aboutsummaryrefslogtreecommitdiffstats
path: root/roms/skiboot/hw/ast-bmc
diff options
context:
space:
mode:
Diffstat (limited to 'roms/skiboot/hw/ast-bmc')
-rw-r--r--roms/skiboot/hw/ast-bmc/Makefile.inc6
-rw-r--r--roms/skiboot/hw/ast-bmc/ast-io.c498
-rw-r--r--roms/skiboot/hw/ast-bmc/ast-sf-ctrl.c1020
3 files changed, 1524 insertions, 0 deletions
diff --git a/roms/skiboot/hw/ast-bmc/Makefile.inc b/roms/skiboot/hw/ast-bmc/Makefile.inc
new file mode 100644
index 000000000..e7ded0e88
--- /dev/null
+++ b/roms/skiboot/hw/ast-bmc/Makefile.inc
@@ -0,0 +1,6 @@
+# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+SUBDIRS += hw/ast-bmc
+
+AST_BMC_OBJS = ast-io.o ast-sf-ctrl.o
+AST_BMC = hw/ast-bmc/built-in.a
+$(AST_BMC): $(AST_BMC_OBJS:%=hw/ast-bmc/%)
diff --git a/roms/skiboot/hw/ast-bmc/ast-io.c b/roms/skiboot/hw/ast-bmc/ast-io.c
new file mode 100644
index 000000000..f0f8c4c4d
--- /dev/null
+++ b/roms/skiboot/hw/ast-bmc/ast-io.c
@@ -0,0 +1,498 @@
+// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+/*
+ * Note about accesses to the AST2400 internal memory map:
+ *
+ * There are two ways to genrate accesses to the AHB bus of the AST2400
+ * from the host. The LPC->AHB bridge and the iLPC->AHB bridge.
+ *
+ * LPC->AHB bridge
+ * ---------------
+ *
+ * This bridge directly converts memory or firmware accesses using
+ * a set of registers for establishing a remapping window. We prefer
+ * using FW space as normal memory space is limited to byte accesses
+ * to a fixed 256M window, while FW space allows us to use different
+ * access sizes and to control the IDSEL bits which essentially enable
+ * a full 4G address space.
+ *
+ * The way FW accesses map onto AHB is controlled via two registers
+ * in the BMC's LPC host controller:
+ *
+ * HICR7 at 0x1e789088 [31:16] : ADRBASE
+ * [15:00] : HWMBASE
+ *
+ * HICR8 at 0x1e78908c [31:16] : ADRMASK
+ * [15:00] : HWNCARE
+ *
+ * All decoding/remapping happens on the top 16 bits of the LPC address
+ * named LPC_ADDR as follow:
+ *
+ * - For decoding, LPC_ADDR bits are compared with HWMBASE if the
+ * corresponding bit in HWNCARE is 0.
+ *
+ * - For remapping, the AHB address is constructed by taking bits
+ * from LPC_ADDR if the corresponding bit in ADRMASK is 0 or in
+ * ADRBASE if the corresponding bit in ADRMASK is 1
+ *
+ * Example of 2MB SPI flash, LPC 0xFCE00000~0xFCFFFFFF onto
+ * AHB 0x30000000~0x301FFFFF (SPI flash)
+ *
+ * ADRBASE=0x3000 HWMBASE=0xFCE0
+ * ADRMASK=0xFFE0 HWNCARE=0x001F
+ *
+ * This comes pre-configured by the BMC or HostBoot to access the PNOR
+ * flash from IDSEL 0 as follow:
+ *
+ * ADRBASE=0x3000 HWMBASE=0x0e00 for 32MB
+ * ADRMASK=0xfe00 HWNCARE=0x01ff
+ *
+ * Which means mapping of LPC 0x0e000000..0x0fffffff onto
+ * AHB 0x30000000..0x31ffffff
+ *
+ * iLPC->AHB bridge
+ * ---------------
+ *
+ * This bridge is hosted in the SuperIO part of the BMC and is
+ * controlled by a series of byte-sized registers accessed indirectly
+ * via IO ports 0x2e and 0x2f.
+ *
+ * Via these, byte by byte, we can construct an AHB address and
+ * fill a data buffer to trigger a write cycle, or we can do a
+ * read cycle and read back the data, byte after byte.
+ *
+ * This is fairly convoluted and slow but works regardless of what
+ * mapping was established in the LPC->AHB bridge.
+ *
+ * For the time being, we use the iLPC->AHB for everything except
+ * pnor accesses. In the long run, we will reconfigure the LPC->AHB
+ * to provide more direct access to all of the BMC address space but
+ * we'll only do that after the boot script/program on the BMC is
+ * updated to restore the bridge to a state compatible with the SBE
+ * expectations on boot.
+ *
+ * Copyright 2013-2019 IBM Corp.
