(s) to see which ones may have been
+ processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyDescriptorCount is NULL, or Keys is NULL.
+ @retval EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures
+ could not be processed properly. KeyDescriptorCount
+ contains the number of structures which were successfully
+ processed. Individual structures will reflect the status of the
+ processing for that structure.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_CREATE_KEY) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN OUT UINT16 *KeyDescriptorCount,
+ IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Retrieve an existing key.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in, out] KeyDescriptorCount Pointer to a count of the number of key descriptors to be
+ processed by this operation. On return, this number
+ will be updated with the number of key descriptors
+ successfully processed.
+ @param[in, out] KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR
+ structures which describe the keys to be retrieved
+ from the KMS.
+ On input, the KeyIdentifierSize and the KeyIdentifier
+ must specify an identifier to be used to retrieve a
+ specific key. All other fields in the descriptor should
+ be NULL.
+ On output, the KeyIdentifierSize and KeyIdentifier fields
+ will be unchanged, while the KeyFormat and KeyValue
+ fields will be updated values associated with this key
+ identifier. Memory for the KeyValue field will be
+ allocated with the BOOT_SERVICES_DATA type and
+ must be freed by the caller when it is no longer needed.
+ Also, the KeyStatus field will reflect the result of the
+ request relative to the individual key descriptor.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully retrieved all requested keys.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate resources for the method processing.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ request(s) to see which ones may have been processed.
+ @retval EFI_BUFFER_TOO_SMALL If multiple keys are associated with a single identifier, and the
+ KeyValue buffer does not contain enough structures
+ (KeyDescriptorCount) to contain all the key data, then
+ the available structures will be filled and
+ KeyDescriptorCount will be updated to indicate the
+ number of keys which could not be processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to
+ see which ones may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyDescriptorCount is NULL, or Keys is NULL.
+ @retval EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures
+ could not be processed properly. KeyDescriptorCount
+ contains the number of structures which were successfully
+ processed. Individual structures will reflect the status of the
+ processing for that structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_GET_KEY) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN OUT UINT16 *KeyDescriptorCount,
+ IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Add a new key.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in, out] KeyDescriptorCount Pointer to a count of the number of key descriptors to be
+ processed by this operation. On normal return, this
+ number will be updated with the number of key
+ descriptors successfully processed.
+ @param[in, out] KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR
+ structures which describe the keys to be added.
+ On input, the KeyId field for first key must contain
+ valid identifier data to be used for adding a key to
+ the KMS. The values for these fields in this key
+ definition will be considered default values for
+ subsequent keys requested in this operation. A value
+ of 0 in any subsequent KeyId field will be replaced
+ with the current default value. The KeyFormat and
+ KeyValue fields for each key to be added must contain
+ consistent values to be associated with the given KeyId.
+ On return, the KeyStatus field will reflect the result
+ of the operation for each key request.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully added all requested keys.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate required resources.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ request(s) to see which ones may have been processed.
+ @retval EFI_BUFFER_TOO_SMALL If multiple keys are associated with a single identifier, and the
+ KeyValue buffer does not contain enough structures
+ (KeyDescriptorCount) to contain all the key data, then
+ the available structures will be filled and
+ KeyDescriptorCount will be updated to indicate the
+ number of keys which could not be processed
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to
+ see which ones may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyDescriptorCount is NULL, or Keys is NULL.
+ @retval EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures
+ could not be processed properly. KeyDescriptorCount
+ contains the number of structures which were successfully
+ processed. Individual structures will reflect the status of the
+ processing for that structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_ADD_KEY) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN OUT UINT16 *KeyDescriptorCount,
+ IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Delete an existing key from the KMS database.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in, out] KeyDescriptorCount Pointer to a count of the number of key descriptors to be
+ processed by this operation. On normal return, this
+ number will be updated with the number of key
+ descriptors successfully processed.
+ @param[in, out] KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR
+ structures which describe the keys to be deleted.
+ On input, the KeyId field for first key must contain
+ valid identifier data to be used for adding a key to
+ the KMS. The values for these fields in this key
+ definition will be considered default values for
+ subsequent keys requested in this operation. A value
+ of 0 in any subsequent KeyId field will be replaced
+ with the current default value. The KeyFormat and
+ KeyValue fields are ignored, but should be 0.
