diff options
Diffstat (limited to 'roms/skiboot/hw/xive2.c')
-rw-r--r-- | roms/skiboot/hw/xive2.c | 4666 |
1 files changed, 4666 insertions, 0 deletions
diff --git a/roms/skiboot/hw/xive2.c b/roms/skiboot/hw/xive2.c new file mode 100644 index 000000000..d5814bcbf --- /dev/null +++ b/roms/skiboot/hw/xive2.c @@ -0,0 +1,4666 @@ +// SPDX-License-Identifier: Apache-2.0 +/* + * XIVE2: eXternal Interrupt Virtualization Engine. POWER10 interrupt + * controller + * + * Copyright (c) 2016-2019, IBM Corporation. + */ + +#define pr_fmt(fmt) "XIVE: " fmt + +#include <skiboot.h> +#include <xscom.h> +#include <chip.h> +#include <io.h> +#include <xive.h> +#include <xive2-regs.h> +#include <xscom-p10-regs.h> +#include <interrupts.h> +#include <timebase.h> +#include <bitmap.h> +#include <buddy.h> +#include <phys-map.h> +#include <p10_stop_api.H> + + +/* Verbose debug */ +#undef XIVE_VERBOSE_DEBUG +#undef DEBUG + +/* Extra debug options used in debug builds */ +#ifdef DEBUG +#define XIVE_CHECK_LOCKS +#define XIVE_DEBUG_INIT_CACHE_UPDATES +#define XIVE_EXTRA_CHECK_INIT_CACHE +#else +#undef XIVE_CHECK_LOCKS +#undef XIVE_DEBUG_INIT_CACHE_UPDATES +#undef XIVE_EXTRA_CHECK_INIT_CACHE +#endif + +/* + * VSDs, blocks, set translation etc... + * + * For the following data structures, the XIVE use a mechanism called + * Virtualization Structure Tables (VST) to manage the memory layout + * and access: ESBs (Event State Buffers), EAS (Event assignment + * structures), ENDs (Event Notification Descriptors) and NVT/NVP + * (Notification Virtual Targets/Processors). + * + * These structures divide those tables into 16 "blocks". Each XIVE + * instance has a definition for all 16 blocks that can either represent + * an actual table in memory or a remote XIVE MMIO port to access a + * block that is owned by that remote XIVE. + * + * Our SW design will consist of allocating one block per chip (and thus + * per XIVE instance) for now, thus giving us up to 16 supported chips in + * the system. We may have to revisit that if we ever support systems with + * more than 16 chips but that isn't on our radar at the moment or if we + * want to do like pHyp on some machines and dedicate 2 blocks per chip + * for some structures. + * + * Thus we need to be careful that we never expose to Linux the concept + * of block and block boundaries, but instead we provide full number ranges + * so that consecutive blocks can be supported. + * + * Similarily, for MMIO access, the BARs support what is called "set + * translation" which allows the BAR to be devided into a certain + * number of sets. Each "set" can be routed to a specific block and + * offset within a block. + */ + +#define XIVE_MAX_BLOCKS 16 +#define XIVE_VSD_SIZE 8 + +/* + * Max number of ESBs. (direct table) + * + * The max number of ESBs supported in the P10 MMIO space is 1TB/128K: 8M. + * + * 1M is our current top limit of ESB entries and EAS entries + * pre-allocated per chip. That allocates 256KB per chip for the state + * bits and 8M per chip for the EAS. + */ + +#define XIVE_INT_ORDER 20 /* 1M interrupts */ +#define XIVE_INT_COUNT (1ul << XIVE_INT_ORDER) + +/* + * First interrupt number, also the first logical interrupt number + * allocated by Linux (maximum ISA interrupt number + 1) + */ +#define XIVE_INT_FIRST 0x10 + +/* Corresponding direct table sizes */ +#define XIVE_ESB_SIZE (XIVE_INT_COUNT / 4) +#define XIVE_EAT_SIZE (XIVE_INT_COUNT * 8) + +/* Use 64K for everything by default */ +#define XIVE_ESB_SHIFT (16 + 1) /* trigger + mgmt pages */ +#define XIVE_ESB_PAGE_SIZE (1ul << XIVE_ESB_SHIFT) /* 2 pages */ + +/* + * Max number of ENDs. (indirect table) + * + * The max number of ENDs supported in the P10 MMIO space is 2TB/128K: 16M. + * Since one END is 32 bytes, a 64K indirect subpage can hold 2K ENDs. + * We need 8192 subpages, ie, 64K of memory for the indirect table. + */ +#define END_PER_PAGE (PAGE_SIZE / sizeof(struct xive_end)) + +#define XIVE_END_ORDER 23 /* 8M ENDs */ +#define XIVE_END_COUNT (1ul << XIVE_END_ORDER) +#define XIVE_END_TABLE_SIZE ((XIVE_END_COUNT / END_PER_PAGE) * XIVE_VSD_SIZE) + +#define XIVE_END_SHIFT (16 + 1) /* ESn + ESe pages */ + +/* One bit per number of priorities configured */ +#define xive_end_bitmap_size(x) (XIVE_END_COUNT >> xive_cfg_vp_prio_shift(x)) + +/* Number of priorities (and thus ENDs) we allocate for each VP */ +#define xive_cfg_vp_prio_shift(x) GETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, (x)->config) +#define xive_cfg_vp_prio(x) (1 << xive_cfg_vp_prio_shift(x)) + +/* Max priority number */ +#define xive_max_prio(x) (xive_cfg_vp_prio(x) - 1) + +/* Priority used for gather/silent escalation (KVM) */ +#define xive_escalation_prio(x) xive_max_prio(x) + +/* + * Max number of VPs. (indirect table) + * + * The max number of NVPs we support in our MMIO space is 1TB/128K: 8M. + * Since one NVP is 32 bytes, a 64K indirect subpage can hold 2K NVPs. + * We need 4096 pointers, ie, 32K of memory for the indirect table. + * + * However, we use 8 priorities (by default) per NVP and the number of + * ENDs is configured to 8M. Therefore, our VP space is limited to 1M. + */ +#define VP_PER_PAGE (PAGE_SIZE / sizeof(struct xive_nvp)) + +#define XIVE_VP_ORDER(x) (XIVE_END_ORDER - xive_cfg_vp_prio_shift(x)) +#define XIVE_VP_COUNT(x) (1ul << XIVE_VP_ORDER(x)) +#define XIVE_VP_TABLE_SIZE(x) ((XIVE_VP_COUNT(x) / VP_PER_PAGE) * XIVE_VSD_SIZE) + +#define XIVE_NVP_SHIFT 17 /* NVPG BAR: two pages, even NVP, odd NVG */ + +/* VP Space maximums in Gen1 and Gen2 modes */ +#define VP_SHIFT_GEN1 19 /* in sync with END_W6_VP_OFFSET_GEN1 */ +#define VP_SHIFT_GEN2 24 /* in sync with END_W6_VP_OFFSET */ + +/* + * VP ids for HW threads. + * + * Depends on the thread id bits configuration of the IC. 8bit is the + * default for P10 and 7bit for p9. + * + * These values are global because they should be common to all chips + */ +static uint32_t xive_threadid_shift; +static uint32_t xive_hw_vp_base; +static uint32_t xive_hw_vp_count; + +/* + * The XIVE operation mode indicates the active "API" and corresponds + * to the "version/mode" parameter of the opal_xive_reset() call + */ +static enum { + /* No XICS emulation */ + XIVE_MODE_EXPL = OPAL_XIVE_MODE_EXPL, /* default */ + XIVE_MODE_NONE, +} xive_mode = XIVE_MODE_NONE; + +/* + * The XIVE exploitation mode options indicates the active features and + * is part of the mode parameter of the opal_xive_reset() call + */ +static uint64_t xive_expl_options; + +#define XIVE_EXPL_ALL_OPTIONS 0 + +/* + * Each source controller has one of these. There's one embedded in + * the XIVE struct for IPIs + */ +struct xive_src { + struct irq_source is; + const struct irq_source_ops *orig_ops; + struct xive *xive; + void *esb_mmio; + uint32_t esb_base; + uint32_t esb_shift; + uint32_t flags; +}; + +struct xive_cpu_state { + struct xive *xive; + void *tm_ring1; + + /* Base HW VP and associated queues */ + uint32_t vp_blk; + uint32_t vp_idx; + uint32_t end_blk; + uint32_t end_idx; /* Base end index of a block of 8 */ + + struct lock lock; +}; + +enum xive_generation { + XIVE_GEN1 = 1, /* P9 compat mode */ + XIVE_GEN2 = 2, /* P10 default */ +}; + +enum xive_quirks { + /* HW527671 - 8bits Hardwired Thread Id range not implemented */ + XIVE_QUIRK_THREADID_7BITS = 0x00000001, + /* HW542974 - interrupt command priority checker not working properly */ + XIVE_QUIRK_BROKEN_PRIO_CHECK = 0x00000002, +}; + +struct xive { + uint32_t chip_id; + uint32_t block_id; + struct dt_node *x_node; + + enum xive_generation generation; + uint64_t capabilities; + uint64_t config; + + uint64_t xscom_base; + + /* MMIO regions */ + void *ic_base; + uint64_t ic_size; + uint32_t ic_shift; + void *ic_tm_direct_base; + + void *tm_base; + uint64_t tm_size; + uint32_t tm_shift; + void *nvp_base; + uint64_t nvp_size; + void *esb_base; + uint64_t esb_size; + void *end_base; + uint64_t end_size; + + /* Set on XSCOM register access error */ + bool last_reg_error; + + /* Per-XIVE mutex */ + struct lock lock; + + /* Pre-allocated tables. + * + * We setup all the VDS for actual tables (ie, by opposition to + * forwarding ports) as either direct pre-allocated or indirect + * and partially populated. + * + * Currently, the ESB and the EAS tables are direct and fully + * pre-allocated based on XIVE_INT_COUNT. + * + * The other tables are indirect, we thus pre-allocate the indirect + * table (ie, pages of pointers) and populate enough of the pages + * for our basic setup using 64K subpages. + * + * The size of the indirect tables are driven by XIVE_VP_COUNT + * and XIVE_END_COUNT. The number of pre-allocated ones are + * driven by xive_hw_vp_count for the HW threads. The number + * of END depends on number of VP. + */ + + /* Direct SBE and EAT tables */ + void *sbe_base; + void *eat_base; + + /* Indirect END table. NULL entries are unallocated, count is + * the numbre of pointers (ie, sub page placeholders). + */ + beint64_t *end_ind_base; + uint32_t end_ind_count; + uint64_t end_ind_size; + + /* END allocation bitmap. Each bit represent #priority ENDs */ + bitmap_t *end_map; + + /* Indirect NVT/VP table. NULL entries are unallocated, count is + * the numbre of pointers (ie, sub page placeholders). + */ + beint64_t *vp_ind_base; + uint32_t vp_ind_count; + uint64_t vp_ind_size; + + /* VP space size. Depends on Gen1/2 mode */ + uint32_t vp_shift; + + /* Pool of donated pages for provisioning indirect END and VP pages */ + struct list_head donated_pages; + + /* To ease a possible change to supporting more than one block of + * interrupts per chip, we store here the "base" global number + * and max number of interrupts for this chip. The global number + * encompass the block number and index. + */ + uint32_t int_base; + uint32_t int_count; + + /* Due to the overlap between IPIs and HW sources in the EAS table, + * we keep some kind of top-down allocator. It is used for HW sources + * to "allocate" interrupt entries and will limit what can be handed + * out as IPIs. Of course this assumes we "allocate" all HW sources + * before we start handing out IPIs. + * + * Note: The numbers here are global interrupt numbers so that we can + * potentially handle more than one block per chip in the future. + */ + uint32_t int_hw_bot; /* Bottom of HW allocation */ + uint32_t int_ipi_top; /* Highest IPI handed out so far + 1 */ + + /* The IPI allocation bitmap */ + bitmap_t *ipi_alloc_map; + + /* We keep track of which interrupts were ever enabled to + * speed up xive_reset + */ + bitmap_t *int_enabled_map; + + /* Embedded source IPIs */ + struct xive_src ipis; + + /* Embedded escalation interrupts */ + struct xive_src esc_irqs; + + /* In memory queue overflow */ + void *q_ovf; + + /* Cache/sync injection */ + uint64_t sync_inject_size; + void *sync_inject; + + /* INT HW Errata */ + uint64_t quirks; +}; + +/* First XIVE unit configured on the system */ +static struct xive *one_xive; + +/* Global DT node */ +static struct dt_node *xive_dt_node; + +/* Block <-> Chip conversions. + * + * As chipIDs may not be within the range of 16 block IDs supported by XIVE, + * we have a 2 way conversion scheme. + * + * From block to chip, use the global table below. + * + * From chip to block, a field in struct proc_chip contains the first block + * of that chip. For now we only support one block per chip but that might + * change in the future + */ +#define XIVE_INVALID_CHIP 0xffffffff +#define XIVE_MAX_CHIPS 16 +static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS]; +static uint32_t xive_block_count; + +static uint32_t xive_chip_to_block(uint32_t chip_id) +{ + struct proc_chip *c = get_chip(chip_id); + + assert(c); + assert(c->xive); + return c->xive->block_id; +} + +/* + * Conversion between GIRQ and block/index. + * + * ------------------------------------ + * |000E|BLOC| INDEX| + * ------------------------------------ + * 4 4 24 + * + * the E bit indicates that this is an escalation interrupt, in + * that case, the BLOC/INDEX represents the END containing the + * corresponding escalation descriptor. + * + * Global interrupt numbers for non-escalation interrupts are thus + * limited to 28 bits. + */ + +#define INT_SHIFT 24 +#define INT_ESC_SHIFT (INT_SHIFT + 4) /* 4bits block id */ + +#if XIVE_INT_ORDER > INT_SHIFT +#error "Too many ESBs for IRQ encoding" +#endif + +#if XIVE_END_ORDER > INT_SHIFT +#error "Too many ENDs for escalation IRQ number encoding" +#endif + +#define GIRQ_TO_BLK(__g) (((__g) >> INT_SHIFT) & 0xf) +#define GIRQ_TO_IDX(__g) ((__g) & ((1 << INT_SHIFT) - 1)) +#define BLKIDX_TO_GIRQ(__b,__i) (((uint32_t)(__b)) << INT_SHIFT | (__i)) + +#define GIRQ_IS_ESCALATION(__g) ((__g) & (1 << INT_ESC_SHIFT)) +#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | (1 << INT_ESC_SHIFT)) + + +/* Block/IRQ to chip# conversions */ +#define PC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b]) +#define VC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b]) +#define GIRQ_TO_CHIP(__isn) (VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn))) + +/* Routing of physical processors to VPs */ +#define PIR2VP_IDX( __pir) (xive_hw_vp_base | P10_PIR2LOCALCPU(__pir)) +#define PIR2VP_BLK(__pir) (xive_chip_to_block(P10_PIR2GCID(__pir))) +#define VP2PIR(__blk, __idx) (P10_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0xff)) + +/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow + * + * Block group mode: + * + * ----------------------------------- + * |GVEOOOOO| INDEX| + * ----------------------------------- + * || | + * || Order + * |Virtual + * Group + * + * G (Group) : Set to 1 for a group VP (not currently supported) + * V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID) + * E (Error) : Should never be 1, used internally for errors + * O (Order) : Allocation order of the VP block + * + * The conversion is thus done as follow (groups aren't implemented yet) + * + * If V=0, O must be 0 and 24-bit INDEX value is the PIR + * If V=1, the order O group is allocated such that if N is the number of + * chip bits considered for allocation (*) + * then the INDEX is constructed as follow (bit numbers such as 0=LSB) + * - bottom O-N bits is the index within the "VP block" + * - next N bits is the XIVE blockID of the VP + * - the remaining bits is the per-chip "base" + * so the conversion consists of "extracting" the block ID and moving + * down the upper bits by N bits. + * + * In non-block-group mode, the difference is that the blockID is + * on the left of the index (the entire VP block is in a single + * block ID) + */ + +#define VP_GROUP_SHIFT 31 +#define VP_VIRTUAL_SHIFT 30 +#define VP_ERROR_SHIFT 29 +#define VP_ORDER_SHIFT 24 + +#define vp_group(vp) (((vp) >> VP_GROUP_SHIFT) & 1) +#define vp_virtual(vp) (((vp) >> VP_VIRTUAL_SHIFT) & 1) +#define vp_order(vp) (((vp) >> VP_ORDER_SHIFT) & 0x1f) +#define vp_index(vp) ((vp) & ((1 << VP_ORDER_SHIFT) - 1)) + +/* VP allocation */ +static uint32_t xive_chips_alloc_bits = 0; +static struct buddy *xive_vp_buddy; +static struct lock xive_buddy_lock = LOCK_UNLOCKED; + +/* VP# decoding/encoding */ +static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx, + uint8_t *order, bool *group) +{ + uint32_t o = vp_order(vp); + uint32_t n = xive_chips_alloc_bits; + uint32_t index = vp_index(vp); + uint32_t imask = (1 << (o - n)) - 1; + + /* Groups not supported yet */ + if (vp_group(vp)) + return false; + if (group) + *group = false; + + /* PIR case */ + if (!vp_virtual(vp)) { + if (find_cpu_by_pir(index) == NULL) + return false; + if (blk) + *blk = PIR2VP_BLK(index); + if (idx) + *idx = PIR2VP_IDX(index); + return true; + } + + /* Ensure o > n, we have *at least* 2 VPs per block */ + if (o <= n) + return false; + + /* Combine the index base and index */ + if (idx) + *idx = ((index >> n) & ~imask) | (index & imask); + /* Extract block ID */ + if (blk) + *blk = (index >> (o - n)) & ((1 << n) - 1); + + /* Return order as well if asked for */ + if (order) + *order = o; + + return true; +} + +static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order) +{ + uint32_t vp = (1 << VP_VIRTUAL_SHIFT) | (order << VP_ORDER_SHIFT); + uint32_t n = xive_chips_alloc_bits; + uint32_t