diff options
Diffstat (limited to 'roms/skiboot/libflash/test/test-blocklevel.c')
-rw-r--r-- | roms/skiboot/libflash/test/test-blocklevel.c | 664 |
1 files changed, 664 insertions, 0 deletions
diff --git a/roms/skiboot/libflash/test/test-blocklevel.c b/roms/skiboot/libflash/test/test-blocklevel.c new file mode 100644 index 000000000..7a4fe19ac --- /dev/null +++ b/roms/skiboot/libflash/test/test-blocklevel.c @@ -0,0 +1,664 @@ +// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later +/* Copyright 2013-2018 IBM Corp. */ + +#include <stdio.h> +#include <stdlib.h> +#include <stdint.h> +#include <string.h> + +#include <libflash/blocklevel.h> + +#include "../ecc.c" +#include "../blocklevel.c" + +#define __unused __attribute__((unused)) + +#define ERR(fmt...) fprintf(stderr, fmt) + +bool libflash_debug; + +static int bl_test_bad_read(struct blocklevel_device *bl __unused, uint64_t pos __unused, + void *buf __unused, uint64_t len __unused) +{ + return FLASH_ERR_PARM_ERROR; +} + +static int bl_test_read(struct blocklevel_device *bl, uint64_t pos, void *buf, uint64_t len) +{ + if (pos + len > 0x1000) + return FLASH_ERR_PARM_ERROR; + + memcpy(buf, bl->priv + pos, len); + + return 0; +} + +static int bl_test_bad_write(struct blocklevel_device *bl __unused, uint64_t pos __unused, + const void *buf __unused, uint64_t len __unused) +{ + return FLASH_ERR_PARM_ERROR; +} + +static int bl_test_write(struct blocklevel_device *bl, uint64_t pos, const void *buf, uint64_t len) +{ + if (pos + len > 0x1000) + return FLASH_ERR_PARM_ERROR; + + memcpy(bl->priv + pos, buf, len); + + return 0; +} + +static int bl_test_erase(struct blocklevel_device *bl, uint64_t pos, uint64_t len) +{ + if (pos + len > 0x1000) + return FLASH_ERR_PARM_ERROR; + + memset(bl->priv + pos, 0xff, len); + + return 0; +} + +static void dump_buf(uint8_t *buf, int start, int end, int miss) +{ + int i; + + printf("pos: value\n"); + for (i = start; i < end; i++) + printf("%04x: %c%s\n", i, buf[i] == 0xff ? '-' : buf[i], i == miss ? " <- First missmatch" : ""); +} + +/* + * Returns zero if the buffer is ok. Otherwise returns the position of + * the mismatch. If the mismatch is at zero -1 is returned + */ +static int check_buf(uint8_t *buf, int zero_start, int zero_end) +{ + int i; + + for (i = 0; i < 0x1000; i++) { + if (i >= zero_start && i < zero_end && buf[i] != 0xff) + return i == 0 ? -1 : i; + if ((i < zero_start || i >= zero_end) && buf[i] != (i % 26) + 'a') + return i == 0 ? -1 : i; + } + + return 0; +} + +static void reset_buf(uint8_t *buf) +{ + int i; + + for (i = 0; i < 0x1000; i++) { + /* This gives repeating a - z which will be nice to visualise */ + buf[i] = (i % 26) + 'a'; + } +} + +static void print_ptr(void *ptr, int len) +{ + int i; + char *p = ptr; + + printf("0x"); + for (i = 0; i < len; i++) { + putchar(*p); + if (i && i % 8 == 0) { + putchar('\n'); + if (len - i) + printf("0x"); + } + } + putchar('\n'); +} + +int main(void) +{ + struct blocklevel_device bl_mem = { 0 }; + struct blocklevel_device *bl = &bl_mem; + uint64_t with_ecc[10], without_ecc[10]; + char *buf = NULL, *data = NULL; + int i, rc, miss; + + if (blocklevel_ecc_protect(bl, 0, 0x1000)) { + ERR("Failed to blocklevel_ecc_protect!