+ On return, the KeyStatus field will reflect the result
+ of the operation for each key request.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully deleted all requested keys.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate required resources.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ request(s) to see which ones may have been processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key request(s) to
+ see which ones may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyDescriptorCount is NULL, or Keys is NULL.
+ @retval EFI_NOT_FOUND One or more EFI_KMS_KEY_DESCRIPTOR structures
+ could not be processed properly. KeyDescriptorCount
+ contains the number of structures which were successfully
+ processed. Individual structures will reflect the status of the
+ processing for that structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_DELETE_KEY) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN OUT UINT16 *KeyDescriptorCount,
+ IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Get one or more attributes associated with a specified key identifier.
+ If none are found, the returned attributes count contains a value of zero.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in] KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.
+ @param[in] KeyIdentifier Pointer to the key identifier associated with this key.
+ @param[in, out] KeyAttributesCount Pointer to the number of EFI_KMS_KEY_ATTRIBUTE
+ structures associated with the Key identifier. If none
+ are found, the count value is zero on return.
+ On input this value reflects the number of KeyAttributes
+ that may be returned.
+ On output, the value reflects the number of completed
+ KeyAttributes structures found.
+ @param[in, out] KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE
+ structures associated with the Key Identifier.
+ On input, the fields in the structure should be NULL.
+ On output, the attribute fields will have updated values
+ for attributes associated with this key identifier.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully retrieved all key attributes.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate resources for the method processing.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ attribute request(s) to see which ones may have been
+ processed.
+ @retval EFI_BUFFER_TOO_SMALL If multiple key attributes are associated with a single identifier,
+ and the KeyAttributes buffer does not contain enough
+ structures (KeyAttributesCount) to contain all the key
+ attributes data, then the available structures will be filled and
+ KeyAttributesCount will be updated to indicate the
+ number of key attributes which could not be processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
+ request(s) (i.e. key attribute status for each) to see which ones
+ may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyIdentifierSize is NULL , or KeyIdentifier
+ is NULL, or KeyAttributes is NULL, or
+ KeyAttributesSize is NULL.
+ @retval EFI_NOT_FOUND The KeyIdentifier could not be found.
+ KeyAttributesCount contains zero. Individual
+ structures will reflect the status of the processing for that
+ structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_GET_KEY_ATTRIBUTES) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN UINT8 *KeyIdentifierSize,
+ IN CONST VOID *KeyIdentifier,
+ IN OUT UINT16 *KeyAttributesCount,
+ IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Add one or more attributes to a key specified by a key identifier.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in] KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.
+ @param[in] KeyIdentifier Pointer to the key identifier associated with this key.
+ @param[in, out] KeyAttributesCount Pointer to the number of EFI_KMS_KEY_ATTRIBUTE
+ structures to associate with the Key. On normal returns,
+ this number will be updated with the number of key
+ attributes successfully processed.
+ @param[in, out] KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE
+ structures providing the attribute information to
+ associate with the key.
+ On input, the values for the fields in the structure
+ are completely filled in.
+ On return the KeyAttributeStatus field will reflect the
+ result of the operation for each key attribute request.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully added all requested key attributes.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate required resources.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ attribute request(s) to see which ones may have been
+ processed.
+ @retval EFI_BUFFER_TOO_SMALL If multiple keys attributes are associated with a single key
+ identifier, and the attributes buffer does not contain
+ enough structures (KeyAttributesCount) to contain all
+ the data, then the available structures will be filled and
+ KeyAttributesCount will be updated to indicate the
+ number of key attributes which could not be processed. The
+ status of each key attribute is also updated indicating success or
+ failure for that attribute in case there are other errors for those
+ attributes that could be processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
+ request(s) (i.e. key attribute status for each) to see which ones
+ may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyAttributesCount is NULL, or KeyAttributes
+ is NULL, or KeyIdentifierSize is NULL, or
+ KeyIdentifer is NULL.
+ @retval EFI_NOT_FOUND The KeyIdentifier could not be found. On return the
+ KeyAttributesCount contains the number of attributes
+ processed. Individual structures will reflect the status of the
+ processing for that structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_ADD_KEY_ATTRIBUTES) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN UINT8 *KeyIdentifierSize,
+ IN CONST VOID *KeyIdentifier,
+ IN OUT UINT16 *KeyAttributesCount,
+ IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Delete attributes to a key specified by a key identifier.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in] KeyIdentifierSize Pointer to the size in bytes of the KeyIdentifier variable.