imask = (1 << (order - n)) - 1; + + vp |= (idx & ~imask) << n; + vp |= blk << (order - n); + vp |= idx & imask; + return vp; +} + +/* + * XSCOM/MMIO helpers + */ +#define XIVE_NO_MMIO -1 + +#define xive_regw(__x, __r, __v) \ + __xive_regw(__x, __r, X_##__r, __v, #__r) +#define xive_regr(__x, __r) \ + __xive_regr(__x, __r, X_##__r, #__r) +#define xive_regwx(__x, __r, __v) \ + __xive_regw(__x, XIVE_NO_MMIO, X_##__r, __v, #__r) +#define xive_regrx(__x, __r) \ + __xive_regr(__x, XIVE_NO_MMIO, X_##__r, #__r) + +#ifdef XIVE_VERBOSE_DEBUG +#define xive_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__) +#define xive_cpu_vdbg(__c,__fmt,...) prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__) +#else +#define xive_vdbg(x,fmt,...) do { } while(0) +#define xive_cpu_vdbg(x,fmt,...) do { } while(0) +#endif + +#define xive_dbg(__x,__fmt,...) prlog(PR_DEBUG,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__) +#define xive_cpu_dbg(__c,__fmt,...) prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__) +#define xive_notice(__x,__fmt,...) prlog(PR_NOTICE,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__) +#define xive_cpu_notice(__c,__fmt,...) prlog(PR_NOTICE,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__) +#define xive_warn(__x,__fmt,...) prlog(PR_WARNING,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__) +#define xive_cpu_warn(__c,__fmt,...) prlog(PR_WARNING,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__) +#define xive_err(__x,__fmt,...) prlog(PR_ERR,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__) +#define xive_cpu_err(__c,__fmt,...) prlog(PR_ERR,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__) + +/* + * The XIVE subengine being accessed can be deduced from the XSCOM + * reg, and from there, the page offset in the IC BAR. + */ +static void* xive_ic_page(struct xive *x, uint32_t x_reg) +{ + uint64_t pgoff = (x_reg >> 8) & 0x3; + + return x->ic_base + (pgoff << x->ic_shift); +} + +static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v, + const char *rname) +{ + bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base; + int64_t rc; + + x->last_reg_error = false; + + assert(x_reg != 0); + + if (use_xscom) { + rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v); + if (rc) { + if (!rname) + rname = "???"; + xive_err(x, "Error writing register %s\n", rname); + /* Anything else we can do here ? */ + x->last_reg_error = true; + } + } else { + out_be64(xive_ic_page(x, x_reg) + m_reg, v); + } +} + +static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg, + const char *rname) +{ + bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base; + int64_t rc; + uint64_t val; + + x->last_reg_error = false; + + assert(x_reg != 0); + + if (use_xscom) { + rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val); + if (rc) { + if (!rname) + rname = "???"; + xive_err(x, "Error reading register %s\n", rname); + /* Anything else we can do here ? */ + x->last_reg_error = true; + return -1ull; + } + } else { + val = in_be64(xive_ic_page(x, x_reg) + m_reg); + } + return val; +} + +/* Locate a controller from an IRQ number */ +static struct xive *xive_from_isn(uint32_t isn) +{ + uint32_t chip_id = GIRQ_TO_CHIP(isn); + struct proc_chip *c = get_chip(chip_id); + + if (!c) + return NULL; + return c->xive; +} + +static struct xive *xive_from_pc_blk(uint32_t blk) +{ + uint32_t chip_id = PC_BLK_TO_CHIP(blk); + struct proc_chip *c = get_chip(chip_id); + + if (!c) + return NULL; + return c->xive; +} + +static struct xive *xive_from_vc_blk(uint32_t blk) +{ + uint32_t chip_id = VC_BLK_TO_CHIP(blk); + struct proc_chip *c = get_chip(chip_id); + + if (!c) + return NULL; + return c->xive; +} + +static struct xive_end *xive_get_end(struct xive *x, unsigned int idx) +{ + struct xive_end *p; + + if (idx >= (x->end_ind_count * END_PER_PAGE)) + return NULL; + p = (struct xive_end *)(be64_to_cpu(x->end_ind_base[idx / END_PER_PAGE]) & + VSD_ADDRESS_MASK); + if (!p) + return NULL; + + return &p[idx % END_PER_PAGE]; +} + +static struct xive_eas *xive_get_eas(struct xive *x, unsigned int isn) +{ + struct xive_eas *eat; + uint32_t idx = GIRQ_TO_IDX(isn); + + if (GIRQ_IS_ESCALATION(isn)) { + /* Allright, an escalation EAS is buried inside an END, let's + * try to find it + */ + struct xive_end *end; + + if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) { + xive_err(x, "%s, ESC ISN 0x%x not on right chip\n", + __func__, isn); + return NULL; + } + end = xive_get_end(x, idx); + if (!end) { + xive_err(x, "%s, ESC ISN 0x%x END not found\n", + __func__, isn); + return NULL; + } + + /* If using single-escalation, don't let anybody get + * to the individual escalation interrupts + */ + if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0)) + return NULL; + + /* Grab the escalation END */ + return (struct xive_eas *)(char *)&end->w4; + } else { + /* Check the block matches */ + if (isn < x->int_base || isn >= x->int_count) { + xive_err(x, "%s, ISN 0x%x not on right chip\n", + __func__, isn); + return NULL; + } + assert (idx < XIVE_INT_COUNT); + + /* If we support >1 block per chip, this should still + * work as we are likely to make the table contiguous + * anyway + */ + eat = x->eat_base; + assert(eat); + + return eat + idx; + } +} + +static struct xive_nvp *xive_get_vp(struct xive *x, unsigned int idx) +{ + struct xive_nvp *p; + + assert(idx < (x->vp_ind_count * VP_PER_PAGE)); + p = (struct xive_nvp *)(be64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) & + VSD_ADDRESS_MASK); + if (!p) + return NULL; + + return &p[idx % VP_PER_PAGE]; +} + +/* + * Store the END base of the VP in W5, using the new architected field + * in P10. Used to be the pressure relief interrupt field on P9. + */ +static void xive_vp_set_end_base(struct xive_nvp *vp, + uint32_t end_blk, uint32_t end_idx) +{ + vp->w5 = xive_set_field32(NVP_W5_VP_END_BLOCK, 0, end_blk) | + xive_set_field32(NVP_W5_VP_END_INDEX, 0, end_idx); + + /* This is the criteria to know if a VP was allocated */ + assert(vp->w5 != 0); +} + +static void xive_init_default_vp(struct xive_nvp *vp, + uint32_t end_blk, uint32_t end_idx) +{ + memset(vp, 0, sizeof(struct xive_nvp)); + + xive_vp_set_end_base(vp, end_blk, end_idx); + + vp->w0 = xive_set_field32(NVP_W0_VALID, 0, 1); +} + +/* + * VPs of the HW threads have their own set of ENDs which is allocated + * when XIVE is initialized. These are tagged with a FIRMWARE bit so + * that they can be identified when the driver is reset (kexec). + */ +static void xive_init_hw_end(struct xive_end *end) +{ + memset(end, 0, sizeof(struct xive_end)); + end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, 1); +} + +static void *xive_get_donated_page(struct xive *x) +{ + return (void *)list_pop_(&x->donated_pages, 0); +} + +#define XIVE_ALLOC_IS_ERR(_idx) ((_idx) >= 0xfffffff0) + +#define XIVE_ALLOC_NO_SPACE 0xffffffff /* No possible space */ +#define XIVE_ALLOC_NO_IND 0xfffffffe /* Indirect need provisioning */ +#define XIVE_ALLOC_NO_MEM 0xfffffffd /* Local allocation failed */ + +static uint32_t xive_alloc_end_set(struct xive *x, bool alloc_indirect) +{ + uint32_t ind_idx; + int idx; + int end_base_idx; + + xive_vdbg(x, "Allocating END set...\n"); + + assert(x->end_map); + + /* Allocate from the END bitmap. Each bit is 8 ENDs */ + idx = bitmap_find_zero_bit(*x->end_map, 0, xive_end_bitmap_size(x)); + if (idx < 0) { + xive_dbg(x, "Allocation from END bitmap failed !\n"); + return XIVE_ALLOC_NO_SPACE; + } + + end_base_idx = idx << xive_cfg_vp_prio_shift(x); + + xive_vdbg(x, "Got ENDs 0x%x..0x%x\n", end_base_idx, + end_base_idx + xive_max_prio(x)); + + /* Calculate the indirect page where the ENDs reside */ + ind_idx = end_base_idx / END_PER_PAGE; + + /* Is there an indirect page ? If not, check if we can provision it */ + if (!x->end_ind_base[ind_idx]) { + /* Default flags */ + uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) | + SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE); + void *page; + + /* If alloc_indirect is set, allocate the memory from OPAL own, + * otherwise try to provision from the donated pool + */ + if (alloc_indirect) { + /* Allocate/provision indirect page during boot only */ + xive_vdbg(x, "Indirect empty, provisioning from local pool\n"); + page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE); + if (!page) { + xive_dbg(x, "provisioning failed !\n"); + return XIVE_ALLOC_NO_MEM; + } + vsd_flags |= VSD_FIRMWARE; + } else { + xive_vdbg(x, "Indirect empty, provisioning from donated pages\n"); + page = xive_get_donated_page(x); + if (!page) { + xive_vdbg(x, "no idirect pages available !\n"); + return XIVE_ALLOC_NO_IND; + } + } + memset(page, 0, PAGE_SIZE); + x->end_ind_base[ind_idx] = cpu_to_be64(vsd_flags | + (((uint64_t)page) & VSD_ADDRESS_MASK)); + /* Any cache scrub needed ? */ + } + + bitmap_set_bit(*x->end_map, idx); + return end_base_idx; +} + +static void xive_free_end_set(struct xive *x, uint32_t ends) +{ + uint32_t idx; + uint8_t prio_mask = xive_max_prio(x); + + xive_vdbg(x, "Freeing END 0x%x..0x%x\n", ends, ends + xive_max_prio(x)); + + assert((ends & prio_mask) == 0); + assert(x->end_map); + + idx = ends >> xive_cfg_vp_prio_shift(x); + bitmap_clr_bit(*x->end_map, idx); +} + +static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order) +{ + uint32_t pbase, pend, i; + + pbase = vp_idx / VP_PER_PAGE; + pend = (vp_idx + (1 << order)) / VP_PER_PAGE; + + for (i = pbase; i <= pend; i++) { + void *page; + u64 vsd; + + /* Already provisioned ? */ + if (x->vp_ind_base[i]) + continue; + + /* Try to grab a donated page */ + page = xive_get_donated_page(x); + if (!page) + return false; + + /* Install the page */ + memset(page, 0, PAGE_SIZE); + vsd = ((uint64_t)page) & VSD_ADDRESS_MASK; + vsd |= SETFIELD(VSD_TSIZE, 0ull, 4); + vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE); + x->vp_ind_base[i] = cpu_to_be64(vsd); + } + return true; +} + +static void xive_init_vp_allocator(void) +{ + /* Initialize chip alloc bits */ + xive_chips_alloc_bits = ilog2(xive_block_count); + + prlog(PR_INFO, "%d chips considered for VP allocations\n", + 1 << xive_chips_alloc_bits); + + /* Allocate a buddy big enough for XIVE_VP_ORDER allocations. + * + * each bit in the buddy represents 1 << xive_chips_alloc_bits + * VPs. + */ + xive_vp_buddy = buddy_create(XIVE_VP_ORDER(one_xive)); + assert(xive_vp_buddy); + + /* + * We reserve the whole range of VP ids representing HW threads. + */ + assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base, + xive_threadid_shift)); +} + +static uint32_t xive_alloc_vps(uint32_t order) +{ + uint32_t local_order, i; + int vp; + + /* The minimum order is 2 VPs per chip */ + if (order < (xive_chips_alloc_bits + 1)) + order = xive_chips_alloc_bits + 1; + + /* We split the allocation */ + local_order = order - xive_chips_alloc_bits; + + /* We grab that in the global buddy */ + assert(xive_vp_buddy); + lock(&xive_buddy_lock); + vp = buddy_alloc(xive_vp_buddy, local_order); + unlock(&xive_buddy_lock); + if (vp < 0) + return XIVE_ALLOC_NO_SPACE; + + /* Provision on every chip considered for allocation */ + for (i = 0; i < (1 << xive_chips_alloc_bits); i++) { + struct xive *x = xive_from_pc_blk(i); + bool success; + + /* Return internal error & log rather than assert ? */ + assert(x); + lock(&x->lock); + success = xive_provision_vp_ind(x, vp, local_order); + unlock(&x->lock); + if (!success) { + lock(&xive_buddy_lock); + buddy_free(xive_vp_buddy, vp, local_order); + unlock(&xive_buddy_lock); + return XIVE_ALLOC_NO_IND; + } + } + + /* Encode the VP number. "blk" is 0 as this represents + * all blocks and the allocation always starts at 0 + */ + return xive_encode_vp(0, vp, order); +} + +static void xive_free_vps(uint32_t vp) +{ + uint32_t idx; + uint8_t order, local_order; + + assert(xive_decode_vp(vp, NULL, &idx, &order, NULL)); + + /* We split the allocation */ + local_order = order - xive_chips_alloc_bits; + + /* Free that in the buddy */ + lock(&xive_buddy_lock); + buddy_free(xive_vp_buddy, idx, local_order); + unlock(&xive_buddy_lock); +} + +enum xive_cache_type { + xive_cache_easc, + xive_cache_esbc, + xive_cache_endc, + xive_cache_nxc, +}; + +/* + * Cache update + */ + +#define FLUSH_CTRL_POLL_VALID PPC_BIT(0) /* POLL bit is the same for all */ + +static int64_t __xive_cache_scrub(struct xive *x, + enum xive_cache_type ctype, + uint64_t block, uint64_t idx, + bool want_inval __unused, bool want_disable __unused) +{ + uint64_t ctrl_reg, x_ctrl_reg; + uint64_t poll_val, ctrl_val; + +#ifdef XIVE_CHECK_LOCKS + assert(lock_held_by_me(&x->lock)); +#endif + switch (ctype) { + case xive_cache_easc: + poll_val = + SETFIELD(VC_EASC_FLUSH_POLL_BLOCK_ID, 0ll, block) | + SETFIELD(VC_EASC_FLUSH_POLL_OFFSET, 0ll, idx) | + VC_EASC_FLUSH_POLL_BLOCK_ID_MASK | + VC_EASC_FLUSH_POLL_OFFSET_MASK; + xive_regw(x, VC_EASC_FLUSH_POLL, poll_val); + ctrl_reg = VC_EASC_FLUSH_CTRL; + x_ctrl_reg = X_VC_EASC_FLUSH_CTRL; + break; + case xive_cache_esbc: + poll_val = + SETFIELD(VC_ESBC_FLUSH_POLL_BLOCK_ID, 0ll, block) | + SETFIELD(VC_ESBC_FLUSH_POLL_OFFSET, 0ll, idx) | + VC_ESBC_FLUSH_POLL_BLOCK_ID_MASK | + VC_ESBC_FLUSH_POLL_OFFSET_MASK; + xive_regw(x, VC_ESBC_FLUSH_POLL, poll_val); + ctrl_reg = VC_ESBC_FLUSH_CTRL; + x_ctrl_reg = X_VC_ESBC_FLUSH_CTRL; + break; + case xive_cache_endc: + poll_val = + SETFIELD(VC_ENDC_FLUSH_POLL_BLOCK_ID, 0ll, block) | + SETFIELD(VC_ENDC_FLUSH_POLL_OFFSET, 0ll, idx) | + VC_ENDC_FLUSH_POLL_BLOCK_ID_MASK | + VC_ENDC_FLUSH_POLL_OFFSET_MASK; + xive_regw(x, VC_ENDC_FLUSH_POLL, poll_val); + ctrl_reg = VC_ENDC_FLUSH_CTRL; + x_ctrl_reg = X_VC_ENDC_FLUSH_CTRL; + break; + case xive_cache_nxc: + poll_val = + SETFIELD(PC_NXC_FLUSH_POLL_BLOCK_ID, 0ll, block) | + SETFIELD(PC_NXC_FLUSH_POLL_OFFSET, 0ll, idx) | + PC_NXC_FLUSH_POLL_BLOCK_ID_MASK | + PC_NXC_FLUSH_POLL_OFFSET_MASK; + xive_regw(x, PC_NXC_FLUSH_POLL, poll_val); + ctrl_reg = PC_NXC_FLUSH_CTRL; + x_ctrl_reg = X_PC_NXC_FLUSH_CTRL; + break; + default: + return OPAL_INTERNAL_ERROR; + } + + /* XXX Add timeout !!! */ + for (;;) { + ctrl_val = __xive_regr(x, ctrl_reg, x_ctrl_reg, NULL); + if (!(ctrl_val & FLUSH_CTRL_POLL_VALID)) + break; + /* Small delay */ + time_wait(100); + } + sync(); + return 0; +} + +static int64_t xive_easc_scrub(struct xive *x, uint64_t block, uint64_t idx) +{ + return __xive_cache_scrub(x, xive_cache_easc, block, idx, false, false); +} + +static int64_t xive_nxc_scrub(struct xive *x, uint64_t block, uint64_t idx) +{ + return __xive_cache_scrub(x, xive_cache_nxc, block, idx, false, false); +} + +static int64_t xive_nxc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx) +{ + return __xive_cache_scrub(x, xive_cache_nxc, block, idx, true, false); +} + +static int64_t xive_endc_scrub(struct xive *x, uint64_t block, uint64_t idx) +{ + return __xive_cache_scrub(x, xive_cache_endc, block, idx, false, false); +} + +#define XIVE_CACHE_WATCH_MAX_RETRIES 10 + +static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype, + uint64_t block, uint64_t idx, + uint32_t start_dword, uint32_t dword_count, + beint64_t *new_data, bool light_watch, + bool synchronous) +{ + uint64_t sreg, sregx, dreg0, dreg0x; + uint64_t dval0, sval, status; + int64_t i; + int retries = 0; + +#ifdef XIVE_CHECK_LOCKS + assert(lock_held_by_me(&x->lock)); +#endif + switch (ctype) { + case xive_cache_endc: + sreg = VC_ENDC_WATCH0_SPEC; + sregx = X_VC_ENDC_WATCH0_SPEC; + dreg0 = VC_ENDC_WATCH0_DATA0; + dreg0x = X_VC_ENDC_WATCH0_DATA0; + sval = SETFIELD(VC_ENDC_WATCH_BLOCK_ID, idx, block); + break; + case xive_cache_nxc: + sreg = PC_NXC_WATCH0_SPEC; + sregx = X_PC_NXC_WATCH0_SPEC; + dreg0 = PC_NXC_WATCH0_DATA0; + dreg0x = X_PC_NXC_WATCH0_DATA0; + sval = SETFIELD(PC_NXC_WATCH_BLOCK_ID, idx, block); + break; + default: + return OPAL_INTERNAL_ERROR; + } + + /* The full bit is in the same position for ENDC and NXC */ + if (!light_watch) + sval |= VC_ENDC_WATCH_FULL; + + for (;;) { + /* Write the cache watch spec */ + __xive_regw(x, sreg, sregx, sval, NULL); + + /* Load data0 register to populate the watch */ + dval0 = __xive_regr(x, dreg0, dreg0x, NULL); + + /* If new_data is NULL, this is a dummy watch used as a + * workaround for a HW bug + */ + if (!new_data) { + __xive_regw(x, dreg0, dreg0x, dval0, NULL); + return 0; + } + + /* Write the words into the watch facility. We write in reverse + * order in case word 0 is part of it as it must be the last + * one written. + */ + for (i = start_dword + dword_count - 1; i >= start_dword ;i--) { + uint64_t dw = be64_to_cpu(new_data[i - start_dword]); + __xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL); + } + + /* Write data0 register to trigger the update if word 0 wasn't + * written above + */ + if (start_dword > 0) + __xive_regw(x, dreg0, dreg0x, dval0, NULL); + + /* This may not be necessary for light updates (it's possible + * that a sync in sufficient, TBD). Ensure the above is + * complete and check the status of the watch. + */ + status = __xive_regr(x, sreg, sregx, NULL); + + /* Bits FULL and CONFLICT are in the same position in + * ENDC and NXC + */ + if (!