diff options
Diffstat (limited to 'roms/u-boot/arch/arm/mach-sunxi/dram_sun9i.c')
-rw-r--r-- | roms/u-boot/arch/arm/mach-sunxi/dram_sun9i.c | 960 |
1 files changed, 960 insertions, 0 deletions
diff --git a/roms/u-boot/arch/arm/mach-sunxi/dram_sun9i.c b/roms/u-boot/arch/arm/mach-sunxi/dram_sun9i.c new file mode 100644 index 000000000..14be212e8 --- /dev/null +++ b/roms/u-boot/arch/arm/mach-sunxi/dram_sun9i.c @@ -0,0 +1,960 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * sun9i dram controller initialisation + * + * (C) Copyright 2007-2015 + * Allwinner Technology Co., Ltd. <www.allwinnertech.com> + * Jerry Wang <wangflord@allwinnertech.com> + * + * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH + * Philipp Tomsich <philipp.tomsich@theobroma-systems.com> + */ + +#include <common.h> +#include <dm.h> +#include <errno.h> +#include <init.h> +#include <log.h> +#include <ram.h> +#include <asm/io.h> +#include <asm/arch/clock.h> +#include <asm/arch/dram.h> +#include <asm/arch/sys_proto.h> + +#define DRAM_CLK (CONFIG_DRAM_CLK * 1000000) + +/* + * The following amounts to an extensive rewrite of the code received from + * Allwinner as part of the open-source bootloader release (refer to + * https://github.com/allwinner-zh/bootloader.git) and augments the upstream + * sources (which act as the primary reference point for the inner workings + * of the 'underdocumented' DRAM controller in the A80) using the following + * documentation for other memory controllers based on the (Synopsys) + * Designware IP (DDR memory protocol controller and DDR PHY) + * * TI Keystone II Architecture: DDR3 Memory Controller, User's Guide + * Document 'SPRUHN7C', Oct 2013 (revised March 2015) + * * Xilinx Zynq UltraScale+ MPSoC Register Reference + * document ug1087 (v1.0) + * Note that the Zynq-documentation provides a very close match for the DDR + * memory protocol controller (and provides a very good guide to the rounding + * rules for various timings), whereas the TI Keystone II document should be + * referred to for DDR PHY specifics only. + * + * The DRAM controller in the A80 runs at half the frequency of the DDR PHY + * (i.e. the rules for MEMC_FREQ_RATIO=2 from the Zynq-documentation apply). + * + * Known limitations + * ================= + * In the current state, the following features are not fully supported and + * a number of simplifying assumptions have been made: + * 1) Only DDR3 support is implemented, as our test platform (the A80-Q7 + * module) is designed to accomodate DDR3/DDR3L. + * 2) Only 2T-mode has been implemented and tested. + * 3) The controller supports two different clocking strategies (PLL6 can + * either be 2*CK or CK/2)... we only support the 2*CK clock at this + * time and haven't verified whether the alternative clocking strategy + * works. If you are interested in porting this over/testing this, + * please refer to cases where bit 0 of 'dram_tpr8' is tested in the + * original code from Allwinner. + * 4) Support for 2 ranks per controller is not implemented (as we don't + * the hardware to test it). + * + * Future directions + * ================= + * The driver should be driven from a device-tree based configuration that + * can dynamically provide the necessary timing parameters (i.e. target + * frequency and speed-bin information)---the data structures used in the + * calculation of the timing parameters are already designed to capture + * similar information as the device tree would provide. + * + * To enable a device-tree based configuration of the sun9i platform, we + * will need to enable CONFIG_TPL and bootstrap in 3 stages: initially + * into SRAM A1 (40KB) and next into SRAM A2 (160KB)---which would be the + * stage to initialise the platform via the device-tree---before having + * the full U-Boot run from DDR. + */ + +/* + * A number of DDR3 timings are given as "the greater of a fixed number of + * clock cycles (CK) or