aboutsummaryrefslogtreecommitdiffstats
path: root/roms/edk2/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/edk2/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c')
-rw-r--r--roms/edk2/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c1999
1 files changed, 1999 insertions, 0 deletions
diff --git a/roms/edk2/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c b/roms/edk2/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
new file mode 100644
index 000000000..4bcd21791
--- /dev/null
+++ b/roms/edk2/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
@@ -0,0 +1,1999 @@
+/** @file
+SMM MP service implementation
+
+Copyright (c) 2009 - 2020, Intel Corporation. All rights reserved.<BR>
+Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
+
+SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#include "PiSmmCpuDxeSmm.h"
+
+//
+// Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE)
+//
+MTRR_SETTINGS gSmiMtrrs;
+UINT64 gPhyMask;
+SMM_DISPATCHER_MP_SYNC_DATA *mSmmMpSyncData = NULL;
+UINTN mSmmMpSyncDataSize;
+SMM_CPU_SEMAPHORES mSmmCpuSemaphores;
+UINTN mSemaphoreSize;
+SPIN_LOCK *mPFLock = NULL;
+SMM_CPU_SYNC_MODE mCpuSmmSyncMode;
+BOOLEAN mMachineCheckSupported = FALSE;
+
+/**
+ Performs an atomic compare exchange operation to get semaphore.
+ The compare exchange operation must be performed using
+ MP safe mechanisms.
+
+ @param Sem IN: 32-bit unsigned integer
+ OUT: original integer - 1
+ @return Original integer - 1
+
+**/
+UINT32
+WaitForSemaphore (
+ IN OUT volatile UINT32 *Sem
+ )
+{
+ UINT32 Value;
+
+ for (;;) {
+ Value = *Sem;
+ if (Value != 0 &&
+ InterlockedCompareExchange32 (
+ (UINT32*)Sem,
+ Value,
+ Value - 1
+ ) == Value) {
+ break;
+ }
+ CpuPause ();
+ }
+ return Value - 1;
+}
+
+
+/**
+ Performs an atomic compare exchange operation to release semaphore.
+ The compare exchange operation must be performed using
+ MP safe mechanisms.
+
+ @param Sem IN: 32-bit unsigned integer
+ OUT: original integer + 1
+ @return Original integer + 1
+
+**/
+UINT32
+ReleaseSemaphore (
+ IN OUT volatile UINT32 *Sem
+ )
+{
+ UINT32 Value;
+
+ do {
+ Value = *Sem;
+ } while (Value + 1 != 0 &&
+ InterlockedCompareExchange32 (
+ (UINT32*)Sem,
+ Value,
+ Value + 1
+ ) != Value);
+ return Value + 1;
+}
+
+/**
+ Performs an atomic compare exchange operation to lock semaphore.
+ The compare exchange operation must be performed using
+ MP safe mechanisms.
+
+ @param Sem IN: 32-bit unsigned integer
+ OUT: -1
+ @return Original integer
+
+**/
+UINT32
+LockdownSemaphore (
+ IN OUT volatile UINT32 *Sem
+ )
+{
+ UINT32 Value;
+
+ do {
+ Value = *Sem;
+ } while (InterlockedCompareExchange32 (
+ (UINT32*)Sem,
+ Value, (UINT32)-1
+ ) != Value);
+ return Value;
+}
+
+/**
+ Wait all APs to performs an atomic compare exchange operation to release semaphore.
+
+ @param NumberOfAPs AP number
+
+**/
+VOID
+WaitForAllAPs (
+ IN UINTN NumberOfAPs
+ )
+{
+ UINTN BspIndex;
+
+ BspIndex = mSmmMpSyncData->BspIndex;
+ while (NumberOfAPs-- > 0) {
+ WaitForSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+ }
+}
+
+/**
+ Performs an atomic compare exchange operation to release semaphore
+ for each AP.
+
+**/
+VOID
+ReleaseAllAPs (
+ VOID
+ )
+{
+ UINTN Index;
+
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (IsPresentAp (Index)) {
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[Index].Run);
+ }
+ }
+}
+
+/**
+ Checks if all CPUs (with certain exceptions) have checked in for this SMI run
+
+ @param Exceptions CPU Arrival exception flags.
+
+ @retval TRUE if all CPUs the have checked in.
+ @retval FALSE if at least one Normal AP hasn't checked in.
+
+**/
+BOOLEAN
+AllCpusInSmmWithExceptions (
+ SMM_CPU_ARRIVAL_EXCEPTIONS Exceptions
+ )
+{
+ UINTN Index;
+ SMM_CPU_DATA_BLOCK *CpuData;
+ EFI_PROCESSOR_INFORMATION *ProcessorInfo;
+
+ ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);
+
+ if (*mSmmMpSyncData->Counter == mNumberOfCpus) {
+ return TRUE;
+ }
+
+ CpuData = mSmmMpSyncData->CpuData;
+ ProcessorInfo = gSmmCpuPrivate->ProcessorInfo;
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (!(*(CpuData[Index].Present)) && ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
+ if (((Exceptions & ARRIVAL_EXCEPTION_DELAYED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed) != 0) {
+ continue;
+ }
+ if (((Exceptions & ARRIVAL_EXCEPTION_BLOCKED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked) != 0) {
+ continue;
+ }
+ if (((Exceptions & ARRIVAL_EXCEPTION_SMI_DISABLED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable) != 0) {
+ continue;
+ }
+ return FALSE;
+ }
+ }
+
+
+ return TRUE;
+}
+
+/**
+ Has OS enabled Lmce in the MSR_IA32_MCG_EXT_CTL
+
+ @retval TRUE Os enable lmce.
+ @retval FALSE Os not enable lmce.
+
+**/
+BOOLEAN
+IsLmceOsEnabled (
+ VOID
+ )
+{
+ MSR_IA32_MCG_CAP_REGISTER McgCap;
+ MSR_IA32_FEATURE_CONTROL_REGISTER FeatureCtrl;
+ MSR_IA32_MCG_EXT_CTL_REGISTER McgExtCtrl;
+
+ McgCap.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_CAP);
+ if (McgCap.Bits.MCG_LMCE_P == 0) {
+ return FALSE;
+ }
+
+ FeatureCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_FEATURE_CONTROL);
+ if (FeatureCtrl.Bits.LmceOn == 0) {
+ return FALSE;
+ }
+
+ McgExtCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_EXT_CTL);
+ return (BOOLEAN) (McgExtCtrl.Bits.LMCE_EN == 1);
+}
+
+/**
+ Return if Local machine check exception signaled.
+
+ Indicates (when set) that a local machine check exception was generated. This indicates that the current machine-check event was
+ delivered to only the logical processor.
+
+ @retval TRUE LMCE was signaled.
+ @retval FALSE LMCE was not signaled.
+
+**/
+BOOLEAN
+IsLmceSignaled (
+ VOID
+ )
+{
+ MSR_IA32_MCG_STATUS_REGISTER McgStatus;
+
+ McgStatus.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_STATUS);
+ return (BOOLEAN) (McgStatus.Bits.LMCE_S == 1);
+}
+
+/**
+ Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before
+ entering SMM, except SMI disabled APs.
