diff options
Diffstat (limited to 'roms/u-boot/arch/mips/mach-octeon/include/mach/cvmx-bootmem.h')
-rw-r--r-- | roms/u-boot/arch/mips/mach-octeon/include/mach/cvmx-bootmem.h | 533 |
1 files changed, 533 insertions, 0 deletions
diff --git a/roms/u-boot/arch/mips/mach-octeon/include/mach/cvmx-bootmem.h b/roms/u-boot/arch/mips/mach-octeon/include/mach/cvmx-bootmem.h new file mode 100644 index 000000000..d60668c9a --- /dev/null +++ b/roms/u-boot/arch/mips/mach-octeon/include/mach/cvmx-bootmem.h @@ -0,0 +1,533 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (C) 2020 Marvell International Ltd. + */ + +/** + * @file + * Simple allocate only memory allocator. Used to allocate memory at application + * start time. + */ + +#ifndef __CVMX_BOOTMEM_H__ +#define __CVMX_BOOTMEM_H__ + +/* Must be multiple of 8, changing breaks ABI */ +#define CVMX_BOOTMEM_NAME_LEN 128 +/* Can change without breaking ABI */ +#define CVMX_BOOTMEM_NUM_NAMED_BLOCKS 64 +/* minimum alignment of bootmem alloced blocks */ +#define CVMX_BOOTMEM_ALIGNMENT_SIZE (16ull) + +/* Flags for cvmx_bootmem_phy_mem* functions */ +/* Allocate from end of block instead of beginning */ +#define CVMX_BOOTMEM_FLAG_END_ALLOC (1 << 0) +#define CVMX_BOOTMEM_FLAG_NO_LOCKING (1 << 1) /* Don't do any locking. */ + +/* Real physical addresses of memory regions */ +#define OCTEON_DDR0_BASE (0x0ULL) +#define OCTEON_DDR0_SIZE (0x010000000ULL) +#define OCTEON_DDR1_BASE ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) \ + ? 0x20000000ULL : 0x410000000ULL) +#define OCTEON_DDR1_SIZE (0x010000000ULL) +#define OCTEON_DDR2_BASE ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) \ + ? 0x30000000ULL : 0x20000000ULL) +#define OCTEON_DDR2_SIZE ((OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) \ + ? 0x7d0000000ULL : 0x3e0000000ULL) +#define OCTEON_MAX_PHY_MEM_SIZE ((OCTEON_IS_MODEL(OCTEON_CN68XX)) \ + ? 128 * 1024 * 1024 * 1024ULL \ + : (OCTEON_IS_OCTEON2()) \ + ? 32 * 1024 * 1024 * 1024ull \ + : (OCTEON_IS_OCTEON3()) \ + ? 512 * 1024 * 1024 * 1024ULL \ + : 16 * 1024 * 1024 * 1024ULL) + +/* + * First bytes of each free physical block of memory contain this structure, + * which is used to maintain the free memory list. Since the bootloader is + * only 32 bits, there is a union providing 64 and 32 bit versions. The + * application init code converts addresses to 64 bit addresses before the + * application starts. + */ +struct cvmx_bootmem_block_header { + /* Note: these are referenced from assembly routines in the bootloader, + * so this structure should not be changed without changing those + * routines as well. + */ + u64 next_block_addr; + u64 size; + +}; + +/* + * Structure for named memory blocks + * Number of descriptors + * available can be changed without affecting compatibility, + * but name length changes require a bump in the bootmem + * descriptor version + * Note: This structure must be naturally 64 bit aligned, as a single + * memory image will be used by both 32 and 64 bit programs. + */ +struct cvmx_bootmem_named_block_desc { + u64 base_addr; /* Base address of named block */ + /* + * Size actually allocated for named block (may differ from requested) + */ + u64 size; + char name[CVMX_BOOTMEM_NAME_LEN]; /* name of named block */ +}; + +/* Current descriptor versions */ +/* CVMX bootmem descriptor major version */ +#define CVMX_BOOTMEM_DESC_MAJ_VER 3 +/* CVMX bootmem descriptor minor version */ +#define CVMX_BOOTMEM_DESC_MIN_VER 0 + +/* + * First three members of cvmx_bootmem_desc_t are left in original + * positions for backwards compatibility. + */ +struct cvmx_bootmem_desc { + /* Linux compatible proxy for __BIG_ENDIAN */ + u32 lock; /* spinlock to control access to list */ + u32 flags; /* flags for indicating various conditions */ + u64 head_addr; + + /* incremented changed when incompatible changes made */ + u32 major_version; + /* + * incremented changed when compatible changes made, reset to + * zero when major incremented + */ + u32 minor_version; + u64 app_data_addr; + u64 app_data_size; + + /* number of elements in named blocks array */ + u32 named_block_num_blocks; + /* length of name array in bootmem blocks */ + u32 named_block_name_len; + /* address of named memory block descriptors */ + u64 named_block_array_addr; +}; + +/** + * Initialize the boot alloc memory structures. This is + * normally called inside of cvmx_user_app_init() + * + * @param mem_desc_addr Address of the free memory list + * @return + */ +int cvmx_bootmem_init(u64 mem_desc_addr); + +/** + * Allocate a block of memory from the free list that was passed + * to the application by the bootloader. + * This is