\n"); + return 1; + } + + /* 0x1000 -> 0x3000 should remain unprotected */ + + if (blocklevel_ecc_protect(bl, 0x3000, 0x1000)) { + ERR("Failed to blocklevel_ecc_protect(0x3000, 0x1000)\n"); + return 1; + } + if (blocklevel_ecc_protect(bl, 0x2f00, 0x1100)) { + ERR("Failed to blocklevel_ecc_protect(0x2f00, 0x1100)\n"); + return 1; + } + + /* Zero length protection */ + if (!blocklevel_ecc_protect(bl, 0x4000, 0)) { + ERR("Shouldn't have succeeded blocklevel_ecc_protect(0x4000, 0)\n"); + return 1; + } + + /* Minimum creatable size */ + if (blocklevel_ecc_protect(bl, 0x4000, BYTES_PER_ECC)) { + ERR("Failed to blocklevel_ecc_protect(0x4000, BYTES_PER_ECC)\n"); + return 1; + } + + /* Deal with overlapping protections */ + if (blocklevel_ecc_protect(bl, 0x100, 0x1000)) { + ERR("Failed to protect overlaping region blocklevel_ecc_protect(0x100, 0x1000)\n"); + return 1; + } + + /* Deal with overflow */ + if (!blocklevel_ecc_protect(bl, 1, 0xFFFFFFFF)) { + ERR("Added an 'overflow' protection blocklevel_ecc_protect(1, 0xFFFFFFFF)\n"); + return 1; + } + + /* Protect everything */ + if (blocklevel_ecc_protect(bl, 0, 0xFFFFFFFF)) { + ERR("Couldn't protect everything blocklevel_ecc_protect(0, 0xFFFFFFFF)\n"); + return 1; + } + + if (ecc_protected(bl, 0, 1, NULL) != 1) { + ERR("Invaid result for ecc_protected(0, 1)\n"); + return 1; + } + + if (ecc_protected(bl, 0, 0x1000, NULL) != 1) { + ERR("Invalid result for ecc_protected(0, 0x1000)\n"); + return 1; + } + + if (ecc_protected(bl, 0x100, 0x100, NULL) != 1) { + ERR("Invalid result for ecc_protected(0x0100, 0x100)\n"); + return 1; + } + + /* Clear the protections */ + bl->ecc_prot.n_prot = 0; + /* Reprotect */ + if (blocklevel_ecc_protect(bl, 0x3000, 0x1000)) { + ERR("Failed to blocklevel_ecc_protect(0x3000, 0x1000)\n"); + return 1; + } + /* Deal with overlapping protections */ + if (blocklevel_ecc_protect(bl, 0x100, 0x1000)) { + ERR("Failed to protect overlaping region blocklevel_ecc_protect(0x100, 0x1000)\n"); + return 1; + } + + if (ecc_protected(bl, 0x1000, 0, NULL) != 1) { + ERR("Invalid result for ecc_protected(0x1000, 0)\n"); + return 1; + } + + if (ecc_protected(bl, 0x1000, 0x1000, NULL) != -1) { + ERR("Invalid result for ecc_protected(0x1000, 0x1000)\n"); + return 1; + } + + if (ecc_protected(bl, 0x1000, 0x100, NULL) != 1) { + ERR("Invalid result for ecc_protected(0x1000, 0x100)\n"); + return 1; + } + + if (ecc_protected(bl, 0x2000, 0, NULL) != 0) { + ERR("Invalid result for ecc_protected(0x2000, 0)\n"); + return 1; + } + + if (ecc_protected(bl, 0x4000, 1, NULL) != 0) { + ERR("Invalid result for ecc_protected(0x4000, 1)\n"); + return 1; + } + + /* Check for asking for a region with mixed protection */ + if (ecc_protected(bl, 0x100, 0x2000, NULL) != -1) { + ERR("Invalid