+ */
+
+#include <skiboot.h>
+#include <lpc.h>
+#include <lock.h>
+#include <device.h>
+
+#include "ast.h"
+
+#define BMC_SIO_SCR28 0x28
+#define BOOT_FLAGS_VERSION 0x42
+
+/*
+ * SIO Register 0x29: Boot Flags (normal bit ordering)
+ *
+ * [7:6] Hostboot Boot mode:
+ * 00 : Normal
+ * 01 : Terminate on first error
+ * 10 : istep mode
+ * 11 : reserved
+ * [5:4] Boot options
+ * 00 : reserved
+ * 01 : Memboot
+ * 10 : Clear gard
+ * 11 : reserved
+ * [ 3 ] BMC mbox PNOR driver
+ * [2:0] Hostboot Log level:
+ * 000 : Normal
+ * 001 : Enable Scan trace
+ * xxx : reserved
+ */
+
+#define BMC_SIO_SCR29 0x29
+#define BMC_SIO_SCR29_MBOX 0x08
+#define BMC_SIO_SCR29_MEMBOOT 0x10
+
+/*
+ * SIO Register 0x2d: Platform Flags (normal bit ordering)
+ *
+ * [ 7 ] Hostboot configures SUART
+ * [ 6 ] Hostboot configures VUART
+ * [5:1] Reserved
+ * [ 0 ] Isolate Service Processor
+ */
+#define BMC_SIO_PLAT_FLAGS 0x2d
+#define BMC_SIO_PLAT_ISOLATE_SP 0x01
+
+enum {
+ BMC_SIO_DEV_NONE = -1,
+ BMC_SIO_DEV_UART1 = 2,
+ BMC_SIO_DEV_UART2 = 3,
+ BMC_SIO_DEV_SWC = 4,
+ BMC_SIO_DEV_KBC = 5,
+ BMC_SIO_DEV_P80 = 7,
+ BMC_SIO_DEV_UART3 = 0xb,
+ BMC_SIO_DEV_UART4 = 0xc,
+ BMC_SIO_DEV_LPC2AHB = 0xd,
+ BMC_SIO_DEV_MBOX = 0xe,
+};
+
+static struct lock bmc_sio_lock = LOCK_UNLOCKED;
+static int bmc_sio_cur_dev = BMC_SIO_DEV_NONE;
+
+/*
+ * SuperIO indirect accesses
+ */
+static void bmc_sio_outb(uint8_t val, uint8_t reg)
+{
+ lpc_outb(reg, 0x2e);
+ lpc_outb(val, 0x2f);
+}
+
+static uint8_t bmc_sio_inb(uint8_t reg)
+{
+ lpc_outb(reg, 0x2e);
+ return lpc_inb(0x2f);
+}
+
+static void bmc_sio_get(int dev)
+{
+ lock(&bmc_sio_lock);
+
+ if (bmc_sio_cur_dev == dev || dev < 0)
+ return;
+
+ if (bmc_sio_cur_dev == BMC_SIO_DEV_NONE) {
+ /* Send SuperIO password */
+ lpc_outb(0xa5, 0x2e);
+ lpc_outb(0xa5, 0x2e);
+ }
+
+ /* Select logical dev */
+ bmc_sio_outb(dev, 0x07);
+
+ bmc_sio_cur_dev = dev;
+}
+
+static void bmc_sio_put(bool lock_sio)
+{
+ if (lock_sio) {
+ /* Re-lock SuperIO */
+ lpc_outb(0xaa, 0x2e);
+
+ bmc_sio_cur_dev = BMC_SIO_DEV_NONE;
+ }
+ unlock(&bmc_sio_lock);
+}
+
+/*
+ * AHB accesses via iLPC->AHB in SuperIO. Works on byteswapped
+ * values (ie. Little Endian registers)
+ */
+static void bmc_sio_ahb_prep(uint32_t reg, uint8_t type)
+{
+ /* Enable iLPC->AHB */
+ bmc_sio_outb(0x01, 0x30);
+
+ /* Address */
+ bmc_sio_outb((reg >> 24) & 0xff, 0xf0);
+ bmc_sio_outb((reg >> 16) & 0xff, 0xf1);
+ bmc_sio_outb((reg >> 8) & 0xff, 0xf2);
+ bmc_sio_outb((reg ) & 0xff, 0xf3);
+
+ /* bytes cycle type */
+ bmc_sio_outb(type, 0xf8);
+}
+
+static void bmc_sio_ahb_writel(uint32_t val, uint32_t reg)
+{
+ bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
+
+ bmc_sio_ahb_prep(reg, 2);
+
+ /* Write data */
+ bmc_sio_outb(val >> 24, 0xf4);
+ bmc_sio_outb(val >> 16, 0xf5);
+ bmc_sio_outb(val >> 8, 0xf6);
+ bmc_sio_outb(val , 0xf7);
+
+ /* Trigger */
+ bmc_sio_outb(0xcf, 0xfe);
+
+ bmc_sio_put(false);
+}
+
+static uint32_t bmc_sio_ahb_readl(uint32_t reg)
+{
+ uint32_t val = 0;
+
+ bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
+
+ bmc_sio_ahb_prep(reg, 2);
+
+ /* Trigger */
+ bmc_sio_inb(0xfe);
+
+ /* Read results */
+ val = (val << 8) | bmc_sio_inb(0xf4);
+ val = (val << 8) | bmc_sio_inb(0xf5);
+ val = (val << 8) | bmc_sio_inb(0xf6);
+ val = (val << 8) | bmc_sio_inb(0xf7);
+
+ bmc_sio_put(false);
+
+ return val;
+}
+
+/*
+ * External API
+ *
+ * We only support 4-byte accesses to all of AHB. We additionally
+ * support 1-byte accesses to the flash area only.
+ *
+ * We could support all access sizes via iLPC but we don't need
+ * that for now.
+ */
+
+void ast_ahb_writel(uint32_t val, uint32_t reg)
+{
+ /* For now, always use iLPC->AHB, it will byteswap */
+ bmc_sio_ahb_writel(val, reg);
+}
+
+uint32_t ast_ahb_readl(uint32_t reg)
+{
+ /* For now, always use iLPC->AHB, it will byteswap */
+ return bmc_sio_ahb_readl(reg);
+}
+
+static void ast_setup_sio_irq_polarity(void)
+{
+ /* Select logical dev 2 */
+ bmc_sio_get(BMC_SIO_DEV_UART1);
+ bmc_sio_outb(0x01, 0x71); /* level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev 3 */
+ bmc_sio_get(BMC_SIO_DEV_UART2);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev 4 */
+ bmc_sio_get(BMC_SIO_DEV_SWC);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev 5 */
+ bmc_sio_get(BMC_SIO_DEV_KBC);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_outb(0x01, 0x73); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev 7 */
+ bmc_sio_get(BMC_SIO_DEV_P80);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev d */
+ bmc_sio_get(BMC_SIO_DEV_UART3);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev c */
+ bmc_sio_get(BMC_SIO_DEV_UART4);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev d */
+ bmc_sio_get(BMC_SIO_DEV_LPC2AHB);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(false);
+
+ /* Select logical dev e */
+ bmc_sio_get(BMC_SIO_DEV_MBOX);
+ bmc_sio_outb(0x01, 0x71); /* irq level low */
+ bmc_sio_put(true);
+}
+
+bool ast_sio_is_enabled(void)
+{
+ bool enabled;
+ int64_t rc;
+
+ lock(&bmc_sio_lock);
+ /*
+ * Probe by attempting to lock the SIO device, this way the
+ * post-condition is that the SIO device is locked or not able to be
+ * unlocked. This turns out neater than trying to use the unlock code.