nanoseconds. We express these using a structure + * that holds a cycle count and a duration in picoseconds (so we can model + * sub-ns timings, such as 7.5ns without losing precision or resorting to + * rounding up early. + */ +struct dram_sun9i_timing { + u32 ck; + u32 ps; +}; + +/* */ +struct dram_sun9i_cl_cwl_timing { + u32 CL; + u32 CWL; + u32 tCKmin; /* in ps */ + u32 tCKmax; /* in ps */ +}; + +struct dram_sun9i_para { + u32 dram_type; + + u8 bus_width; + u8 chan; + u8 rank; + u8 rows; + u16 page_size; + + /* Timing information for each speed-bin */ + struct dram_sun9i_cl_cwl_timing *cl_cwl_table; + u32 cl_cwl_numentries; + + /* + * For the timings, we try to keep the order and grouping used in + * JEDEC Standard No. 79-3F + */ + + /* timings */ + u32 tREFI; /* in ns */ + u32 tRFC; /* in ns */ + + u32 tRAS; /* in ps */ + + /* command and address timing */ + u32 tDLLK; /* in nCK */ + struct dram_sun9i_timing tRTP; + struct dram_sun9i_timing tWTR; + u32 tWR; /* in nCK */ + u32 tMRD; /* in nCK */ + struct dram_sun9i_timing tMOD; + u32 tRCD; /* in ps */ + u32 tRP; /* in ps */ + u32 tRC; /* in ps */ + u32 tCCD; /* in nCK */ + struct dram_sun9i_timing tRRD; + u32 tFAW; /* in ps */ + + /* calibration timing */ + /* struct dram_sun9i_timing tZQinit; */ + struct dram_sun9i_timing tZQoper; + struct dram_sun9i_timing tZQCS; + + /* reset timing */ + /* struct dram_sun9i_timing tXPR; */ + + /* self-refresh timings */ + struct dram_sun9i_timing tXS; + u32 tXSDLL; /* in nCK */ + /* struct dram_sun9i_timing tCKESR; */ + struct dram_sun9i_timing tCKSRE; + struct dram_sun9i_timing tCKSRX; + + /* power-down timings */ + struct dram_sun9i_timing tXP; + struct dram_sun9i_timing tXPDLL; + struct dram_sun9i_timing tCKE; + + /* write leveling timings */ + u32 tWLMRD; /* min, in nCK */ + /* u32 tWLDQSEN; min, in nCK */ + u32 tWLO; /* max, in ns */ + /* u32 tWLOE; max, in ns */ + + /* u32 tCKDPX; in nCK */ + /* u32 tCKCSX; in nCK */ +}; + +static void mctl_sys_init(void); + +#define SCHED_RDWR_IDLE_GAP(n) ((n & 0xff) << 24) +#define SCHED_GO2CRITICAL_HYSTERESIS(n) ((n & 0xff) << 16) +#define SCHED_LPR_NUM_ENTRIES(n) ((n & 0xff) << 8) +#define SCHED_PAGECLOSE (1 << 2) +#define SCHED_PREFER_WRITE (1 << 1) +#define SCHED_FORCE_LOW_PRI_N (1 << 0) + +#define SCHED_CONFIG (SCHED_RDWR_IDLE_GAP(0xf) | \ + SCHED_GO2CRITICAL_HYSTERESIS(0x80) | \ + SCHED_LPR_NUM_ENTRIES(0x20) | \ + SCHED_FORCE_LOW_PRI_N) +#define PERFHPR0_CONFIG 0x0000001f +#define PERFHPR1_CONFIG 0x1f00001f +#define PERFLPR0_CONFIG 0x000000ff +#define PERFLPR1_CONFIG 0x0f0000ff +#define PERFWR0_CONFIG 0x000000ff +#define PERFWR1_CONFIG 0x0f0001ff + +static void mctl_ctl_sched_init(unsigned long base) +{ + struct sunxi_mctl_ctl_reg *mctl_ctl = + (struct sunxi_mctl_ctl_reg *)base; + + /* Needs to be done before the global clk enable... */ + writel(SCHED_CONFIG, &mctl_ctl->sched); + writel(PERFHPR0_CONFIG, &mctl_ctl->perfhpr0); + writel(PERFHPR1_CONFIG, &mctl_ctl->perfhpr1); + writel(PERFLPR0_CONFIG, &mctl_ctl->perflpr0); + writel(PERFLPR1_CONFIG, &mctl_ctl->perflpr1); + writel(PERFWR0_CONFIG, &mctl_ctl->perfwr0); + writel(PERFWR1_CONFIG, &mctl_ctl->perfwr1); +} + +static void mctl_sys_init(void) +{ + struct sunxi_ccm_reg * const ccm = + (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; + struct sunxi_mctl_com_reg * const mctl_com = + (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; + + debug("Setting PLL6 to %d\n", DRAM_CLK * 2); + clock_set_pll6(DRAM_CLK * 2); + + /* Original dram init code which may come in handy later + ******************************************************** + clock_set_pll6(use_2channelPLL ? (DRAM_CLK * 2) : + (DRAM_CLK / 2), false); + + if ((para->dram_clk <= 400)|((para->dram_tpr8 & 0x1)==0)) { + * PLL6 should be 2*CK * + * ccm_setup_pll6_ddr_clk(PLL6_DDR_CLK); * + ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) * 2), 0); + } else { + * PLL6 should be CK/2 * + ccm_setup_pll6_ddr_clk((1000000 * (para->dram_clk) / 2), 1); + } + + if (para->dram_tpr13 & (0xf<<18)) { + * + * bit21:bit18=0001:pll swing 0.4 + * bit21:bit18=0010:pll swing 0.3 + * bit21:bit18=0100:pll swing 0.2 + * bit21:bit18=1000:pll swing 0.1 + * + dram_dbg("DRAM fre extend open !