+
+**/
+VOID
+SmmWaitForApArrival (
+ VOID
+ )
+{
+ UINT64 Timer;
+ UINTN Index;
+ BOOLEAN LmceEn;
+ BOOLEAN LmceSignal;
+
+ ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);
+
+ LmceEn = FALSE;
+ LmceSignal = FALSE;
+ if (mMachineCheckSupported) {
+ LmceEn = IsLmceOsEnabled ();
+ LmceSignal = IsLmceSignaled();
+ }
+
+ //
+ // Platform implementor should choose a timeout value appropriately:
+ // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note
+ // the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run.
+ // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI
+ // and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will
+ // be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the
+ // SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state.
+ // - The timeout value must be longer than longest possible IO operation in the system
+ //
+
+ //
+ // Sync with APs 1st timeout
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) && !(LmceEn && LmceSignal) &&
+ !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );
+ ) {
+ CpuPause ();
+ }
+
+ //
+ // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs,
+ // because:
+ // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running
+ // normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they
+ // enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode
+ // work while SMI handling is on-going.
+ // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run.
+ // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state
+ // will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal
+ // mode work while SMI handling is on-going.
+ // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because:
+ // - In traditional flow, SMI disabling is discouraged.
+ // - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function.
+ // In both cases, adding SMI-disabling checking code increases overhead.
+ //
+ if (*mSmmMpSyncData->Counter < mNumberOfCpus) {
+ //
+ // Send SMI IPIs to bring outside processors in
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
+ SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
+ }
+ }
+
+ //
+ // Sync with APs 2nd timeout.
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );
+ ) {
+ CpuPause ();
+ }
+ }
+
+ return;
+}
+
+
+/**
+ Replace OS MTRR's with SMI MTRR's.
+
+ @param CpuIndex Processor Index
+
+**/
+VOID
+ReplaceOSMtrrs (
+ IN UINTN CpuIndex
+ )
+{
+ SmmCpuFeaturesDisableSmrr ();
+
+ //
+ // Replace all MTRRs registers
+ //
+ MtrrSetAllMtrrs (&gSmiMtrrs);
+}
+
+/**
+ Wheck whether task has been finished by all APs.
+
+ @param BlockMode Whether did it in block mode or non-block mode.
+
+ @retval TRUE Task has been finished by all APs.
+ @retval FALSE Task not has been finished by all APs.
+
+**/
+BOOLEAN
+WaitForAllAPsNotBusy (
+ IN BOOLEAN BlockMode
+ )
+{
+ UINTN Index;
+
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ //
+ // Ignore BSP and APs which not call in SMM.
+ //
+ if (!IsPresentAp(Index)) {
+ continue;
+ }
+
+ if (BlockMode) {
+ AcquireSpinLock(mSmmMpSyncData->CpuData[Index].Busy);
+ ReleaseSpinLock(mSmmMpSyncData->CpuData[Index].Busy);
+ } else {
+ if (AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[Index].Busy)) {
+ ReleaseSpinLock(mSmmMpSyncData->CpuData[Index].Busy);
+ } else {
+ return FALSE;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+/**
+ Check whether it is an present AP.
+
+ @param CpuIndex The AP index which calls this function.
+
+ @retval TRUE It's a present AP.
+ @retval TRUE This is not an AP or it is not present.
+
+**/
+BOOLEAN
+IsPresentAp (
+ IN UINTN CpuIndex
+ )
+{
+ return ((CpuIndex != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) &&
+ *(mSmmMpSyncData->CpuData[CpuIndex].Present));
+}
+
+/**
+ Clean up the status flags used during executing the procedure.
+
+ @param CpuIndex The AP index which calls this function.
+
+**/
+VOID
+ReleaseToken (
+ IN UINTN CpuIndex
+ )
+{
+ PROCEDURE_TOKEN *Token;
+
+ Token = mSmmMpSyncData->CpuData[CpuIndex].Token;
+
+ if (InterlockedDecrement (&Token->RunningApCount) == 0) {
+ ReleaseSpinLock (Token->SpinLock);
+ }
+
+ mSmmMpSyncData->CpuData[CpuIndex].Token = NULL;
+}
+
+/**
+ Free the tokens in the maintained list.
+
+**/
+VOID
+ResetTokens (
+ VOID
+ )
+{
+ //
+ // Reset the FirstFreeToken to the beginning of token list upon exiting SMI.
+ //
+ gSmmCpuPrivate->FirstFreeToken = GetFirstNode (&gSmmCpuPrivate->TokenList);
+}
+
+/**
+ SMI handler for BSP.
+
+ @param CpuIndex BSP processor Index
+ @param SyncMode SMM MP sync mode
+
+**/
+VOID
+BSPHandler (
+ IN UINTN CpuIndex,
+ IN SMM_CPU_SYNC_MODE SyncMode
+ )
+{
+ UINTN Index;
+ MTRR_SETTINGS Mtrrs;
+ UINTN ApCount;
+ BOOLEAN ClearTopLevelSmiResult;
+ UINTN PresentCount;
+
+ ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);
+ ApCount = 0;
+
+ //
+ // Flag BSP's presence
+ //
+ *mSmmMpSyncData->InsideSmm = TRUE;
+
+ //
+ // Initialize Debug Agent to start source level debug in BSP handler
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);
+
+ //
+ // Mark this processor's presence
+ //
+ *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;
+
+ //
+ // Clear platform top level SMI status bit before calling SMI handlers. If
+ // we cleared it after SMI handlers are run, we would miss the SMI that
+ // occurs after SMI handlers are done and before SMI status bit is cleared.
+ //
+ ClearTopLevelSmiResult = ClearTopLevelSmiStatus();
+ ASSERT (ClearTopLevelSmiResult == TRUE);
+
+ //
+ // Set running processor index
+ //
+ gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;
+
+ //
+ // If Traditional Sync Mode or need to configure MTRRs: gather all available APs.
+ //
+ if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {
+
+ //
+ // Wait for APs to arrive
+ //
+ SmmWaitForApArrival();
+
+ //
+ // Lock the counter down and retrieve the number of APs
+ //
+ *mSmmMpSyncData->AllCpusInSync = TRUE;
+ ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;
+
+ //
+ // Wait for all APs to get ready for programming MTRRs
+ //
+ WaitForAllAPs (ApCount);
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Signal all APs it's time for backup MTRRs
+ //
+ ReleaseAllAPs ();
+
+ //
+ // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
+ // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
+ // to a large enough value to avoid this situation.
+ // Note: For HT capable CPUs, threads within a core share the same set of MTRRs.
+ // We do the backup first and then set MTRR to avoid race condition for threads
+ // in the same core.
+ //
+ MtrrGetAllMtrrs(&Mtrrs);
+
+ //
+ // Wait for all APs to complete their MTRR saving
+ //
+ WaitForAllAPs (ApCount);
+
+ //
+ // Let all processors program SMM MTRRs together
+ //
+ ReleaseAllAPs ();
+
+ //
+ // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
+ // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
+ // to a large enough value to avoid this situation.
+ //
+ ReplaceOSMtrrs (CpuIndex);
+
+ //
+ // Wait for all APs to complete their MTRR programming
+ //
+ WaitForAllAPs (ApCount);
+ }
+ }
+
+ //
+ // The BUSY lock is initialized to Acquired state
+ //
+ AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
+
+ //
+ // Perform the pre tasks
+ //
+ PerformPreTasks ();
+
+ //
+ // Invoke SMM Foundation EntryPoint with the processor information context.