+ */
+ rc = lpc_probe_write(OPAL_LPC_IO, 0x2e, 0xaa, 1);
+ if (rc) {
+ enabled = false;
+ /* If we can't lock it, then we can't unlock it either */
+ goto out;
+ }
+
+ /*
+ * Now that we know that is locked and able to be unlocked, unlock it
+ * if skiboot's recorded device state indicates it was previously
+ * unlocked.
+ */
+ if (bmc_sio_cur_dev != BMC_SIO_DEV_NONE) {
+ /* Send SuperIO password */
+ lpc_outb(0xa5, 0x2e);
+ lpc_outb(0xa5, 0x2e);
+
+ /* Ensure the previously selected logical dev is selected */
+ bmc_sio_outb(bmc_sio_cur_dev, 0x07);
+ }
+
+ enabled = true;
+out:
+ unlock(&bmc_sio_lock);
+
+ return enabled;
+}
+
+bool ast_sio_init(void)
+{
+ bool enabled = ast_sio_is_enabled();
+
+ /* Configure all AIO interrupts to level low */
+ if (enabled)
+ ast_setup_sio_irq_polarity();
+
+ return enabled;
+}
+
+bool ast_io_is_rw(void)
+{
+ return !(ast_ahb_readl(LPC_HICRB) & LPC_HICRB_ILPC_DISABLE);
+}
+
+bool ast_io_init(void)
+{
+ return ast_io_is_rw();
+}
+
+bool ast_lpc_fw_ipmi_hiomap(void)
+{
+ return platform.bmc->sw->ipmi_oem_hiomap_cmd != 0;
+}
+
+bool ast_lpc_fw_mbox_hiomap(void)
+{
+ struct dt_node *n;
+
+ n = dt_find_compatible_node(dt_root, NULL, "mbox");
+
+ return n != NULL;
+}
+
+bool ast_lpc_fw_maps_flash(void)
+{
+ uint8_t boot_version;
+ uint8_t boot_flags;
+
+ boot_version = bmc_sio_inb(BMC_SIO_SCR28);
+ if (boot_version != BOOT_FLAGS_VERSION)
+ return true;
+
+ boot_flags = bmc_sio_inb(BMC_SIO_SCR29);
+ return !(boot_flags & BMC_SIO_SCR29_MEMBOOT);
+}
+
+bool ast_scratch_reg_is_mbox(void)
+{
+ uint8_t boot_version;
+ uint8_t boot_flags;
+
+ boot_version = bmc_sio_inb(BMC_SIO_SCR28);
+ if (boot_version != BOOT_FLAGS_VERSION)
+ return false;
+
+ boot_flags = bmc_sio_inb(BMC_SIO_SCR29);
+ return boot_flags & BMC_SIO_SCR29_MBOX;
+}
+
+void ast_setup_ibt(uint16_t io_base, uint8_t irq)
+{
+ uint32_t v;
+
+ v = bmc_sio_ahb_readl(LPC_iBTCR0);
+ v = v & ~(0xfffffc00u);
+ v = v | (((uint32_t)io_base) << 16);
+ v = v | (((uint32_t)irq) << 12);
+ bmc_sio_ahb_writel(v, LPC_iBTCR0);
+}
+
+bool ast_is_vuart1_enabled(void)
+{
+ uint32_t v;
+
+ v = bmc_sio_ahb_readl(VUART1_GCTRLA);
+ return !!(v & 1);
+}
+
+void ast_setup_vuart1(uint16_t io_base, uint8_t irq)
+{
+ uint32_t v;
+
+ /* IRQ level low */
+ v = bmc_sio_ahb_readl(VUART1_GCTRLA);
+ v = v & ~2u;
+ bmc_sio_ahb_writel(v, VUART1_GCTRLA);
+ v = bmc_sio_ahb_readl(VUART1_GCTRLA);
+
+ /* IRQ number */
+ v = bmc_sio_ahb_readl(VUART1_GCTRLB);
+ v = (v & ~0xf0u) | (irq << 4);
+ bmc_sio_ahb_writel(v, VUART1_GCTRLB);
+
+ /* Address */
+ bmc_sio_ahb_writel(io_base & 0xff, VUART1_ADDRL);
+ bmc_sio_ahb_writel(io_base >> 8, VUART1_ADDRH);
+}
+
+/* Setup SuperIO UART 1 */
+void ast_setup_sio_uart1(uint16_t io_base, uint8_t irq)
+{
+ bmc_sio_get(BMC_SIO_DEV_UART1);
+
+ /* Disable UART1 for configuration */
+ bmc_sio_outb(0x00, 0x30);
+
+ /* Configure base and interrupt */
+ bmc_sio_outb(io_base >> 8, 0x60);
+ bmc_sio_outb(io_base & 0xff, 0x61);
+ bmc_sio_outb(irq, 0x70);
+ bmc_sio_outb(0x01, 0x71); /* level low */
+
+ /* Enable UART1 */
+ bmc_sio_outb(0x01, 0x30);
+
+ bmc_sio_put(true);
+}
+
+void ast_disable_sio_uart1(void)
+{
+ bmc_sio_get(BMC_SIO_DEV_UART1);
+
+ /* Disable UART1 */
+ bmc_sio_outb(0x00, 0x30);
+
+ bmc_sio_put(true);
+}
+
+void ast_setup_sio_mbox(uint16_t io_base, uint8_t irq)
+{
+ bmc_sio_get(BMC_SIO_DEV_MBOX);
+
+ /* Disable for configuration */
+ bmc_sio_outb(0x00, 0x30);
+
+ bmc_sio_outb(io_base >> 8, 0x60);
+ bmc_sio_outb(io_base & 0xff, 0x61);
+ bmc_sio_outb(irq, 0x70);
+ bmc_sio_outb(0x01, 0x71); /* level low */
+
+ /* Enable MailBox */
+ bmc_sio_outb(0x01, 0x30);
+
+ bmc_sio_put(true);
+}
+
diff --git a/roms/skiboot/hw/ast-bmc/ast-sf-ctrl.c b/roms/skiboot/hw/ast-bmc/ast-sf-ctrl.c
new file mode 100644
index 000000000..03cc44318
--- /dev/null
+++ b/roms/skiboot/hw/ast-bmc/ast-sf-ctrl.c
@@ -0,0 +1,1020 @@
+// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+/* Copyright 2013-2018 IBM Corp. */
+
+#include <stdint.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <errno.h>
+#include <stdio.h>
+#include <string.h>
+
+#include <libflash/libflash.h>
+#include <libflash/libflash-priv.h>
+#ifdef __SKIBOOT__
+#include "lpc.h"
+#endif
+
+#include "ast.h"
+
+#ifndef __unused
+#define __unused __attribute__((unused))
+#endif
+