\n"); + reg_val=mctl_read_w(CCM_PLL6_DDR_REG); + reg_val&=(0x1<<16); + reg_val=reg_val>>16; + + if(para->dram_tpr13 & (0x1<<18)) + { + mctl_write_w(CCM_PLL_BASE + 0x114, + (0x3333U|(0x3<<17)|(reg_val<<19)|(0x120U<<20)| + (0x2U<<29)|(0x1U<<31))); + } + else if(para->dram_tpr13 & (0x1<<19)) + { + mctl_write_w(CCM_PLL_BASE + 0x114, + (0x6666U|(0x3U<<17)|(reg_val<<19)|(0xD8U<<20)| + (0x2U<<29)|(0x1U<<31))); + } + else if(para->dram_tpr13 & (0x1<<20)) + { + mctl_write_w(CCM_PLL_BASE + 0x114, + (0x9999U|(0x3U<<17)|(reg_val<<19)|(0x90U<<20)| + (0x2U<<29)|(0x1U<<31))); + } + else if(para->dram_tpr13 & (0x1<<21)) + { + mctl_write_w(CCM_PLL_BASE + 0x114, + (0xccccU|(0x3U<<17)|(reg_val<<19)|(0x48U<<20)| + (0x2U<<29)|(0x1U<<31))); + } + + //frequency extend open + reg_val = mctl_read_w(CCM_PLL6_DDR_REG); + reg_val |= ((0x1<<24)|(0x1<<30)); + mctl_write_w(CCM_PLL6_DDR_REG, reg_val); + + + while(mctl_read_w(CCM_PLL6_DDR_REG) & (0x1<<30)); + } + + aw_delay(0x20000); //make some delay + ******************************************************** + */ + + /* assert mctl reset */ + clrbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL); + /* stop mctl clock */ + clrbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL); + + sdelay(2000); + + /* deassert mctl reset */ + setbits_le32(&ccm->ahb_reset0_cfg, 1 << AHB_RESET_OFFSET_MCTL); + /* enable mctl clock */ + setbits_le32(&ccm->ahb_gate0, 1 << AHB_GATE_OFFSET_MCTL); + + /* set up the transactions scheduling before enabling the global clk */ + mctl_ctl_sched_init(SUNXI_DRAM_CTL0_BASE); + mctl_ctl_sched_init(SUNXI_DRAM_CTL1_BASE); + sdelay(1000); + + debug("2\n"); + + /* (3 << 12): PLL_DDR */ + writel((3 << 12) | (1 << 16), &ccm->dram_clk_cfg); + do { + debug("Waiting for DRAM_CLK_CFG\n"); + sdelay(10000); + } while (readl(&ccm->dram_clk_cfg) & (1 << 16)); + setbits_le32(&ccm->dram_clk_cfg, (1 << 31)); + + /* TODO: we only support the common case ... i.e. 2*CK */ + setbits_le32(&mctl_com->ccr, (1 << 14) | (1 << 30)); + writel(2, &mctl_com->rmcr); /* controller clock is PLL6/4 */ + + sdelay(2000); + + /* Original dram init code which may come in handy later + ******************************************************** + if ((para->dram_clk <= 400) | ((para->dram_tpr8 & 0x1) == 0)) { + * PLL6 should be 2*CK * + * gating 2 channel pll * + reg_val = mctl_read_w(MC_CCR); + reg_val |= ((0x1 << 14) | (0x1U << 30)); + mctl_write_w(MC_CCR, reg_val); + mctl_write_w(MC_RMCR, 0x2); * controller clock use pll6/4 * + } else { + * enable 2 channel pll * + reg_val = mctl_read_w(MC_CCR); + reg_val &= ~((0x1 << 14) | (0x1U << 30)); + mctl_write_w(MC_CCR, reg_val); + mctl_write_w(MC_RMCR, 0x0); * controller clock use pll6 * + } + + reg_val = mctl_read_w(MC_CCR); + reg_val &= ~((0x1<<15)|(0x1U<<31)); + mctl_write_w(MC_CCR, reg_val); + aw_delay(20); + //aw_delay(0x10); + ******************************************************** + */ + + clrbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN | MCTL_CCR_CH1_CLK_EN); + sdelay(1000); + + setbits_le32(&mctl_com->ccr, MCTL_CCR_CH0_CLK_EN); + /* TODO if (para->chan == 2) */ + setbits_le32(&mctl_com->ccr, MCTL_CCR_CH1_CLK_EN); +} + +static void mctl_com_init(struct dram_sun9i_para *para) +{ + struct sunxi_mctl_com_reg * const mctl_com = + (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; + + /* TODO: hard-wired for DDR3 now */ + writel(((para->chan == 2) ? MCTL_CR_CHANNEL_DUAL : + MCTL_CR_CHANNEL_SINGLE) + | MCTL_CR_DRAMTYPE_DDR3 | MCTL_CR_BANK(1) + | MCTL_CR_ROW(para->rows) + | ((para->bus_width == 32) ? MCTL_CR_BUSW32 : MCTL_CR_BUSW16) + | MCTL_CR_PAGE_SIZE(para->page_size) | MCTL_CR_RANK(para->rank), + &mctl_com->cr); + + debug("CR: %d\n", readl(&mctl_com->cr)); +} + +static u32 mctl_channel_init(u32 ch_index, struct dram_sun9i_para *para) +{ + struct sunxi_mctl_ctl_reg *mctl_ctl; + struct sunxi_mctl_phy_reg *mctl_phy; + + u32 CL = 0; + u32 CWL = 0; + u16 mr[4] = { 0, }; + +#define PS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000000) +#define PS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999999) / 1000000) +#define NS2CYCLES_FLOOR(n) ((n * CONFIG_DRAM_CLK) / 1000) +#define NS2CYCLES_ROUNDUP(n) ((n * CONFIG_DRAM_CLK + 999) / 1000) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + + /* + * Convert the values to cycle counts (nCK) from what is provided + * by the definition of each speed bin. + */ + /* const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); */ + const u32 tREFI = NS2CYCLES_FLOOR(para->tREFI); + const u32 tRFC = NS2CYCLES_ROUNDUP(para->tRFC); + const u32 tRCD = PS2CYCLES_ROUNDUP(para->tRCD); + const u32 tRP = PS2CYCLES_ROUNDUP(para->tRP); + const u32 tRC = PS2CYCLES_ROUNDUP(para->tRC); + const u32 tRAS = PS2CYCLES_ROUNDUP(para->tRAS); + + /* command and address timing */ + const u32 tDLLK = para->tDLLK; + const u32 tRTP = MAX(para->tRTP.ck, PS2CYCLES_ROUNDUP(para->tRTP.ps)); + const u32 tWTR = MAX(para->tWTR.ck, PS2CYCLES_ROUNDUP(para->tWTR.ps)); + const u32 tWR = NS2CYCLES_FLOOR(para->tWR); + const u32 tMRD = para->tMRD; + const u32 tMOD = MAX(para->tMOD.ck, PS2CYCLES_ROUNDUP(para->tMOD.ps)); + const u32 tCCD = para->tCCD; + const u32 tRRD = MAX(para->tRRD.ck, PS2CYCLES_ROUNDUP(para->tRRD.ps)); + const u32 tFAW = PS2CYCLES_ROUNDUP(para->tFAW); + + /* calibration timings */ + /* const u32 tZQinit = MAX(para->tZQinit.ck, + PS2CYCLES_ROUNDUP(para->tZQinit.ps)); */ + const u32 tZQoper = MAX(para->tZQoper.ck, + PS2CYCLES_ROUNDUP(para->tZQoper.ps)); + const u32 tZQCS = MAX(para->tZQCS.ck, + PS2CYCLES_ROUNDUP(para->tZQCS.ps)); + + /* reset timing */ + /* const u32 tXPR = MAX(para->tXPR.ck, + PS2CYCLES_ROUNDUP(para->tXPR.ps)); */ + + /* power-down timings */ + const u32 tXP = MAX(para->tXP.ck, PS2CYCLES_ROUNDUP(para->tXP.ps)); + const u32 tXPDLL = MAX(para->tXPDLL.ck, + PS2CYCLES_ROUNDUP(para->tXPDLL.ps)); + const u32 tCKE = MAX(para->tCKE.ck, PS2CYCLES_ROUNDUP(para->tCKE.ps)); + + /* + * self-refresh timings (keep below power-down timings, as tCKESR + * needs to be calculated based on the nCK value of tCKE) + */ + const u32 tXS = MAX(para->tXS.ck, PS2CYCLES_ROUNDUP(para->tXS.ps)); + const u32 tXSDLL = para->tXSDLL; + const u32 tCKSRE = MAX(para->tCKSRE.ck, + PS2CYCLES_ROUNDUP(para->tCKSRE.ps)); + const u32 tCKESR = tCKE + 1; + const u32 tCKSRX = MAX(para->tCKSRX.ck, + PS2CYCLES_ROUNDUP(para->tCKSRX.ps)); + + /* write leveling timings */ + const u32 tWLMRD = para->tWLMRD; + /* const u32 tWLDQSEN = para->tWLDQSEN; */ + const u32 tWLO = PS2CYCLES_FLOOR(para->tWLO); + /* const u32 tWLOE = PS2CYCLES_FLOOR(para->tWLOE); */ + + const u32 tRASmax = tREFI * 9; + int i; + + for (i = 0; i < para->cl_cwl_numentries; ++i) { + const u32 tCK = 1000000 / CONFIG_DRAM_CLK; + + if ((para->cl_cwl_table[i].tCKmin <= tCK) && + (tCK < para->cl_cwl_table[i].tCKmax)) { + CL = para->cl_cwl_table[i].CL; + CWL = para->cl_cwl_table[i].CWL; + + debug("found CL/CWL: CL = %d, CWL = %d\n", CL, CWL); + break; + } + } + + if ((CL == 0) && (CWL == 0)) { + printf("failed to find valid CL/CWL for operating point %d MHz\n", + CONFIG_DRAM_CLK); + return 0; + } + + if (ch_index == 0) { + mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; + mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE; + } else { + mctl_ctl = (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL1_BASE; + mctl_phy = (struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY1_BASE; + } + + if (para->dram_type == DRAM_TYPE_DDR3) { + mr[0] = DDR3_MR0_PPD_FAST_EXIT | DDR3_MR0_WR(tWR) | + DDR3_MR0_CL(CL); + mr[1] = DDR3_MR1_RTT120OHM; + mr[2] = DDR3_MR2_TWL(CWL); + mr[3] = 0; + + /* + * DRAM3 initialisation