+ @param[in] KeyIdentifier Pointer to the key identifier associated with this key.
+ @param[in, out] KeyAttributesCount Pointer to the number of EFI_KMS_KEY_ATTRIBUTE
+ structures to associate with the Key.
+ On input, the count value is one or more.
+ On normal returns, this number will be updated with
+ the number of key attributes successfully processed.
+ @param[in, out] KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE
+ structures providing the attribute information to
+ associate with the key.
+ On input, the values for the fields in the structure
+ are completely filled in.
+ On return the KeyAttributeStatus field will reflect the
+ result of the operation for each key attribute request.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully deleted all requested key attributes.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate required resources.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ attribute request(s) to see which ones may have been
+ processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
+ request(s) (i.e. key attribute status for each) to see which ones
+ may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyAttributesCount is NULL, or
+ KeyAttributes is NULL, or KeyIdentifierSize
+ is NULL, or KeyIdentifer is NULL.
+ @retval EFI_NOT_FOUND The KeyIdentifier could not be found or the attribute
+ could not be found. On return the KeyAttributesCount
+ contains the number of attributes processed. Individual
+ structures will reflect the status of the processing for that
+ structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_DELETE_KEY_ATTRIBUTES) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN UINT8 *KeyIdentifierSize,
+ IN CONST VOID *KeyIdentifier,
+ IN OUT UINT16 *KeyAttributesCount,
+ IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+/**
+ Retrieve one or more key that has matched all of the specified key attributes.
+
+ @param[in] This Pointer to the EFI_KMS_PROTOCOL instance.
+ @param[in] Client Pointer to a valid EFI_KMS_CLIENT_INFO structure.
+ @param[in, out] KeyAttributesCount Pointer to a count of the number of key attribute structures
+ that must be matched for each returned key descriptor.
+ On input the count value is one or more.
+ On normal returns, this number will be updated with
+ the number of key attributes successfully processed.
+ @param[in, out] KeyAttributes Pointer to an array of EFI_KMS_KEY_ATTRIBUTE
+ structure to search for.
+ On input, the values for the fields in the structure are
+ completely filled in.
+ On return the KeyAttributeStatus field will reflect the
+ result of the operation for each key attribute request.
+ @param[in, out] KeyDescriptorCount Pointer to a count of the number of key descriptors matched
+ by this operation.
+ On entry, this number will be zero.
+ On return, this number will be updated to the number
+ of key descriptors successfully found.
+ @param[in, out] KeyDescriptors Pointer to an array of EFI_KMS_KEY_DESCRIPTOR
+ structures which describe the keys from the KMS
+ having the KeyAttribute(s) specified.
+ On input, this pointer will be NULL.
+ On output, the array will contain an
+ EFI_KMS_KEY_DESCRIPTOR structure for each key
+ meeting the search criteria. Memory for the array
+ and all KeyValue fields will be allocated with the
+ EfiBootServicesData type and must be freed by the
+ caller when it is no longer needed. Also, the KeyStatus
+ field of each descriptor will reflect the result of the
+ request relative to that key descriptor.
+ @param[in, out] ClientDataSize Pointer to the size, in bytes, of an arbitrary block of
+ data specified by the ClientData parameter. This
+ parameter may be NULL, in which case the ClientData
+ parameter will be ignored and no data will be
+ transferred to or from the KMS. If the parameter is
+ not NULL, then ClientData must be a valid pointer.
+ If the value pointed to is 0, no data will be transferred
+ to the KMS, but data may be returned by the KMS.
+ For all non-zero values *ClientData will be transferred
+ to the KMS, which may also return data to the caller.
+ In all cases, the value upon return to the caller will
+ be the size of the data block returned to the caller,
+ which will be zero if no data is returned from the KMS.
+ @param[in, out] ClientData Pointer to a pointer to an arbitrary block of data of
+ *ClientDataSize that is to be passed directly to the
+ KMS if it supports the use of client data. This
+ parameter may be NULL if and only if the
+ ClientDataSize parameter is also NULL. Upon return to
+ the caller, *ClientData points to a block of data of
+ *ClientDataSize that was returned from the KMS.