+#define CALIBRATE_BUF_SIZE 16384
+
+struct ast_sf_ctrl {
+ /* We have 2 controllers, one for the BMC flash, one for the PNOR */
+ uint8_t type;
+
+ /* Address and previous value of the ctrl register */
+ uint32_t ctl_reg;
+
+ /* Control register value for normal commands */
+ uint32_t ctl_val;
+
+ /* Control register value for (fast) reads */
+ uint32_t ctl_read_val;
+
+ /* Flash read timing register */
+ uint32_t fread_timing_reg;
+ uint32_t fread_timing_val;
+
+ /* Address of the flash mapping */
+ uint32_t flash;
+
+ /* Current 4b mode */
+ bool mode_4b;
+
+ /* Callbacks */
+ struct spi_flash_ctrl ops;
+};
+
+static uint32_t ast_ahb_freq;
+
+static const uint32_t ast_ct_hclk_divs[] = {
+ 0xf, /* HCLK */
+ 0x7, /* HCLK/2 */
+ 0xe, /* HCLK/3 */
+ 0x6, /* HCLK/4 */
+ 0xd, /* HCLK/5 */
+};
+
+#ifdef __SKIBOOT__
+#define PNOR_AHB_ADDR 0x30000000
+static uint32_t pnor_lpc_offset;
+
+static int ast_copy_to_ahb(uint32_t reg, const void *src, uint32_t len)
+{
+ /* Check we don't cross IDSEL segments */
+ if ((reg ^ (reg + len - 1)) >> 28)
+ return -EINVAL;
+
+ /* SPI flash, use LPC->AHB bridge */
+ if ((reg >> 28) == (PNOR_AHB_ADDR >> 28)) {
+ uint32_t chunk, off = reg - PNOR_AHB_ADDR + pnor_lpc_offset;
+ int64_t rc;
+
+ while(len) {
+ /* Chose access size */
+ if (len > 3 && !(off & 3)) {
+ rc = lpc_write(OPAL_LPC_FW, off,
+ *(uint32_t *)src, 4);
+ chunk = 4;
+ } else {
+ rc = lpc_write(OPAL_LPC_FW, off,
+ *(uint8_t *)src, 1);
+ chunk = 1;
+ }
+ if (rc) {
+ prerror("AST_IO: lpc_write.sb failure %lld"
+ " to FW 0x%08x\n", rc, off);
+ return rc;
+ }
+ len -= chunk;
+ off += chunk;
+ src += chunk;
+ }
+ return 0;
+ }
+
+ /* Otherwise we don't do byte access (... yet) */
+ prerror("AST_IO: Attempted write bytes access to %08x\n", reg);
+ return -EINVAL;
+}
+
+static int ast_copy_from_ahb(void *dst, uint32_t reg, uint32_t len)
+{
+ /* Check we don't cross IDSEL segments */
+ if ((reg ^ (reg + len - 1)) >> 28)
+ return -EINVAL;
+
+ /* SPI flash, use LPC->AHB bridge */
+ if ((reg >> 28) == (PNOR_AHB_ADDR >> 28)) {
+ uint32_t chunk, off = reg - PNOR_AHB_ADDR + pnor_lpc_offset;
+ int64_t rc;
+
+ while(len) {
+ uint32_t dat;
+
+ /* Chose access size */
+ if (len > 3 && !(off & 3)) {
+ rc = lpc_read(OPAL_LPC_FW, off, &dat, 4);
+ if (!rc)
+ *(uint32_t *)dst = dat;
+ chunk = 4;
+ } else {
+ rc = lpc_read(OPAL_LPC_FW, off, &dat, 1);
+ if (!rc)
+ *(uint8_t *)dst = dat;
+ chunk = 1;
+ }
+ if (rc) {
+ prerror("AST_IO: lpc_read.sb failure %lld"
+ " to FW 0x%08x\n", rc, off);
+ return rc;
+ }
+ len -= chunk;
+ off += chunk;
+ dst += chunk;
+ }
+ return 0;
+ }
+ /* Otherwise we don't do byte access (... yet) */
+ prerror("AST_IO: Attempted read bytes access to %08x\n", reg);
+ return -EINVAL;
+}
+#endif /* __SKIBOOT__ */
+
+static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)
+{
+ /* Switch to user mode, CE# dropped */
+ ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
+
+ /* user mode, CE# active */
+ ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);
+
+ /* write cmd */
+ return ast_copy_to_ahb(ct->flash, &cmd, 1);
+}
+
+static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)
+{
+ /* clear CE# */
+ ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);
+
+ /* Switch back to read mode */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+}
+
+static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)
+{
+ const void *ap;
+ beint32_t tmp;
+
+ /* Layout address MSB first in memory */
+ tmp = cpu_to_be32(addr);
+
+ /* Send the right amount of bytes */
+ ap = (char *)&tmp;
+
+ if (ct->mode_4b)
+ return ast_copy_to_ahb(ct->flash, ap, 4);
+ else
+ return ast_copy_to_ahb(ct->flash, ap + 1, 3);
+}
+
+static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,
+ bool has_addr, uint32_t addr, void *buffer,
+ uint32_t size)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+ int rc;
+
+ rc = ast_sf_start_cmd(ct, cmd);
+ if (rc)
+ goto bail;
+ if (has_addr) {
+ rc = ast_sf_send_addr(ct, addr);
+ if (rc)
+ goto bail;
+ }
+ if (buffer && size)
+ rc = ast_copy_from_ahb(buffer, ct->flash, size);
+ bail:
+ ast_sf_end_cmd(ct);
+ return rc;
+}
+
+static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,
+ bool has_addr, uint32_t addr, const void *buffer,
+ uint32_t size)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+ int rc;