an allocate-only algorithm, so freeing memory is not possible. + * + * @param size Size in bytes of block to allocate + * @param alignment Alignment required - must be power of 2 + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc(u64 size, u64 alignment); + +/** + * Allocate a block of memory from the free list that was passed + * to the application by the bootloader from a specific node. + * This is an allocate-only algorithm, so freeing memory is not possible. + * + * @param node The node to allocate memory from + * @param size Size in bytes of block to allocate + * @param alignment Alignment required - must be power of 2 + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment); + +/** + * Allocate a block of memory from the free list that was + * passed to the application by the bootloader at a specific + * address. This is an allocate-only algorithm, so + * freeing memory is not possible. Allocation will fail if + * memory cannot be allocated at the specified address. + * + * @param size Size in bytes of block to allocate + * @param address Physical address to allocate memory at. If this + * memory is not available, the allocation fails. + * @param alignment Alignment required - must be power of 2 + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_address(u64 size, u64 address, + u64 alignment); + +/** + * Allocate a block of memory from the free list that was + * passed to the application by the bootloader within a specified + * address range. This is an allocate-only algorithm, so + * freeing memory is not possible. Allocation will fail if + * memory cannot be allocated in the requested range. + * + * @param size Size in bytes of block to allocate + * @param min_addr defines the minimum address of the range + * @param max_addr defines the maximum address of the range + * @param alignment Alignment required - must be power of 2 + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_range(u64 size, u64 alignment, + u64 min_addr, u64 max_addr); + +/** + * Allocate a block of memory from the free list that was passed + * to the application by the bootloader, and assign it a name in the + * global named block table. (part of the cvmx_bootmem_descriptor_t structure) + * Named blocks can later be freed. + * + * @param size Size in bytes of block to allocate + * @param alignment Alignment required - must be power of 2 + * @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_named(u64 size, u64 alignment, + const char *name); + +/** + * Allocate a block of memory from the free list that was passed + * to the application by the bootloader, and assign it a name in the + * global named block table. (part of the cvmx_bootmem_descriptor_t structure) + * Named blocks can later be freed. + * + * @param size Size in bytes of block to allocate + * @param alignment Alignment required - must be power of 2 + * @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes + * @param flags Flags to control options for the allocation. + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment, + const char *name, u32 flags); + +/** + * Allocate a block of memory from the free list that was passed + * to the application by the bootloader, and assign it a name in the + * global named block table. (part of the cvmx_bootmem_descriptor_t structure) + * Named blocks can later be freed. + * + * @param size Size in bytes of block to allocate + * @param address Physical address to allocate memory at. If this + * memory is not available, the allocation fails. + * @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_named_address(u64 size, u64 address, + const char *name); + +/** + * Allocate a block of memory from a specific range of the free list + * that was passed to the application by the bootloader, and assign it + * a name in the global named block table. (part of the + * cvmx_bootmem_descriptor_t structure) Named blocks can later be + * freed. If request cannot be satisfied within the address range + * specified, NULL is returned + * + * @param size Size in bytes of block to allocate + * @param min_addr minimum address of range + * @param max_addr maximum address of range + * @param align Alignment of memory to be allocated. (must be a power of 2) + * @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr, + u64 max_addr, u64 align, + const char *name); + +/** + * Allocate if needed a block of memory from a specific range of the + * free list that was passed to the application by the bootloader, and + * assign it a name in the global named block table. (part of the + * cvmx_bootmem_descriptor_t structure) Named blocks can later be + * freed. If the requested