+ //
+ gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);
+
+ //
+ // Make sure all APs have completed their pending none-block tasks
+ //
+ WaitForAllAPsNotBusy (TRUE);
+
+ //
+ // Perform the remaining tasks
+ //
+ PerformRemainingTasks ();
+
+ //
+ // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and
+ // make those APs to exit SMI synchronously. APs which arrive later will be excluded and
+ // will run through freely.
+ //
+ if (SyncMode != SmmCpuSyncModeTradition && !SmmCpuFeaturesNeedConfigureMtrrs()) {
+
+ //
+ // Lock the counter down and retrieve the number of APs
+ //
+ *mSmmMpSyncData->AllCpusInSync = TRUE;
+ ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;
+ //
+ // Make sure all APs have their Present flag set
+ //
+ while (TRUE) {
+ PresentCount = 0;
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (*(mSmmMpSyncData->CpuData[Index].Present)) {
+ PresentCount ++;
+ }
+ }
+ if (PresentCount > ApCount) {
+ break;
+ }
+ }
+ }
+
+ //
+ // Notify all APs to exit
+ //
+ *mSmmMpSyncData->InsideSmm = FALSE;
+ ReleaseAllAPs ();
+
+ //
+ // Wait for all APs to complete their pending tasks
+ //
+ WaitForAllAPs (ApCount);
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Signal APs to restore MTRRs
+ //
+ ReleaseAllAPs ();
+
+ //
+ // Restore OS MTRRs
+ //
+ SmmCpuFeaturesReenableSmrr ();
+ MtrrSetAllMtrrs(&Mtrrs);
+
+ //
+ // Wait for all APs to complete MTRR programming
+ //
+ WaitForAllAPs (ApCount);
+ }
+
+ //
+ // Stop source level debug in BSP handler, the code below will not be
+ // debugged.
+ //
+ InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);
+
+ //
+ // Signal APs to Reset states/semaphore for this processor
+ //
+ ReleaseAllAPs ();
+
+ //
+ // Perform pending operations for hot-plug
+ //
+ SmmCpuUpdate ();
+
+ //
+ // Clear the Present flag of BSP
+ //
+ *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
+
+ //
+ // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but
+ // WaitForAllAps does not depend on the Present flag.
+ //
+ WaitForAllAPs (ApCount);
+
+ //
+ // Reset the tokens buffer.
+ //
+ ResetTokens ();
+
+ //
+ // Reset BspIndex to -1, meaning BSP has not been elected.
+ //
+ if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
+ mSmmMpSyncData->BspIndex = (UINT32)-1;
+ }
+
+ //
+ // Allow APs to check in from this point on
+ //
+ *mSmmMpSyncData->Counter = 0;
+ *mSmmMpSyncData->AllCpusInSync = FALSE;
+}
+
+/**
+ SMI handler for AP.
+
+ @param CpuIndex AP processor Index.
+ @param ValidSmi Indicates that current SMI is a valid SMI or not.
+ @param SyncMode SMM MP sync mode.
+
+**/
+VOID
+APHandler (
+ IN UINTN CpuIndex,
+ IN BOOLEAN ValidSmi,
+ IN SMM_CPU_SYNC_MODE SyncMode
+ )
+{
+ UINT64 Timer;
+ UINTN BspIndex;
+ MTRR_SETTINGS Mtrrs;
+ EFI_STATUS ProcedureStatus;
+
+ //
+ // Timeout BSP
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !(*mSmmMpSyncData->InsideSmm);
+ ) {
+ CpuPause ();
+ }
+
+ if (!(*mSmmMpSyncData->InsideSmm)) {
+ //
+ // BSP timeout in the first round
+ //
+ if (mSmmMpSyncData->BspIndex != -1) {
+ //
+ // BSP Index is known
+ //
+ BspIndex = mSmmMpSyncData->BspIndex;
+ ASSERT (CpuIndex != BspIndex);
+
+ //
+ // Send SMI IPI to bring BSP in
+ //
+ SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);
+
+ //
+ // Now clock BSP for the 2nd time
+ //
+ for (Timer = StartSyncTimer ();
+ !IsSyncTimerTimeout (Timer) &&
+ !(*mSmmMpSyncData->InsideSmm);
+ ) {
+ CpuPause ();
+ }
+
+ if (!(*mSmmMpSyncData->InsideSmm)) {
+ //
+ // Give up since BSP is unable to enter SMM
+ // and signal the completion of this AP
+ WaitForSemaphore (mSmmMpSyncData->Counter);
+ return;
+ }
+ } else {
+ //
+ // Don't know BSP index. Give up without sending IPI to BSP.
+ //
+ WaitForSemaphore (mSmmMpSyncData->Counter);
+ return;
+ }
+ }
+
+ //
+ // BSP is available
+ //
+ BspIndex = mSmmMpSyncData->BspIndex;
+ ASSERT (CpuIndex != BspIndex);
+
+ //
+ // Mark this processor's presence
+ //
+ *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;
+
+ if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Notify BSP of arrival at this point
+ //
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+ }
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Wait for the signal from BSP to backup MTRRs
+ //
+ WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Backup OS MTRRs
+ //
+ MtrrGetAllMtrrs(&Mtrrs);
+
+ //
+ // Signal BSP the completion of this AP
+ //
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+
+ //
+ // Wait for BSP's signal to program MTRRs
+ //
+ WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Replace OS MTRRs with SMI MTRRs
+ //
+ ReplaceOSMtrrs (CpuIndex);
+
+ //
+ // Signal BSP the completion of this AP
+ //
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+ }
+
+ while (TRUE) {
+ //
+ // Wait for something to happen
+ //
+ WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Check if BSP wants to exit SMM
+ //
+ if (!(*mSmmMpSyncData->InsideSmm)) {
+ break;
+ }
+
+ //
+ // BUSY should be acquired by SmmStartupThisAp()
+ //
+ ASSERT (
+ !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)
+ );
+
+ //
+ // Invoke the scheduled procedure
+ //
+ ProcedureStatus = (*mSmmMpSyncData->CpuData[CpuIndex].Procedure) (
+ (VOID*)mSmmMpSyncData->CpuData[CpuIndex].Parameter
+ );
+ if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) {
+ *mSmmMpSyncData->CpuData[CpuIndex].Status = ProcedureStatus;
+ }
+
+ if (mSmmMpSyncData->CpuData[CpuIndex].Token != NULL) {
+ ReleaseToken (CpuIndex);
+ }
+
+ //
+ // Release BUSY
+ //
+ ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ }
+
+ if (SmmCpuFeaturesNeedConfigureMtrrs()) {
+ //
+ // Notify BSP the readiness of this AP to program MTRRs
+ //
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+
+ //
+ // Wait for the signal from BSP to program MTRRs
+ //
+ WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Restore OS MTRRs
+ //
+ SmmCpuFeaturesReenableSmrr ();
+ MtrrSetAllMtrrs(&Mtrrs);
+ }
+
+ //
+ // Notify BSP the readiness of this AP to Reset states/semaphore for this processor
+ //
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+
+ //
+ // Wait for the signal from BSP to Reset states/semaphore for this processor
+ //
+ WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ //
+ // Reset states/semaphore for this processor
+ //
+ *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
+
+ //
+ // Notify BSP the readiness of this AP to exit SMM
+ //
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
+
+}
+
+/**
+ Create 4G PageTable in SMRAM.