+
+ rc = ast_sf_start_cmd(ct, cmd);
+ if (rc)
+ goto bail;
+ if (has_addr) {
+ rc = ast_sf_send_addr(ct, addr);
+ if (rc)
+ goto bail;
+ }
+ if (buffer && size)
+ rc = ast_copy_to_ahb(ct->flash, buffer, size);
+ bail:
+ ast_sf_end_cmd(ct);
+ return rc;
+}
+
+static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+ uint32_t ce_ctrl = 0;
+
+ if (ct->type == AST_SF_TYPE_BMC && ct->ops.finfo->size > 0x1000000)
+ ce_ctrl = ast_ahb_readl(BMC_SPI_FCTL_CE_CTRL);
+ else if (ct->type != AST_SF_TYPE_PNOR)
+ return enable ? FLASH_ERR_4B_NOT_SUPPORTED : 0;
+
+ /*
+ * We update the "old" value as well since when quitting
+ * we don't restore the mode of the flash itself so we need
+ * to leave the controller in a compatible setup
+ */
+ if (enable) {
+ ct->ctl_val |= 0x2000;
+ ct->ctl_read_val |= 0x2000;
+ ce_ctrl |= 0x1;
+ } else {
+ ct->ctl_val &= ~0x2000;
+ ct->ctl_read_val &= ~0x2000;
+ ce_ctrl &= ~0x1;
+ }
+ ct->mode_4b = enable;
+
+ /* Update read mode */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+ if (ce_ctrl && ct->type == AST_SF_TYPE_BMC)
+ ast_ahb_writel(ce_ctrl, BMC_SPI_FCTL_CE_CTRL);
+
+ return 0;
+}
+
+static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,
+ void *buf, uint32_t len)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+
+ /*
+ * We are in read mode by default. We don't yet support fancy
+ * things like fast read or X2 mode
+ */
+ return ast_copy_from_ahb(buf, ct->flash + pos, len);
+}
+
+static void ast_get_ahb_freq(void)
+{
+ static const uint32_t cpu_freqs_24_48[] = {
+ 384000000,
+ 360000000,
+ 336000000,
+ 408000000
+ };
+ static const uint32_t cpu_freqs_25[] = {
+ 400000000,
+ 375000000,
+ 350000000,
+ 425000000
+ };
+ static const uint32_t ahb_div[] = { 1, 2, 4, 3 };
+ uint32_t strap, cpu_clk, div;
+
+ if (ast_ahb_freq)
+ return;
+
+ /* HW strapping gives us the CPU freq and AHB divisor */
+ strap = ast_ahb_readl(SCU_HW_STRAPPING);
+ if (strap & 0x00800000) {
+ FL_DBG("AST: CLKIN 25Mhz\n");
+ cpu_clk = cpu_freqs_25[(strap >> 8) & 3];
+ } else {
+ FL_DBG("AST: CLKIN 24/48Mhz\n");
+ cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];
+ }
+ FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);
+ div = ahb_div[(strap >> 10) & 3];
+ ast_ahb_freq = cpu_clk / div;
+ FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);
+}
+
+static int ast_sf_check_reads(struct ast_sf_ctrl *ct,
+ const uint8_t *golden_buf, uint8_t *test_buf)
+{
+ int i, rc;
+
+ for (i = 0; i < 10; i++) {
+ rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);
+ if (rc)
+ return rc;
+ if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)
+ return FLASH_ERR_VERIFY_FAILURE;
+ }
+ return 0;
+}
+
+static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,
+ const uint8_t *golden_buf, uint8_t *test_buf)
+{
+ int i, rc;
+ int good_pass = -1, pass_count = 0;
+ uint32_t shift = (hdiv - 1) << 2;
+ uint32_t mask = ~(0xfu << shift);
+
+#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8))
+
+ /* Try HCLK delay 0..5, each one with/without delay and look for a
+ * good pair.
+ */
+ for (i = 0; i < 12; i++) {
+ bool pass;
+
+ ct->fread_timing_val &= mask;
+ ct->fread_timing_val |= FREAD_TPASS(i) << shift;
+ ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+ rc = ast_sf_check_reads(ct, golden_buf, test_buf);
+ if (rc && rc != FLASH_ERR_VERIFY_FAILURE)
+ return rc;
+ pass = (rc == 0);
+ FL_DBG(" * [%08x] %d HCLK delay, %dns DI delay : %s\n",
+ ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");
+ if (pass) {
+ pass_count++;
+ if (pass_count == 3) {
+ good_pass = i - 1;
+ break;
+ }
+ } else
+ pass_count = 0;
+ }
+
+ /* No good setting for this frequency */
+ if (good_pass < 0)
+ return FLASH_ERR_VERIFY_FAILURE;
+
+ /* We have at least one pass of margin, let's use first pass */
+ ct->fread_timing_val &= mask;
+ ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;
+ ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+ FL_DBG("AST: * -> good is pass %d [0x%08x]\n",
+ good_pass, ct->fread_timing_val);
+ return 0;
+}
+
+static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)
+{
+ const uint32_t *tb32 = (const uint32_t *)test_buf;
+ uint32_t i, cnt = 0;
+
+ /* We check if we have enough words that are neither all 0
+ * nor all 1's so the calibration can be considered valid.