(status & VC_ENDC_WATCH_FULL) || + !(status & VC_ENDC_WATCH_CONFLICT)) + break; + if (!synchronous) + return OPAL_BUSY; + + if (++retries == XIVE_CACHE_WATCH_MAX_RETRIES) { + xive_err(x, "Reached maximum retries %d when doing " + "a %s cache update\n", retries, + ctype == xive_cache_endc ? "ENDC" : "NXC"); + return OPAL_BUSY; + } + } + + /* Perform a scrub with "want_invalidate" set to false to push the + * cache updates to memory as well + */ + return __xive_cache_scrub(x, ctype, block, idx, false, false); +} + +#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES +static bool xive_check_endc_update(struct xive *x, uint32_t idx, struct xive_end *end) +{ + struct xive_end *end_p = xive_get_end(x, idx); + struct xive_end end2; + + assert(end_p); + end2 = *end_p; + if (memcmp(end, &end2, sizeof(struct xive_end)) != 0) { + xive_err(x, "END update mismatch idx %d\n", idx); + xive_err(x, "want: %08x %08x %08x %08x\n", + end->w0, end->w1, end->w2, end->w3); + xive_err(x, " %08x %08x %08x %08x\n", + end->w4, end->w5, end->w6, end->w7); + xive_err(x, "got : %08x %08x %08x %08x\n", + end2.w0, end2.w1, end2.w2, end2.w3); + xive_err(x, " %08x %08x %08x %08x\n", + end2.w4, end2.w5, end2.w6, end2.w7); + return false; + } + return true; +} + +static bool xive_check_nxc_update(struct xive *x, uint32_t idx, struct xive_nvp *vp) +{ + struct xive_nvp *vp_p = xive_get_vp(x, idx); + struct xive_nvp vp2; + + assert(vp_p); + vp2 = *vp_p; + if (memcmp(vp, &vp2, sizeof(struct xive_nvp)) != 0) { + xive_err(x, "VP update mismatch idx %d\n", idx); + xive_err(x, "want: %08x %08x %08x %08x\n", + vp->w0, vp->w1, vp->w2, vp->w3); + xive_err(x, " %08x %08x %08x %08x\n", + vp->w4, vp->w5, vp->w6, vp->w7); + xive_err(x, "got : %08x %08x %08x %08x\n", + vp2.w0, vp2.w1, vp2.w2, vp2.w3); + xive_err(x, " %08x %08x %08x %08x\n", + vp2.w4, vp2.w5, vp2.w6, vp2.w7); + return false; + } + return true; +} +#else +static inline bool xive_check_endc_update(struct xive *x __unused, + uint32_t idx __unused, + struct xive_end *end __unused) +{ + return true; +} + +static inline bool xive_check_nxc_update(struct xive *x __unused, + uint32_t idx __unused, + struct xive_nvp *vp __unused) +{ + return true; +} +#endif + +static int64_t xive_escalation_ive_cache_update(struct xive *x, uint64_t block, + uint64_t idx, struct xive_eas *eas, + bool synchronous) +{ + return __xive_cache_watch(x, xive_cache_endc, block, idx, + 2, 1, &eas->w, true, synchronous); +} + +static int64_t xive_endc_cache_update(struct xive *x, uint64_t block, + uint64_t idx, struct xive_end *end, + bool synchronous) +{ + int64_t ret; + + ret = __xive_cache_watch(x, xive_cache_endc, block, idx, + 0, 4, (beint64_t *)end, false, synchronous); + xive_check_endc_update(x, idx, end); + return ret; +} + +static int64_t xive_nxc_cache_update(struct xive *x, uint64_t block, + uint64_t idx, struct xive_nvp *vp, + bool synchronous) +{ + int64_t ret; + + ret = __xive_cache_watch(x, xive_cache_nxc, block, idx, + 0, 4, (beint64_t *)vp, false, synchronous); + xive_check_nxc_update(x, idx, vp); + return ret; +} + +/* + * VSD + */ +static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v) +{ + /* Set VC subengine */ + xive_regw(x, VC_VSD_TABLE_ADDR, + SETFIELD(VC_VSD_TABLE_SELECT, 0ull, tbl) | + SETFIELD(VC_VSD_TABLE_ADDRESS, 0ull, idx)); + if (x->last_reg_error) + return false; + xive_regw(x, VC_VSD_TABLE_DATA, v); + if (x->last_reg_error) + return false; + + /* also set PC subengine if table is used */ + if (tbl == VST_EAS || tbl == VST_ERQ || tbl == VST_IC) + return true; + + xive_regw(x, PC_VSD_TABLE_ADDR, + SETFIELD(PC_VSD_TABLE_SELECT, 0ull, tbl) | + SETFIELD(PC_VSD_TABLE_ADDRESS, 0ull, idx)); + if (x->last_reg_error) + return false; + xive_regw(x, PC_VSD_TABLE_DATA, v); + if (x->last_reg_error) + return false; + return true; +} + +static bool xive_set_local_tables(struct xive *x) +{ + uint64_t base, i; + + /* These have to be power of 2 sized */ + assert(is_pow2(XIVE_ESB_SIZE)); + assert(is_pow2(XIVE_EAT_SIZE)); + + /* All tables set as exclusive */ + base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE); + + /* ESB: direct mode */ + if (!xive_set_vsd(x, VST_ESB, x->block_id, base | + (((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_ESB_SIZE) - 12))) + return false; + + /* EAS: direct mode */ + if (!xive_set_vsd(x, VST_EAS, x->block_id, base | + (((uint64_t)x->eat_base) & VSD_ADDRESS_MASK) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_EAT_SIZE) - 12))) + return false; + + /* END: indirect mode with 64K subpages */ + if (!xive_set_vsd(x, VST_END, x->block_id, base | + (((uint64_t)x->end_ind_base) & VSD_ADDRESS_MASK) | + VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, + ilog2(x->end_ind_size) - 12))) + return false; + + /* NVP: indirect mode with 64K subpages */ + if (!xive_set_vsd(x, VST_NVP, x->block_id, base | + (((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) | + VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, + ilog2(x->vp_ind_size) - 12))) + return false; + + /* NVG: not used */ + /* NVC: not used */ + + /* INT and SYNC: indexed with the Topology# */ + if (!xive_set_vsd(x, VST_IC, x->chip_id, base | + (((uint64_t)x->ic_base) & VSD_ADDRESS_MASK) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12))) + return false; + + if (!xive_set_vsd(x, VST_SYNC, x->chip_id, base | + (((uint64_t)x->sync_inject) & VSD_ADDRESS_MASK) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12))) + return false; + + /* + * ERQ: one 64K page for each queue overflow. Indexed with : + * + * 0:IPI, 1:HWD, 2:NxC, 3:INT, 4:OS-Queue, 5:Pool-Queue, 6:Hard-Queue + */ + for (i = 0; i < VC_QUEUE_COUNT; i++) { + u64 addr = ((uint64_t)x->q_ovf) + i * PAGE_SIZE; + u64 cfg, sreg, sregx; + + if (!xive_set_vsd(x, VST_ERQ, i, base | + (addr & VSD_ADDRESS_MASK) | + SETFIELD(VSD_TSIZE, 0ull, 4))) + return false; + + sreg = VC_QUEUES_CFG_REM0 + i * 8; + sregx = X_VC_QUEUES_CFG_REM0 + i; + cfg = __xive_regr(x, sreg, sregx, NULL); + cfg |= VC_QUEUES_CFG_MEMB_EN; + cfg = SETFIELD(VC_QUEUES_CFG_MEMB_SZ, cfg, 4); + __xive_regw(x, sreg, sregx, cfg, NULL); + } + + return true; +} + + +/* + * IC BAR layout + * + * Page 0: Internal CQ register accesses (reads & writes) + * Page 1: Internal PC register accesses (reads & writes) + * Page 2: Internal VC register accesses (reads & writes) + * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes) + * Page 4: Notify Port page (writes only, w/data), + * Page 5: Reserved + * Page 6: Sync Poll page (writes only, dataless) + * Page 7: Sync Inject page (writes only, dataless) + * Page 8: LSI Trigger page (writes only, dataless) + * Page 9: LSI SB Management page (reads & writes dataless) + * Pages 10-255: Reserved + * Pages 256-383: Direct mapped Thread Context Area (reads & writes) + * covering the 128 threads in P10. + * Pages 384-511: Reserved + */ + +#define XIVE_IC_CQ_PGOFF 0 +#define XIVE_IC_PC_PGOFF 1 +#define XIVE_IC_VC_PGOFF 2 +#define XIVE_IC_TCTXT_PGOFF 3 +#define XIVE_NOTIFY_PGOFF 4 +#define XIVE_SYNC_POLL_PGOFF 6 +#define XIVE_SYNC_INJECT_PGOFF 7 +#define XIVE_LSI_TRIGGER_PGOFF 8 +#define XIVE_LSI_MGMT_PGOFF 9 +#define XIVE_IC_TM_DIRECT_PGOFF 256 + +static bool xive_configure_ic_bars(struct xive *x) +{ + uint64_t chip_id = x->chip_id; + uint64_t val; + + /* Reset all bars to zero */ + xive_regwx(x, CQ_RST_CTL, CQ_RST_PB_BAR_RESET); + + /* IC BAR */ + phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size); + val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID | CQ_IC_BAR_64K; + x->ic_shift = 16; + + xive_regwx(x, CQ_IC_BAR, val); + if (x->last_reg_error) + return false; + + /* + * TM BAR, same address for each chip. Hence we create a fake + * chip 0 and use that for all phys_map_get(XIVE_TM) calls. + */ + phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size); + val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID | CQ_TM_BAR_64K; + x->tm_shift = 16; + + xive_regwx(x, CQ_TM_BAR, val); + if (x->last_reg_error) + return false; + + /* IC BAR sub-pages shortcuts */ + x->ic_tm_direct_base = x->ic_base + + (XIVE_IC_TM_DIRECT_PGOFF << x->ic_shift); + + return true; +} + +/* + * NVPG, NVC, ESB, END BARs have common attributes: 64k page and only + * one set covering the whole BAR. + */ +static bool xive_configure_bars(struct xive *x) +{ + uint64_t chip_id = x->chip_id; + uint64_t val; + uint64_t esb_size; + uint64_t end_size; + uint64_t nvp_size; + + x->nvp_size = XIVE_VP_COUNT(x) << XIVE_NVP_SHIFT; + x->esb_size = XIVE_INT_COUNT << XIVE_ESB_SHIFT; + x->end_size = XIVE_END_COUNT << XIVE_END_SHIFT; + + /* + * NVC BAR is not configured because we do not use the XIVE2 + * Crowd capability. + */ + + /* NVPG BAR: two pages, even NVP, odd NVG */ + phys_map_get(chip_id, XIVE_NVPG, 0, (uint64_t *)&x->nvp_base, &nvp_size); + if (x->nvp_size > nvp_size) { + xive_err(x, "NVP table is larger than default: " + "0x%012llx > 0x%012llx\n", x->nvp_size, nvp_size); + return false; + } + + val = (uint64_t)x->nvp_base | CQ_BAR_VALID | CQ_BAR_64K | + SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->nvp_size) - 24); + xive_regwx(x, CQ_NVPG_BAR, val); + if (x->last_reg_error) + return false; + + /* ESB BAR */ + phys_map_get(chip_id, XIVE_ESB, 0, (uint64_t *)&x->esb_base, &esb_size); + if (x->esb_size > esb_size) { + xive_err(x, "ESB table is larger than default: " + "0x%012llx > 0x%012llx\n", x->esb_size, esb_size); + return false; + } + + val = (uint64_t)x->esb_base | CQ_BAR_VALID | CQ_BAR_64K | + SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->esb_size) - 24); + xive_regwx(x, CQ_ESB_BAR, val); + if (x->last_reg_error) + return false; + + /* END BAR */ + phys_map_get(chip_id, XIVE_END, 0, (uint64_t *)&x->end_base, &end_size); + if (x->end_size > end_size) { + xive_err(x, "END table is larger than default: " + "0x%012llx > 0x%012llx\n", x->end_size, end_size); + return false; + } + + val = (uint64_t)x->end_base | CQ_BAR_VALID | CQ_BAR_64K | + SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->end_size) - 24); + xive_regwx(x, CQ_END_BAR, val); + if (x->last_reg_error) + return false; + + xive_dbg(x, "IC: %14p [0x%012llx]\n", x->ic_base, x->ic_size); + xive_dbg(x, "TM: %14p [0x%012llx]\n", x->tm_base, x->tm_size); + xive_dbg(x, "NVP: %14p [0x%012llx]\n", x->nvp_base, x->nvp_size); + xive_dbg(x, "ESB: %14p [0x%012llx]\n", x->esb_base, x->esb_size); + xive_dbg(x, "END: %14p [0x%012llx]\n", x->end_base, x->end_size); + xive_dbg(x, "OVF: %14p [0x%012x]\n", x->q_ovf, + VC_QUEUE_COUNT * PAGE_SIZE); + + return true; +} + +static void xive_dump_mmio(struct xive *x) +{ + prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n", + in_be64(x->ic_base + CQ_CFG_PB_GEN)); + prlog(PR_DEBUG, " CQ_MSGSND = %016llx\n", + in_be64(x->ic_base + CQ_MSGSND)); +} + +static const struct { + uint64_t bitmask; + const char *name; +} xive_capabilities[] = { + { CQ_XIVE_CAP_PHB_PQ_DISABLE, "PHB PQ disable mode support" }, + { CQ_XIVE_CAP_PHB_ABT, "PHB address based trigger mode support" }, + { CQ_XIVE_CAP_EXPLOITATION_MODE, "Exploitation mode" }, + { CQ_XIVE_CAP_STORE_EOI, "StoreEOI mode support" }, + { CQ_XIVE_CAP_VP_SAVE_RESTORE, "VP Context Save and Restore" }, +}; + +static void xive_dump_capabilities(struct xive *x, uint64_t cap_val) +{ + int i; + + xive_dbg(x, "capabilities: %016llx\n", cap_val); + xive_dbg(x, "\tVersion: %lld\n", + GETFIELD(CQ_XIVE_CAP_VERSION, cap_val)); + xive_dbg(x, "\tUser interrupt priorities: [ 1 - %d ]\n", + 1 << GETFIELD(CQ_XIVE_CAP_USER_INT_PRIO, cap_val)); + xive_dbg(x, "\tVP interrupt priorities: [ %d - 8 ]\n", + 1 << GETFIELD(CQ_XIVE_CAP_VP_INT_PRIO, cap_val)); + xive_dbg(x, "\tExtended Blockid bits: %lld\n", + 4 + GETFIELD(CQ_XIVE_CAP_BLOCK_ID_WIDTH, cap_val)); + + for (i = 0; i < ARRAY_SIZE(xive_capabilities); i++) { + if (xive_capabilities[i].bitmask & cap_val) + xive_dbg(x, "\t%s\n", xive_capabilities[i].name); + } +} + +static const struct { + uint64_t bitmask; + const char *name; +} xive_configs[] = { + { CQ_XIVE_CFG_GEN1_TIMA_OS, "Gen1 mode TIMA OS" }, + { CQ_XIVE_CFG_GEN1_TIMA_HYP, "Gen1 mode TIMA Hyp" }, + { CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0, "Gen1 mode TIMA General Hypervisor Block0" }, + { CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS, "Gen1 mode TIMA Crowd disable" }, + { CQ_XIVE_CFG_GEN1_END_ESX, "Gen1 mode END ESx" }, + { CQ_XIVE_CFG_EN_VP_SAVE_RESTORE, "VP Context Save and Restore" }, + { CQ_XIVE_CFG_EN_VP_SAVE_REST_STRICT, "VP Context Save and Restore strict" }, +}; + +static void xive_dump_configuration(struct xive *x, const char *prefix, + uint64_t cfg_val) +{ + int i ; + + xive_dbg(x, "%s configuration: %016llx\n", prefix, cfg_val); + xive_dbg(x, "\tHardwired Thread Id range: %lld bits\n", + 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, cfg_val)); + xive_dbg(x, "\tUser Interrupt priorities: [ 1 - %d ]\n", + 1 << GETFIELD(CQ_XIVE_CFG_USER_INT_PRIO, cfg_val)); + xive_dbg(x, "\tVP Interrupt priorities: [ 0 - %d ]\n", xive_max_prio(x)); + xive_dbg(x, "\tBlockId bits: %lld bits\n", + 4 + GETFIELD(CQ_XIVE_CFG_BLOCK_ID_WIDTH, cfg_val)); + if (CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE & cfg_val) + xive_dbg(x, "\tHardwired BlockId: %lld\n", + GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val)); + + for (i = 0; i < ARRAY_SIZE(xive_configs); i++) { + if (xive_configs[i].bitmask & cfg_val) + xive_dbg(x, "\t%s\n", xive_configs[i].name); + } +} + +/* + * Default XIVE configuration + */ +#define XIVE_CONFIGURATION \ + (SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_8BITS) | \ + SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8)) + +/* + * Gen1 configuration for tests (QEMU) + */ +#define XIVE_CONFIGURATION_GEN1 \ + (SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_7BITS) | \ + SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8) | \ + CQ_XIVE_CFG_GEN1_TIMA_OS | \ + CQ_XIVE_CFG_GEN1_TIMA_HYP | \ + CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0 | \ + CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS | \ + CQ_XIVE_CFG_GEN1_END_ESX) + +static bool xive_has_cap(struct xive *x, uint64_t cap) +{ + return !!x && !!(x->capabilities & cap); +} + +#define XIVE_CAN_STORE_EOI(x) xive_has_cap(x, CQ_XIVE_CAP_STORE_EOI) + +static bool xive_cfg_save_restore(struct xive *x) +{ + return !!