diff options
Diffstat (limited to 'roms/u-boot/drivers/mtd/nand/raw/atmel_nand.c')
-rw-r--r-- | roms/u-boot/drivers/mtd/nand/raw/atmel_nand.c | 1526 |
1 files changed, 1526 insertions, 0 deletions
diff --git a/roms/u-boot/drivers/mtd/nand/raw/atmel_nand.c b/roms/u-boot/drivers/mtd/nand/raw/atmel_nand.c new file mode 100644 index 000000000..abc432c86 --- /dev/null +++ b/roms/u-boot/drivers/mtd/nand/raw/atmel_nand.c @@ -0,0 +1,1526 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * (C) Copyright 2007-2008 + * Stelian Pop <stelian@popies.net> + * Lead Tech Design <www.leadtechdesign.com> + * + * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * (C) Copyright 2012 ATMEL, Hong Xu + */ + +#include <common.h> +#include <log.h> +#include <asm/gpio.h> +#include <asm/arch/gpio.h> +#include <dm/device_compat.h> +#include <dm/devres.h> +#include <linux/bitops.h> +#include <linux/bug.h> +#include <linux/delay.h> + +#include <malloc.h> +#include <nand.h> +#include <watchdog.h> +#include <linux/mtd/nand_ecc.h> + +#ifdef CONFIG_ATMEL_NAND_HWECC + +/* Register access macros */ +#define ecc_readl(add, reg) \ + readl(add + ATMEL_ECC_##reg) +#define ecc_writel(add, reg, value) \ + writel((value), add + ATMEL_ECC_##reg) + +#include "atmel_nand_ecc.h" /* Hardware ECC registers */ + +#ifdef CONFIG_ATMEL_NAND_HW_PMECC + +#ifdef CONFIG_SPL_BUILD +#undef CONFIG_SYS_NAND_ONFI_DETECTION +#endif + +struct atmel_nand_host { + struct pmecc_regs __iomem *pmecc; + struct pmecc_errloc_regs __iomem *pmerrloc; + void __iomem *pmecc_rom_base; + + u8 pmecc_corr_cap; + u16 pmecc_sector_size; + u32 pmecc_index_table_offset; + u32 pmecc_version; + + int pmecc_bytes_per_sector; + int pmecc_sector_number; + int pmecc_degree; /* Degree of remainders */ + int pmecc_cw_len; /* Length of codeword */ + + /* lookup table for alpha_to and index_of */ + void __iomem *pmecc_alpha_to; + void __iomem *pmecc_index_of; + + /* data for pmecc computation */ + int16_t *pmecc_smu; + int16_t *pmecc_partial_syn; + int16_t *pmecc_si; + int16_t *pmecc_lmu; /* polynomal order */ + int *pmecc_mu; + int *pmecc_dmu; + int *pmecc_delta; +}; + +static struct atmel_nand_host pmecc_host; +static struct nand_ecclayout atmel_pmecc_oobinfo; + +/* + * Return number of ecc bytes per sector according to sector size and + * correction capability + * + * Following table shows what at91 PMECC supported: + * Correction Capability Sector_512_bytes Sector_1024_bytes + * ===================== ================ ================= + * 2-bits 4-bytes 4-bytes + * 4-bits 7-bytes 7-bytes + * 8-bits 13-bytes 14-bytes + * 12-bits 20-bytes 21-bytes + * 24-bits 39-bytes 42-bytes + * 32-bits 52-bytes 56-bytes + */ +static int pmecc_get_ecc_bytes(int cap, int sector_size) +{ + int m = 12 + sector_size / 512; + return (m * cap + 7) / 8; +} + +static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, + int oobsize, int ecc_len) +{ + int i; + + layout->eccbytes = ecc_len; + + /* ECC will occupy the last ecc_len bytes continuously */ + for (i = 0; i < ecc_len; i++) + layout->eccpos[i] = oobsize - ecc_len + i; + + layout->oobfree[0].offset = 2; + layout->oobfree[0].length = + oobsize - ecc_len - layout->oobfree[0].offset; +} + +static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) +{ + int table_size; + + table_size = host->pmecc_sector_size == 512 ? + PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024; + + /* the ALPHA lookup table is right behind the INDEX lookup table. */ + return host->pmecc_rom_base + host->pmecc_index_table_offset + + table_size * sizeof(int16_t); +} + +static void pmecc_data_free(struct atmel_nand_host *host) +{ + free(host->pmecc_partial_syn); + free(host->pmecc_si); + free(host->pmecc_lmu); + free(host->pmecc_smu); + free(host->pmecc_mu); + free(host->pmecc_dmu); + free(host->pmecc_delta); +} + +static int pmecc_data_alloc(struct atmel_nand_host *host) +{ + const int cap = host->pmecc_corr_cap; + int size; + + size = (2 * cap + 1) * sizeof(int16_t); + host->pmecc_partial_syn = malloc(size); + host->pmecc_si = malloc(size); + host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t)); + host->pmecc_smu = malloc((cap + 2) * size); + + size = (cap + 1) * sizeof(int); + host->pmecc_mu = malloc(size); + host->pmecc_dmu = malloc(size); + host->pmecc_delta = malloc(size); + + if (host->pmecc_partial_syn && + host->pmecc_si && + host->pmecc_lmu && + host->pmecc_smu && + host->pmecc_mu && + host->pmecc_dmu && + host->pmecc_delta) + return 0; + + /* error happened */ + pmecc_data_free(host); + return -ENOMEM; + +} + +static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + int i; + uint32_t value; + + /* Fill odd syndromes */ + for (i = 0; i < host->pmecc_corr_cap; i++) { + value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]); + if (i & 1) + value >>= 16; + value &= 0xffff; + host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; + } +} + +static void pmecc_substitute(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t *partial_syn = host->pmecc_partial_syn; + const int cap = host->pmecc_corr_cap; + int16_t *si; + int i, j; + + /* si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = host->pmecc_si; + + memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * cap; i += 2) { + for (j = 0; j < host->pmecc_degree; j++) { + if (partial_syn[i] & (0x1 << j)) + si[i] = readw(alpha_to + i * j) ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= cap; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + int16_t tmp; + + tmp = readw(index_of + si[j]); + tmp = (tmp * 2) % host->pmecc_cw_len; + si[i] = readw(alpha_to + tmp); + } + } +} + +/* + * This function defines a Berlekamp iterative procedure for + * finding the value of the error location polynomial. + * The input is si[], initialize by pmecc_substitute(). + * The output is smu[][]. + * + * This function is written according to chip datasheet Chapter: + * Find the Error Location Polynomial Sigma(x) of Section: + * Programmable Multibit ECC Control (PMECC). + */ +static void pmecc_get_sigma(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + + int16_t *lmu = host->pmecc_lmu; + int16_t *si = host->pmecc_si; + int *mu = host->pmecc_mu; + int *dmu = host->pmecc_dmu; /* Discrepancy */ + int *delta = host->pmecc_delta; /* Delta order */ + int cw_len = host->pmecc_cw_len; + const int16_t cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int16_t __iomem *index_of = host->pmecc_index_of; + int16_t __iomem *alpha_to = host->pmecc_alpha_to; + int i, j, k; + uint32_t dmu_0_count, tmp; + int16_t *smu = host->pmecc_smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + /* Init the Sigma(x) */ + memset(smu, 0, sizeof(int16_t) * num * (cap + 2)); + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */ + delta[0] = -1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */ + delta[1] = 0; + + for (i = 1; i <= cap; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((cap - (lmu[i] >> 1) - 1) / 2); + if ((cap - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(cap + 1) * num + j] = + smu[i * num + j]; + + lmu[cap + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + int16_t a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + a = readw(index_of + dmu[i]); + b = readw(index_of + dmu[ro]); + c = readw(index_of + smu[ro * num + k]); + tmp = a + (cw_len - b) + c; + a = readw(alpha_to + tmp % cw_len); + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= cap) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + int16_t a, b, c; + a = readw(index_of + + smu[(i + 1) * num + k]); + b = si[2 * (i - 1) + 3 - k]; + c = readw(index_of + b); + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = readw(alpha_to + tmp) ^ + dmu[i + 1]; + } + } + } +} + +static int pmecc_err_location(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + const int cap = host->pmecc_corr_cap; + const int num = 2 * cap + 1; + int sector_size = host->pmecc_sector_size; + int err_nbr = 0; /* number of error */ + int roots_nbr; /* number of roots */ + int i; + uint32_t val; + int16_t *smu = host->pmecc_smu; + int