name block is already allocated, return + * the pointer to block of memory. If request cannot be satisfied + * within the address range specified, NULL is returned + * + * @param size Size in bytes of block to allocate + * @param min_addr minimum address of range + * @param max_addr maximum address of range + * @param align Alignment of memory to be allocated. (must be a power of 2) + * @param name name of block - must be less than CVMX_BOOTMEM_NAME_LEN bytes + * @param init Initialization function + * + * The initialization function is optional, if omitted the named block + * is initialized to all zeros when it is created, i.e. once. + * + * @return pointer to block of memory, NULL on error + */ +void *cvmx_bootmem_alloc_named_range_once(u64 size, + u64 min_addr, + u64 max_addr, + u64 align, + const char *name, + void (*init)(void *)); + +/** + * Allocate all free memory starting at the start address. This is used to + * prevent any free blocks from later being allocated within the reserved space. + * Note that any memory allocated with this function cannot be later freed. + * + * @param start_addr Starting address to reserve + * @param size Size in bytes to reserve starting at start_addr + * @param name Name to assign to reserved blocks + * @param flags Flags to use when reserving memory + * + * @return 0 on failure, + * !0 on success + */ +int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size, + const char *name, u32 flags); + +/** + * Frees a previously allocated named bootmem block. + * + * @param name name of block to free + * + * @return 0 on failure, + * !0 on success + */ +int cvmx_bootmem_free_named(const char *name); + +/** + * Finds a named bootmem block by name. + * + * @param name name of block to free + * + * @return pointer to named block descriptor on success + * 0 on failure + */ +const struct cvmx_bootmem_named_block_desc * +cvmx_bootmem_find_named_block(const char *name); + +/** + * Returns the size of available memory in bytes, only + * counting blocks that are at least as big as the minimum block + * size. + * + * @param min_block_size + * Minimum block size to count in total. + * + * @return Number of bytes available for allocation that meet the + * block size requirement + */ +u64 cvmx_bootmem_available_mem(u64 min_block_size); + +/** + * Prints out the list of named blocks that have been allocated + * along with their addresses and sizes. + * This is primarily used for debugging purposes + */ +void cvmx_bootmem_print_named(void); + +/** + * Allocates a block of physical memory from the free list, at + * (optional) requested address and alignment. + * + * @param req_size size of region to allocate. All requests are + * rounded up to be a multiple CVMX_BOOTMEM_ALIGNMENT_SIZE bytes size + * + * @param address_min Minimum address that block can occupy. + * + * @param address_max Specifies the maximum address_min (inclusive) + * that the allocation can use. + * + * @param alignment Requested alignment of the block. If this + * alignment cannot be met, the allocation fails. + * This must be a power of 2. (Note: Alignment of + * CVMX_BOOTMEM_ALIGNMENT_SIZE bytes is required, and + * internally enforced. Requested alignments of less + * than CVMX_BOOTMEM_ALIGNMENT_SIZE are set to + * CVMX_BOOTMEM_ALIGNMENT_SIZE.) + * @param flags Flags to control options for the allocation. + * + * @return physical address of block allocated, or -1 on failure + */ +s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min, u64 address_max, + u64 alignment, u32 flags); + +/** + * Allocates a named block of physical memory from the free list, at + * (optional) requested address and alignment. + * + * @param size size of region to allocate. All requests are rounded + * up to be a multiple CVMX_BOOTMEM_ALIGNMENT_SIZE bytes size + * + * @param min_addr Minimum address that block can occupy. + * + * @param max_addr Specifies the maximum address_min (inclusive) that + * the allocation can use. + * + * @param alignment Requested alignment of the block. If this + * alignment cannot be met, the allocation fails. + * This must be a power of 2. (Note: Alignment of + * CVMX_BOOTMEM_ALIGNMENT_SIZE bytes is required, and + * internally enforced. Requested alignments of less + * than CVMX_BOOTMEM_ALIGNMENT_SIZE are set to + * CVMX_BOOTMEM_ALIGNMENT_SIZE.) + * + * @param name name to assign to named block + * + * @param flags Flags to control options for the allocation. + * + * @return physical address of block allocated, or -1 on failure + */ +s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr, u64 max_addr, + u64 alignment, const char *name, + u32 