result for ecc_protected(0x100, 0x2000)\n"); + return 1; + } + + /* Test the auto extending of regions */ + if (blocklevel_ecc_protect(bl, 0x5000, 0x100)) { + ERR("Failed to blocklevel_ecc_protect(0x5000, 0x100)\n"); + return 1; + } + + if (blocklevel_ecc_protect(bl, 0x5100, 0x100)) { + ERR("Failed to blocklevel_ecc_protect(0x5100, 0x100)\n"); + return 1; + } + + if (blocklevel_ecc_protect(bl, 0x5200, 0x100)) { + ERR("Failed to blocklevel_ecc_protect(0x5200, 0x100)\n"); + return 1; + } + + if (ecc_protected(bl, 0x5120, 0x10, NULL) != 1) { + ERR("Invalid result for ecc_protected(0x5120, 0x10)\n"); + return 1; + } + + if (blocklevel_ecc_protect(bl, 0x4f00, 0x100)) { + ERR("Failed to blocklevel_ecc_protected(0x4900, 0x100)\n"); + return 1; + } + + if (blocklevel_ecc_protect(bl, 0x4900, 0x100)) { + ERR("Failed to blocklevel_ecc_protected(0x4900, 0x100)\n"); + return 1; + } + + if (ecc_protected(bl, 0x4920, 0x10, NULL) != 1) { + ERR("Invalid result for ecc_protected(0x4920, 0x10)\n"); + return 1; + } + + if (blocklevel_ecc_protect(bl, 0x5290, 0x10)) { + ERR("Failed to blocklevel_ecc_protect(0x5290, 0x10)\n"); + return 1; + } + + /* Test the auto extending of regions */ + if (blocklevel_ecc_protect(bl, 0x6000, 0x100)) { + ERR("Failed to blocklevel_ecc_protect(0x6000, 0x100)\n"); + return 1; + } + + if (blocklevel_ecc_protect(bl, 0x6200, 0x100)) { + ERR("Failed to blocklevel_ecc_protect(0x6200, 0x100)\n"); + return 1; + } + + /* Test ECC reading and writing being 100% transparent to the + * caller */ + buf = malloc(0x1000); + data = malloc(0x100); + if (!buf || !data) { + ERR("Malloc failed\n"); + rc = 1; + goto out; + } + memset(bl, 0, sizeof(*bl)); + bl_mem.read = &bl_test_read; + bl_mem.write = &bl_test_write; + bl_mem.erase = &bl_test_erase; + bl_mem.erase_mask = 0xff; + bl_mem.priv = buf; + reset_buf(buf); + + + /* + * Test 1: One full and exact erase block, this shouldn't call + * read or write, ensure this fails if it does. + */ + bl_mem.write = &bl_test_bad_write; + bl_mem.read = &bl_test_bad_read; + if (blocklevel_smart_erase(bl, 0x100, 0x100)) { + ERR("Failed to blocklevel_smart_erase(0x100, 0x100)\n"); + goto out; + } + miss = check_buf(buf, 0x100, 0x200); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x100) at 0x%0x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); + dump_buf(buf, 0x1fc, 0x205, miss == -1 ? 0 : miss); + goto out; + } + bl_mem.read = &bl_test_read; + bl_mem.write = &bl_test_write; + + reset_buf(buf); + /* Test 2: Only touch one erase block */ + if (blocklevel_smart_erase(bl, 0x20, 0x40)) { + ERR("Failed to blocklevel_smart_erase(0x20, 0x40)\n"); + goto out; + } + miss = check_buf(buf, 0x20, 0x60); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x20, 0x40) at 0x%x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0x1c, 0x65, miss == -1 ? 