(x->config & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE); +} + +/* + * When PQ_disable is available, configure the ESB cache to improve + * performance for PHB ESBs. + * + * split_mode : + * 1/3rd of the cache is reserved for PHB ESBs and the rest to + * IPIs. This is sufficient to keep all the PHB ESBs in cache and + * avoid ESB cache misses during IO interrupt processing. + * + * hash_array_enable : + * Internal cache hashing optimization. The hash_array tracks for + * ESBs where the original trigger came from so that we avoid + * getting the EAS into the cache twice. + */ +static void xive_config_esb_cache(struct xive *x) +{ + uint64_t val = xive_regr(x, VC_ESBC_CFG); + + if (xive_has_cap(x, CQ_XIVE_CAP_PHB_PQ_DISABLE)) { + val |= VC_ESBC_CFG_SPLIT_MODE | VC_ESBC_CFG_HASH_ARRAY_ENABLE; + val = SETFIELD(VC_ESBC_CFG_MAX_ENTRIES_IN_MODIFIED, val, 0xE); + xive_dbg(x, "ESB cache configured with split mode " + "and hash array. VC_ESBC_CFG=%016llx\n", val); + } else + val &= ~VC_ESBC_CFG_SPLIT_MODE; + + xive_regw(x, VC_ESBC_CFG, val); +} + +static void xive_config_fused_core(struct xive *x) +{ + uint64_t val = xive_regr(x, TCTXT_CFG); + + if (this_cpu()->is_fused_core) { + val |= TCTXT_CFG_FUSE_CORE_EN; + xive_dbg(x, "configured for fused cores. " + "PC_TCTXT_CFG=%016llx\n", val); + } else + val &= ~TCTXT_CFG_FUSE_CORE_EN; + xive_regw(x, TCTXT_CFG, val); +} + +static void xive_config_reduced_priorities_fixup(struct xive *x) +{ + if (xive_cfg_vp_prio_shift(x) < CQ_XIVE_CFG_INT_PRIO_8 && + x->quirks & XIVE_QUIRK_BROKEN_PRIO_CHECK) { + uint64_t val = xive_regr(x, PC_ERR1_CFG1); + + val &= ~PC_ERR1_CFG1_INTERRUPT_INVALID_PRIO; + xive_dbg(x, "workaround for reduced priorities. " + "PC_ERR1_CFG1=%016llx\n", val); + xive_regw(x, PC_ERR1_CFG1, val); + } +} + +static bool xive_config_init(struct xive *x) +{ + x->capabilities = xive_regr(x, CQ_XIVE_CAP); + xive_dump_capabilities(x, x->capabilities); + + x->generation = GETFIELD(CQ_XIVE_CAP_VERSION, x->capabilities); + + /* + * Allow QEMU to override version for tests + */ + if (x->generation != XIVE_GEN2 && !chip_quirk(QUIRK_QEMU)) { + xive_err(x, "Invalid XIVE controller version %d\n", + x->generation); + return false; + } + + x->config = xive_regr(x, CQ_XIVE_CFG); + xive_dump_configuration(x, "default", x->config); + + /* Start with default settings */ + x->config = x->generation == XIVE_GEN1 ? XIVE_CONFIGURATION_GEN1 : + XIVE_CONFIGURATION; + + if (x->quirks & XIVE_QUIRK_THREADID_7BITS) + x->config = SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, x->config, + CQ_XIVE_CFG_THREADID_7BITS); + + /* + * Hardwire the block ID. The default value is the topology ID + * of the chip which is different from the block. + */ + x->config |= CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE | + SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, x->block_id); + + /* + * Enable "VP Context Save and Restore" by default. it is + * compatible with KVM which currently does the context + * save&restore in the entry/exit path of the vCPU + */ + if (x->capabilities & CQ_XIVE_CAP_VP_SAVE_RESTORE) + x->config |= CQ_XIVE_CFG_EN_VP_SAVE_RESTORE; + + xive_dump_configuration(x, "new", x->config); + xive_regw(x, CQ_XIVE_CFG, x->config); + if (xive_regr(x, CQ_XIVE_CFG) != x->config) { + xive_err(x, "configuration setting failed\n"); + } + + /* + * Disable error reporting in the FIR for info errors from the VC. + */ + xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_VC_INFO_ERROR_0_2); + + /* + * Mask CI Load and Store to bad location, as IPI trigger + * pages may be mapped to user space, and a read on the + * trigger page causes a checkstop + */ + xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_PB_RCMDX_CI_ERR1); + + /* + * VP space settings. P9 mode is 19bits. + */ + x->vp_shift = x->generation == XIVE_GEN1 ? + VP_SHIFT_GEN1 : VP_SHIFT_GEN2; + + /* + * VP ids for HW threads. These values are hardcoded in the + * CAM line of the HW context + * + * POWER10 |chip|0000000000000001|threadid| + * 28bits 4 16 8 + * + * POWER9 |chip|000000000001|thrdid | + * 23bits 4 12 7 + */ + + /* TODO (cosmetic): set VP ids for HW threads only once */ + xive_threadid_shift = 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, + x->config); + + xive_hw_vp_base = 1 << xive_threadid_shift; + xive_hw_vp_count = 1 << xive_threadid_shift; + + xive_dbg(x, "store EOI is %savailable\n", + XIVE_CAN_STORE_EOI(x) ? "" : "not "); + + xive_config_fused_core(x); + + xive_config_esb_cache(x); + + xive_config_reduced_priorities_fixup(x); + + return true; +} + +/* Set Translation tables : 1 block per chip */ +static bool xive_setup_set_xlate(struct xive *x) +{ + unsigned int i; + + /* Configure ESBs */ + xive_regw(x, CQ_TAR, + CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_ESB)); + if (x->last_reg_error) + return false; + for (i = 0; i < XIVE_MAX_BLOCKS; i++) { + xive_regw(x, CQ_TDR, CQ_TDR_VALID | + SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id)); + if (x->last_reg_error) + return false; + } + + /* Configure ENDs */ + xive_regw(x, CQ_TAR, + CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_END)); + if (x->last_reg_error) + return false; + for (i = 0; i < XIVE_MAX_BLOCKS; i++) { + xive_regw(x, CQ_TDR, CQ_TDR_VALID | + SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id)); + if (x->last_reg_error) + return false; + } + + /* Configure NVPs */ + xive_regw(x, CQ_TAR, + CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_NVPG)); + if (x->last_reg_error) + return false; + for (i = 0; i < XIVE_MAX_BLOCKS; i++) { + xive_regw(x, CQ_TDR, CQ_TDR_VALID | + SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id)); + if (x->last_reg_error) + return false; + } + return true; +} + +static bool xive_prealloc_tables(struct xive *x) +{ + uint32_t i; + uint32_t pbase, pend; + + /* ESB has 4 entries per byte */ + x->sbe_base = local_alloc(x->chip_id, XIVE_ESB_SIZE, XIVE_ESB_SIZE); + if (!x->sbe_base) { + xive_err(x, "Failed to allocate SBE\n"); + return false; + } + + /* PQs are initialized to 0b01 which corresponds to "ints off" */ + memset(x->sbe_base, 0x55, XIVE_ESB_SIZE); + xive_dbg(x, "SBE at %p size 0x%lx\n", x->sbe_base, XIVE_ESB_SIZE); + + /* EAS entries are 8 bytes */ + x->eat_base = local_alloc(x->chip_id, XIVE_EAT_SIZE, XIVE_EAT_SIZE); + if (!x->eat_base) { + xive_err(x, "Failed to allocate EAS\n"); + return false; + } + + /* + * We clear the entries (non-valid). They will be initialized + * when actually used + */ + memset(x->eat_base, 0, XIVE_EAT_SIZE); + xive_dbg(x, "EAT at %p size 0x%lx\n", x->eat_base, XIVE_EAT_SIZE); + + /* Indirect END table. Limited to one top page. */ + x->end_ind_size = ALIGN_UP(XIVE_END_TABLE_SIZE, PAGE_SIZE); + if (x->end_ind_size > PAGE_SIZE) { + xive_err(x, "END indirect table is too big !\n"); + return false; + } + x->end_ind_base = local_alloc(x->chip_id, x->end_ind_size, + x->end_ind_size); + if (!x->end_ind_base) { + xive_err(x, "Failed to allocate END indirect table\n"); + return false; + } + memset(x->end_ind_base, 0, x->end_ind_size); + xive_dbg(x, "ENDi at %p size 0x%llx #%ld entries\n", x->end_ind_base, + x->end_ind_size, XIVE_END_COUNT); + x->end_ind_count = XIVE_END_TABLE_SIZE / XIVE_VSD_SIZE; + + /* Indirect VP table. Limited to one top page. */ + x->vp_ind_size = ALIGN_UP(XIVE_VP_TABLE_SIZE(x), PAGE_SIZE); + if (x->vp_ind_size > PAGE_SIZE) { + xive_err(x, "VP indirect table is too big !\n"); + return false; + } + x->vp_ind_base = local_alloc(x->chip_id, x->vp_ind_size, + x->vp_ind_size); + if (!x->vp_ind_base) { + xive_err(x, "Failed to allocate VP indirect table\n"); + return false; + } + xive_dbg(x, "VPi at %p size 0x%llx #%ld entries\n", x->vp_ind_base, + x->vp_ind_size, XIVE_VP_COUNT(x)); + x->vp_ind_count = XIVE_VP_TABLE_SIZE(x) / XIVE_VSD_SIZE; + memset(x->vp_ind_base, 0, x->vp_ind_size); + + /* Allocate pages for the VP ids representing HW threads */ + pbase = xive_hw_vp_base / VP_PER_PAGE; + pend = (xive_hw_vp_base + xive_hw_vp_count) / VP_PER_PAGE; + + xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n", + pbase, pend, xive_hw_vp_count); + for (i = pbase; i <= pend; i++) { + void *page; + u64 vsd; + + /* Indirect entries have a VSD format */ + page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE); + if (!page) { + xive_err(x, "Failed to allocate VP page\n"); + return false; + } + xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, PAGE_SIZE); + memset(page, 0, PAGE_SIZE); + vsd = ((uint64_t)page) & VSD_ADDRESS_MASK; + + vsd |= SETFIELD(VSD_TSIZE, 0ull, 4); + vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE); + vsd |= VSD_FIRMWARE; + x->vp_ind_base[i] = cpu_to_be64(vsd); + } + + /* + * Allocate page for cache and sync injection (512 * 128 hw + * threads) + one extra page for future use + */ + x->sync_inject_size = PAGE_SIZE + PAGE_SIZE; + x->sync_inject = local_alloc(x->chip_id, x->sync_inject_size, + x->sync_inject_size); + if (!x->sync_inject) { + xive_err(x, "Failed to allocate sync pages\n"); + return false; + } + + /* + * The Memory Coherence Directory uses 16M "granule" to track + * shared copies of a cache line. If any cache line within the + * 16M range gets touched by someone outside of the group, the + * MCD forces accesses to any cache line within the range to + * include everyone that might have a shared copy. + */ +#define QUEUE_OVF_ALIGN (16 << 20) /* MCD granule size */ + + /* + * Allocate the queue overflow pages and use a 16M alignment + * to avoid sharing with other structures and reduce traffic + * on the PowerBus. + */ + x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_COUNT * PAGE_SIZE, + QUEUE_OVF_ALIGN); + if (!x->q_ovf) { + xive_err(x, "Failed to allocate queue overflow\n"); + return false; + } + return true; +} + +static void xive_add_provisioning_properties(void) +{ + beint32_t chips[XIVE_MAX_CHIPS]; + uint32_t i, count; + + dt_add_property_cells(xive_dt_node, + "ibm,xive-provision-page-size", PAGE_SIZE); + + count = 1 << xive_chips_alloc_bits; + for (i = 0; i < count; i++) + chips[i] = cpu_to_be32(xive_block_to_chip[i]); + dt_add_property(xive_dt_node, "ibm,xive-provision-chips", + chips, 4 * count); +} + +static void xive_create_mmio_dt_node(struct xive *x) +{ + uint64_t tb = (uint64_t)x->tm_base; + uint32_t stride = 1u << x->tm_shift; + + xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb); + assert(xive_dt_node); + + dt_add_property_u64s(xive_dt_node, "reg", + tb + 0 * stride, stride, + tb + 1 * stride, stride, + tb + 2 * stride, stride, + tb + 3 * stride, stride); + + dt_add_property_strings(xive_dt_node, "compatible", + "ibm,opal-xive-pe", "ibm,opal-intc"); + + dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes", + 12, 16, 21, 24); + + dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities", + xive_cfg_vp_prio(x)); + + dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0); + + if (XIVE_CAN_STORE_EOI(x)) + dt_add_property(xive_dt_node, "store-eoi", NULL, 0); + + if (xive_cfg_save_restore(x)) + dt_add_property(xive_dt_node, "vp-save-restore", NULL, 0); + + xive_add_provisioning_properties(); + +} + +static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip) +{ + struct xive *remote_xive = remote_chip->xive; + uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD); + + if (!xive_set_vsd(x, VST_ESB, remote_xive->block_id, + base | ((uint64_t)remote_xive->esb_base) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->esb_size) - 12))) + goto error; + + /* EAS: No remote */ + + if (!xive_set_vsd(x, VST_END, remote_xive->block_id, + base | ((uint64_t)remote_xive->end_base) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->end_size) - 12))) + goto error; + + if (!xive_set_vsd(x, VST_NVP, remote_xive->block_id, + base | ((uint64_t)remote_xive->nvp_base) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->nvp_size) - 12))) + goto error; + + /* NVG: not used */ + /* NVC: not used */ + + if (!xive_set_vsd(x, VST_IC, remote_xive->chip_id, + base | ((uint64_t)remote_xive->ic_base) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12))) + goto error; + + if (!xive_set_vsd(x, VST_SYNC, remote_xive->chip_id, + base | ((uint64_t)remote_xive->sync_inject) | + SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12))) + goto error; + + /* ERQ: No remote */ + + return; + + error: + xive_err(x, "Failure configuring forwarding ports\n"); +} + +static void late_init_one_xive(struct xive *x) +{ + struct proc_chip *chip; + + /* We need to setup the cross-chip forward ports. Let's + * iterate all chip and set them up accordingly + */ + for_each_chip(chip) { + /* We skip ourselves or chips without a xive */ + if (chip->xive == x || !chip->xive) + continue; + + /* Setup our forward ports to that chip */ + xive_setup_forward_ports(x, chip); + } +} + +static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count) +{ + uint32_t i, idx = GIRQ_TO_IDX(irq); + + for (i = 0; i < count; i++) + if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i)) + return false; + return true; +} + +uint32_t xive2_alloc_hw_irqs(uint32_t chip_id, uint32_t count, + uint32_t align) +{ + struct proc_chip *chip = get_chip(chip_id); + struct xive *x; + uint32_t base, i; + + assert(chip); + assert(is_pow2(align)); + + x = chip->xive; + assert(x); + + lock(&x->lock); + + /* Allocate the HW interrupts */ + base = x->int_hw_bot - count; + base &= ~(align - 1); + if (base < x->int_ipi_top) { + xive_err(x, + "HW alloc request for %d interrupts aligned to %d failed\n", + count, align); + unlock(&x->lock); + return XIVE_IRQ_ERROR; + } + if (!xive_check_ipi_free(x, base, count)) { + xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n"); + unlock(&x->lock); + return XIVE_IRQ_ERROR; + } + + x->int_hw_bot = base; + + /* Initialize the corresponding EAS entries to sane defaults, + * IE entry is valid, not routed and masked, EQ data is set + * to the GIRQ number. + */ + for (i = 0; i < count; i++) { + struct xive_eas *eas = xive_get_eas(x, base + i); + + eas->w = xive_set_field64(EAS_VALID, 0, 1) | + xive_set_field64(EAS_MASKED, 0, 1) | + xive_set_field64(EAS_END_DATA, 0, base + i); + } + + unlock(&x->lock); + return base; +} + +uint32_t xive2_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, + uint32_t align) +{ + struct proc_chip *chip = get_chip(chip_id); + struct xive *x; + uint32_t base, i; + + assert(chip); + assert(is_pow2(align)); + + x = chip->xive; + assert(x); + + lock(&x->lock); + + /* Allocate the IPI interrupts */ + base = x->int_ipi_top + (align - 1); + base &= ~(align - 1); + if (base >= x->int_hw_bot) { + xive_err(x, + "IPI alloc request for %d interrupts aligned to %d failed\n", + count, align); + unlock(&x->lock); + return XIVE_IRQ_ERROR; + } + if (!xive_check_ipi_free(x, base, count)) { + xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n"); + unlock(&x->lock); + return XIVE_IRQ_ERROR; + } + + x->int_ipi_top = base + count; + + /* Initialize the corresponding EAS entries to sane defaults, + * IE entry is valid, not routed and masked, END data is set + * to the GIRQ number. + */ + for (i = 0; i < count; i++) { + struct xive_eas *eas = xive_get_eas(x, base + i); + + eas->w = xive_set_field64(EAS_VALID, 0, 1) | + xive_set_field64(EAS_MASKED, 0, 1) | + xive_set_field64(EAS_END_DATA, 0, base + i); + } + + unlock(&x->lock); + return base; +} + +void *xive2_get_trigger_port(uint32_t girq) +{ + uint32_t idx = GIRQ_TO_IDX(girq); + struct xive *x; + + /* Find XIVE on which the EAS resides */ + x = xive_from_isn(girq); + if (!x) + return NULL; + + if (GIRQ_IS_ESCALATION(girq)) { + /* There is no trigger page for escalation interrupts */ + return NULL; + } else { + /* Make sure it's an IPI on that chip */ + if (girq < x->int_base || + girq >= x->int_ipi_top) + return NULL; + + return x->esb_base + idx * XIVE_ESB_PAGE_SIZE; + } +} + +/* + * Notify Port page (writes only, w/data), separated into two + * categories, both sent to VC: + * - IPI queue (Addr bit 52 = 0) (for NPU) + * - HW queue (Addr bit 52 = 1) + */ +uint64_t xive2_get_notify_port(uint32_t chip_id, uint32_t ent) +{ + struct proc_chip *chip = get_chip(chip_id); + struct xive *x; + uint32_t offset = 0; + + assert(chip); + x = chip->xive; + assert(x); + + /* This is where we can assign a different HW queue to a different + * source by offsetting into the cache lines of the notify port + * + * For now we keep it very basic, this will have to be looked at + * again on real HW with some proper performance analysis. + * + * Here's what Florian says on the matter: + * + * << + * The first 2k of the notify port page can all be used for PCIe triggers + * + * However the idea would be that we try to use the first 4 cache lines to + * balance the PCIe Interrupt requests to use the least used snoop buses + * (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used + * (I think TLBIs are using that in addition to the normal addresses), + * snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the + * page) is the least used overall. So we probably should that one for + * the Int commands from PCIe. + * + * In addition, our EAS cache supports