+ *
+ * I use an arbitrary threshold for now of 64
+ */
+ size >>= 2;
+ for (i = 0; i < size; i++) {
+ if (tb32[i] != 0 && tb32[i] != 0xffffffff)
+ cnt++;
+ }
+ return cnt >= 64;
+}
+
+static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct,
+ struct flash_info *info __unused,
+ uint32_t max_freq)
+{
+ uint8_t *golden_buf, *test_buf;
+ int i, rc, best_div = -1;
+ uint32_t save_read_val = ct->ctl_read_val;
+
+ test_buf = malloc(CALIBRATE_BUF_SIZE * 2);
+ golden_buf = test_buf + CALIBRATE_BUF_SIZE;
+
+ /* We start with the dumbest setting and read some data */
+ ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+ (0x00 << 28) | /* Single bit */
+ (0x00 << 24) | /* CE# max */
+ (0x03 << 16) | /* use normal reads */
+ (0x00 << 8) | /* HCLK/16 */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x00); /* normal read */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+ rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);
+ if (rc) {
+ free(test_buf);
+ return rc;
+ }
+
+ /* Establish our read mode with freq field set to 0 */
+ ct->ctl_read_val = save_read_val & 0xfffff0ff;
+
+ /* Check if calibration data is suitable */
+ if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {
+ FL_INF("AST: Calibration area too uniform, "
+ "using low speed\n");
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+ free(test_buf);
+ return 0;
+ }
+
+ /* Now we iterate the HCLK dividers until we find our breaking point */
+ for (i = 5; i > 0; i--) {
+ uint32_t tv, freq;
+
+ /* Compare timing to max */
+ freq = ast_ahb_freq / i;
+ if (freq >= max_freq)
+ continue;
+
+ /* Set the timing */
+ tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);
+ ast_ahb_writel(tv, ct->ctl_reg);
+ FL_DBG("AST: Trying HCLK/%d...\n", i);
+ rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);
+
+ /* Some other error occurred, bail out */
+ if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {
+ free(test_buf);
+ return rc;
+ }
+ if (rc == 0)
+ best_div = i;
+ }
+ free(test_buf);
+
+ /* Nothing found ? */
+ if (best_div < 0)
+ FL_ERR("AST: No good frequency, using dumb slow\n");
+ else {
+ FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);
+ ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);
+ }
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+ return 0;
+}
+
+static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)
+{
+ int i;
+
+ /* It appears that running commands at HCLK/2 on some micron
+ * chips results in occasionally reads of bogus status (that
+ * or unrelated chip hangs).
+ *
+ * Since we cannot calibrate properly the reads for commands,
+ * instead, let's limit our SPI frequency to HCLK/4 to stay
+ * on the safe side of things
+ */
+#define MIN_CMD_FREQ 4
+ for (i = MIN_CMD_FREQ; i <= 5; i++) {
+ uint32_t freq = ast_ahb_freq / i;
+ if (freq >= max_freq)
+ continue;
+ *ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);
+ return i;
+ }
+ return 0;
+}
+
+static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)
+{
+ int rc, div __unused;
+ uint8_t srcr[2];
+
+ /*
+ * Those Macronix chips support dual reads at 104Mhz
+ * and dual IO at 84Mhz with 4 dummies.
+ *
+ * Our calibration algo should give us something along
+ * the lines of HCLK/3 (HCLK/2 seems to work sometimes
+ * but appears to be fairly unreliable) which is 64Mhz
+ *
+ * So we chose dual IO mode.
+ *
+ * The CE# inactive width for reads must be 7ns, we set it
+ * to 3T which is about 15ns at the fastest speed we support
+ * HCLK/2) as I've had issue with smaller values.
+ *
+ * For write and program it's 30ns so let's set the value
+ * for normal ops to 6T.
+ *
+ * Preserve the current 4b mode.
+ */
+ FL_DBG("AST: Setting up Macronix...\n");
+
+ /*
+ * Read the status and config registers
+ */
+ rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);
+ if (rc != 0) {
+ FL_ERR("AST: Failed to read status\n");
+ return rc;
+ }
+ rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);
+ if (rc != 0) {
+ FL_ERR("AST: Failed to read configuration\n");
+ return rc;
+ }
+
+ FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
+
+ /* Switch to 8 dummy cycles to enable 104Mhz operations */
+ srcr[1] = (srcr[1] & 0x3f) | 0x80;
+
+ rc = fl_wren(&ct->ops);
+ if (rc) {
+ FL_ERR("AST: Failed to WREN for Macronix config\n");
+ return rc;
+ }
+
+ rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);
+ if (rc != 0) {
+ FL_ERR("AST: Failed to write Macronix config\n");
+ return rc;
+ }
+ rc = fl_sync_wait_idle(&ct->ops);;
+ if (rc != 0) {
+ FL_ERR("AST: Failed waiting for config write\n");
+ return rc;
+ }
+
+ FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);
+
+ /* Use 2READ */
+ ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+ (0x03 << 28) | /* Dual IO */
+ (0x0d << 24) | /* CE# width 3T */
+ (0xbb << 16) | /* 2READ command */
+ (0x00 << 8) | /* HCLK/16 (optimize later) */
+ (0x02 << 6) | /* 2 bytes dummy cycle (8 clocks) */
+ (0x01); /* fast read */
+
+ /* Configure SPI flash read timing */
+ rc = ast_sf_optimize_reads(ct, info, 104000000);
+ if (rc) {
+ FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
+ return rc;
+ }
+
+ /*
+ * For other commands and writes also increase the SPI clock
+ * to HCLK/2 since the chip supports up to 133Mhz and set
+ * CE# inactive to 6T. We request a timing that is 20% below
+ * the limit of the chip, so about 106Mhz which should fit.
+ */
+ ct->ctl_val = (ct->ctl_val & 0x2000) |
+ (0x00 << 28) | /* Single bit */
+ (0x0a << 24) | /* CE# width 6T (b1010) */
+ (0x00 << 16) | /* no command */
+ (0x00 << 8) | /* HCLK/16 (done later) */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x00); /* normal read */
+
+ div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
+ FL_DBG("AST: Command timing set to HCLK/%d\n", div);
+
+ /* Update chip with current read config */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+ return 0;
+}
+
+static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)
+{
+ int rc, div __unused;
+
+ FL_DBG("AST: Setting up Windbond...\n");
+
+ /*
+ * This Windbond chip support dual reads at 104Mhz
+ * with 8 dummy cycles.
+ *
+ * The CE# inactive width for reads must be 10ns, we set it
+ * to 3T which is about 15.6ns.