0 : miss); + goto out; + } + + reset_buf(buf); + /* Test 3: Start aligned but finish somewhere in it */ + if (blocklevel_smart_erase(bl, 0x100, 0x50)) { + ERR("Failed to blocklevel_smart_erase(0x100, 0x50)\n"); + goto out; + } + miss = check_buf(buf, 0x100, 0x150); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x50) at 0x%0x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); + dump_buf(buf, 0x14c, 0x155, miss == -1 ? 0 : miss); + goto out; + } + + reset_buf(buf); + /* Test 4: Start somewhere in it, finish aligned */ + if (blocklevel_smart_erase(bl, 0x50, 0xb0)) { + ERR("Failed to blocklevel_smart_erase(0x50, 0xb0)\n"); + goto out; + } + miss = check_buf(buf, 0x50, 0x100); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x50, 0xb0) at 0x%x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0x4c, 0x55, miss == -1 ? 0 : miss); + dump_buf(buf, 0x100, 0x105, miss == -1 ? 0 : miss); + goto out; + } + + reset_buf(buf); + /* Test 5: Cover two erase blocks exactly */ + if (blocklevel_smart_erase(bl, 0x100, 0x200)) { + ERR("Failed to blocklevel_smart_erase(0x100, 0x200)\n"); + goto out; + } + miss = check_buf(buf, 0x100, 0x300); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x200) at 0x%x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); + dump_buf(buf, 0x2fc, 0x305, miss == -1 ? 0 : miss); + goto out; + } + + reset_buf(buf); + /* Test 6: Erase 1.5 blocks (start aligned) */ + if (blocklevel_smart_erase(bl, 0x100, 0x180)) { + ERR("Failed to blocklevel_smart_erase(0x100, 0x180)\n"); + goto out; + } + miss = check_buf(buf, 0x100, 0x280); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x180) at 0x%x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); + dump_buf(buf, 0x27c, 0x285, miss == -1 ? 0 : miss); + goto out; + } + + reset_buf(buf); + /* Test 7: Erase 1.5 blocks (end aligned) */ + if (blocklevel_smart_erase(bl, 0x80, 0x180)) { + ERR("Failed to blocklevel_smart_erase(0x80, 0x180)\n"); + goto out; + } + miss = check_buf(buf, 0x80, 0x200); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x80, 0x180) at 0x%x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0x7c, 0x85, miss == -1 ? 0 : miss); + dump_buf(buf, 0x1fc, 0x205, miss == -1 ? 0 : miss); + goto out; + } + + reset_buf(buf); + /* Test 8: Erase a big section, not aligned */ + if (blocklevel_smart_erase(bl, 0x120, 0x544)) { + ERR("Failed to blocklevel_smart_erase(0x120, 0x544)\n"); + goto out; + } + miss = check_buf(buf, 0x120, 0x664); + if (miss) { + ERR("Buffer mismatch after blocklevel_smart_erase(0x120, 0x544) at 0x%x\n", + miss == -1 ? 0 : miss); + dump_buf(buf, 0x11c, 0x125, miss == -1 ? 0 : miss); + dump_buf(buf, 0x65f, 0x669, miss == -1 ? 0 : miss); + goto out; + } + + bl_mem.priv = buf; + reset_buf(buf); + + for (i = 0; i < 0x100; i++) + data[i] = i; + + /* This really shouldn't fail */ + rc = blocklevel_ecc_protect(bl, 0, 0x100); + if (rc) { + ERR("Couldn't blocklevel_ecc_protect(0, 0x100)\n"); + goto out; + } + + rc = blocklevel_write(bl, 0, data, 0x100); + if (rc) { + ERR("Couldn't blocklevel_write(0, 0x100)\n"); + goto out; + } + + rc = blocklevel_write(bl, 0x200, data, 