requires holding CKE LOW for + * at least 500us prior to starting the initialisation + * sequence and at least 10ns after driving CKE HIGH + * before the initialisation sequence may be started). + * + * Refer to Micron document "TN-41-07: DDR3 Power-Up, + * Initialization, and Reset DDR3 Initialization + * Routine" for details). + */ + writel(MCTL_INIT0_POST_CKE_x1024(1) | + MCTL_INIT0_PRE_CKE_x1024( + (500 * CONFIG_DRAM_CLK + 1023) / 1024), /* 500us */ + &mctl_ctl->init[0]); + writel(MCTL_INIT1_DRAM_RSTN_x1024(1), + &mctl_ctl->init[1]); + /* INIT2 is not used for DDR3 */ + writel(MCTL_INIT3_MR(mr[0]) | MCTL_INIT3_EMR(mr[1]), + &mctl_ctl->init[3]); + writel(MCTL_INIT4_EMR2(mr[2]) | MCTL_INIT4_EMR3(mr[3]), + &mctl_ctl->init[4]); + writel(MCTL_INIT5_DEV_ZQINIT_x32(512 / 32), /* 512 cycles */ + &mctl_ctl->init[5]); + } else { + /* !!! UNTESTED !!! */ + /* + * LPDDR2 and/or LPDDR3 require a 200us minimum delay + * after driving CKE HIGH in the initialisation sequence. + */ + writel(MCTL_INIT0_POST_CKE_x1024( + (200 * CONFIG_DRAM_CLK + 1023) / 1024), + &mctl_ctl->init[0]); + writel(MCTL_INIT1_DRAM_RSTN_x1024(1), + &mctl_ctl->init[1]); + writel(MCTL_INIT2_IDLE_AFTER_RESET_x32( + (CONFIG_DRAM_CLK + 31) / 32) /* 1us */ + | MCTL_INIT2_MIN_STABLE_CLOCK_x1(5), /* 5 cycles */ + &mctl_ctl->init[2]); + writel(MCTL_INIT3_MR(mr[1]) | MCTL_INIT3_EMR(mr[2]), + &mctl_ctl->init[3]); + writel(MCTL_INIT4_EMR2(mr[3]), + &mctl_ctl->init[4]); + writel(MCTL_INIT5_DEV_ZQINIT_x32( + (CONFIG_DRAM_CLK + 31) / 32) /* 1us */ + | MCTL_INIT5_MAX_AUTO_INIT_x1024( + (10 * CONFIG_DRAM_CLK + 1023) / 1024), + &mctl_ctl->init[5]); + } + + /* (DDR3) We always use a burst-length of 8. */ +#define MCTL_BL 8 + /* wr2pre: WL + BL/2 + tWR */ +#define WR2PRE (MCTL_BL/2 + CWL + tWTR) + /* wr2rd = CWL + BL/2 + tWTR */ +#define WR2RD (MCTL_BL/2 + CWL + tWTR) + /* + * rd2wr = RL + BL/2 + 2 - WL (for DDR3) + * rd2wr = RL + BL/2 + RU(tDQSCKmax/tCK) + 1 - WL (for LPDDR2/LPDDR3) + */ +#define RD2WR (CL + MCTL_BL/2 + 2 - CWL) +#define MCTL_PHY_TRTW 0 +#define MCTL_PHY_TRTODT 0 + +#define MCTL_DIV2(n) ((n + 1)/2) +#define MCTL_DIV32(n) (n/32) +#define MCTL_DIV1024(n) (n/1024) + + writel((MCTL_DIV2(WR2PRE) << 24) | (MCTL_DIV2(tFAW) << 16) | + (MCTL_DIV1024(tRASmax) << 8) | (MCTL_DIV2(tRAS) << 0), + &mctl_ctl->dramtmg[0]); + writel((MCTL_DIV2(tXP) << 16) | (MCTL_DIV2(tRTP) << 8) | + (MCTL_DIV2(tRC) << 0), + &mctl_ctl->dramtmg[1]); + writel((MCTL_DIV2(CWL) << 24) | (MCTL_DIV2(CL) << 16) | + (MCTL_DIV2(RD2WR) << 8) | (MCTL_DIV2(WR2RD) << 0), + &mctl_ctl->dramtmg[2]); + /* + * Note: tMRW is located at bit 16 (and up) in DRAMTMG3... + * this is only relevant for LPDDR2/LPDDR3 + */ + writel((MCTL_DIV2(tMRD) << 12) | (MCTL_DIV2(tMOD) << 0), + &mctl_ctl->dramtmg[3]); + writel((MCTL_DIV2(tRCD) << 24) | (MCTL_DIV2(tCCD) << 16) | + (MCTL_DIV2(tRRD) << 8) | (MCTL_DIV2(tRP) << 0), + &mctl_ctl->dramtmg[4]); + writel((MCTL_DIV2(tCKSRX) << 24) | (MCTL_DIV2(tCKSRE) << 16) | + (MCTL_DIV2(tCKESR) << 8) | (MCTL_DIV2(tCKE) << 0), + &mctl_ctl->dramtmg[5]); + + /* These timings are relevant for LPDDR2/LPDDR3 only */ + /* writel((MCTL_TCKDPDE << 24) | (MCTL_TCKDPX << 16) | + (MCTL_TCKCSX << 0), &mctl_ctl->dramtmg[6]); */ + + /* printf("DRAMTMG7 reset value: 0x%x\n", + readl(&mctl_ctl->dramtmg[7])); */ + /* DRAMTMG7 reset value: 0x202 */ + /* DRAMTMG7 should contain t_ckpde and t_ckpdx: check reset values!!! */ + /* printf("DRAMTMG8 reset value: 0x%x\n", + readl(&mctl_ctl->dramtmg[8])); */ + /* DRAMTMG8 reset value: 0x44 */ + + writel((MCTL_DIV32(tXSDLL) << 0), &mctl_ctl->dramtmg[8]); + + writel((MCTL_DIV32(tREFI) << 16) | (MCTL_DIV2(tRFC) << 0), + &mctl_ctl->rfshtmg); + + if (para->dram_type == DRAM_TYPE_DDR3) { + writel((2 << 24) | ((MCTL_DIV2(CL) - 2) << 16) | + (1 << 8) | ((MCTL_DIV2(CWL) - 2) << 0), + &mctl_ctl->dfitmg[0]); + } else { + /* TODO */ + } + + /* TODO: handle the case of the write latency domain going to 0 ... */ + + /* + * Disable dfi_init_complete_en (the triggering of the SDRAM + * initialisation when the PHY initialisation completes). + */ + clrbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN); + /* Disable the automatic generation of DLL calibration requests */ + setbits_le32(&mctl_ctl->dfiupd[0], MCTL_DFIUPD0_DIS_AUTO_CTRLUPD); + + /* A80-Q7: 2T, 1 rank, DDR3, full-32bit-DQ */ + /* TODO: make 2T and BUSWIDTH configurable */ + writel(MCTL_MSTR_DEVICETYPE(para->dram_type) | + MCTL_MSTR_BURSTLENGTH(para->dram_type) | + MCTL_MSTR_ACTIVERANKS(para->rank) | + MCTL_MSTR_2TMODE | MCTL_MSTR_BUSWIDTH32, + &mctl_ctl->mstr); + + if (para->dram_type == DRAM_TYPE_DDR3) { + writel(MCTL_ZQCTRL0_TZQCL(MCTL_DIV2(tZQoper)) | + (MCTL_DIV2(tZQCS)), &mctl_ctl->zqctrl[0]); + /* + * TODO: is the following really necessary as the bottom + * half should already be 0x100 and the upper half should + * be ignored for a DDR3 device??? + */ + writel(MCTL_ZQCTRL1_TZQSI_x1024(0x100), + &mctl_ctl->zqctrl[1]); + } else { + writel(MCTL_ZQCTRL0_TZQCL(0x200) | MCTL_ZQCTRL0_TZQCS(0x40), + &mctl_ctl->zqctrl[0]); + writel(MCTL_ZQCTRL1_TZQRESET(0x28) | + MCTL_ZQCTRL1_TZQSI_x1024(0x100), + &mctl_ctl->zqctrl[1]); + } + + /* Assert dfi_init_complete signal */ + setbits_le32(&mctl_ctl->dfimisc, MCTL_DFIMISC_DFI_INIT_COMPLETE_EN); + /* Disable auto-refresh */ + setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH); + + /* PHY initialisation */ + + /* TODO: make 2T and 8-bank mode configurable */ + writel(MCTL_PHY_DCR_BYTEMASK | MCTL_PHY_DCR_2TMODE | + MCTL_PHY_DCR_DDR8BNK | MCTL_PHY_DRAMMODE_DDR3, + &mctl_phy->dcr); + + /* For LPDDR2 or LPDDR3, set DQSGX to 0 before training. */ + if (para->dram_type != DRAM_TYPE_DDR3) + clrbits_le32(&mctl_phy->dsgcr, (3 << 6)); + + writel(mr[0], &mctl_phy->mr0); + writel(mr[1], &mctl_phy->mr1); + writel(mr[2], &mctl_phy->mr2); + writel(mr[3], &mctl_phy->mr3); + + /* + * The DFI PHY is running at full rate. We thus use the actual + * timings in clock cycles here. + */ + writel((tRC << 26) | (tRRD << 22) | (tRAS << 16) | + (tRCD << 12) | (tRP << 8) | (tWTR << 4) | (tRTP << 0), + &mctl_phy->dtpr[0]); + writel((tMRD << 0) | ((tMOD - 12) << 2) | (tFAW << 5) | + (tRFC << 11) | (tWLMRD << 20) | (tWLO << 26), + &mctl_phy->dtpr[1]); + writel((tXS << 0) | (MAX(tXP, tXPDLL) << 10) | + (tCKE << 15) | (tDLLK << 19) | + (MCTL_PHY_TRTODT << 29) | (MCTL_PHY_TRTW << 30) | + (((tCCD - 4) & 0x1) << 31), + &mctl_phy->dtpr[2]); + + /* tDQSCK and tDQSCKmax are used LPDDR2/LPDDR3 */ + /* writel((tDQSCK << 0) | (tDQSCKMAX << 3), &mctl_phy->dtpr[3]); */ + + /* + * We use the same values used by Allwinner's Boot0 for the PTR + * (PHY timing register) configuration that is tied to the PHY + * implementation. + */ + writel(0x42C21590, &mctl_phy->ptr[0]); + writel(0xD05612C0, &mctl_phy->ptr[1]); + if (para->dram_type == DRAM_TYPE_DDR3) { + const unsigned int tdinit0 = 500 * CONFIG_DRAM_CLK; /* 500us */ + const unsigned int tdinit1 = (360 * CONFIG_DRAM_CLK + 999) / + 1000; /* 360ns */ + const unsigned int tdinit2 = 200 * CONFIG_DRAM_CLK; /* 200us */ + const unsigned int tdinit3 = CONFIG_DRAM_CLK; /* 1us */ + + writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]); + writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]); + } else { + /* LPDDR2 or LPDDR3 */ + const unsigned int tdinit0 = (100 * CONFIG_DRAM_CLK + 999) / + 1000; /* 100ns */ + const unsigned int tdinit1 = 200 * CONFIG_DRAM_CLK; /* 200us */ + const unsigned int tdinit2 = 22 * CONFIG_DRAM_CLK; /* 11us */ + const unsigned int tdinit3 = 2 * CONFIG_DRAM_CLK; /* 2us */ + + writel((tdinit1 << 20) | tdinit0, &mctl_phy->ptr[3]); + writel((tdinit3 << 18) | tdinit2, &mctl_phy->ptr[4]); + } + + /* TEST ME */ + writel(0x00203131, &mctl_phy->acmdlr); + + /* TODO: can we enable this for 2 ranks, even when we don't know yet */ + writel(MCTL_DTCR_DEFAULT | MCTL_DTCR_RANKEN(para->rank), + &mctl_phy->dtcr); + + /* TODO: half width */ + debug("DX2GCR0 reset: 0x%x\n", readl(&mctl_phy->dx[2].gcr[0])); + writel(0x7C000285, &mctl_phy->dx[2].gcr[0]); + writel(0x7C000285, &mctl_phy->dx[3].gcr[0]); + + clrsetbits_le32(&mctl_phy->zq[0].pr, 0xff, + (CONFIG_DRAM_ZQ >> 0) & 0xff); /* CK/CA */ + clrsetbits_le32(&mctl_phy->zq[1].pr, 0xff, + (CONFIG_DRAM_ZQ >> 8) & 0xff); /* DX0/DX1 */ + clrsetbits_le32(&mctl_phy->zq[2].pr, 0xff, + (CONFIG_DRAM_ZQ >> 16) & 0xff); /* DX2/DX3 */ + + /* TODO: make configurable & implement non-ODT path */ + if (1) { + int lane; + for (lane = 0; lane < 4; ++lane) { + clrbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff); + clrbits_le32(&mctl_phy->dx[lane].gcr[3], + (0x3<<12) | (0x3<<4)); + } + } else { + /* TODO: check */ + int lane; + for (lane = 0; lane < 4; ++lane) { + clrsetbits_le32(&mctl_phy->dx[lane].gcr[2], 0xffff, + 0xaaaa); + if (para->dram_type == DRAM_TYPE_DDR3) + setbits_le32(&mctl_phy->dx[lane].gcr[3], + (0x3<<12) | (0x3<<4)); + else + setbits_le32(&mctl_phy->dx[lane].gcr[3], + 0x00000012); + } + } + + writel(0x04058D02, &mctl_phy->zq[0].cr); /* CK/CA */ + writel(0x04058D02, &mctl_phy->zq[1].cr); /* DX0/DX1 */ + writel(0x04058D02, &mctl_phy->zq[2].cr); /* DX2/DX3 */ + + /* Disable auto-refresh prior to data training */ + setbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH); + + setbits_le32(&mctl_phy->dsgcr, 0xf << 24); /* unclear what this is... */ + /* TODO: IODDRM (IO DDR-MODE) for DDR3L */ + clrsetbits_le32(&mctl_phy->pgcr[1], + MCTL_PGCR1_ZCKSEL_MASK, + MCTL_PGCR1_IODDRM_DDR3 | MCTL_PGCR1_INHVT_EN); + + setbits_le32(&mctl_phy->pllcr, 0x3 << 19); /* PLL frequency select */ + /* TODO: single-channel PLL mode??? missing */ + setbits_le32(&mctl_phy->pllcr, + MCTL_PLLGCR_PLL_BYPASS | MCTL_PLLGCR_PLL_POWERDOWN); + /* setbits_le32(&mctl_phy->pir, MCTL_PIR_PLL_BYPASS); included below */ + + /* Disable VT compensation */ + clrbits_le32(&mctl_phy->pgcr[0], 0x3f); + + /* TODO: "other" PLL mode ... 0x20000 seems to be the PLL Bypass */ + if (para->dram_type == DRAM_TYPE_DDR3) + clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x20df3); + else + clrsetbits_le32(&mctl_phy->pir, MCTL_PIR_MASK, 0x2c573); + + sdelay(10000); /* XXX necessary? */ + + /* Wait for the INIT bit to clear itself... */ + while ((readl(&mctl_phy->pir) & MCTL_PIR_INIT) != MCTL_PIR_INIT) { + /* not done yet -- keep spinning */ + debug("MCTL_PIR_INIT not set\n"); + sdelay(1000); + /* TODO: implement timeout */ + } + + /* TODO: not used --- there's a "2rank debug" section here */ + + /* Original dram init code which may come in handy later + ******************************************************** + * LPDDR2 and LPDDR3 * + if ((para->dram_type) == 6 || (para->dram_type) == 7) { + reg_val = mctl_read_w(P0_DSGCR + ch_offset); + reg_val &= (~(0x3<<6)); * set DQSGX to 1 * + reg_val |= (0x1<<6); * dqs gate extend * + mctl_write_w(P0_DSGCR + ch_offset, reg_val); + dram_dbg("DQS Gate Extend Enable!\n", ch_index); + } + + * Disable ZCAL after initial--for nand dma debug--20140330 by YSZ * + if (para->dram_tpr13 & (0x1<<31)) { + reg_val = mctl_read_w(P0_ZQ0CR + ch_offset); + reg_val |= (0x7<<11); + mctl_write_w(P0_ZQ0CR + ch_offset, reg_val); + } + ******************************************************** + */ + + /* + * TODO: more 2-rank support + * (setting the "dqs gate delay to average between 2 rank") + */ + + /* check if any errors are set */ + if (readl(&mctl_phy->pgsr[0]) & MCTL_PGSR0_ERRORS) { + debug("Channel %d unavailable!\n", ch_index); + return 0; + } else{ + /* initial OK */ + debug("Channel %d OK!