+
+ @param[in] Is32BitPageTable Whether the page table is 32-bit PAE
+ @return PageTable Address
+
+**/
+UINT32
+Gen4GPageTable (
+ IN BOOLEAN Is32BitPageTable
+ )
+{
+ VOID *PageTable;
+ UINTN Index;
+ UINT64 *Pte;
+ UINTN PagesNeeded;
+ UINTN Low2MBoundary;
+ UINTN High2MBoundary;
+ UINTN Pages;
+ UINTN GuardPage;
+ UINT64 *Pdpte;
+ UINTN PageIndex;
+ UINTN PageAddress;
+
+ Low2MBoundary = 0;
+ High2MBoundary = 0;
+ PagesNeeded = 0;
+ if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ //
+ // Add one more page for known good stack, then find the lower 2MB aligned address.
+ //
+ Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);
+ //
+ // Add two more pages for known good stack and stack guard page,
+ // then find the lower 2MB aligned address.
+ //
+ High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize + EFI_PAGE_SIZE * 2) & ~(SIZE_2MB-1);
+ PagesNeeded = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;
+ }
+ //
+ // Allocate the page table
+ //
+ PageTable = AllocatePageTableMemory (5 + PagesNeeded);
+ ASSERT (PageTable != NULL);
+
+ PageTable = (VOID *)((UINTN)PageTable);
+ Pte = (UINT64*)PageTable;
+
+ //
+ // Zero out all page table entries first
+ //
+ ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));
+
+ //
+ // Set Page Directory Pointers
+ //
+ for (Index = 0; Index < 4; Index++) {
+ Pte[Index] = ((UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1)) | mAddressEncMask |
+ (Is32BitPageTable ? IA32_PAE_PDPTE_ATTRIBUTE_BITS : PAGE_ATTRIBUTE_BITS);
+ }
+ Pte += EFI_PAGE_SIZE / sizeof (*Pte);
+
+ //
+ // Fill in Page Directory Entries
+ //
+ for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {
+ Pte[Index] = (Index << 21) | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
+ }
+
+ Pdpte = (UINT64*)PageTable;
+ if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
+ Pages = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);
+ GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;
+ for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex += SIZE_2MB) {
+ Pte = (UINT64*)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
+ Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
+ //
+ // Fill in Page Table Entries
+ //
+ Pte = (UINT64*)Pages;
+ PageAddress = PageIndex;
+ for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
+ if (PageAddress == GuardPage) {
+ //
+ // Mark the guard page as non-present
+ //
+ Pte[Index] = PageAddress | mAddressEncMask;
+ GuardPage += mSmmStackSize;
+ if (GuardPage > mSmmStackArrayEnd) {
+ GuardPage = 0;
+ }
+ } else {
+ Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
+ }
+ PageAddress+= EFI_PAGE_SIZE;
+ }
+ Pages += EFI_PAGE_SIZE;
+ }
+ }
+
+ if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0) {
+ Pte = (UINT64*)(UINTN)(Pdpte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
+ if ((Pte[0] & IA32_PG_PS) == 0) {
+ // 4K-page entries are already mapped. Just hide the first one anyway.
+ Pte = (UINT64*)(UINTN)(Pte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
+ Pte[0] &= ~(UINT64)IA32_PG_P; // Hide page 0
+ } else {
+ // Create 4K-page entries
+ Pages = (UINTN)AllocatePageTableMemory (1);
+ ASSERT (Pages != 0);
+
+ Pte[0] = (UINT64)(Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS);
+
+ Pte = (UINT64*)Pages;
+ PageAddress = 0;
+ Pte[0] = PageAddress | mAddressEncMask; // Hide page 0 but present left
+ for (Index = 1; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
+ PageAddress += EFI_PAGE_SIZE;
+ Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
+ }
+ }
+ }
+
+ return (UINT32)(UINTN)PageTable;
+}
+
+/**
+ Checks whether the input token is the current used token.
+
+ @param[in] Token This parameter describes the token that was passed into DispatchProcedure or
+ BroadcastProcedure.
+
+ @retval TRUE The input token is the current used token.
+ @retval FALSE The input token is not the current used token.
+**/
+BOOLEAN
+IsTokenInUse (
+ IN SPIN_LOCK *Token
+ )
+{
+ LIST_ENTRY *Link;
+ PROCEDURE_TOKEN *ProcToken;
+
+ if (Token == NULL) {
+ return FALSE;
+ }
+
+ Link = GetFirstNode (&gSmmCpuPrivate->TokenList);
+ //
+ // Only search used tokens.
+ //
+ while (Link != gSmmCpuPrivate->FirstFreeToken) {
+ ProcToken = PROCEDURE_TOKEN_FROM_LINK (Link);
+
+ if (ProcToken->SpinLock == Token) {
+ return TRUE;
+ }
+
+ Link = GetNextNode (&gSmmCpuPrivate->TokenList, Link);
+ }
+
+ return FALSE;
+}
+
+/**
+ Allocate buffer for the SPIN_LOCK and PROCEDURE_TOKEN.
+
+ @return First token of the token buffer.
+**/
+LIST_ENTRY *
+AllocateTokenBuffer (
+ VOID
+ )
+{
+ UINTN SpinLockSize;
+ UINT32 TokenCountPerChunk;
+ UINTN Index;
+ SPIN_LOCK *SpinLock;
+ UINT8 *SpinLockBuffer;
+ PROCEDURE_TOKEN *ProcTokens;
+
+ SpinLockSize = GetSpinLockProperties ();
+
+ TokenCountPerChunk = FixedPcdGet32 (PcdCpuSmmMpTokenCountPerChunk);
+ ASSERT (TokenCountPerChunk != 0);
+ if (TokenCountPerChunk == 0) {
+ DEBUG ((DEBUG_ERROR, "PcdCpuSmmMpTokenCountPerChunk should not be Zero!\n"));
+ CpuDeadLoop ();
+ }
+ DEBUG ((DEBUG_INFO, "CpuSmm: SpinLock Size = 0x%x, PcdCpuSmmMpTokenCountPerChunk = 0x%x\n", SpinLockSize, TokenCountPerChunk));
+
+ //
+ // Separate the Spin_lock and Proc_token because the alignment requires by Spin_Lock.
+ //
+ SpinLockBuffer = AllocatePool (SpinLockSize * TokenCountPerChunk);
+ ASSERT (SpinLockBuffer != NULL);
+
+ ProcTokens = AllocatePool (sizeof (PROCEDURE_TOKEN) * TokenCountPerChunk);
+ ASSERT (ProcTokens != NULL);
+
+ for (Index = 0; Index < TokenCountPerChunk; Index++) {
+ SpinLock = (SPIN_LOCK *)(SpinLockBuffer + SpinLockSize * Index);
+ InitializeSpinLock (SpinLock);
+
+ ProcTokens[Index].Signature = PROCEDURE_TOKEN_SIGNATURE;
+ ProcTokens[Index].SpinLock = SpinLock;
+ ProcTokens[Index].RunningApCount = 0;
+
+ InsertTailList (&gSmmCpuPrivate->TokenList, &ProcTokens[Index].Link);
+ }
+
+ return &ProcTokens[0].Link;
+}
+
+/**
+ Get the free token.