hashing to provide "private" cache + * areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid + * that one "thrashing" PHB thrashes the EAS cache for everyone, or provide + * a PHB with a private area that would allow high cache hits in case of a + * device using very few interrupts. The hashing is based on the offset within + * the cache line. So using that, you can e.g. set the EAS cache up so that + * IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128 + * entries each - or IPIs using all entries and sharing with PHBs, so PHBs + * would use 512 entries and 256 entries respectively. + * + * This is a tuning we would probably do later in the lab, but as a "prep" + * we should set up the different PHBs such that they are using different + * 8B-aligned offsets within the cache line, so e.g. + * PH4_0 addr 0x100 (CL 2 DW0 + * PH4_1 addr 0x108 (CL 2 DW1) + * PH4_2 addr 0x110 (CL 2 DW2) + * etc. + * >> + * + * I'm using snoop1 for PHB0 and snoop2 for everybody else. + */ + + /* Florian adds : + * + * we just set them up for a start to have different offsets + * within the cache line so that we could use the allocation + * restrictions that can be enforced in the interrupt + * controller + * + * P10 might now be randomizing the cache line bits in HW to + * balance snoop bus usage + */ + switch(ent) { + case XIVE_HW_SRC_PHBn(0): + offset = 0x800; + break; + case XIVE_HW_SRC_PHBn(1): + offset = 0x908; + break; + case XIVE_HW_SRC_PHBn(2): + offset = 0x910; + break; + case XIVE_HW_SRC_PHBn(3): + offset = 0x918; + break; + case XIVE_HW_SRC_PHBn(4): + offset = 0x920; + break; + case XIVE_HW_SRC_PHBn(5): + offset = 0x928; + break; + case XIVE_HW_SRC_PSI: + offset = 0x930; + break; + default: + assert(false); + return 0; + } + + return ((uint64_t)x->ic_base) + + (XIVE_NOTIFY_PGOFF << x->ic_shift) + offset; +} + +/* Manufacture the powerbus packet bits 32:63 */ +__attrconst uint32_t xive2_get_notify_base(uint32_t girq) +{ + return (GIRQ_TO_BLK(girq) << 28) | GIRQ_TO_IDX(girq); +} + +static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target, + uint8_t *out_prio, uint32_t *out_lirq) +{ + struct xive_eas *eas; + struct xive *x, *end_x; + struct xive_end *end; + uint32_t end_blk, end_idx; + uint32_t vp_blk, vp_idx; + uint32_t prio, server; + bool is_escalation = GIRQ_IS_ESCALATION(isn); + + /* Find XIVE on which the EAS resides */ + x = xive_from_isn(isn); + if (!x) + return false; + /* Grab the EAS */ + eas = xive_get_eas(x, isn); + if (!eas) + return false; + if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) { + xive_err(x, "ISN %x lead to invalid EAS !\n", isn); + return false; + } + + if (out_lirq) + *out_lirq = xive_get_field64(EAS_END_DATA, eas->w); + + /* Find the END and its xive instance */ + end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); + end_idx = xive_get_field64(EAS_END_INDEX, eas->w); + end_x = xive_from_vc_blk(end_blk); + + /* This can fail if the interrupt hasn't been initialized yet + * but it should also be masked, so fail silently + */ + if (!end_x) + goto pick_default; + end = xive_get_end(end_x, end_idx); + if (!end) + goto pick_default; + + /* XXX Check valid and format 0 */ + + /* No priority conversion, return the actual one ! */ + if (xive_get_field64(EAS_MASKED, eas->w)) + prio = 0xff; + else + prio = xive_get_field32(END_W7_F0_PRIORITY, end->w7); + if (out_prio) + *out_prio = prio; + + vp_blk = xive_get_field32(END_W6_VP_BLOCK, end->w6); + vp_idx = xive_get_field32(END_W6_VP_OFFSET, end->w6); + server = VP2PIR(vp_blk, vp_idx); + + if (out_target) + *out_target = server; + + xive_vdbg(end_x, "END info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n", + isn, prio, server, vp_blk, vp_idx); + return true; + +pick_default: + xive_vdbg(end_x, "END info for ISN %x: Using masked defaults\n", isn); + + if (out_prio) + *out_prio = 0xff; + /* Pick a random default, me will be fine ... */ + if (out_target) + *out_target = mfspr(SPR_PIR); + return true; +} + +static inline bool xive_end_for_target(uint32_t target, uint8_t prio, + uint32_t *out_end_blk, + uint32_t *out_end_idx) +{ + struct xive *x; + struct xive_nvp *vp; + uint32_t vp_blk, vp_idx; + uint32_t end_blk, end_idx; + + if (prio > xive_max_prio(one_xive)) + return false; + + /* Get the VP block/index from the target word */ + if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL)) + return false; + + /* Grab the target VP's XIVE */ + x = xive_from_pc_blk(vp_blk); + if (!x) + return false; + + /* Find the VP structrure where we stashed the END number */ + vp = xive_get_vp(x, vp_idx); + if (!vp) + return false; + + end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5); + end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5); + + /* Currently the END block and VP block should be the same */ + if (end_blk != vp_blk) { + xive_err(x, "end_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n", + end_blk, vp_blk, target, prio); + assert(false); + } + + if (out_end_blk) + *out_end_blk = end_blk; + if (out_end_idx) + *out_end_idx = end_idx + prio; + + return true; +} + +static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target, + uint8_t prio, uint32_t lirq, + bool synchronous) +{ + struct xive *x; + struct xive_eas *eas, new_eas; + uint32_t end_blk, end_idx; + bool is_escalation = GIRQ_IS_ESCALATION(isn); + int64_t rc; + + /* Find XIVE on which the EAS resides */ + x = xive_from_isn(isn); + if (!x) + return OPAL_PARAMETER; + /* Grab the EAS */ + eas = xive_get_eas(x, isn); + if (!eas) + return OPAL_PARAMETER; + if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) { + xive_err(x, "ISN %x lead to invalid EAS !\n", isn); + return OPAL_PARAMETER; + } + + lock(&x->lock); + + /* Read existing EAS */ + new_eas = *eas; + + /* Are we masking ? */ + if (prio == 0xff && !is_escalation) { + new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 1); + xive_vdbg(x, "ISN %x masked !\n", isn); + + /* Put prio 7 in the END */ + prio = xive_max_prio(x); + } else { + /* Unmasking */ + new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 0); + xive_vdbg(x, "ISN %x unmasked !\n", isn); + + /* For normal interrupt sources, keep track of which ones + * we ever enabled since the last reset + */ + if (!is_escalation) + bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)); + } + + /* If prio isn't 0xff, re-target the EAS. First find the END + * correponding to the target + */ + if (prio != 0xff) { + if (!xive_end_for_target(target, prio, &end_blk, &end_idx)) { + xive_err(x, "Can't find END for target/prio 0x%x/%d\n", + target, prio); + unlock(&x->lock); + return OPAL_PARAMETER; + } + + /* Try to update it atomically to avoid an intermediary + * stale state + */ + new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk); + new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx); + } + new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, lirq); + + xive_vdbg(x,"ISN %x routed to end %x/%x lirq=%08x EAS=%016llx !\n", + isn, end_blk, end_idx, lirq, new_eas.w); + + /* Updating the cache differs between real EAS and escalation + * EAS inside an END + */ + if (is_escalation) { + rc = xive_escalation_ive_cache_update(x, x->block_id, + GIRQ_TO_IDX(isn), &new_eas, synchronous); + } else { + sync(); + *eas = new_eas; + rc = xive_easc_scrub(x, x->block_id, GIRQ_TO_IDX(isn)); + } + + unlock(&x->lock); + return rc; +} + +static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked) +{ + void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx; + uint32_t offset; + + /* XXX FIXME: A quick mask/umask can make us shoot an interrupt + * more than once to a queue. We need to keep track better + */ + if (s->flags & XIVE_SRC_EOI_PAGE1) + mmio_base += 1ull << (s->esb_shift - 1); + if (masked) + offset = XIVE_ESB_SET_PQ_01; + else + offset = XIVE_ESB_SET_PQ_00; + + in_be64(mmio_base + offset); +} + +#define XIVE_SYNC_IPI 0x000 +#define XIVE_SYNC_HW 0x080 +#define XIVE_SYNC_NxC 0x100 +#define XIVE_SYNC_INT 0x180 +#define XIVE_SYNC_OS_ESC 0x200 +#define XIVE_SYNC_POOL_ESC 0x280 +#define XIVE_SYNC_HARD_ESC 0x300 + +static int64_t xive_sync(struct xive *x __unused) +{ + uint64_t r; + void *sync_base; + + lock(&x->lock); + + sync_base = x->ic_base + (XIVE_SYNC_POLL_PGOFF << x->ic_shift); + + out_be64(sync_base + XIVE_SYNC_IPI, 0); + out_be64(sync_base + XIVE_SYNC_HW, 0); + out_be64(sync_base + XIVE_SYNC_NxC, 0); + out_be64(sync_base + XIVE_SYNC_INT, 0); + out_be64(sync_base + XIVE_SYNC_OS_ESC, 0); + out_be64(sync_base + XIVE_SYNC_POOL_ESC, 0); + out_be64(sync_base + XIVE_SYNC_HARD_ESC, 0); + + /* XXX Add timeout */ + for (;;) { + r = xive_regr(x, VC_ENDC_SYNC_DONE); + if ((r & VC_ENDC_SYNC_POLL_DONE) == VC_ENDC_SYNC_POLL_DONE) + break; + cpu_relax(); + } + xive_regw(x, VC_ENDC_SYNC_DONE, r & ~VC_ENDC_SYNC_POLL_DONE); + + /* + * Do a read after clearing the sync done bit to prevent any + * race between CI write and next sync command + */ + xive_regr(x, VC_ENDC_SYNC_DONE); + + unlock(&x->lock); + return 0; +} + +static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq, + uint64_t vp, uint8_t prio, uint32_t lirq, + bool update_esb, bool sync) +{ + struct xive_src *s = container_of(is, struct xive_src, is); + uint32_t old_target, vp_blk; + u8 old_prio; + int64_t rc; + + /* Grab existing target */ + if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL)) + return OPAL_PARAMETER; + + /* Let XIVE configure the END. We do the update without the + * synchronous flag, thus a cache update failure will result + * in us returning OPAL_BUSY + */ + rc = xive_set_irq_targetting(girq, vp, prio, lirq, false); + if (rc) + return rc; + + /* Do we need to update the mask ? */ + if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) { + /* The source has special variants of masking/unmasking */ + if (update_esb) { + /* Ensure it's enabled/disabled in the source + * controller + */ + xive_update_irq_mask(s, girq - s->esb_base, + prio == 0xff); + } + } + + /* + * Synchronize the source and old target XIVEs to ensure that + * all pending interrupts to the old target have reached their + * respective queue. + * + * WARNING: This assumes the VP and it's queues are on the same + * XIVE instance ! + */ + if (!sync) + return OPAL_SUCCESS; + xive_sync(s->xive); + if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) { + struct xive *x = xive_from_pc_blk(vp_blk); + if (x) + xive_sync(x); + } + + return OPAL_SUCCESS; +} + +static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio, + uint32_t lirq, bool update_esb) +{ + struct irq_source *is = irq_find_source(girq); + + return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb, + true); +} + +static void xive_source_interrupt(struct irq_source *is, uint32_t isn) +{ + struct xive_src *s = container_of(is, struct xive_src, is); + + if (!s->orig_ops || !s->orig_ops->interrupt) + return; + s->orig_ops->interrupt(is, isn); +} + +static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn) +{ + struct xive_src *s = container_of(is, struct xive_src, is); + + if (!s->orig_ops || !s->orig_ops->attributes) + return IRQ_ATTR_TARGET_LINUX; + return s->orig_ops->attributes(is, isn); +} + +static char *xive_source_name(struct irq_source *is, uint32_t isn) +{ + struct xive_src *s = container_of(is, struct xive_src, is); + + if (!s->orig_ops || !s->orig_ops->name) + return NULL; + return s->orig_ops->name(is, isn); +} + +void xive2_source_mask(struct irq_source *is, uint32_t isn) +{ + struct xive_src *s = container_of(is, struct xive_src, is); + + xive_update_irq_mask(s, isn - s->esb_base, true); +} + +static const struct irq_source_ops xive_irq_source_ops = { + .interrupt = xive_source_interrupt, + .attributes = xive_source_attributes, + .name = xive_source_name, +}; + +static void __xive_register_source(struct xive *x, struct xive_src *s, + uint32_t base, uint32_t count, + uint32_t shift, void *mmio, uint32_t flags, + bool secondary, void *data, + const struct irq_source_ops *orig_ops) +{ + s->esb_base = base; + s->esb_shift = shift; + s->esb_mmio = mmio; + s->flags = flags; + s->orig_ops = orig_ops; + s->xive = x; + s->is.start = base; + s->is.end = base + count; + s->is.ops = &xive_irq_source_ops; + s->is.data = data; + + __register_irq_source(&s->is, secondary); +} + +void xive2_register_hw_source(uint32_t base, uint32_t count, uint32_t shift, + void *mmio, uint32_t flags, void *data, + const struct irq_source_ops *ops) +{ + struct xive_src *s; + struct xive *x = xive_from_isn(base); + + assert(x); + + s = malloc(sizeof(struct xive_src)); + assert(s); + __xive_register_source(x, s, base, count, shift, mmio, flags, + false, data, ops); +} + +static void __xive2_register_esb_source(uint32_t base, uint32_t count, + void *data, const struct irq_source_ops *ops) +{ + struct xive_src *s; + struct xive *x = xive_from_isn(base); + uint32_t base_idx = GIRQ_TO_IDX(base); + void *mmio_base; + uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE; + + assert(x); + + s = malloc(sizeof(struct xive_src)); + assert(s); + + if (XIVE_CAN_STORE_EOI(x)) + flags |= XIVE_SRC_STORE_EOI; + + /* Callbacks assume the MMIO base corresponds to the first + * interrupt of that source structure so adjust it + */ + mmio_base = x->esb_base + (1ul << XIVE_ESB_SHIFT) * base_idx; + __xive_register_source(x, s, base, count, XIVE_ESB_SHIFT, mmio_base, + flags, false, data, ops); +} + +/* + * Check that IPI sources have interrupt numbers in the IPI interrupt + * number range + */ +void xive2_register_ipi_source(uint32_t base, uint32_t count, void *data, + const struct irq_source_ops *ops) +{ + struct xive *x = xive_from_isn(base); + + assert(x); + assert(base >= x->int_base && (base + count) <= x->int_ipi_top); + + __xive2_register_esb_source(base, count, data, ops); +} + +/* + * Some HW sources (PHB) can disable the use of their own ESB pages + * and offload all the checks on ESB pages of the IC. The interrupt + * numbers are not necessarily in the IPI range. + */ +void xive2_register_esb_source(uint32_t base, uint32_t count) +{ + __xive2_register_esb_source(base, count, NULL, NULL); +} + +uint64_t xive2_get_esb_base(uint32_t base) +{ + struct xive *x = xive_from_isn(base); + uint32_t base_idx = GIRQ_TO_IDX(base); + + assert(x); + + return (uint64_t) x->esb_base + (1ul << XIVE_ESB_SHIFT) * base_idx; +} + +static void xive_set_quirks(struct xive *x, struct proc_chip *chip __unused) +{ + uint64_t quirks = 0; + + /* This extension is dropped for P10 */ + if (proc_gen == proc_gen_p10) + quirks |= XIVE_QUIRK_THREADID_7BITS; + + /* Broken check on invalid priority when reduced priorities is in use */ + if (proc_gen == proc_gen_p10) + quirks |= XIVE_QUIRK_BROKEN_PRIO_CHECK; + + xive_dbg(x, "setting XIVE quirks to %016llx\n", quirks); + x->quirks = quirks; +} + +static struct xive *init_one_xive(struct dt_node *np) +{ + struct xive *x; + struct proc_chip *chip; + uint32_t flags; + + x = zalloc(sizeof(struct xive)); + assert(x); + x->x_node = np; + x->xscom_base = dt_get_address(np, 0, NULL); + x->chip_id = dt_get_chip_id(np); + + /* "Allocate" a new block ID for the chip */ + x->block_id = xive_block_count++; + assert (x->block_id < XIVE_MAX_CHIPS); + xive_block_to_chip[x->block_id] = x->chip_id; + init_lock(&x->lock); + + chip = get_chip(x->chip_id); + assert(chip); + + xive_notice(x, "Initializing XIVE block ID %d...\n", x->block_id); + chip->xive = x; + + xive_set_quirks(x, chip); + + list_head_init(&x->donated_pages); + + /* Base interrupt numbers and allocator init */ + + x->int_base = BLKIDX_TO_GIRQ(x->block_id, 0); + x->int_count = x->int_base + XIVE_INT_COUNT; + x->int_hw_bot = x->int_count; + x->int_ipi_top = x->int_base; + + if (x->int_ipi_top < XIVE_INT_FIRST) + x->int_ipi_top = XIVE_INT_FIRST; + + /* Allocate a few bitmaps */ + x->end_map = local_alloc(x->chip_id, BITMAP_BYTES(xive_end_bitmap_size(x)), PAGE_SIZE); + assert(x->end_map); + memset(x->end_map, 0, BITMAP_BYTES(xive_end_bitmap_size(x))); + + /* + * Allocate END index 0 to make sure it can not be used as an + * END base for a VP. This is the criteria to know if a VP was + * allocated. + */ + bitmap_set_bit(*x->end_map, 0); + + x->int_enabled_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE); + assert(x->int_enabled_map); + memset(x->int_enabled_map, 0, BITMAP_BYTES(XIVE_INT_COUNT)); + x->ipi_alloc_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE); + assert(x->ipi_alloc_map); + memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT)); + + xive_dbg(x, "Handling interrupts [%08x..