\n", ch_index); + /* return 1; */ + } + + while ((readl(&mctl_ctl->stat) & 0x1) != 0x1) { + debug("Waiting for INIT to be done (controller to come up into 'normal operating' mode\n"); + sdelay(100000); + /* init not done */ + /* TODO: implement time-out */ + } + debug("done\n"); + + /* "DDR is controller by contoller" */ + clrbits_le32(&mctl_phy->pgcr[3], (1 << 25)); + + /* TODO: is the following necessary? */ + debug("DFIMISC before writing 0: 0x%x\n", readl(&mctl_ctl->dfimisc)); + writel(0, &mctl_ctl->dfimisc); + + /* Enable auto-refresh */ + clrbits_le32(&mctl_ctl->rfshctl3, MCTL_RFSHCTL3_DIS_AUTO_REFRESH); + + debug("channel_init complete\n"); + return 1; +} + +signed int DRAMC_get_dram_size(void) +{ + struct sunxi_mctl_com_reg * const mctl_com = + (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; + + unsigned int reg_val; + unsigned int dram_size; + unsigned int temp; + + reg_val = readl(&mctl_com->cr); + + temp = (reg_val >> 8) & 0xf; /* page size code */ + dram_size = (temp - 6); /* (1 << dram_size) * 512Bytes */ + + temp = (reg_val >> 4) & 0xf; /* row width code */ + dram_size += (temp + 1); /* (1 << dram_size) * 512Bytes */ + + temp = (reg_val >> 2) & 0x3; /* bank number code */ + dram_size += (temp + 2); /* (1 << dram_size) * 512Bytes */ + + temp = reg_val & 0x3; /* rank number code */ + dram_size += temp; /* (1 << dram_size) * 512Bytes */ + + temp = (reg_val >> 19) & 0x1; /* channel number code */ + dram_size += temp; /* (1 << dram_size) * 512Bytes */ + + dram_size = dram_size - 11; /* (1 << dram_size) MBytes */ + + return 1 << dram_size; +} + +unsigned long sunxi_dram_init(void) +{ + struct sunxi_mctl_com_reg * const mctl_com = + (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; + + struct dram_sun9i_cl_cwl_timing cl_cwl[] = { + { .CL = 5, .CWL = 5, .tCKmin = 3000, .tCKmax = 3300 }, + { .CL = 6, .CWL = 5, .tCKmin = 2500, .tCKmax = 3300 }, + { .CL = 8, .CWL = 6, .tCKmin = 1875, .tCKmax = 2500 }, + { .CL = 10, .CWL = 7, .tCKmin = 1500, .tCKmax = 1875 }, + { .CL = 11, .CWL = 8, .tCKmin = 1250, .tCKmax = 1500 } + }; + + /* Set initial parameters, these get modified by the autodetect code */ + struct dram_sun9i_para para = { + .dram_type = DRAM_TYPE_DDR3, + .bus_width = 32, + .chan = 2, + .rank = 1, + /* .rank = 2, */ + .page_size = 4096, + /* .rows = 16, */ + .rows = 15, + + /* CL/CWL table for the speed bin */ + .cl_cwl_table = cl_cwl, + .cl_cwl_numentries = sizeof(cl_cwl) / + sizeof(struct dram_sun9i_cl_cwl_timing), + + /* timings */ + .tREFI = 7800, /* 7.8us (up to 85 degC) */ + .tRFC = 260, /* 260ns for 4GBit devices */ + /* 350ns @ 8GBit */ + + .tRCD = 13750, + .tRP = 13750, + .tRC = 48750, + .tRAS = 35000, + + .tDLLK = 512, + .tRTP = { .ck = 4, .ps = 7500 }, + .tWTR = { .ck = 4, .ps = 7500 }, + .tWR = 15, + .tMRD = 4, + .tMOD = { .ck = 12, .ps = 15000 }, + .tCCD = 4, + .tRRD = { .ck = 4, .ps = 7500 }, + .tFAW = 40, + + /* calibration timing */ + /* .tZQinit = { .ck = 512, .ps = 640000 }, */ + .tZQoper = { .ck = 256, .ps = 320000 }, + .tZQCS = { .ck = 64, .ps = 80000 }, + + /* reset timing */ + /* .tXPR = { .ck = 5, .ps = 10000 }, */ + + /* self-refresh timings */ + .tXS = { .ck = 5, .ps = 10000 }, + .tXSDLL = 512, + .tCKSRE = { .ck = 5, .ps = 10000 }, + .tCKSRX = { .ck = 5, .ps = 10000 }, + + /* power-down timings */ + .tXP = { .ck = 3, .ps = 6000 }, + .tXPDLL = { .ck = 10, .ps = 24000 }, + .tCKE = { .ck = 3, .ps = 5000 }, + + /* write leveling timings */ + .tWLMRD = 40, + /* .tWLDQSEN = 25, */ + .tWLO = 7500, + /* .tWLOE = 2000, */ + }; + + /* + * Disable A80 internal 240 ohm resistor. + * + * This code sequence is adapated from Allwinner's Boot0 (see + * https://github.com/allwinner-zh/bootloader.git), as there + * is no documentation for these two registers in the R_PRCM + * block. + */ + setbits_le32(SUNXI_PRCM_BASE + 0x1e0, (0x3 << 8)); + writel(0, SUNXI_PRCM_BASE + 0x1e8); + + mctl_sys_init(); + + if (!mctl_channel_init(0, ¶)) + return 0; + + /* dual-channel */ + if (!mctl_channel_init(1, ¶)) { + /* disable channel 1 */ + clrsetbits_le32(&mctl_com->cr, MCTL_CR_CHANNEL_MASK, + MCTL_CR_CHANNEL_SINGLE); + /* disable channel 1 global clock */ + clrbits_le32(&mctl_com->cr, MCTL_CCR_CH1_CLK_EN); + } + + mctl_com_init(¶); + + /* return the proper RAM size */ + return DRAMC_get_dram_size() << 20; +} |