+
+ If no free token, allocate new tokens then return the free one.
+
+ @param RunningApsCount The Running Aps count for this token.
+
+ @retval return the first free PROCEDURE_TOKEN.
+
+**/
+PROCEDURE_TOKEN *
+GetFreeToken (
+ IN UINT32 RunningApsCount
+ )
+{
+ PROCEDURE_TOKEN *NewToken;
+
+ //
+ // If FirstFreeToken meets the end of token list, enlarge the token list.
+ // Set FirstFreeToken to the first free token.
+ //
+ if (gSmmCpuPrivate->FirstFreeToken == &gSmmCpuPrivate->TokenList) {
+ gSmmCpuPrivate->FirstFreeToken = AllocateTokenBuffer ();
+ }
+ NewToken = PROCEDURE_TOKEN_FROM_LINK (gSmmCpuPrivate->FirstFreeToken);
+ gSmmCpuPrivate->FirstFreeToken = GetNextNode (&gSmmCpuPrivate->TokenList, gSmmCpuPrivate->FirstFreeToken);
+
+ NewToken->RunningApCount = RunningApsCount;
+ AcquireSpinLock (NewToken->SpinLock);
+
+ return NewToken;
+}
+
+/**
+ Checks status of specified AP.
+
+ This function checks whether the specified AP has finished the task assigned
+ by StartupThisAP(), and whether timeout expires.
+
+ @param[in] Token This parameter describes the token that was passed into DispatchProcedure or
+ BroadcastProcedure.
+
+ @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
+ @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
+**/
+EFI_STATUS
+IsApReady (
+ IN SPIN_LOCK *Token
+ )
+{
+ if (AcquireSpinLockOrFail (Token)) {
+ ReleaseSpinLock (Token);
+ return EFI_SUCCESS;
+ }
+
+ return EFI_NOT_READY;
+}
+
+/**
+ Schedule a procedure to run on the specified CPU.
+
+ @param[in] Procedure The address of the procedure to run
+ @param[in] CpuIndex Target CPU Index
+ @param[in,out] ProcArguments The parameter to pass to the procedure
+ @param[in] Token This is an optional parameter that allows the caller to execute the
+ procedure in a blocking or non-blocking fashion. If it is NULL the
+ call is blocking, and the call will not return until the AP has
+ completed the procedure. If the token is not NULL, the call will
+ return immediately. The caller can check whether the procedure has
+ completed with CheckOnProcedure or WaitForProcedure.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for the APs to finish
+ execution of Procedure, either for blocking or non-blocking mode.
+ Zero means infinity. If the timeout expires before all APs return
+ from Procedure, then Procedure on the failed APs is terminated. If
+ the timeout expires in blocking mode, the call returns EFI_TIMEOUT.
+ If the timeout expires in non-blocking mode, the timeout determined
+ can be through CheckOnProcedure or WaitForProcedure.
+ Note that timeout support is optional. Whether an implementation
+ supports this feature can be determined via the Attributes data
+ member.
+ @param[in,out] CpuStatus This optional pointer may be used to get the status code returned
+ by Procedure when it completes execution on the target AP, or with
+ EFI_TIMEOUT if the Procedure fails to complete within the optional
+ timeout. The implementation will update this variable with
+ EFI_NOT_READY prior to starting Procedure on the target AP.
+
+ @retval EFI_INVALID_PARAMETER CpuNumber not valid
+ @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
+ @retval EFI_SUCCESS The procedure has been successfully scheduled
+
+**/
+EFI_STATUS
+InternalSmmStartupThisAp (
+ IN EFI_AP_PROCEDURE2 Procedure,
+ IN UINTN CpuIndex,
+ IN OUT VOID *ProcArguments OPTIONAL,
+ IN MM_COMPLETION *Token,
+ IN UINTN TimeoutInMicroseconds,
+ IN OUT EFI_STATUS *CpuStatus
+ )
+{
+ PROCEDURE_TOKEN *ProcToken;
+
+ if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus) {
+ DEBUG((DEBUG_ERROR, "CpuIndex(%d) >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus(%d)\n", CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));
+ return EFI_INVALID_PARAMETER;
+ }
+ if (CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
+ DEBUG((DEBUG_ERROR, "CpuIndex(%d) == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu\n", CpuIndex));
+ return EFI_INVALID_PARAMETER;
+ }
+ if (gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId == INVALID_APIC_ID) {
+ return EFI_INVALID_PARAMETER;
+ }
+ if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
+ if (mSmmMpSyncData->EffectiveSyncMode == SmmCpuSyncModeTradition) {
+ DEBUG((DEBUG_ERROR, "!mSmmMpSyncData->CpuData[%d].Present\n", CpuIndex));
+ }
+ return EFI_INVALID_PARAMETER;
+ }
+ if (gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove) {
+ if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {
+ DEBUG((DEBUG_ERROR, "gSmmCpuPrivate->Operation[%d] == SmmCpuRemove\n", CpuIndex));
+ }
+ return EFI_INVALID_PARAMETER;
+ }
+ if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) {
+ return EFI_INVALID_PARAMETER;
+ }
+ if (Procedure == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
+
+ mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;
+ mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;
+ if (Token != NULL) {
+ ProcToken= GetFreeToken (1);
+ mSmmMpSyncData->CpuData[CpuIndex].Token = ProcToken;
+ *Token = (MM_COMPLETION)ProcToken->SpinLock;
+ }
+ mSmmMpSyncData->CpuData[CpuIndex].Status = CpuStatus;
+ if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) {
+ *mSmmMpSyncData->CpuData[CpuIndex].Status = EFI_NOT_READY;
+ }
+
+ ReleaseSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);
+
+ if (Token == NULL) {
+ AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Worker function to execute a caller provided function on all enabled APs.
+
+ @param[in] Procedure A pointer to the function to be run on
+ enabled APs of the system.
+ @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
+ APs to return from Procedure, either for
+ blocking or non-blocking mode.
+ @param[in,out] ProcedureArguments The parameter passed into Procedure for
+ all APs.
+ @param[in,out] Token This is an optional parameter that allows the caller to execute the
+ procedure in a blocking or non-blocking fashion. If it is NULL the
+ call is blocking, and the call will not return until the AP has
+ completed the procedure. If the token is not NULL, the call will
+ return immediately. The caller can check whether the procedure has
+ completed with CheckOnProcedure or WaitForProcedure.
+ @param[in,out] CPUStatus This optional pointer may be used to get the status code returned
+ by Procedure when it completes execution on the target AP, or with
+ EFI_TIMEOUT if the Procedure fails to complete within the optional
+ timeout. The implementation will update this variable with
+ EFI_NOT_READY prior to starting Procedure on the target AP.
+
+
+ @retval EFI_SUCCESS In blocking mode, all APs have finished before
+ the timeout expired.
+ @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
+ to all enabled APs.
+ @retval others Failed to Startup all APs.