0x100); + if (rc) { + ERR("Couldn't blocklevel_write(0x200, 0x100)\n"); + goto out; + } + + /* + * 0x50 once adjusted for the presence of ECC becomes 0x5a which + * is ECC aligned. + */ + rc = blocklevel_read(bl, 0x50, with_ecc, 8); + if (rc) { + ERR("Couldn't blocklevel_read(0x50, 8) with ecc rc=%d\n", rc); + goto out; + } + rc = blocklevel_read(bl, 0x250, without_ecc, 8); + if (rc) { + ERR("Couldn't blocklevel_read(0x250, 8) without ecc rc=%d\n", rc); + goto out; + } + if (memcmp(with_ecc, without_ecc, 8) || memcmp(with_ecc, &data[0x50], 8)) { + ERR("ECC read and non-ECC read don't match or are wrong line: %d\n", __LINE__); + print_ptr(with_ecc, 8); + print_ptr(without_ecc, 8); + print_ptr(&data[50], 8); + rc = 1; + goto out; + } + + /* + * 0x50 once adjusted for the presence of ECC becomes 0x5a which + * is ECC aligned. + * So 0x4f won't be aligned! + */ + rc = blocklevel_read(bl, 0x4f, with_ecc, 8); + if (rc) { + ERR("Couldn't blocklevel_read(0x4f, 8) with ecc %d\n", rc); + goto out; + } + rc = blocklevel_read(bl, 0x24f, without_ecc, 8); + if (rc) { + ERR("Couldn't blocklevel_read(0x24f, 8) without ecc %d\n", rc); + goto out; + } + if (memcmp(with_ecc, without_ecc, 8) || memcmp(with_ecc, &data[0x4f], 8)) { + ERR("ECC read and non-ECC read don't match or are wrong line: %d\n", __LINE__); + print_ptr(with_ecc, 8); + print_ptr(without_ecc, 8); + print_ptr(&data[0x4f], 8); + rc = 1; + goto out; + } + + /* + * 0x50 once adjusted for the presence of ECC becomes 0x5a which + * is ECC aligned. + */ + rc = blocklevel_read(bl, 0x50, with_ecc, 16); + if (rc) { + ERR("Couldn't blocklevel_read(0x50, 16) with ecc %d\n", rc); + goto out; + } + rc = blocklevel_read(bl, 0x250, without_ecc, 16); + if (rc) { + ERR("Couldn't blocklevel_read(0x250, 16) without ecc %d\n", rc); + goto out; + } + if (memcmp(with_ecc, without_ecc, 16)|| memcmp(with_ecc, &data[0x50], 16)) { + ERR("(long read )ECC read and non-ECC read don't match or are wrong line: %d\n", __LINE__); + print_ptr(with_ecc, 16); + print_ptr(without_ecc, 16); + print_ptr(&data[0x50], 16); + rc = 1; + goto out; + } + + /* + * 0x50 once adjusted for the presence of ECC becomes 0x5a which + * is ECC aligned. So 4f won't be. + */ + rc = blocklevel_read(bl, 0x4f, with_ecc, 24); + if (rc) { + ERR("Couldn't blocklevel_read(0x4f, 24) with ecc %d\n", rc); + goto out; + } + rc = blocklevel_read(bl, 0x24f, without_ecc, 24); + if (rc) { + ERR("Couldn't blocklevel_read(0x24f, 24) without ecc %d\n", rc); + goto out; + } + if (memcmp(with_ecc, without_ecc, 24)|| memcmp(with_ecc, &data[0x4f], 24)) { + ERR("(long read )ECC read and non-ECC read don't match or are wrong: %d\n", __LINE__); + print_ptr(with_ecc, 24); + print_ptr(without_ecc, 24); + print_ptr(&data[0x4f], 24); + rc = 1; + goto out; + } + + /* + * Now lets try to write at non ECC aligned positions + * Go easy first, 0x50 becomes 0x5a which is ECC byte aligned but + * not aligned to the start of the partition + */ + + rc = blocklevel_write(bl, 