timeout = PMECC_MAX_TIMEOUT_US; + + pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE); + + for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { + pmecc_writel(host->pmerrloc, sigma[i], + smu[(cap + 1) * num + i]); + err_nbr++; + } + + val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1); + if (sector_size == 1024) + val |= PMERRLOC_ELCFG_SECTOR_1024; + + pmecc_writel(host->pmerrloc, elcfg, val); + pmecc_writel(host->pmerrloc, elen, + sector_size * 8 + host->pmecc_degree * cap); + + while (--timeout) { + if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE) + break; + WATCHDOG_RESET(); + udelay(1); + } + + if (!timeout) { + dev_err(mtd->dev, + "Timeout to calculate PMECC error location\n"); + return -1; + } + + roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK) + >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) + return err_nbr - 1; + + /* Number of roots does not match the degree of smu + * unable to correct error */ + return -1; +} + +static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, + int sector_num, int extra_bytes, int err_nbr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + int i = 0; + int byte_pos, bit_pos, sector_size, pos; + uint32_t tmp; + uint8_t err_byte; + + sector_size = host->pmecc_sector_size; + + while (err_nbr) { + tmp = pmecc_readl(host->pmerrloc, el[i]) - 1; + byte_pos = tmp / 8; + bit_pos = tmp % 8; + + if (byte_pos >= (sector_size + extra_bytes)) + BUG(); /* should never happen */ + + if (byte_pos < sector_size) { + err_byte = *(buf + byte_pos); + *(buf + byte_pos) ^= (1 << bit_pos); + + pos = sector_num * host->pmecc_sector_size + byte_pos; + dev_dbg(mtd->dev, + "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, *(buf + byte_pos)); + } else { + /* Bit flip in OOB area */ + tmp = sector_num * host->pmecc_bytes_per_sector + + (byte_pos - sector_size); + err_byte = ecc[tmp]; + ecc[tmp] ^= (1 << bit_pos); + + pos = tmp + nand_chip->ecc.layout->eccpos[0]; + dev_dbg(mtd->dev, + "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", + pos, bit_pos, err_byte, ecc[tmp]); + } + + i++; + err_nbr--; + } + + return; +} + +static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, + u8 *ecc) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + int i, err_nbr, eccbytes; + uint8_t *buf_pos; + + /* SAMA5D4 PMECC IP can correct errors for all 0xff page */ + if (host->pmecc_version >= PMECC_VERSION_SAMA5D4) + goto normal_check; + + eccbytes = nand_chip->ecc.bytes; + for (i = 0; i < eccbytes; i++) + if (ecc[i] != 0xff) + goto normal_check; + /* Erased page, return OK */ + return 0; + +normal_check: + for (i = 0; i < host->pmecc_sector_number; i++) { + err_nbr = 0; + if (pmecc_stat & 0x1) { + buf_pos = buf + i * host->pmecc_sector_size; + + pmecc_gen_syndrome(mtd, i); + pmecc_substitute(mtd); + pmecc_get_sigma(mtd); + + err_nbr = pmecc_err_location(mtd); + if (err_nbr == -1) { + dev_err(mtd->dev, "PMECC: Too many errors\n"); + mtd->ecc_stats.failed++; + return -EBADMSG; + } else { + pmecc_correct_data(mtd, buf_pos, ecc, i, + host->pmecc_bytes_per_sector, err_nbr); + mtd->ecc_stats.corrected += err_nbr; + } + } + pmecc_stat >>= 1; + } + + return 0; +} + +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + struct atmel_nand_host *host = nand_get_controller_data(chip); + int eccsize = chip->ecc.size; + uint8_t *oob = chip->oob_poi; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint32_t stat; + int timeout = PMECC_MAX_TIMEOUT_US; + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); + pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg)) + & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); + + chip->read_buf(mtd, buf, eccsize); + chip->read_buf(mtd, oob, mtd->oobsize); + + while (--timeout) { + if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) + break; + WATCHDOG_RESET(); + udelay(1); + } + + if (!timeout) { + dev_err(mtd->dev, "Timeout to read PMECC page\n"); + return -1; + } + + stat = pmecc_readl(host->pmecc, isr); + if (stat != 