+
+**/
+EFI_STATUS
+InternalSmmStartupAllAPs (
+ IN EFI_AP_PROCEDURE2 Procedure,
+ IN UINTN TimeoutInMicroseconds,
+ IN OUT VOID *ProcedureArguments OPTIONAL,
+ IN OUT MM_COMPLETION *Token,
+ IN OUT EFI_STATUS *CPUStatus
+ )
+{
+ UINTN Index;
+ UINTN CpuCount;
+ PROCEDURE_TOKEN *ProcToken;
+
+ if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) {
+ return EFI_INVALID_PARAMETER;
+ }
+ if (Procedure == NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ CpuCount = 0;
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (IsPresentAp (Index)) {
+ CpuCount ++;
+
+ if (gSmmCpuPrivate->Operation[Index] == SmmCpuRemove) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (!AcquireSpinLockOrFail(mSmmMpSyncData->CpuData[Index].Busy)) {
+ return EFI_NOT_READY;
+ }
+ ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
+ }
+ }
+ if (CpuCount == 0) {
+ return EFI_NOT_STARTED;
+ }
+
+ if (Token != NULL) {
+ ProcToken = GetFreeToken ((UINT32)mMaxNumberOfCpus);
+ *Token = (MM_COMPLETION)ProcToken->SpinLock;
+ } else {
+ ProcToken = NULL;
+ }
+
+ //
+ // Make sure all BUSY should be acquired.
+ //
+ // Because former code already check mSmmMpSyncData->CpuData[***].Busy for each AP.
+ // Here code always use AcquireSpinLock instead of AcquireSpinLockOrFail for not
+ // block mode.
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (IsPresentAp (Index)) {
+ AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
+ }
+ }
+
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ if (IsPresentAp (Index)) {
+ mSmmMpSyncData->CpuData[Index].Procedure = (EFI_AP_PROCEDURE2) Procedure;
+ mSmmMpSyncData->CpuData[Index].Parameter = ProcedureArguments;
+ if (ProcToken != NULL) {
+ mSmmMpSyncData->CpuData[Index].Token = ProcToken;
+ }
+ if (CPUStatus != NULL) {
+ mSmmMpSyncData->CpuData[Index].Status = &CPUStatus[Index];
+ if (mSmmMpSyncData->CpuData[Index].Status != NULL) {
+ *mSmmMpSyncData->CpuData[Index].Status = EFI_NOT_READY;
+ }
+ }
+ } else {
+ //
+ // PI spec requirement:
+ // For every excluded processor, the array entry must contain a value of EFI_NOT_STARTED.
+ //
+ if (CPUStatus != NULL) {
+ CPUStatus[Index] = EFI_NOT_STARTED;
+ }
+
+ //
+ // Decrease the count to mark this processor(AP or BSP) as finished.
+ //
+ if (ProcToken != NULL) {
+ WaitForSemaphore (&ProcToken->RunningApCount);
+ }
+ }
+ }
+
+ ReleaseAllAPs ();
+
+ if (Token == NULL) {
+ //
+ // Make sure all APs have completed their tasks.
+ //
+ WaitForAllAPsNotBusy (TRUE);
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ ISO C99 6.5.2.2 "Function calls", paragraph 9:
+ If the function is defined with a type that is not compatible with
+ the type (of the expression) pointed to by the expression that
+ denotes the called function, the behavior is undefined.
+
+ So add below wrapper function to convert between EFI_AP_PROCEDURE
+ and EFI_AP_PROCEDURE2.
+
+ Wrapper for Procedures.
+
+ @param[in] Buffer Pointer to PROCEDURE_WRAPPER buffer.
+
+**/
+EFI_STATUS
+EFIAPI
+ProcedureWrapper (
+ IN VOID *Buffer
+ )
+{
+ PROCEDURE_WRAPPER *Wrapper;
+
+ Wrapper = Buffer;
+ Wrapper->Procedure (Wrapper->ProcedureArgument);
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Schedule a procedure to run on the specified CPU in blocking mode.
+
+ @param[in] Procedure The address of the procedure to run
+ @param[in] CpuIndex Target CPU Index
+ @param[in, out] ProcArguments The parameter to pass to the procedure
+
+ @retval EFI_INVALID_PARAMETER CpuNumber not valid
+ @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
+ @retval EFI_SUCCESS The procedure has been successfully scheduled
+
+**/
+EFI_STATUS
+EFIAPI
+SmmBlockingStartupThisAp (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN UINTN CpuIndex,
+ IN OUT VOID *ProcArguments OPTIONAL
+ )
+{
+ PROCEDURE_WRAPPER Wrapper;
+
+ Wrapper.Procedure = Procedure;
+ Wrapper.ProcedureArgument = ProcArguments;
+
+ //
+ // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2.
+ //
+ return InternalSmmStartupThisAp (ProcedureWrapper, CpuIndex, &Wrapper, NULL, 0, NULL);
+}
+
+/**
+ Schedule a procedure to run on the specified CPU.
+
+ @param Procedure The address of the procedure to run
+ @param CpuIndex Target CPU Index
+ @param ProcArguments The parameter to pass to the procedure
+
+ @retval EFI_INVALID_PARAMETER CpuNumber not valid
+ @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM
+ @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy
+ @retval EFI_SUCCESS The procedure has been successfully scheduled
+
+**/
+EFI_STATUS
+EFIAPI
+SmmStartupThisAp (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN UINTN CpuIndex,
+ IN OUT VOID *ProcArguments OPTIONAL
+ )
+{
+ MM_COMPLETION Token;
+
+ gSmmCpuPrivate->ApWrapperFunc[CpuIndex].Procedure = Procedure;
+ gSmmCpuPrivate->ApWrapperFunc[CpuIndex].ProcedureArgument = ProcArguments;
+
+ //
+ // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2.
+ //
+ return InternalSmmStartupThisAp (
+ ProcedureWrapper,
+ CpuIndex,
+ &gSmmCpuPrivate->ApWrapperFunc[CpuIndex],
+ FeaturePcdGet (PcdCpuSmmBlockStartupThisAp) ? NULL : &Token,
+ 0,
+ NULL
+ );
+}
+
+/**
+ This function sets DR6 & DR7 according to SMM save state, before running SMM C code.
+ They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode.
+
+ NOTE: It might not be appreciated in runtime since it might
+ conflict with OS debugging facilities. Turn them off in RELEASE.
+
+ @param CpuIndex CPU Index
+
+**/
+VOID
+EFIAPI
+CpuSmmDebugEntry (
+ IN UINTN CpuIndex
+ )
+{
+ SMRAM_SAVE_STATE_MAP *CpuSaveState;
+
+ if (FeaturePcdGet (PcdCpuSmmDebug)) {
+ ASSERT(CpuIndex < mMaxNumberOfCpus);
+ CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
+ if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
+ AsmWriteDr6 (CpuSaveState->x86._DR6);
+ AsmWriteDr7 (CpuSaveState->x86._DR7);
+ } else {
+ AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6);
+ AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7);
+ }
+ }
+}
+
+/**
+ This function restores DR6 & DR7 to SMM save state.
+
+ NOTE: It might not be appreciated in runtime since it might
+ conflict with OS debugging facilities. Turn them off in RELEASE.