%08x]\n", + x->int_base, x->int_count - 1); + + /* Setup the IC BARs */ + if (!xive_configure_ic_bars(x)) + goto fail; + + /* Some basic global inits such as page sizes etc... */ + if (!xive_config_init(x)) + goto fail; + + /* Configure the set translations for MMIO */ + if (!xive_setup_set_xlate(x)) + goto fail; + + /* Dump some MMIO registers for diagnostics */ + xive_dump_mmio(x); + + /* Pre-allocate a number of tables */ + if (!xive_prealloc_tables(x)) + goto fail; + + /* Setup the XIVE structures BARs */ + if (!xive_configure_bars(x)) + goto fail; + + /* + * Configure local tables in VSDs (forward ports will be + * handled later) + */ + if (!xive_set_local_tables(x)) + goto fail; + + /* Register built-in source controllers (aka IPIs) */ + flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE; + if (XIVE_CAN_STORE_EOI(x)) + flags |= XIVE_SRC_STORE_EOI; + __xive_register_source(x, &x->ipis, x->int_base, + x->int_hw_bot - x->int_base, XIVE_ESB_SHIFT, + x->esb_base, flags, true, NULL, NULL); + + /* Register escalation sources (ENDs) + * + * The ESe PQ bits are used for coalescing and the END ESB for + * interrupt management. The word 4&5 of the END is the EAS + * for the escalation source and the indexing is the same as + * the END. + * + * This is an OPAL primary source, IPIs are secondary. + */ + __xive_register_source(x, &x->esc_irqs, + MAKE_ESCALATION_GIRQ(x->block_id, 0), + XIVE_END_COUNT, XIVE_END_SHIFT, + x->end_base, XIVE_SRC_EOI_PAGE1, + false, NULL, NULL); + + + return x; + fail: + xive_err(x, "Initialization failed...\n"); + + /* Should this be fatal ? */ + //assert(false); + return NULL; +} + +static void xive_reset_enable_thread(struct cpu_thread *c) +{ + struct proc_chip *chip = get_chip(c->chip_id); + struct xive *x = chip->xive; + uint32_t fc, bit; + uint64_t enable; + + /* Get fused core number */ + fc = (c->pir >> 3) & 0xf; + + /* Get bit in register */ + bit = c->pir & 0x3f; + + /* Get which register to access */ + if (fc < 8) { + xive_regw(x, TCTXT_EN0_RESET, PPC_BIT(bit)); + xive_regw(x, TCTXT_EN0_SET, PPC_BIT(bit)); + + enable = xive_regr(x, TCTXT_EN0); + if (!(enable & PPC_BIT(bit))) + xive_cpu_err(c, "Failed to enable thread\n"); + } else { + xive_regw(x, TCTXT_EN1_RESET, PPC_BIT(bit)); + xive_regw(x, TCTXT_EN1_SET, PPC_BIT(bit)); + + enable = xive_regr(x, TCTXT_EN1); + if (!(enable & PPC_BIT(bit))) + xive_cpu_err(c, "Failed to enable thread\n"); + } +} + +void xive2_cpu_callin(struct cpu_thread *cpu) +{ + struct xive_cpu_state *xs = cpu->xstate; + uint8_t old_w2 __unused, w2 __unused; + + if (!xs) + return; + + /* Reset the HW thread context and enable it */ + xive_reset_enable_thread(cpu); + + /* Set VT to 1 */ + old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2); + out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80); + w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2); + + xive_cpu_vdbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n", + xs->vp_blk, xs->vp_idx, + in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS), + old_w2, w2); +} + +#ifdef XIVE_EXTRA_CHECK_INIT_CACHE +#define CHECK_INIT_CACHE_LOOP 0x100 +static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx) +{ + struct xive_nvp vp = {0}; + uint32_t i; + + /* + * SIMICS checks the value of reserved fields + */ + if (chip_quirk(QUIRK_SIMICS)) + return; + + for (i = 0; i < CHECK_INIT_CACHE_LOOP; i++) { + struct xive_nvp *vp_m = xive_get_vp(x, idx); + + memset(vp_m, (~i) & 0xff, sizeof(*vp_m)); + sync(); + vp.w1 = (i << 16) | i; + assert(!xive_nxc_cache_update(x, blk, idx, &vp, true)); + if (!xive_check_nxc_update(x, idx, &vp)) { + xive_dbg(x, "NXC update test failed at %d iterations\n", i); + return; + } + } + xive_dbg(x, "NXC update test passed for %d/0x%x\n", blk, idx); +} +#else +static inline void xive_special_cache_check(struct xive *x __unused, + uint32_t blk __unused, + uint32_t idx __unused) +{ +} +#endif + +static void xive_init_cpu_exploitation(struct xive_cpu_state *xs) +{ + struct xive_end end; + struct xive_nvp vp; + struct xive *x_vp, *x_end; + int i; + + /* Grab the XIVE where the VP resides. It could be different from + * the local chip XIVE if not using block group mode + */ + x_vp = xive_from_pc_blk(xs->vp_blk); + assert(x_vp); + + /* Grab the XIVE where the END resides. It should be the same + * as the VP. + */ + x_end = xive_from_vc_blk(xs->end_blk); + assert(x_end); + + xive_init_hw_end(&end); + + /* Use the cache watch to update all ENDs reserved for HW VPs */ + lock(&x_end->lock); + for (i = 0; i < xive_cfg_vp_prio(x_end); i++) + xive_endc_cache_update(x_end, xs->end_blk, xs->end_idx + i, + &end, true); + unlock(&x_end->lock); + + /* Initialize/enable the VP */ + xive_init_default_vp(&vp, xs->end_blk, xs->end_idx); + + /* Use the cache watch to write it out */ + lock(&x_vp->lock); + xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx); + xive_nxc_cache_update(x_vp, xs->vp_blk, xs->vp_idx, &vp, true); + unlock(&x_vp->lock); +} + +static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c) +{ + uint64_t xa, val; + int64_t rc; + + xive_cpu_vdbg(c, "Setting up special BAR\n"); + xa = XSCOM_ADDR_P10_NCU(pir_to_core_id(c->pir), P10_NCU_SPEC_BAR); + val = (uint64_t)x->tm_base | P10_NCU_SPEC_BAR_ENABLE; + if (x->tm_shift == 16) + val |= P10_NCU_SPEC_BAR_256K; + xive_cpu_vdbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val); + rc = xscom_write(c->chip_id, xa, val); + if (rc) { + xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n"); + /* XXXX what do do now ? */ + } +} + +void xive2_late_init(void) +{ + struct cpu_thread *c; + + prlog(PR_INFO, "SLW: Configuring self-restore for NCU_SPEC_BAR\n"); + for_each_present_cpu(c) { + if(cpu_is_thread0(c)) { + struct proc_chip *chip = get_chip(c->chip_id); + struct xive *x = chip->xive; + uint64_t xa, val, rc; + xa = XSCOM_ADDR_P10_NCU(pir_to_core_id(c->pir), P10_NCU_SPEC_BAR); + val = (uint64_t)x->tm_base | P10_NCU_SPEC_BAR_ENABLE; + /* Bail out if wakeup engine has already failed */ + if (wakeup_engine_state != WAKEUP_ENGINE_PRESENT) { + prlog(PR_ERR, "XIVE proc_stop_api fail detected\n"); + break; + } + rc = proc_stop_save_scom((void *)chip->homer_base, xa, val, + PROC_STOP_SCOM_REPLACE, PROC_STOP_SECTION_L3); + if (rc) { + xive_cpu_err(c, "proc_stop_save_scom failed for NCU_SPEC_BAR rc=%lld\n", + rc); + wakeup_engine_state = WAKEUP_ENGINE_FAILED; + } + } + } +} + +static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c) +{ + struct xive *x; + + /* VP ids for HW threads are pre-allocated */ + xs->vp_blk = PIR2VP_BLK(c->pir); + xs->vp_idx = PIR2VP_IDX(c->pir); + + /* For now we use identical block IDs for VC and PC but that might + * change. We allocate the ENDs on the same XIVE as the VP. + */ + xs->end_blk = xs->vp_blk; + + /* Grab the XIVE where the END resides. It could be different from + * the local chip XIVE if not using block group mode + */ + x = xive_from_vc_blk(xs->end_blk); + assert(x); + + /* Allocate a set of ENDs for that VP */ + xs->end_idx = xive_alloc_end_set(x, true); + assert(!XIVE_ALLOC_IS_ERR(xs->end_idx)); +} + +static void xive_init_cpu(struct cpu_thread *c) +{ + struct proc_chip *chip = get_chip(c->chip_id); + struct xive *x = chip->xive; + struct xive_cpu_state *xs; + + if (!x) + return; + + /* + * Each core pair (EX) needs this special BAR setup to have the + * right powerbus cycle for the TM area (as it has the same address + * on all chips so it's somewhat special). + * + * Because we don't want to bother trying to figure out which core + * of a pair is present we just do the setup for each of them, which + * is harmless. + */ + if (cpu_is_thread0(c) || cpu_is_core_chiplet_primary(c)) + xive_configure_ex_special_bar(x, c); + + /* Initialize the state structure */ + c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1); + assert(xs); + memset(xs, 0, sizeof(struct xive_cpu_state)); + xs->xive = x; + + init_lock(&xs->lock); + + /* Shortcut to TM HV ring */ + xs->tm_ring1 = x->tm_base + (1u << x->tm_shift); + + /* Provision a VP id and some ENDs for a HW thread */ + xive_provision_cpu(xs, c); + + xive_init_cpu_exploitation(xs); +} + +static uint64_t xive_convert_irq_flags(uint64_t iflags) +{ + uint64_t oflags = 0; + + if (iflags & XIVE_SRC_STORE_EOI) + oflags |= OPAL_XIVE_IRQ_STORE_EOI2; + + /* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if + * the interrupt has a *separate* trigger page. + */ + if ((iflags & XIVE_SRC_EOI_PAGE1) && + (iflags & XIVE_SRC_TRIGGER_PAGE)) + oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE; + + if (iflags & XIVE_SRC_LSI) + oflags |= OPAL_XIVE_IRQ_LSI; + + return oflags; +} + +static int64_t opal_xive_get_irq_info(uint32_t girq, + beint64_t *out_flags, + beint64_t *out_eoi_page, + beint64_t *out_trig_page, + beint32_t *out_esb_shift, + beint32_t *out_src_chip) +{ + struct irq_source *is = irq_find_source(girq); + struct xive_src *s = container_of(is, struct xive_src, is); + uint32_t idx; + uint64_t mm_base; + uint64_t eoi_page = 0, trig_page = 0; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + if (is == NULL || out_flags == NULL) + return OPAL_PARAMETER; + assert(is->ops == &xive_irq_source_ops); + + if (out_flags) + *out_flags = cpu_to_be64(xive_convert_irq_flags(s->flags)); + + idx = girq - s->esb_base; + + if (out_esb_shift) + *out_esb_shift = cpu_to_be32(s->esb_shift); + + mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx; + + /* The EOI page can either be the first or second page */ + if (s->flags & XIVE_SRC_EOI_PAGE1) { + uint64_t p1off = 1ull << (s->esb_shift - 1); + eoi_page = mm_base + p1off; + } else + eoi_page = mm_base; + + /* The trigger page, if it exists, is always the first page */ + if (s->flags & XIVE_SRC_TRIGGER_PAGE) + trig_page = mm_base; + + if (out_eoi_page) + *out_eoi_page = cpu_to_be64(eoi_page); + if (out_trig_page) + *out_trig_page = cpu_to_be64(trig_page); + if (out_src_chip) + *out_src_chip = cpu_to_be32(GIRQ_TO_CHIP(girq)); + + return OPAL_SUCCESS; +} + +static int64_t opal_xive_get_irq_config(uint32_t girq, + beint64_t *out_vp, + uint8_t *out_prio, + beint32_t *out_lirq) +{ + uint32_t vp; + uint32_t lirq; + uint8_t prio; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + if (xive_get_irq_targetting(girq, &vp, &prio, &lirq)) { + *out_vp = cpu_to_be64(vp); + *out_prio = prio; + *out_lirq = cpu_to_be32(lirq); + return OPAL_SUCCESS; + } else + return OPAL_PARAMETER; +} + +static int64_t opal_xive_set_irq_config(uint32_t girq, + uint64_t vp, + uint8_t prio, + uint32_t lirq) +{ + /* + * This variant is meant for a XIVE-aware OS, thus it will + * *not* affect the ESB state of the interrupt. If used with + * a prio of FF, the EAS will be masked. In that case the + * races have to be handled by the OS. + */ + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + return xive_set_irq_config(girq, vp, prio, lirq, false); +} + +static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio, + beint64_t *out_qpage, + beint64_t *out_qsize, + beint64_t *out_qeoi_page, + beint32_t *out_escalate_irq, + beint64_t *out_qflags) +{ + uint32_t blk, idx; + struct xive *x; + struct xive_end *end; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + if (!xive_end_for_target(vp, prio, &blk, &idx)) + return OPAL_PARAMETER; + + x = xive_from_vc_blk(blk); + if (!x) + return OPAL_PARAMETER; + + end = xive_get_end(x, idx); + if (!end) + return OPAL_PARAMETER; + + if (out_escalate_irq) { + uint32_t esc_idx = idx; + + /* If escalations are routed to a single queue, fix up + * the escalation interrupt number here. + */ + if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0)) + esc_idx |= xive_escalation_prio(x); + *out_escalate_irq = + cpu_to_be32(MAKE_ESCALATION_GIRQ(blk, esc_idx)); + } + + /* If this is a single-escalation gather queue, that's all + * there is to return + */ + if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0)) { + if (out_qflags) + *out_qflags = 0; + if (out_qpage) + *out_qpage = 0; + if (out_qsize) + *out_qsize = 0; + if (out_qeoi_page) + *out_qeoi_page = 0; + return OPAL_SUCCESS; + } + + if (out_qpage) { + if (xive_get_field32(END_W0_ENQUEUE, end->w0)) + *out_qpage = cpu_to_be64( + ((uint64_t)xive_get_field32(END_W2_EQ_ADDR_HI, end->w2) << 32) | + xive_get_field32(END_W3_EQ_ADDR_LO, end->w3)); + else + *out_qpage = 0; + } + if (out_qsize) { + if (xive_get_field32(END_W0_ENQUEUE, end->w0)) + *out_qsize = cpu_to_be64(xive_get_field32(END_W3_QSIZE, end->w3) + 12); + else + *out_qsize = 0; + } + if (out_qeoi_page) { + *out_qeoi_page = cpu_to_be64( + (uint64_t)x->end_base + idx * XIVE_ESB_PAGE_SIZE); + } + if (out_qflags) { + *out_qflags = 0; + if (xive_get_field32(END_W0_VALID, end->w0)) + *out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ENABLED); + if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) + *out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ALWAYS_NOTIFY); + if (xive_get_field32(END_W0_ESCALATE_CTL, end->w0)) + *out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ESCALATE); + } + + return OPAL_SUCCESS; +} + +static void xive_cleanup_end(struct xive_end *end) +{ + end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, xive_end_is_firmware1(end)); + end->w1 = xive_set_field32(END_W1_ESe_Q, 0, 1) | + xive_set_field32(END_W1_ESn_Q, 0, 1); + end->w2 = end->w3 = end->w4 = end->w5 = end->w6 = end->w7 = 0; +} + +static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio, + uint64_t qpage, + uint64_t qsize, + uint64_t qflags) +{ + uint32_t blk, idx; + struct xive *x; + struct xive_end *old_end; + struct xive_end end; + uint32_t vp_blk, vp_idx; + bool group; + int64_t rc; + + if (!xive_end_for_target(vp, prio, &blk, &idx)) + return OPAL_PARAMETER; + + x = xive_from_vc_blk(blk); + if (!x) + return OPAL_PARAMETER; + + old_end = xive_get_end(x, idx); + if (!old_end) + return OPAL_PARAMETER; + + /* If this is a silent escalation queue, it cannot be + * configured directly + */ + if (xive_get_field32(END_W0_SILENT_ESCALATE, old_end->w0)) + return OPAL_PARAMETER; + + /* This shouldn't fail or xive_end_for_target would have + * failed already + */ + if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group)) + return OPAL_PARAMETER; + + /* + * Make a local copy which we will later try to commit using + * the cache watch facility + */ + end = *old_end; + + if (qflags & OPAL_XIVE_EQ_ENABLED) { + switch(qsize) { + /* Supported sizes */ + case 12: + case 16: + case 21: + case 24: + end.w3 = cpu_to_be32(qpage & END_W3_EQ_ADDR_LO); + end.w2 = cpu_to_be32((qpage >> 32) & END_W2_EQ_ADDR_HI); + end.w3 = xive_set_field32(END_W3_QSIZE, end.w3, qsize - 12); + end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 1); + break; + case 0: + end.w2 = end.w3 = 0; + end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 0); + break; + default: + return OPAL_PARAMETER; + } + + /* Ensure the priority and target are correctly set (they will + * not be right after allocation + */ + end.w6 = xive_set_field32(END_W6_VP_BLOCK, 0, vp_blk) | + xive_set_field32(END_W6_VP_OFFSET, 0, vp_idx); + end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0, prio); + /* XXX Handle group i bit when needed */ + + /* Always notify flag */ + if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY) + end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 1); + else + end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 0); + + /* Escalation flag */ + if (qflags & OPAL_XIVE_EQ_ESCALATE) + end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1); + else + end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0); + + /* Unconditionally clear the current queue pointer, set + * generation to 1 and disable escalation interrupts. + */ + end.w1 = xive_set_field32(END_W1_GENERATION, 0, 1) | + xive_set_field32(END_W1_ES, 0, xive_get_field32(END_W1_ES, old_end->w1)); + + /* Enable. We