0x50, data, 0xb0); + if (rc) { + ERR("Couldn't blocklevel_write()\n"); + goto out; + } + /* Read 8 bytes before to make sure we didn't ruin that */ + rc = blocklevel_read(bl, 0x48, with_ecc, 24); + if (rc) { + ERR("Couldn't blocklevel_read() with ecc %d\n", rc); + goto out; + } + if (memcmp(with_ecc, data + 0x48, 8) || memcmp(with_ecc + 1, data, 16)) { + rc = 1; + ERR("Couldn't read back what we thought we wrote line: %d\n", __LINE__); + print_ptr(with_ecc, 24); + print_ptr(&data[0x48], 8); + print_ptr(data, 16); + goto out; + } + + /* Ok lets get tricky */ + rc = blocklevel_write(bl, 0x31, data, 0xcf); + if (rc) { + ERR("Couldn't blocklevel_write(0x31, 0xcf)\n"); + goto out; + } + /* Read 8 bytes before to make sure we didn't ruin that */ + rc = blocklevel_read(bl, 0x29, with_ecc, 24); + if (rc) { + ERR("Couldn't blocklevel_read(0x29, 24) with ecc rc=%d\n", rc); + goto out; + } + if (memcmp(with_ecc, &data[0x29], 8) || memcmp(with_ecc + 1, data, 16)) { + ERR("Couldn't read back what we thought we wrote line: %d\n", __LINE__); + print_ptr(with_ecc, 24); + print_ptr(&data[0x29], 8); + print_ptr(data, 16); + rc = 1; + goto out; + } + + /* + * Rewrite the pattern that we've messed up + */ + rc = blocklevel_write(bl, 0, data, 0x100); + if (rc) { + ERR("Couldn't blocklevel_write(0, 0x100) to reset\n"); + goto out; + } + + /* Be unalignmed as possible from now on, starting somewhat easy */ + rc = blocklevel_read(bl, 0, with_ecc, 5); + if (rc) { + ERR("Couldn't blocklevel_write(0, 5)\n"); + goto out; + } + if (memcmp(with_ecc, data, 5)) { + ERR("blocklevel_read 5, 0) didn't match line: %d\n", __LINE__); + print_ptr(with_ecc, 5); + print_ptr(data, 5); + rc = 1; + goto out; + } + + /* 39 is neither divisible by 8 or by 9 */ + rc = blocklevel_read(bl, 39, with_ecc, 5); + if (rc) { + ERR("Couldn't blocklevel_write(39, 5)\n"); + goto out; + } + if (memcmp(with_ecc, &data[39], 5)) { + ERR("blocklevel_read(5, 39() didn't match line: %d\n", __LINE__); + print_ptr(with_ecc, 5); + print_ptr(&data[39], 5); + rc = 1; + goto out; + } + + rc = blocklevel_read(bl, 0xb, &with_ecc, 39); + if (rc) { + ERR("Couldn't blocklevel_read(0xb, 39)\n"); + goto out; + } + if (memcmp(with_ecc, &data[0xb], 39)) { + ERR("Strange sized and positioned read failed, blocklevel_read(0xb, 39) line: %d\n", __LINE__); + print_ptr(with_ecc, 39); + print_ptr(&data[0xb], 39); + rc = 1; + goto out; + } + + rc = blocklevel_write(bl, 39, data, 50); + if (rc) { + ERR("Couldn't blocklevel_write(39, 50)\n"); + goto out; + } + + rc = blocklevel_read(bl, 32, with_ecc, 39); + if (rc) { + ERR("Couldn't blocklevel_read(32, 39)\n"); + goto out; + } + + if (memcmp(with_ecc, &data[32], 7) || memcmp(((char *)with_ecc) + 7, data, 32)) { + ERR("Read back of odd placed/odd sized write failed, blocklevel_read(32, 39) line: %d\n", __LINE__); + print_ptr(with_ecc, 39); + print_ptr(&data[32], 7); + print_ptr(data, 32); + rc = 1; + goto out; + } + +out: + free(buf); + free(data); +return rc; +} |