+ */
+ ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+ (0x02 << 28) | /* Dual bit data only */
+ (0x0e << 24) | /* CE# width 2T (b1110) */
+ (0x3b << 16) | /* DREAD command */
+ (0x00 << 8) | /* HCLK/16 */
+ (0x01 << 6) | /* 1-byte dummy cycle */
+ (0x01); /* fast read */
+
+ /* Configure SPI flash read timing */
+ rc = ast_sf_optimize_reads(ct, info, 104000000);
+ if (rc) {
+ FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
+ return rc;
+ }
+
+ /*
+ * For other commands and writes also increase the SPI clock
+ * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
+ * for write and erase is 50ns so let's set it to 10T.
+ */
+ ct->ctl_val = (ct->ctl_read_val & 0x2000) |
+ (0x00 << 28) | /* Single bit */
+ (0x06 << 24) | /* CE# width 10T (b0110) */
+ (0x00 << 16) | /* no command */
+ (0x00 << 8) | /* HCLK/16 */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x01); /* fast read */
+
+ div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
+ FL_DBG("AST: Command timing set to HCLK/%d\n", div);
+
+ /* Update chip with current read config */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+ return 0;
+}
+
+static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)
+{
+ uint8_t vconf, ext_id[6];
+ int rc, div __unused;
+
+ FL_DBG("AST: Setting up Micron...\n");
+
+ /*
+ * Read the extended chip ID to try to detect old vs. new
+ * flashes since old Micron flashes have a lot of issues
+ */
+ rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);
+ if (rc != 0) {
+ FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");
+ return 0;
+ }
+ /* Check ID matches expectations */
+ if (ext_id[0] != ((info->id >> 16) & 0xff) ||
+ ext_id[1] != ((info->id >> 8) & 0xff) ||
+ ext_id[2] != ((info->id ) & 0xff)) {
+ FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");
+ return 0;
+ }
+ FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);
+
+ /* Check for old (<45nm) chips, don't try to be fancy on those */
+ if (!(ext_id[4] & 0x40)) {
+ FL_DBG("AST: Old chip, using dumb timings\n");
+ goto dumb;
+ }
+
+ /*
+ * Read the micron specific volatile configuration reg
+ */
+ rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);
+ if (rc != 0) {
+ FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");
+ goto dumb;
+ }
+ FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);
+
+ /* Switch to 8 dummy cycles (we might be able to operate with 4
+ * but let's keep some margin
+ */
+ vconf = (vconf & 0x0f) | 0x80;
+
+ rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);
+ if (rc != 0) {
+ FL_ERR("AST: Failed to write Micron vconf, "
+ " sticking to dumb speed\n");
+ goto dumb;
+ }
+ rc = fl_sync_wait_idle(&ct->ops);;
+ if (rc != 0) {
+ FL_ERR("AST: Failed waiting for config write\n");
+ return rc;
+ }
+ FL_DBG("AST: Updated to : 0x%02x\n", vconf);
+
+ /*
+ * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz
+ *
+ * The CE# inactive width for reads must be 20ns, we set it
+ * to 4T which is about 20.8ns.
+ */
+ ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+ (0x03 << 28) | /* Single bit */
+ (0x0c << 24) | /* CE# 4T */
+ (0xbb << 16) | /* 2READ command */
+ (0x00 << 8) | /* HCLK/16 (optimize later) */
+ (0x02 << 6) | /* 8 dummy cycles (2 bytes) */
+ (0x01); /* fast read */
+
+ /* Configure SPI flash read timing */
+ rc = ast_sf_optimize_reads(ct, info, 133000000);
+ if (rc) {
+ FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
+ return rc;
+ }
+
+ /*
+ * For other commands and writes also increase the SPI clock
+ * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
+ * for write and erase is 50ns so let's set it to 10T.
+ */
+ ct->ctl_val = (ct->ctl_read_val & 0x2000) |
+ (0x00 << 28) | /* Single bit */
+ (0x06 << 24) | /* CE# width 10T (b0110) */
+ (0x00 << 16) | /* no command */
+ (0x00 << 8) | /* HCLK/16 */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x00); /* norm read */
+
+ div = ast_sf_get_hclk(&ct->ctl_val, 133000000);
+ FL_DBG("AST: Command timing set to HCLK/%d\n", div);
+
+ /* Update chip with current read config */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+ return 0;
+
+ dumb:
+ ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
+ (0x00 << 28) | /* Single bit */
+ (0x00 << 24) | /* CE# max */
+ (0x03 << 16) | /* use normal reads */
+ (0x06 << 8) | /* HCLK/4 */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x00); /* normal read */
+
+ /* Update chip with current read config */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+ return 0;
+}
+
+static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+ struct flash_info *info = ctrl->finfo;
+
+ (void)tsize;
+
+ /*
+ * Configure better timings and read mode for known
+ * flash chips
+ */
+ switch(info->id) {
+ case 0xc22018: /* MX25L12835F */
+ case 0xc22019: /* MX25L25635F */
+ case 0xc2201a: /* MX66L51235F */
+ case 0xc2201b: /* MX66L1G45G */
+ return ast_sf_setup_macronix(ct, info);
+ case 0xef4018: /* W25Q128BV */
+ return ast_sf_setup_winbond(ct, info);
+ case 0x20ba20: /* MT25Qx512xx */
+ return ast_sf_setup_micron(ct, info);
+ }
+ /* No special tuning */
+ return 0;
+}
+
+static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)
+{
+ uint32_t reg;
+
+ ct->ctl_reg = PNOR_SPI_FCTL_CTRL;
+ ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;
+ ct->flash = PNOR_FLASH_BASE;
+
+ /* Enable writing to the controller */
+ reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
+ if (reg == 0xffffffff) {
+ FL_ERR("AST_SF: Failed read from controller config\n");
+ return false;
+ }
+ ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);
+
+ /*
+ * Snapshot control reg and sanitize it for our
+ * use, switching to 1-bit mode, clearing user
+ * mode if set, etc...