always enable backlog for an enabled queue + * otherwise escalations won't work. + */ + end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1); + end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1); + } else + xive_cleanup_end(&end); + + /* Update END, non-synchronous */ + lock(&x->lock); + rc = xive_endc_cache_update(x, blk, idx, &end, false); + unlock(&x->lock); + + return rc; +} + +static int64_t opal_xive_get_queue_state(uint64_t vp, uint32_t prio, + beint32_t *out_qtoggle, + beint32_t *out_qindex) +{ + uint32_t blk, idx; + struct xive *x; + struct xive_end *end; + int64_t rc; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + if (!out_qtoggle || !out_qindex || + !xive_end_for_target(vp, prio, &blk, &idx)) + return OPAL_PARAMETER; + + x = xive_from_vc_blk(blk); + if (!x) + return OPAL_PARAMETER; + + end = xive_get_end(x, idx); + if (!end) + return OPAL_PARAMETER; + + /* Scrub the queue */ + lock(&x->lock); + rc = xive_endc_scrub(x, blk, idx); + unlock(&x->lock); + if (rc) + return rc; + + /* We don't do disable queues */ + if (!xive_get_field32(END_W0_VALID, end->w0)) + return OPAL_WRONG_STATE; + + *out_qtoggle = cpu_to_be32(xive_get_field32(END_W1_GENERATION, end->w1)); + *out_qindex = cpu_to_be32(xive_get_field32(END_W1_PAGE_OFF, end->w1)); + + return OPAL_SUCCESS; +} + +static int64_t opal_xive_set_queue_state(uint64_t vp, uint32_t prio, + uint32_t qtoggle, uint32_t qindex) +{ + uint32_t blk, idx; + struct xive *x; + struct xive_end *end, new_end; + int64_t rc; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + if (!xive_end_for_target(vp, prio, &blk, &idx)) + return OPAL_PARAMETER; + + x = xive_from_vc_blk(blk); + if (!x) + return OPAL_PARAMETER; + + end = xive_get_end(x, idx); + if (!end) + return OPAL_PARAMETER; + + /* We don't do disable queues */ + if (!xive_get_field32(END_W0_VALID, end->w0)) + return OPAL_WRONG_STATE; + + new_end = *end; + + new_end.w1 = xive_set_field32(END_W1_GENERATION, new_end.w1, qtoggle); + new_end.w1 = xive_set_field32(END_W1_PAGE_OFF, new_end.w1, qindex); + + lock(&x->lock); + rc = xive_endc_cache_update(x, blk, idx, &new_end, false); + unlock(&x->lock); + + return rc; +} + +static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr) +{ + struct proc_chip *c = get_chip(chip_id); + struct list_node *n; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + if (!c) + return OPAL_PARAMETER; + if (!c->xive) + return OPAL_PARAMETER; + if (addr & 0xffff) + return OPAL_PARAMETER; + + n = (struct list_node *)addr; + lock(&c->xive->lock); + list_add(&c->xive->donated_pages, n); + unlock(&c->xive->lock); + return OPAL_SUCCESS; +} + +static int64_t opal_xive_get_vp_info(uint64_t vp_id, + beint64_t *out_flags, + beint64_t *out_cam_value, + beint64_t *out_report_cl_pair, + beint32_t *out_chip_id) +{ + struct xive *x; + struct xive_nvp *vp; + uint32_t blk, idx; + bool group; + + if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group)) + return OPAL_PARAMETER; + /* We don't do groups yet */ + if (group) + return OPAL_PARAMETER; + x = xive_from_pc_blk(blk); + if (!x) + return OPAL_PARAMETER; + vp = xive_get_vp(x, idx); + if (!vp) + return OPAL_PARAMETER; + + if (out_flags) { + uint32_t end_blk, end_idx; + struct xive_end *end; + struct xive *end_x; + *out_flags = 0; + + /* + * We would like to a way to stash a SW bit in the VP + * to know whether silent escalation is enabled or + * not, but unlike what happens with ENDs, the PC + * cache watch doesn't implement the reserved bit in + * the VPs... so we have to go look at END 7 instead. + */ + + /* Grab END for prio 7 to check for silent escalation */ + if (!xive_end_for_target(vp_id, xive_escalation_prio(x), + &end_blk, &end_idx)) + return OPAL_PARAMETER; + + end_x = xive_from_vc_blk(end_blk); + if (!end_x) + return OPAL_PARAMETER; + + end = xive_get_end(x, end_idx); + if (!end) + return OPAL_PARAMETER; + if (xive_get_field32(NVP_W0_VALID, vp->w0)) + *out_flags |= cpu_to_be64(OPAL_XIVE_VP_ENABLED); + if (xive_cfg_save_restore(x)) + *out_flags |= cpu_to_be64(OPAL_XIVE_VP_SAVE_RESTORE); + if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0)) + *out_flags |= cpu_to_be64(OPAL_XIVE_VP_SINGLE_ESCALATION); + } + + if (out_cam_value) { + uint64_t cam_value; + + cam_value = (blk << x->vp_shift) | idx; + + /* + * If save-restore is enabled, force the CAM line + * value with the H bit. + */ + if (xive_cfg_save_restore(x)) + cam_value |= TM10_QW1W2_HO; + + *out_cam_value = cpu_to_be64(cam_value); + } + + if (out_report_cl_pair) { + uint64_t report_cl_pair; + + report_cl_pair = ((uint64_t)(be32_to_cpu(vp->w6) & 0x0fffffff)) << 32; + report_cl_pair |= be32_to_cpu(vp->w7) & 0xffffff00; + + *out_report_cl_pair = cpu_to_be64(report_cl_pair); + } + + if (out_chip_id) + *out_chip_id = cpu_to_be32(xive_block_to_chip[blk]); + + return OPAL_SUCCESS; +} + +static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable) +{ + uint32_t blk, idx, i; + struct xive_end *end_orig; + struct xive_end end; + struct xive *x; + int64_t rc; + + /* Get base END block */ + if (!xive_end_for_target(vp_id, 0, &blk, &idx)) { + prlog(PR_ERR, "%s: Invalid VP 0x%08llx\n", __func__, vp_id); + return OPAL_PARAMETER; + } + x = xive_from_vc_blk(blk); + if (!x) { + prlog(PR_ERR, "%s: VP 0x%08llx has invalid block %d\n", __func__, + vp_id, blk); + return OPAL_PARAMETER; + } + + /* Grab prio 7 */ + end_orig = xive_get_end(x, idx + xive_escalation_prio(x)); + if (!end_orig) { + xive_err(x, "Failed to get silent gather END 0x%x for VP 0x%08llx\n", + idx + xive_escalation_prio(x), vp_id); + return OPAL_PARAMETER; + } + + /* If trying to enable silent gather, make sure prio 7 is not + * already enabled as a normal queue + */ + if (enable && xive_get_field32(END_W0_VALID, end_orig->w0) && + !xive_get_field32(END_W0_SILENT_ESCALATE, end_orig->w0)) { + xive_err(x, "silent gather END 0x%x already in use\n", + idx + xive_escalation_prio(x)); + return OPAL_PARAMETER; + } + + end = *end_orig; + + if (enable) { + /* W0: Enabled and "s" set, no other bit */ + end.w0 = xive_set_field32(END_W0_FIRMWARE1, end.w0, 0); + end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1); + end.w0 = xive_set_field32(END_W0_SILENT_ESCALATE, end.w0, 1); + end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1); + end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1); + + /* Set new "N" for END escalation (vs. ESB) */ + end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1); + + /* W1: Mark ESn as 01, ESe as 00 */ + end.w1 = xive_set_field32(END_W1_ESn_P, end.w1, 0); + end.w1 = xive_set_field32(END_W1_ESn_Q, end.w1, 1); + end.w1 = xive_set_field32(END_W1_ESe, end.w1, 0); + } else if (xive_get_field32(END_W0_SILENT_ESCALATE, end.w0)) + xive_cleanup_end(&end); + + if (!memcmp(end_orig, &end, sizeof(end))) + rc = 0; + else + rc = xive_endc_cache_update(x, blk, idx + xive_escalation_prio(x), + &end, false); + if (rc) + return rc; + + /* Mark/unmark all other prios with the new "u" bit and update + * escalation + */ + for (i = 0; i < xive_cfg_vp_prio(x); i++) { + if (i == xive_escalation_prio(x)) + continue; + end_orig = xive_get_end(x, idx + i); + if (!end_orig) + continue; + end = *end_orig; + if (enable) { + /* Set "u" bit */ + end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 1); + + /* Set new "N" for END escalation (vs. ESB) */ + /* TODO (Gen2+) : use ESB escalation configuration */ + end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1); + + /* Re-route escalation interrupt (previous + * route is lost !) to the gather queue + */ + end.w4 = xive_set_field32(END_W4_END_BLOCK, end.w4, blk); + end.w4 = xive_set_field32(END_W4_ESC_END_INDEX, + end.w4, idx + xive_escalation_prio(x)); + } else if (xive_get_field32(END_W0_UNCOND_ESCALATE, end.w0)) { + /* Clear the "u" bit, disable escalations if it was set */ + end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 0); + end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0); + } + if (!memcmp(end_orig, &end, sizeof(end))) + continue; + rc = xive_endc_cache_update(x, blk, idx + i, &end, false); + if (rc) + break; + } + + return rc; +} + +static int64_t opal_xive_set_vp_info(uint64_t vp_id, + uint64_t flags, + uint64_t report_cl_pair) +{ + struct xive *x; + struct xive_nvp *vp, vp_new; + uint32_t blk, idx; + bool group; + int64_t rc; + + if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group)) + return OPAL_PARAMETER; + /* We don't do groups yet */ + if (group) + return OPAL_PARAMETER; + if (report_cl_pair & 0xff) + return OPAL_PARAMETER; + x = xive_from_pc_blk(blk); + if (!x) + return OPAL_PARAMETER; + vp = xive_get_vp(x, idx); + if (!vp) + return OPAL_PARAMETER; + + /* Consistency check. */ + if ((flags & OPAL_XIVE_VP_SAVE_RESTORE) && !xive_cfg_save_restore(x)) + return OPAL_PARAMETER; + + lock(&x->lock); + + vp_new = *vp; + if (flags & OPAL_XIVE_VP_ENABLED) { + vp_new.w0 = xive_set_field32(NVP_W0_VALID, vp_new.w0, 1); + vp_new.w6 = cpu_to_be32(report_cl_pair >> 32); + vp_new.w7 = cpu_to_be32(report_cl_pair & 0xffffffff); + + if (flags & OPAL_XIVE_VP_SINGLE_ESCALATION) + rc = xive_setup_silent_gather(vp_id, true); + else + rc = xive_setup_silent_gather(vp_id, false); + + /* + * Prepare NVP to be HW owned for automatic save-restore + */ + if (xive_cfg_save_restore(x)) { + /* + * Set NVP privilege level. Default to OS. + * This check only makes sense for KVM guests + * currently. We would need an extra flag to + * distinguish from pool level. + */ + vp_new.w0 = xive_set_field32(NVP_W0_VPRIV, vp_new.w0, 0); + + vp_new.w2 = xive_set_field32(NVP_W2_CPPR, vp_new.w2, 0xFF); + vp_new.w0 = xive_set_field32(NVP_W0_HW, vp_new.w0, 1); + } + } else { + /* + * TODO (kvm): disabling a VP invalidates the associated ENDs. + * + * The loads then return all 1s which can be an issue for the + * Linux code to handle. + */ + + vp_new.w0 = vp_new.w6 = vp_new.w7 = 0; + rc = xive_setup_silent_gather(vp_id, false); + } + + if (rc) { + if (rc != OPAL_BUSY) + xive_dbg(x, "Silent gather setup failed with err %lld\n", rc); + goto bail; + } + + rc = xive_nxc_cache_update(x, blk, idx, &vp_new, false); + if (rc) + goto bail; + + /* When disabling, we scrub clean (invalidate the entry) so + * we can avoid cache ops in alloc/free + */ + if (!(flags & OPAL_XIVE_VP_ENABLED)) + xive_nxc_scrub_clean(x, blk, idx); + +bail: + unlock(&x->lock); + return rc; +} + +static int64_t opal_xive_get_vp_state(uint64_t vp_id, beint64_t *out_state) +{ + struct xive *x; + struct xive_nvp *vp; + uint32_t blk, idx; + int64_t rc; + bool group; + + if (!out_state || !xive_decode_vp(vp_id, &blk, &idx, NULL, &group)) + return OPAL_PARAMETER; + if (group) + return OPAL_PARAMETER; + x = xive_from_pc_blk(blk); + if (!x) + return OPAL_PARAMETER; + vp = xive_get_vp(x, idx); + if (!vp) + return OPAL_PARAMETER; + + /* Scrub the vp */ + lock(&x->lock); + rc = xive_nxc_scrub(x, blk, idx); + unlock(&x->lock); + if (rc) + return rc; + + if (!xive_get_field32(NVP_W0_VALID, vp->w0)) + return OPAL_WRONG_STATE; + + /* + * return a state matching the layout of WORD 0-1 of the TIMA + * as this is expected by current implementation. + */ + *out_state = cpu_to_be64(((uint64_t) 0x0) << 54 | + (uint64_t)xive_get_field32(NVP_W2_CPPR, vp->w2) << 48 | + (uint64_t)xive_get_field32(NVP_W2_IPB, vp->w2) << 40 | + (uint64_t)xive_get_field32(NVP_W2_LSMFB, vp->w2) << 32); + + return OPAL_SUCCESS; +} + +static void *xive_cpu_get_tima(struct cpu_thread *c) +{ + struct xive_cpu_state *xs = c->xstate; + struct xive *x = xs->xive; + + return x->ic_tm_direct_base + ((c->pir & 0xff) << x->ic_shift); +} + +static void xive_cleanup_cpu_tima(struct cpu_thread *c) +{ + struct xive_cpu_state *xs __unused = c->xstate; + void *cpu_tm_base = xive_cpu_get_tima(c); + uint8_t old_w2 __unused, w2 __unused; + + /* Reset the HW context */ + xive_reset_enable_thread(c); + + /* Set VT to 1 */ + old_w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2); + out_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80); + w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2); + + /* Dump HV state */ + xive_cpu_vdbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n", + xs->vp_blk, xs->vp_idx, + in_be64(cpu_tm_base + TM_QW3_HV_PHYS), + old_w2, w2); +} + +static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type) +{ + uint64_t val; + + /* We clear the whole thing */ + xive_regw(x, VC_AT_MACRO_KILL_MASK, 0); + xive_regw(x, VC_AT_MACRO_KILL, VC_AT_MACRO_KILL_VALID | + SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, type)); + + /* XXX Add timeout */ + for (;;) { + val = xive_regr(x, VC_AT_MACRO_KILL); + if (!(val & VC_AT_MACRO_KILL_VALID)) + break; + } + return 0; +} + +static int64_t xive_pc_ind_cache_kill(struct xive *x) +{ + uint64_t val; + + /* We clear the whole thing */ + xive_regw(x, PC_AT_KILL_MASK, 0); + xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID | + SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, VST_NVP)); + + /* XXX Add timeout */ + for (;;) { + val = xive_regr(x, PC_AT_KILL); + if (!(val & PC_AT_KILL_VALID)) + break; + } + return 0; +} + +static void xive_cleanup_vp_ind(struct xive *x) +{ + int i; + + xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count); + for (i = 0; i < x->vp_ind_count; i++) { + if (be64_to_cpu(x->vp_ind_base[i]) & VSD_FIRMWARE) { + xive_dbg(x, " %04x ... skip (firmware)\n", i); + continue; + } + if (x->vp_ind_base[i] != 0) { + x->vp_ind_base[i] = 0; + xive_dbg(x, " %04x ... cleaned\n", i); + } + } + xive_pc_ind_cache_kill(x); +} + +static void xive_cleanup_end_ind(struct xive *x) +{ + int i; + + xive_dbg(x, "Cleaning up %d END ind entries...\n", x->end_ind_count); + for (i = 0; i < x->end_ind_count; i++) { + if (be64_to_cpu(x->end_ind_base[i]) & VSD_FIRMWARE) { + xive_dbg(x, " %04x ... skip (firmware)\n", i); + continue; + } + if (x->end_ind_base[i] != 0) { + x->end_ind_base[i] = 0; + xive_dbg(x, " %04x ... cleaned\n", i); + } + } + xive_vc_ind_cache_kill(x, VST_END); +} + +static void xive_reset_one(struct xive *x) +{ + struct cpu_thread *c; + bool end_firmware; + int i; + + xive_notice(x, "Resetting one xive...\n"); + + lock(&x->lock); + + /* Check all interrupts are disabled */ + i = bitmap_find_one_bit(*x->int_enabled_map, 0, XIVE_INT_COUNT); + if (i >= 0) + xive_warn(x, "Interrupt %d (and maybe more) not disabled" + " at reset !\n", i); + + /* Reset IPI allocation */ + xive_dbg(x, "freeing alloc map %p/%p\n", + x->ipi_alloc_map, *x->ipi_alloc_map); + memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT)); + + xive_dbg(x, "Resetting ENDs...