+
+ @param CpuIndex CPU Index
+
+**/
+VOID
+EFIAPI
+CpuSmmDebugExit (
+ IN UINTN CpuIndex
+ )
+{
+ SMRAM_SAVE_STATE_MAP *CpuSaveState;
+
+ if (FeaturePcdGet (PcdCpuSmmDebug)) {
+ ASSERT(CpuIndex < mMaxNumberOfCpus);
+ CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
+ if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
+ CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 ();
+ CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 ();
+ } else {
+ CpuSaveState->x64._DR7 = AsmReadDr7 ();
+ CpuSaveState->x64._DR6 = AsmReadDr6 ();
+ }
+ }
+}
+
+/**
+ C function for SMI entry, each processor comes here upon SMI trigger.
+
+ @param CpuIndex CPU Index
+
+**/
+VOID
+EFIAPI
+SmiRendezvous (
+ IN UINTN CpuIndex
+ )
+{
+ EFI_STATUS Status;
+ BOOLEAN ValidSmi;
+ BOOLEAN IsBsp;
+ BOOLEAN BspInProgress;
+ UINTN Index;
+ UINTN Cr2;
+
+ ASSERT(CpuIndex < mMaxNumberOfCpus);
+
+ //
+ // Save Cr2 because Page Fault exception in SMM may override its value,
+ // when using on-demand paging for above 4G memory.
+ //
+ Cr2 = 0;
+ SaveCr2 (&Cr2);
+
+ //
+ // Call the user register Startup function first.
+ //
+ if (mSmmMpSyncData->StartupProcedure != NULL) {
+ mSmmMpSyncData->StartupProcedure (mSmmMpSyncData->StartupProcArgs);
+ }
+
+ //
+ // Perform CPU specific entry hooks
+ //
+ SmmCpuFeaturesRendezvousEntry (CpuIndex);
+
+ //
+ // Determine if this is a valid SMI
+ //
+ ValidSmi = PlatformValidSmi();
+
+ //
+ // Determine if BSP has been already in progress. Note this must be checked after
+ // ValidSmi because BSP may clear a valid SMI source after checking in.
+ //
+ BspInProgress = *mSmmMpSyncData->InsideSmm;
+
+ if (!BspInProgress && !ValidSmi) {
+ //
+ // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not
+ // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI
+ // status had been cleared by BSP and an existing SMI run has almost ended. (Note
+ // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there
+ // is nothing we need to do.
+ //
+ goto Exit;
+ } else {
+ //
+ // Signal presence of this processor
+ //
+ if (ReleaseSemaphore (mSmmMpSyncData->Counter) == 0) {
+ //
+ // BSP has already ended the synchronization, so QUIT!!!
+ //
+
+ //
+ // Wait for BSP's signal to finish SMI
+ //
+ while (*mSmmMpSyncData->AllCpusInSync) {
+ CpuPause ();
+ }
+ goto Exit;
+ } else {
+
+ //
+ // The BUSY lock is initialized to Released state.
+ // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call.
+ // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately
+ // after AP's present flag is detected.
+ //
+ InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
+ }
+
+ if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
+ ActivateSmmProfile (CpuIndex);
+ }
+
+ if (BspInProgress) {
+ //
+ // BSP has been elected. Follow AP path, regardless of ValidSmi flag
+ // as BSP may have cleared the SMI status
+ //
+ APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
+ } else {
+ //
+ // We have a valid SMI
+ //
+
+ //
+ // Elect BSP
+ //
+ IsBsp = FALSE;
+ if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
+ if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) {
+ //
+ // Call platform hook to do BSP election
+ //
+ Status = PlatformSmmBspElection (&IsBsp);
+ if (EFI_SUCCESS == Status) {
+ //
+ // Platform hook determines successfully
+ //
+ if (IsBsp) {
+ mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;
+ }
+ } else {
+ //
+ // Platform hook fails to determine, use default BSP election method
+ //
+ InterlockedCompareExchange32 (
+ (UINT32*)&mSmmMpSyncData->BspIndex,
+ (UINT32)-1,
+ (UINT32)CpuIndex
+ );
+ }
+ }
+ }
+
+ //
+ // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP
+ //
+ if (mSmmMpSyncData->BspIndex == CpuIndex) {
+
+ //
+ // Clear last request for SwitchBsp.
+ //
+ if (mSmmMpSyncData->SwitchBsp) {
+ mSmmMpSyncData->SwitchBsp = FALSE;
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ mSmmMpSyncData->CandidateBsp[Index] = FALSE;
+ }
+ }
+
+ if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
+ SmmProfileRecordSmiNum ();
+ }
+
+ //
+ // BSP Handler is always called with a ValidSmi == TRUE
+ //
+ BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);
+ } else {
+ APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
+ }
+ }
+
+ ASSERT (*mSmmMpSyncData->CpuData[CpuIndex].Run == 0);
+
+ //
+ // Wait for BSP's signal to exit SMI
+ //
+ while (*mSmmMpSyncData->AllCpusInSync) {
+ CpuPause ();
+ }
+ }
+
+Exit:
+ SmmCpuFeaturesRendezvousExit (CpuIndex);
+
+ //
+ // Restore Cr2
+ //
+ RestoreCr2 (Cr2);
+}
+
+/**
+ Allocate buffer for SpinLock and Wrapper function buffer.
+
+**/
+VOID
+InitializeDataForMmMp (
+ VOID
+ )
+{
+ gSmmCpuPrivate->ApWrapperFunc = AllocatePool (sizeof (PROCEDURE_WRAPPER) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
+ ASSERT (gSmmCpuPrivate->ApWrapperFunc != NULL);
+
+ InitializeListHead (&gSmmCpuPrivate->TokenList);
+
+ gSmmCpuPrivate->FirstFreeToken = AllocateTokenBuffer ();
+}
+
+/**
+ Allocate buffer for all semaphores and spin locks.
+
+**/
+VOID
+InitializeSmmCpuSemaphores (
+ VOID
+ )
+{
+ UINTN ProcessorCount;
+ UINTN TotalSize;
+ UINTN GlobalSemaphoresSize;
+ UINTN CpuSemaphoresSize;
+ UINTN SemaphoreSize;
+ UINTN Pages;
+ UINTN *SemaphoreBlock;
+ UINTN SemaphoreAddr;
+
+ SemaphoreSize = GetSpinLockProperties ();
+ ProcessorCount = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
+ GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize;
+ CpuSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize;
+ TotalSize = GlobalSemaphoresSize + CpuSemaphoresSize;
+ DEBUG((EFI_D_INFO, "One Semaphore Size = 0x%x\n", SemaphoreSize));
+ DEBUG((EFI_D_INFO, "Total Semaphores Size = 0x%x\n", TotalSize));
+ Pages = EFI_SIZE_TO_PAGES (TotalSize);
+ SemaphoreBlock = AllocatePages (Pages);
+ ASSERT (SemaphoreBlock != NULL);
+ ZeroMem (SemaphoreBlock, TotalSize);
+
+ SemaphoreAddr = (UINTN)SemaphoreBlock;
+ mSmmCpuSemaphores.SemaphoreGlobal.Counter = (UINT32 *)SemaphoreAddr;
+ SemaphoreAddr += SemaphoreSize;
+ mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm = (BOOLEAN *)SemaphoreAddr;
+ SemaphoreAddr += SemaphoreSize;
+ mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr;
+ SemaphoreAddr += SemaphoreSize;
+ mSmmCpuSemaphores.SemaphoreGlobal.PFLock = (SPIN_LOCK *)SemaphoreAddr;
+ SemaphoreAddr += SemaphoreSize;
+ mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock
+ = (SPIN_LOCK *)SemaphoreAddr;
+ SemaphoreAddr += SemaphoreSize;
+
+ SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;
+ mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr;
+ SemaphoreAddr += ProcessorCount * SemaphoreSize;
+ mSmmCpuSemaphores.SemaphoreCpu.Run = (UINT32 *)SemaphoreAddr;
+ SemaphoreAddr += ProcessorCount * SemaphoreSize;
+ mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr;
+
+ mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;
+ mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;
+
+ mSemaphoreSize = SemaphoreSize;
+}
+
+/**
+ Initialize un-cacheable data.