+ If the returned value for *ClientDataSize is zero,
+ then the returned value for *ClientData must be NULL
+ and should be ignored by the caller. The KMS protocol
+ consumer is responsible for freeing all valid buffers
+ used for client data regardless of whether they are
+ allocated by the caller for input to the function or by
+ the implementation for output back to the caller.
+
+ @retval EFI_SUCCESS Successfully retrieved all requested keys.
+ @retval EFI_OUT_OF_RESOURCES Could not allocate required resources.
+ @retval EFI_TIMEOUT Timed out waiting for device or key server. Check individual key
+ attribute request(s) to see which ones may have been
+ processed.
+ @retval EFI_BUFFER_TOO_SMALL If multiple keys are associated with the attribute(s), and the
+ KeyValue buffer does not contain enough structures
+ (KeyDescriptorCount) to contain all the key data, then
+ the available structures will be filled and
+ KeyDescriptorCount will be updated to indicate the
+ number of keys which could not be processed.
+ @retval EFI_ACCESS_DENIED Access was denied by the device or the key server; OR a
+ ClientId is required by the server and either none or an
+ invalid id was provided.
+ @retval EFI_DEVICE_ERROR Device or key server error. Check individual key attribute
+ request(s) (i.e. key attribute status for each) to see which ones
+ may have been processed.
+ @retval EFI_INVALID_PARAMETER This is NULL, ClientId is required but it is NULL,
+ KeyDescriptorCount is NULL, or
+ KeyDescriptors is NULL or KeyAttributes is
+ NULL, or KeyAttributesCount is NULL.
+ @retval EFI_NOT_FOUND One or more EFI_KMS_KEY_ATTRIBUTE structures could
+ not be processed properly. KeyAttributeCount contains
+ the number of structures which were successfully processed.
+ Individual structures will reflect the status of the processing for
+ that structure.
+ @retval EFI_UNSUPPORTED The implementation/KMS does not support this function.
+
+**/
+typedef
+EFI_STATUS
+(EFIAPI *EFI_KMS_GET_KEY_BY_ATTRIBUTES) (
+ IN EFI_KMS_PROTOCOL *This,
+ IN EFI_KMS_CLIENT_INFO *Client,
+ IN OUT UINTN *KeyAttributeCount,
+ IN OUT EFI_KMS_KEY_ATTRIBUTE *KeyAttributes,
+ IN OUT UINTN *KeyDescriptorCount,
+ IN OUT EFI_KMS_KEY_DESCRIPTOR *KeyDescriptors,
+ IN OUT UINTN *ClientDataSize OPTIONAL,
+ IN OUT VOID **ClientData OPTIONAL
+ );
+
+///
+/// The Key Management Service (KMS) protocol provides services to generate, store, retrieve,
+/// and manage cryptographic keys.
+///
+struct _EFI_KMS_PROTOCOL {
+ ///
+ /// Get the current status of the key management service. If the implementation has not yet
+ /// connected to the KMS, then a call to this function will initiate a connection. This is the
+ /// only function that is valid for use prior to the service being marked available.
+ ///
+ EFI_KMS_GET_SERVICE_STATUS GetServiceStatus;
+ ///
+ /// Register a specific client with the KMS.
+ ///
+ EFI_KMS_REGISTER_CLIENT RegisterClient;
+ ///
+ /// Request the generation of a new key and retrieve it.
+ ///
+ EFI_KMS_CREATE_KEY CreateKey;
+ ///
+ /// Retrieve an existing key.
+ ///
+ EFI_KMS_GET_KEY GetKey;
+ ///
+ /// Add a local key to KMS database. If there is an existing key with this key identifier in the
+ /// KMS database, it will be replaced with the new key.
+ ///
+ EFI_KMS_ADD_KEY AddKey;
+ ///
+ /// Delete an existing key from the KMS database.
+ ///
+ EFI_KMS_DELETE_KEY DeleteKey;
+ ///
+ /// Get attributes for an existing key in the KMS database.
+ ///
+ EFI_KMS_GET_KEY_ATTRIBUTES GetKeyAttributes;
+ ///
+ /// Add attributes to an existing key in the KMS database.
+ ///
+ EFI_KMS_ADD_KEY_ATTRIBUTES AddKeyAttributes;
+ ///
+ /// Delete attributes for an existing key in the KMS database.