\n"); + + /* Reset all allocated ENDs and free the user ones */ + bitmap_for_each_one(*x->end_map, xive_end_bitmap_size(x), i) { + struct xive_end end0; + struct xive_end *end; + int j; + + if (i == 0) + continue; + end_firmware = false; + for (j = 0; j < xive_cfg_vp_prio(x); j++) { + uint32_t idx = (i << xive_cfg_vp_prio_shift(x)) | j; + + end = xive_get_end(x, idx); + if (!end) + continue; + + /* We need to preserve the firmware bit, otherwise + * we will incorrectly free the ENDs that are reserved + * for the physical CPUs + */ + if (xive_get_field32(END_W0_VALID, end->w0)) { + if (!xive_end_is_firmware1(end)) + xive_dbg(x, "END 0x%x:0x%x is valid at reset: %08x %08x\n", + x->block_id, idx, end->w0, end->w1); + end0 = *end; + xive_cleanup_end(&end0); + xive_endc_cache_update(x, x->block_id, idx, &end0, true); + } + if (xive_end_is_firmware1(end)) + end_firmware = true; + } + if (!end_firmware) + bitmap_clr_bit(*x->end_map, i); + } + + /* Take out all VPs from HW and reset all CPPRs to 0 */ + for_each_present_cpu(c) { + if (c->chip_id != x->chip_id) + continue; + if (!c->xstate) + continue; + xive_cleanup_cpu_tima(c); + } + + /* Reset all user-allocated VPs. This is inefficient, we should + * either keep a bitmap of allocated VPs or add an iterator to + * the buddy which is trickier but doable. + */ + for (i = 0; i < XIVE_VP_COUNT(x); i++) { + struct xive_nvp *vp; + struct xive_nvp vp0 = {0}; + + /* Ignore the physical CPU VPs */ + if (i >= xive_hw_vp_count && + i < (xive_hw_vp_base + xive_hw_vp_count)) + continue; + + /* Is the VP valid ? */ + vp = xive_get_vp(x, i); + if (!vp || !xive_get_field32(NVP_W0_VALID, vp->w0)) + continue; + + /* Clear it */ + xive_dbg(x, "VP 0x%x:0x%x is valid at reset\n", x->block_id, i); + xive_nxc_cache_update(x, x->block_id, i, &vp0, true); + } + + /* Forget about remaining donated pages */ + list_head_init(&x->donated_pages); + + /* And cleanup donated indirect VP and END pages */ + xive_cleanup_vp_ind(x); + xive_cleanup_end_ind(x); + + /* The rest must not be called with the lock held */ + unlock(&x->lock); + + /* Re-configure VPs */ + for_each_present_cpu(c) { + struct xive_cpu_state *xs = c->xstate; + + if (c->chip_id != x->chip_id || !xs) + continue; + + xive_init_cpu_exploitation(xs); + } +} + +static void xive_reset_mask_source_cb(struct irq_source *is, + void *data __unused) +{ + struct xive_src *s = container_of(is, struct xive_src, is); + struct xive *x; + uint32_t isn; + + if (is->ops != &xive_irq_source_ops) + return; + + /* Skip escalation sources */ + if (GIRQ_IS_ESCALATION(is->start)) + return; + + x = s->xive; + + /* Iterate all interrupts */ + for (isn = is->start; isn < is->end; isn++) { + /* Has it ever been enabled ? */ + if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn))) + continue; + /* Mask it and clear the enabled map bit */ + xive_vdbg(x, "[reset] disabling source 0x%x\n", isn); + __xive_set_irq_config(is, isn, 0, 0xff, isn, true, false); + bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)); + } +} + +void xive2_cpu_reset(void) +{ + struct cpu_thread *c = this_cpu(); + struct xive_cpu_state *xs = c->xstate; + + out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0); + + in_be64(xs->tm_ring1 + TM_SPC_PULL_POOL_CTX); +} + +static int64_t __xive_reset(uint64_t mode) +{ + struct proc_chip *chip; + + xive_mode = mode; + + /* Mask all interrupt sources */ + irq_for_each_source(xive_reset_mask_source_cb, NULL); + + /* For each XIVE do a sync... */ + for_each_chip(chip) { + if (!chip->xive) + continue; + xive_sync(chip->xive); + } + + /* For each XIVE reset everything else... */ + for_each_chip(chip) { + if (!chip->xive) + continue; + xive_reset_one(chip->xive); + } + + /* Cleanup global VP allocator */ + buddy_reset(xive_vp_buddy); + + /* + * We reserve the whole range of VP ids for HW threads. + */ + assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base, xive_threadid_shift)); + + return OPAL_SUCCESS; +} + +/* Called by fast reboot */ +int64_t xive2_reset(void) +{ + if (xive_mode == XIVE_MODE_NONE) + return OPAL_SUCCESS; + return __xive_reset(XIVE_MODE_EXPL); +} + +static int64_t opal_xive_reset(uint64_t mode) +{ + prlog(PR_DEBUG, "XIVE reset. mode = %llx\n", mode); + + if (!(mode & XIVE_MODE_EXPL)) { + prlog(PR_NOTICE, "No emulation mode. XIVE exploitation mode " + "is the default\n"); + } + + xive_expl_options = mode & ~XIVE_MODE_EXPL; + if (xive_expl_options & ~XIVE_EXPL_ALL_OPTIONS) { + prerror("invalid XIVE exploitation mode option %016llx\n", + xive_expl_options); + return OPAL_PARAMETER; + } + + return __xive_reset(XIVE_MODE_EXPL); +} + +static int64_t opal_xive_free_vp_block(uint64_t vp_base) +{ + uint32_t blk, idx, i, j, count; + uint8_t order; + bool group; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group)) + return OPAL_PARAMETER; + if (group) + return OPAL_PARAMETER; + if (blk) + return OPAL_PARAMETER; + if (order < (xive_chips_alloc_bits + 1)) + return OPAL_PARAMETER; + if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1)) + return OPAL_PARAMETER; + + count = 1 << order; + for (i = 0; i < count; i++) { + uint32_t vp_id = vp_base + i; + uint32_t blk, idx, end_blk, end_idx; + struct xive *x; + struct xive_nvp *vp; + + if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) { + prerror("Couldn't decode VP id %u\n", vp_id); + return OPAL_INTERNAL_ERROR; + } + x = xive_from_pc_blk(blk); + if (!x) { + prerror("Instance not found for deallocated VP" + " block %d\n", blk); + return OPAL_INTERNAL_ERROR; + } + vp = xive_get_vp(x, idx); + if (!vp) { + prerror("VP not found for deallocation !"); + return OPAL_INTERNAL_ERROR; + } + + /* VP must be disabled */ + if (xive_get_field32(NVP_W0_VALID, vp->w0)) { + prlog(PR_ERR, "freeing active VP %d\n", vp_id); + return OPAL_XIVE_FREE_ACTIVE; + } + + /* Not populated */ + if (vp->w5 == 0) + continue; + + end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5); + end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5); + + lock(&x->lock); + + /* Ensure ENDs are disabled and cleaned up. Ideally the caller + * should have done it but we double check it here + */ + for (j = 0; j < xive_cfg_vp_prio(x); j++) { + struct xive *end_x = xive_from_vc_blk(end_blk); + struct xive_end end, *orig_end = xive_get_end(end_x, end_idx + j); + + if (!xive_get_field32(END_W0_VALID, orig_end->w0)) + continue; + + prlog(PR_WARNING, "freeing VP %d with queue %d active\n", + vp_id, j); + end = *orig_end; + xive_cleanup_end(&end); + xive_endc_cache_update(x, end_blk, end_idx + j, &end, true); + } + + /* Mark it not populated so we don't try to free it again */ + vp->w5 = 0; + + if (end_blk != blk) { + prerror("Block mismatch trying to free ENDs\n"); + unlock(&x->lock); + return OPAL_INTERNAL_ERROR; + } + + xive_free_end_set(x, end_idx); + unlock(&x->lock); + } + + xive_free_vps(vp_base); + + return OPAL_SUCCESS; +} + +static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order) +{ + uint32_t vp_base, ends, count, i; + int64_t rc; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + prlog(PR_TRACE, "opal_xive_alloc_vp_block(%d)\n", alloc_order); + + vp_base = xive_alloc_vps(alloc_order); + if (XIVE_ALLOC_IS_ERR(vp_base)) { + if (vp_base == XIVE_ALLOC_NO_IND) + return OPAL_XIVE_PROVISIONING; + return OPAL_RESOURCE; + } + + /* Allocate ENDs and initialize VPs */ + count = 1 << alloc_order; + for (i = 0; i < count; i++) { + uint32_t vp_id = vp_base + i; + uint32_t blk, idx; + struct xive *x; + struct xive_nvp *vp; + + if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) { + prerror("Couldn't decode VP id %u\n", vp_id); + return OPAL_INTERNAL_ERROR; + } + x = xive_from_pc_blk(blk); + if (!x) { + prerror("Instance not found for allocated VP" + " block %d\n", blk); + rc = OPAL_INTERNAL_ERROR; + goto fail; + } + vp = xive_get_vp(x, idx); + if (!vp) { + prerror("VP not found after allocation !"); + rc = OPAL_INTERNAL_ERROR; + goto fail; + } + + /* Allocate ENDs, if fails, free the VPs and return */ + lock(&x->lock); + ends = xive_alloc_end_set(x, false); + unlock(&x->lock); + if (XIVE_ALLOC_IS_ERR(ends)) { + if (ends == XIVE_ALLOC_NO_IND) + rc = OPAL_XIVE_PROVISIONING; + else + rc = OPAL_RESOURCE; + goto fail; + } + + /* Initialize the VP structure. We don't use a cache watch + * as we have made sure when freeing the entries to scrub + * it out of the cache. + */ + memset(vp, 0, sizeof(*vp)); + + /* Store the END base of the VP in W5 (new in p10) */ + xive_vp_set_end_base(vp, blk, ends); + } + return vp_base; + fail: + opal_xive_free_vp_block(vp_base); + + return rc; +} + +static int64_t xive_try_allocate_irq(struct xive *x) +{ + int idx, base_idx, max_count, girq; + struct xive_eas *eas; + + lock(&x->lock); + + base_idx = x->int_ipi_top - x->int_base; + max_count = x->int_hw_bot - x->int_ipi_top; + + idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count); + if (idx < 0) { + unlock(&x->lock); + return OPAL_RESOURCE; + } + bitmap_set_bit(*x->ipi_alloc_map, idx); + girq = x->int_base + idx; + + /* Mark the EAS valid. Don't bother with the HW cache, it's + * still masked anyway, the cache will be updated when unmasked + * and configured. + */ + eas = xive_get_eas(x, girq); + if (!eas) { + bitmap_clr_bit(*x->ipi_alloc_map, idx); + unlock(&x->lock); + return OPAL_PARAMETER; + } + eas->w = xive_set_field64(EAS_VALID, 0, 1) | + xive_set_field64(EAS_MASKED, 0, 1) | + xive_set_field64(EAS_END_DATA, 0, girq); + unlock(&x->lock); + + return girq; +} + +static int64_t opal_xive_allocate_irq(uint32_t chip_id) +{ + struct proc_chip *chip; + bool try_all = false; + int64_t rc; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + + if (chip_id == OPAL_XIVE_ANY_CHIP) { + try_all = true; + chip_id = this_cpu()->chip_id; + } + chip = get_chip(chip_id); + if (!chip) + return OPAL_PARAMETER; + + /* Try initial target chip */ + if (!chip->xive) + rc = OPAL_PARAMETER; + else + rc = xive_try_allocate_irq(chip->xive); + if (rc >= 0 || !try_all) + return rc; + + /* Failed and we try all... do so */ + for_each_chip(chip) { + if (!chip->xive) + continue; + rc = xive_try_allocate_irq(chip->xive); + if (rc >= 0) + break; + } + return rc; +} + +static int64_t opal_xive_free_irq(uint32_t girq) +{ + struct irq_source *is = irq_find_source(girq); + struct xive_src *s = container_of(is, struct xive_src, is); + struct xive *x = xive_from_isn(girq); + struct xive_eas *eas; + uint32_t idx; + + if (xive_mode != XIVE_MODE_EXPL) + return OPAL_WRONG_STATE; + if (!x || !is) + return OPAL_PARAMETER; + + idx = GIRQ_TO_IDX(girq); + + lock(&x->lock); + + eas = xive_get_eas(x, girq); + if (!eas) { + unlock(&x->lock); + return OPAL_PARAMETER; + } + + /* Mask the interrupt source */ + xive_update_irq_mask(s, girq - s->esb_base, true); + + /* Mark the EAS masked and invalid */ + eas->w = xive_set_field64(EAS_VALID, 0, 1) | + xive_set_field64(EAS_MASKED, 0, 1); + xive_easc_scrub(x, x->block_id, idx); + + /* Free it */ + if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) { + unlock(&x->lock); + return OPAL_PARAMETER; + } + bitmap_clr_bit(*x->ipi_alloc_map, idx); + bitmap_clr_bit(*x->int_enabled_map, idx); + unlock(&x->lock); + + return OPAL_SUCCESS; +} + +static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir) +{ + struct cpu_thread *c = find_cpu_by_pir(pir); + struct xive_cpu_state *xs; + struct xive *x; + void *cpu_tm_base; + uint64_t v0,v1; + + if (!c) + return OPAL_PARAMETER; + xs = c->xstate; + if (!xs || !xs->tm_ring1) + return OPAL_INTERNAL_ERROR; + x = xs->xive; + cpu_tm_base = xive_cpu_get_tima(c); + + lock(&x->lock); + v0 = in_be64(cpu_tm_base + offset); + if (offset == TM_QW3_HV_PHYS) { + v1 = in_8(cpu_tm_base + offset + 8); + v1 <<= 56; + } else { + v1 = in_be32(cpu_tm_base + offset + 8); + v1 <<= 32; + } + prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n); + prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR" + " W2 W3\n", pir); + prlog(PR_INFO, "CPU[%04x]: %02x %02x %02x %02x %02x " + "%02x %02x %02x %08x %08x\n", pir, + (uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff, + (uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff, + (uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff, + (uint8_t)(v0 >> 8) & 0xff, (uint8_t)(v0 ) & 0xff, + (uint32_t)(v1 >> 32) & 0xffffffff, + (uint32_t)(v1 & 0xffffffff)); + unlock(&x->lock); + + return OPAL_SUCCESS; +} + +static int64_t opal_xive_dump_vp(uint32_t vp_id) +{ + uint32_t blk, idx; + uint8_t order; + bool group; + struct xive *x; + struct xive_nvp *vp; + uint32_t *vpw; + + if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group)) + return OPAL_PARAMETER; + + x = xive_from_vc_blk(blk); + if (!x) + return OPAL_PARAMETER; + vp = xive_get_vp(x, idx); + if (!vp) + return OPAL_PARAMETER; + lock(&x->lock); + + xive_nxc_scrub_clean(x, blk, idx); + + vpw = ((uint32_t *)vp) + (group ? 8 : 0); + prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id, + vpw[0], vpw[1], vpw[2], vpw[3]); + prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id, + vpw[4], vpw[5], vpw[6], vpw[7]); + unlock(&x->lock); + + return OPAL_SUCCESS; +} + +static int64_t opal_xive_sync_irq_src(uint32_t girq) +{ + struct xive *x = xive_from_isn(girq); + + if (!x) + return OPAL_PARAMETER; + return xive_sync(x); +} + +static int64_t opal_xive_sync_irq_target(uint32_t girq) +{ + uint32_t target, vp_blk; + struct xive *x; + + if (!xive_get_irq_targetting(girq, &target, NULL, NULL)) + return OPAL_PARAMETER; + if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL)) + return OPAL_PARAMETER; + x = xive_from_pc_blk(vp_blk); + if (!x) + return OPAL_PARAMETER; + return xive_sync(x); +} + +static int64_t opal_xive_sync(uint32_t type, uint32_t id) +{ + int64_t rc = OPAL_SUCCESS;; + + if (type & XIVE_SYNC_EAS) + rc = opal_xive_sync_irq_src(id); + if (rc) + return rc; + if (type & XIVE_SYNC_QUEUE) + rc = opal_xive_sync_irq_target(id); + if (rc) + return rc; + + /* Add more ... */ + + return rc; +} + +static int64_t opal_xive_dump(uint32_t type, uint32_t id) +{ + switch (type) { + case XIVE_DUMP_TM_HYP: + return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id); + case XIVE_DUMP_TM_POOL: + return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id); + case XIVE_DUMP_TM_OS: + return opal_xive_dump_tm(TM_QW1_OS, "OS ", id); + case XIVE_DUMP_TM_USER: + return opal_xive_dump_tm(TM_QW0_USER, "USER", id); + case XIVE_DUMP_VP: + return opal_xive_dump_vp(id); + default: + return OPAL_PARAMETER; + } +} + +static void xive_init_globals(void) +{ + uint32_t i; + + for (i = 0; i < XIVE_MAX_CHIPS; i++) + xive_block_to_chip[i] = XIVE_INVALID_CHIP; +} + +/* + * The global availability of some capabilities used in other drivers + * (PHB, PSI) is deduced from the capabilities of the first XIVE chip + * of the system. It should be common to all chips. + */ +bool xive2_cap_phb_pq_disable(void) +{ + return xive_has_cap(one_xive, CQ_XIVE_CAP_PHB_PQ_DISABLE); +} + +bool xive2_cap_phb_abt(void) +{ + if (!xive_has_cap(one_xive, CQ_XIVE_CAP_PHB_ABT)) + return false; + + /* + * We need 'PQ disable' to use ABT mode, else the OS will use + * two different sets of ESB pages (PHB and IC) to control the + * interrupt sources. Can not work. + */ + if (!xive2_cap_phb_pq_disable()) { + prlog_once(PR_ERR, "ABT mode is set without PQ disable. " + "Ignoring bogus configuration\n"); + return false; + } + + return true; +} + +bool xive2_cap_store_eoi(void) +{ + return xive_has_cap(one_xive, CQ_XIVE_CAP_STORE_EOI); +} + +void xive2_init(void) +{ + struct dt_node *np; + struct proc_chip *chip; + struct cpu_thread *cpu; + bool first = true; + + /* Look for xive nodes and do basic inits */ + dt_for_each_compatible(dt_root, np, "ibm,power10-xive-x") { + struct xive *x; + + /* Initialize some global stuff */ + if (first) + xive_init_globals(); + + /* Create/initialize the xive instance */ + x = init_one_xive(np); + if (first) + one_xive = x; + first = false; + } + if (first) + return; + + /* + * P8 emulation is not supported on P10 anymore. Exploitation + * is the default XIVE mode. We might introduce a GEN2 mode. + */ + xive_mode = XIVE_MODE_EXPL; + + /* Init VP allocator */ + xive_init_vp_allocator(); + + /* Create a device-tree node for Linux use */ + xive_create_mmio_dt_node(one_xive); + + /* Some inits must be done after all xive have been created + * such as setting up the forwarding ports + */ + for_each_chip(chip) { + if (chip->xive) + late_init_one_xive(chip->xive); + } + + /* Initialize per-cpu structures */ + for_each_present_cpu(cpu) { + xive_init_cpu(cpu); + } + + /* Calling boot CPU */ + xive2_cpu_callin(this_cpu()); + + /* Register XIVE exploitation calls */ + opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1); + opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6); + opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4); + opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4); + opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7); + opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5); + opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2); + opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1); + opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1); + opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1); + opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1); + opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5); + opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3); + opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2); + opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2); + opal_register(OPAL_XIVE_GET_QUEUE_STATE, opal_xive_get_queue_state, 4); + opal_register(OPAL_XIVE_SET_QUEUE_STATE, opal_xive_set_queue_state, 4); + opal_register(OPAL_XIVE_GET_VP_STATE, opal_xive_get_vp_state, 2); +} |