+
+**/
+VOID
+EFIAPI
+InitializeMpSyncData (
+ VOID
+ )
+{
+ UINTN CpuIndex;
+
+ if (mSmmMpSyncData != NULL) {
+ //
+ // mSmmMpSyncDataSize includes one structure of SMM_DISPATCHER_MP_SYNC_DATA, one
+ // CpuData array of SMM_CPU_DATA_BLOCK and one CandidateBsp array of BOOLEAN.
+ //
+ ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);
+ mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA));
+ mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
+ if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
+ //
+ // Enable BSP election by setting BspIndex to -1
+ //
+ mSmmMpSyncData->BspIndex = (UINT32)-1;
+ }
+ mSmmMpSyncData->EffectiveSyncMode = mCpuSmmSyncMode;
+
+ mSmmMpSyncData->Counter = mSmmCpuSemaphores.SemaphoreGlobal.Counter;
+ mSmmMpSyncData->InsideSmm = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm;
+ mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync;
+ ASSERT (mSmmMpSyncData->Counter != NULL && mSmmMpSyncData->InsideSmm != NULL &&
+ mSmmMpSyncData->AllCpusInSync != NULL);
+ *mSmmMpSyncData->Counter = 0;
+ *mSmmMpSyncData->InsideSmm = FALSE;
+ *mSmmMpSyncData->AllCpusInSync = FALSE;
+
+ for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex ++) {
+ mSmmMpSyncData->CpuData[CpuIndex].Busy =
+ (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + mSemaphoreSize * CpuIndex);
+ mSmmMpSyncData->CpuData[CpuIndex].Run =
+ (UINT32 *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Run + mSemaphoreSize * CpuIndex);
+ mSmmMpSyncData->CpuData[CpuIndex].Present =
+ (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + mSemaphoreSize * CpuIndex);
+ *(mSmmMpSyncData->CpuData[CpuIndex].Busy) = 0;
+ *(mSmmMpSyncData->CpuData[CpuIndex].Run) = 0;
+ *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
+ }
+ }
+}
+
+/**
+ Initialize global data for MP synchronization.
+
+ @param Stacks Base address of SMI stack buffer for all processors.
+ @param StackSize Stack size for each processor in SMM.
+ @param ShadowStackSize Shadow Stack size for each processor in SMM.
+
+**/
+UINT32
+InitializeMpServiceData (
+ IN VOID *Stacks,
+ IN UINTN StackSize,
+ IN UINTN ShadowStackSize
+ )
+{
+ UINT32 Cr3;
+ UINTN Index;
+ UINT8 *GdtTssTables;
+ UINTN GdtTableStepSize;
+ CPUID_VERSION_INFO_EDX RegEdx;
+
+ //
+ // Determine if this CPU supports machine check
+ //
+ AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx.Uint32);
+ mMachineCheckSupported = (BOOLEAN)(RegEdx.Bits.MCA == 1);
+
+ //
+ // Allocate memory for all locks and semaphores
+ //
+ InitializeSmmCpuSemaphores ();
+
+ //
+ // Initialize mSmmMpSyncData
+ //
+ mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +
+ (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
+ mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA*) AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));
+ ASSERT (mSmmMpSyncData != NULL);
+ mCpuSmmSyncMode = (SMM_CPU_SYNC_MODE)PcdGet8 (PcdCpuSmmSyncMode);
+ InitializeMpSyncData ();
+
+ //
+ // Initialize physical address mask
+ // NOTE: Physical memory above virtual address limit is not supported !!!
+ //
+ AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);
+ gPhyMask = LShiftU64 (1, (UINT8)Index) - 1;
+ gPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;
+
+ //
+ // Create page tables
+ //
+ Cr3 = SmmInitPageTable ();
+
+ GdtTssTables = InitGdt (Cr3, &GdtTableStepSize);
+
+ //
+ // Install SMI handler for each CPU
+ //
+ for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
+ InstallSmiHandler (
+ Index,
+ (UINT32)mCpuHotPlugData.SmBase[Index],
+ (VOID*)((UINTN)Stacks + (StackSize + ShadowStackSize) * Index),
+ StackSize,
+ (UINTN)(GdtTssTables + GdtTableStepSize * Index),
+ gcSmiGdtr.Limit + 1,
+ gcSmiIdtr.Base,
+ gcSmiIdtr.Limit + 1,
+ Cr3
+ );
+ }
+
+ //
+ // Record current MTRR settings
+ //
+ ZeroMem (&gSmiMtrrs, sizeof (gSmiMtrrs));
+ MtrrGetAllMtrrs (&gSmiMtrrs);
+
+ return Cr3;
+}
+
+/**
+
+ Register the SMM Foundation entry point.
+
+ @param This Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance
+ @param SmmEntryPoint SMM Foundation EntryPoint
+
+ @retval EFI_SUCCESS Successfully to register SMM foundation entry point
+
+**/
+EFI_STATUS
+EFIAPI
+RegisterSmmEntry (
+ IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This,
+ IN EFI_SMM_ENTRY_POINT SmmEntryPoint
+ )
+{
+ //
+ // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.
+ //
+ gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;
+ return EFI_SUCCESS;
+}
+
+/**
+
+ Register the SMM Foundation entry point.
+
+ @param[in] Procedure A pointer to the code stream to be run on the designated target AP
+ of the system. Type EFI_AP_PROCEDURE is defined below in Volume 2
+ with the related definitions of
+ EFI_MP_SERVICES_PROTOCOL.StartupAllAPs.
+ If caller may pass a value of NULL to deregister any existing
+ startup procedure.
+ @param[in,out] ProcedureArguments Allows the caller to pass a list of parameters to the code that is
+ run by the AP. It is an optional common mailbox between APs and
+ the caller to share information
+
+ @retval EFI_SUCCESS The Procedure has been set successfully.
+ @retval EFI_INVALID_PARAMETER The Procedure is NULL but ProcedureArguments not NULL.
+
+**/
+EFI_STATUS
+RegisterStartupProcedure (
+ IN EFI_AP_PROCEDURE Procedure,
+ IN OUT VOID *ProcedureArguments OPTIONAL
+ )
+{
+ if (Procedure == NULL && ProcedureArguments != NULL) {
+ return EFI_INVALID_PARAMETER;
+ }
+ if (mSmmMpSyncData == NULL) {
+ return EFI_NOT_READY;
+ }
+
+ mSmmMpSyncData->StartupProcedure = Procedure;
+ mSmmMpSyncData->StartupProcArgs = ProcedureArguments;
+
+ return EFI_SUCCESS;
+}