flags); + +/** + * Finds a named memory block by name. + * Also used for finding an unused entry in the named block table. + * + * @param name Name of memory block to find. If NULL pointer given, + * then finds unused descriptor, if available. + * + * @param flags Flags to control options for the allocation. + * + * @return Physical address of the memory block descriptor, zero if not + * found. If zero returned when name parameter is NULL, then no + * memory block descriptors are available. + */ +u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags); + +/** + * Returns the size of available memory in bytes, only + * counting blocks that are at least as big as the minimum block + * size. + * + * @param min_block_size + * Minimum block size to count in total. + * + * @return Number of bytes available for allocation that meet the + * block size requirement + */ +u64 cvmx_bootmem_phy_available_mem(u64 min_block_size); + +/** + * Frees a named block. + * + * @param name name of block to free + * @param flags flags for passing options + * + * @return 0 on failure + * 1 on success + */ +int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags); + +/** + * Frees a block to the bootmem allocator list. This must + * be used with care, as the size provided must match the size + * of the block that was allocated, or the list will become + * corrupted. + * + * IMPORTANT: This is only intended to be used as part of named block + * frees and initial population of the free memory list. + * * + * + * @param phy_addr physical address of block + * @param size size of block in bytes. + * @param flags flags for passing options + * + * @return 1 on success, + * 0 on failure + */ +int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags); + +/** + * Prints the list of currently allocated named blocks + * + */ +void cvmx_bootmem_phy_named_block_print(void); + +/** + * Prints the list of available memory. + * + */ +void cvmx_bootmem_phy_list_print(void); + +/** + * This function initializes the free memory list used by cvmx_bootmem. + * This must be called before any allocations can be done. + * + * @param mem_size Total memory available, in bytes + * + * @param low_reserved_bytes Number of bytes to reserve (leave out of + * free list) at address 0x0. + * + * @param desc_buffer Buffer for the bootmem descriptor. This must be + * a 32 bit addressable address. + * + * @return 1 on success + * 0 on failure + */ +s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size, u32 low_reserved_bytes, + struct cvmx_bootmem_desc *desc_buffer); + +/** + * This function initializes the free memory list used by cvmx_bootmem. + * This must be called before any allocations can be done. + * + * @param nodemask Nodemask - one bit per node (bit0->node0, bit1->node1,...) + * + * @param mem_size[] Array of memory sizes in MBytes per node ([0]->node0,...) + * + * @param low_reserved_bytes Number of bytes to reserve (leave out of + * free list) at address 0x0. + * + * @param desc_buffer Buffer for the bootmem descriptor. This must be + * a 32 bit addressable address. + * + * @return 1 on success + * 0 on failure + */ +s64 cvmx_bootmem_phy_mem_list_init_multi(u8 nodemask, u32 mem_size[], + u32 low_reserved_bytes, + struct cvmx_bootmem_desc *desc_buffer); +/** + * Locks the bootmem allocator. This is useful in certain situations + * where multiple allocations must be made without being interrupted. + * This should be used with the CVMX_BOOTMEM_FLAG_NO_LOCKING flag. + * + */ +void cvmx_bootmem_lock(void); + +/** + * Unlocks the bootmem allocator. This is useful in certain situations + * where multiple allocations must be made without being interrupted. + * This should be used with the CVMX_BOOTMEM_FLAG_NO_LOCKING flag. + * + */ +void cvmx_bootmem_unlock(void); + +/** + * Internal use function to get the current descriptor pointer + */ +void *__cvmx_bootmem_internal_get_desc_ptr(void); + +/** + * Internal use. This is userd to get a pointer to a physical + * address. For linux n32 the physical address in mmaped to a virtual + * address and the virtual address is returned. For n64 the address + * is converted to an xkphys address and the xkhpys address is + * returned. + */ +void *__cvmx_phys_addr_to_ptr(u64 phys, int size); +const struct cvmx_bootmem_named_block_desc * +__cvmx_bootmem_find_named_block_flags(const char *name, u32 flags); +void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr, + u64 max_addr, u64 align, + const char *name, u32 flags); +u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment, + u64 min_addr, u64 max_addr); + +#endif /* __CVMX_BOOTMEM_H__ */ |