+ ///
+ EFI_KMS_DELETE_KEY_ATTRIBUTES DeleteKeyAttributes;
+ ///
+ /// Get existing key(s) with the specified attributes.
+ ///
+ EFI_KMS_GET_KEY_BY_ATTRIBUTES GetKeyByAttributes;
+ ///
+ /// The version of this EFI_KMS_PROTOCOL structure. This must be set to 0x00020040 for
+ /// the initial version of this protocol.
+ ///
+ UINT32 ProtocolVersion;
+ ///
+ /// Optional GUID used to identify a specific KMS. This GUID may be supplied by the provider,
+ /// by the implementation, or may be null. If is null, then the ServiceName must not be null.
+ ///
+ EFI_GUID ServiceId;
+ ///
+ /// Optional pointer to a unicode string which may be used to identify the KMS or provide
+ /// other information about the supplier.
+ ///
+ CHAR16 *ServiceName;
+ ///
+ /// Optional 32-bit value which may be used to indicate the version of the KMS provided by
+ /// the supplier.
+ ///
+ UINT32 ServiceVersion;
+ ///
+ /// TRUE if and only if the service is active and available for use. To avoid unnecessary
+ /// delays in POST, this protocol may be installed without connecting to the service. In this
+ /// case, the first call to the GetServiceStatus () function will cause the implementation to
+ /// connect to the supported service and mark it as available. The capabilities of this service
+ /// as defined in the reminder of this protocol are not guaranteed to be valid until the service
+ /// has been marked available.
+ ///
+ BOOLEAN ServiceAvailable;
+ ///
+ /// TRUE if and only if the service supports client identifiers. Client identifiers may be used
+ /// for auditing, access control or any other purpose specific to the implementation.
+ ///
+ BOOLEAN ClientIdSupported;
+ ///
+ /// TRUE if and only if the service requires a client identifier in order to process key requests.
+ /// FALSE otherwise.
+ ///
+ BOOLEAN ClientIdRequired;
+ ///
+ /// The maximum size in bytes for the client identifier.
+ ///
+ UINT16 ClientIdMaxSize;
+ ///
+ /// The client name string type(s) supported by the KMS service. If client names are not
+ /// supported, this field will be set the EFI_KMS_DATA_TYPE_NONE. Otherwise, it will be set
+ /// to the inclusive 'OR' of all client name formats supported. Client names may be used for
+ /// auditing, access control or any other purpose specific to the implementation.
+ ///
+ UINT8 ClientNameStringTypes;
+ ///
+ /// TRUE if only if the KMS requires a client name to be supplied to the service.
+ /// FALSE otherwise.
+ ///
+ BOOLEAN ClientNameRequired;
+ ///
+ /// The maximum number of characters allowed for the client name.
+ ///
+ UINT16 ClientNameMaxCount;
+ ///
+ /// TRUE if and only if the service supports arbitrary client data requests. The use of client
+ /// data requires the caller to have specific knowledge of the individual KMS service and
+ /// should be used only if absolutely necessary.
+ /// FALSE otherwise.
+ ///
+ BOOLEAN ClientDataSupported;
+ ///
+ /// The maximum size in bytes for the client data. If the maximum data size is not specified
+ /// by the KMS or it is not known, then this field must be filled with all ones.
+ ///
+ UINTN ClientDataMaxSize;
+ ///
+ /// TRUE if variable length key identifiers are supported.
+ /// FALSE if a fixed length key identifier is supported.
+ ///
+ BOOLEAN KeyIdVariableLenSupported;
+ ///
+ /// If KeyIdVariableLenSupported is TRUE, this is the maximum supported key identifier length
+ /// in bytes. Otherwise this is the fixed length of key identifier supported. Key ids shorter
+ /// than the fixed length will be padded on the right with blanks.
+ ///
+ UINTN KeyIdMaxSize;
+ ///
+ /// The number of key format/size GUIDs returned in the KeyFormats field.
+ ///
+ UINTN KeyFormatsCount;
+ ///
+ /// A pointer to an array of EFI_GUID values which specify key formats/sizes supported by
+ /// this KMS. Each format/size pair will be specified by a separate EFI_GUID. At least one
+ /// key format/size must be supported. All formats/sizes with the same hashing algorithm
+ /// must be contiguous in the array, and for each hashing algorithm, the key sizes must be in
+ /// ascending order. See "Related Definitions" for GUIDs which identify supported key formats/sizes.