+ *
+ * Also configure SPI clock to something safe
+ * like HCLK/8 (24Mhz)
+ */
+ ct->ctl_val = ast_ahb_readl(ct->ctl_reg);
+ if (ct->ctl_val == 0xffffffff) {
+ FL_ERR("AST_SF: Failed read from controller control\n");
+ return false;
+ }
+
+ ct->ctl_val = (ct->ctl_val & 0x2000) |
+ (0x00 << 28) | /* Single bit */
+ (0x00 << 24) | /* CE# width 16T */
+ (0x00 << 16) | /* no command */
+ (0x04 << 8) | /* HCLK/8 */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x00); /* normal read */
+
+ /* Initial read mode is default */
+ ct->ctl_read_val = ct->ctl_val;
+
+ /* Initial read timings all 0 */
+ ct->fread_timing_val = 0;
+
+ /* Configure for read */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+ ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+
+ if (ct->ctl_val & 0x2000)
+ ct->mode_4b = true;
+ else
+ ct->mode_4b = false;
+
+ return true;
+}
+
+static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)
+{
+ ct->ctl_reg = BMC_SPI_FCTL_CTRL;
+ ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;
+ ct->flash = BMC_FLASH_BASE;
+
+ /*
+ * Snapshot control reg and sanitize it for our
+ * use, switching to 1-bit mode, clearing user
+ * mode if set, etc...
+ *
+ * Also configure SPI clock to something safe
+ * like HCLK/8 (24Mhz)
+ */
+ ct->ctl_val =
+ (0x00 << 28) | /* Single bit */
+ (0x00 << 24) | /* CE# width 16T */
+ (0x00 << 16) | /* no command */
+ (0x04 << 8) | /* HCLK/8 */
+ (0x00 << 6) | /* no dummy cycle */
+ (0x00); /* normal read */
+
+ /* Initial read mode is default */
+ ct->ctl_read_val = ct->ctl_val;
+
+ /* Initial read timings all 0 */
+ ct->fread_timing_val = 0;
+
+ /* Configure for read */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+ ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
+
+ ct->mode_4b = false;
+
+ return true;
+}
+
+static int ast_mem_set4b(struct spi_flash_ctrl *ctrl __unused,
+ bool enable __unused)
+{
+ return 0;
+}
+
+static int ast_mem_setup(struct spi_flash_ctrl *ctrl __unused,
+ uint32_t *tsize __unused)
+{
+ return 0;
+}
+
+static int ast_mem_chipid(struct spi_flash_ctrl *ctrl __unused, uint8_t *id_buf,
+ uint32_t *id_size)
+{
+ if (*id_size < 3)
+ return -1;
+
+ id_buf[0] = 0xaa;
+ id_buf[1] = 0x55;
+ id_buf[2] = 0xaa;
+ *id_size = 3;
+ return 0;
+}
+
+static int ast_mem_write(struct spi_flash_ctrl *ctrl, uint32_t pos,
+ const void *buf, uint32_t len)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+
+ /*
+ * This only works when the ahb is pointed at system memory.
+ */
+ return ast_copy_to_ahb(ct->flash + pos, buf, len);
+}
+
+static int ast_mem_erase(struct spi_flash_ctrl *ctrl, uint32_t addr, uint32_t size)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+ uint32_t pos, len, end = addr + size;
+ uint64_t zero = 0;
+ int ret;
+
+ for (pos = addr; pos < end; pos += sizeof(zero)) {
+ if (pos + sizeof(zero) > end)
+ len = end - pos;
+ else
+ len = sizeof(zero);
+
+ ret = ast_copy_to_ahb(ct->flash + pos, &zero, len);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)
+{
+ struct ast_sf_ctrl *ct;
+#ifdef __SKIBOOT__
+ uint32_t hicr7;
+
+ if (!ast_sio_is_enabled())
+ return -ENODEV;
+#endif /* __SKIBOOT__ */
+
+ if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC
+ && type != AST_SF_TYPE_MEM)
+ return -EINVAL;
+
+ *ctrl = NULL;
+ ct = malloc(sizeof(*ct));
+ if (!ct) {
+ FL_ERR("AST_SF: Failed to allocate\n");
+ return -ENOMEM;
+ }
+ memset(ct, 0, sizeof(*ct));
+ ct->type = type;
+
+ if (type == AST_SF_TYPE_MEM) {
+ ct->ops.cmd_wr = NULL;
+ ct->ops.cmd_rd = NULL;
+ ct->ops.read = ast_sf_read;
+ ct->ops.set_4b = ast_mem_set4b;
+ ct->ops.write = ast_mem_write;
+ ct->ops.erase = ast_mem_erase;
+ ct->ops.setup = ast_mem_setup;
+ ct->ops.chip_id = ast_mem_chipid;
+ ct->flash = PNOR_FLASH_BASE;
+ } else {
+ ct->ops.cmd_wr = ast_sf_cmd_wr;
+ ct->ops.cmd_rd = ast_sf_cmd_rd;
+ ct->ops.set_4b = ast_sf_set_4b;
+ ct->ops.read = ast_sf_read;
+ ct->ops.setup = ast_sf_setup;
+ }
+
+ ast_get_ahb_freq();
+
+ if (type == AST_SF_TYPE_PNOR) {
+ if (!ast_sf_init_pnor(ct))
+ goto fail;
+ } else if (type == AST_SF_TYPE_BMC) {
+ if (!ast_sf_init_bmc(ct))
+ goto fail;
+ }
+
+#ifdef __SKIBOOT__
+ /* Read the configuration of the LPC->AHB bridge for PNOR
+ * to extract the PNOR LPC offset which can be different
+ * depending on flash size
+ */
+ hicr7 = ast_ahb_readl(LPC_HICR7);
+ pnor_lpc_offset = (hicr7 & 0xffffu) << 16;
+ prlog(PR_DEBUG, "AST: PNOR LPC offset: 0x%08x\n", pnor_lpc_offset);
+#endif /* __SKIBOOT__ */
+
+ *ctrl = &ct->ops;
+
+ return 0;
+ fail:
+ free(ct);
+ return -EIO;
+}
+
+void ast_sf_close(struct spi_flash_ctrl *ctrl)
+{
+ struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
+
+ /* Restore control reg to read */
+ ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
+
+ /* Additional cleanup */
+ if (ct->type == AST_SF_TYPE_PNOR) {
+ uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
+ if (reg != 0xffffffff)
+ ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);
+ }
+
+ /* Free the whole lot */
+ free(ct);
+}