+ /// This list of GUIDs supported by the KMS is not required to be exhaustive, and the KMS
+ /// may provide support for additional key formats/sizes. Users may request key information
+ /// using an arbitrary GUID, but any GUID not recognized by the implementation or not
+ /// supported by the KMS will return an error code of EFI_UNSUPPORTED
+ ///
+ EFI_GUID *KeyFormats;
+ ///
+ /// TRUE if key attributes are supported.
+ /// FALSE if key attributes are not supported.
+ ///
+ BOOLEAN KeyAttributesSupported;
+ ///
+ /// The key attribute identifier string type(s) supported by the KMS service. If key attributes
+ /// are not supported, this field will be set to EFI_KMS_DATA_TYPE_NONE. Otherwise, it will
+ /// be set to the inclusive 'OR' of all key attribute identifier string types supported.
+ /// EFI_KMS_DATA_TYPE_BINARY is not valid for this field.
+ ///
+ UINT8 KeyAttributeIdStringTypes;
+ UINT16 KeyAttributeIdMaxCount;
+ ///
+ /// The number of predefined KeyAttributes structures returned in the KeyAttributes
+ /// parameter. If the KMS does not support predefined key attributes, or if it does not
+ /// provide a method to obtain predefined key attributes data, then this field must be zero.
+ ///
+ UINTN KeyAttributesCount;
+ ///
+ /// A pointer to an array of KeyAttributes structures which contains the predefined
+ /// attributes supported by this KMS. Each structure must contain a valid key attribute
+ /// identifier and should provide any other information as appropriate for the attribute,
+ /// including a default value if one exists. This variable must be set to NULL if the
+ /// KeyAttributesCount variable is zero. It must point to a valid buffer if the
+ /// KeyAttributesCount variable is non-zero.
+ /// This list of predefined attributes is not required to be exhaustive, and the KMS may
+ /// provide additional predefined attributes not enumerated in this list. The implementation
+ /// does not distinguish between predefined and used defined attributes, and therefore,
+ /// predefined attributes not enumerated will still be processed to the KMS.
+ ///
+ EFI_KMS_KEY_ATTRIBUTE *KeyAttributes;
+};
+
+extern EFI_GUID gEfiKmsFormatGeneric128Guid;
+extern EFI_GUID gEfiKmsFormatGeneric160Guid;
+extern EFI_GUID gEfiKmsFormatGeneric256Guid;
+extern EFI_GUID gEfiKmsFormatGeneric512Guid;
+extern EFI_GUID gEfiKmsFormatGeneric1024Guid;
+extern EFI_GUID gEfiKmsFormatGeneric2048Guid;
+extern EFI_GUID gEfiKmsFormatGeneric3072Guid;
+extern EFI_GUID gEfiKmsFormatMd2128Guid;
+extern EFI_GUID gEfiKmsFormatMdc2128Guid;
+extern EFI_GUID gEfiKmsFormatMd4128Guid;
+extern EFI_GUID gEfiKmsFormatMdc4128Guid;
+extern EFI_GUID gEfiKmsFormatMd5128Guid;
+extern EFI_GUID gEfiKmsFormatMd5sha128Guid;
+extern EFI_GUID gEfiKmsFormatSha1160Guid;
+extern EFI_GUID gEfiKmsFormatSha256256Guid;
+extern EFI_GUID gEfiKmsFormatSha512512Guid;
+extern EFI_GUID gEfiKmsFormatAesxts128Guid;
+extern EFI_GUID gEfiKmsFormatAesxts256Guid;
+extern EFI_GUID gEfiKmsFormatAescbc128Guid;
+extern EFI_GUID gEfiKmsFormatAescbc256Guid;
+extern EFI_GUID gEfiKmsFormatRsasha11024Guid;
+extern EFI_GUID gEfiKmsFormatRsasha12048Guid;
+extern EFI_GUID gEfiKmsFormatRsasha2562048Guid;
+extern EFI_GUID gEfiKmsFormatRsasha2563072Guid;
+extern EFI_GUID gEfiKmsProtocolGuid;
+
+#endif
|