0) + if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0) + return -EBADMSG; + + return 0; +} + +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct atmel_nand_host *host = nand_get_controller_data(chip); + uint32_t *eccpos = chip->ecc.layout->eccpos; + int i, j; + int timeout = PMECC_MAX_TIMEOUT_US; + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); + + pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) | + PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); + + chip->write_buf(mtd, (u8 *)buf, mtd->writesize); + + while (--timeout) { + if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) + break; + WATCHDOG_RESET(); + udelay(1); + } + + if (!timeout) { + dev_err(mtd->dev, + "Timeout to read PMECC status, fail to write PMECC in oob\n"); + goto out; + } + + for (i = 0; i < host->pmecc_sector_number; i++) { + for (j = 0; j < host->pmecc_bytes_per_sector; j++) { + int pos; + + pos = i * host->pmecc_bytes_per_sector + j; + chip->oob_poi[eccpos[pos]] = + pmecc_readb(host->pmecc, ecc_port[i].ecc[j]); + } + } + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); +out: + return 0; +} + +static void atmel_pmecc_core_init(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct atmel_nand_host *host = nand_get_controller_data(nand_chip); + uint32_t val = 0; + struct nand_ecclayout *ecc_layout; + + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); + + switch (host->pmecc_corr_cap) { + case 2: + val = PMECC_CFG_BCH_ERR2; + break; + case 4: + val = PMECC_CFG_BCH_ERR4; + break; + case 8: + val = PMECC_CFG_BCH_ERR8; + break; + case 12: + val = PMECC_CFG_BCH_ERR12; + break; + case 24: + val = PMECC_CFG_BCH_ERR24; + break; + case 32: + val = PMECC_CFG_BCH_ERR32; + break; + } + + if (host->pmecc_sector_size == 512) + val |= PMECC_CFG_SECTOR512; + else if (host->pmecc_sector_size == 1024) + val |= PMECC_CFG_SECTOR1024; + + switch (host->pmecc_sector_number) { + case 1: + val |= PMECC_CFG_PAGE_1SECTOR; + break; + case 2: + val |= PMECC_CFG_PAGE_2SECTORS; + break; + case 4: + val |= PMECC_CFG_PAGE_4SECTORS; + break; + case 8: + val |= PMECC_CFG_PAGE_8SECTORS; + break; + } + + val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE + | PMECC_CFG_AUTO_DISABLE); + pmecc_writel(host->pmecc, cfg, val); + + ecc_layout = nand_chip->ecc.layout; + pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1); + pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]); + pmecc_writel(host->pmecc, eaddr, + ecc_layout->eccpos[ecc_layout->eccbytes - 1]); + /* See datasheet about PMECC Clock Control Register */ + pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ); + pmecc_writel(host->pmecc, idr, 0xff); + pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); +} + +#ifdef CONFIG_SYS_NAND_ONFI_DETECTION +/* + * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If + * pmecc_corr_cap or pmecc_sector_size is 0, then set it as + * ONFI ECC parameters. + * @host: point to an atmel_nand_host structure. + * if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits. + * if host->pmecc_sector_size is 0 then set it as the ONFI sector_size. + * @chip: point to an nand_chip structure. + * @cap: store the ONFI ECC correct bits capbility + * @sector_size: in how many bytes that ONFI require to correct @ecc_bits + * + * Return 0 if success. otherwise return the error code. + */ +static int pmecc_choose_ecc(struct atmel_nand_host *host, + struct nand_chip *chip, + int *cap, int *sector_size) +{ + /* Get ECC requirement from ONFI parameters */ + *cap = *sector_size = 0; + if (chip->onfi_version) { + *cap = chip->ecc_strength_ds; + *sector_size = chip->ecc_step_ds; + pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n", + *cap, *sector_size); + } + + if (*cap == 0 && *sector_size == 0) { + /* Non-ONFI compliant */ + dev_info(chip->mtd.dev, + "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n"); + *cap = 2; + *sector_size = 512; + } + + /* If head file doesn't specify then use the one in ONFI parameters */ + if (host->pmecc_corr_cap == 0) { + /* use the most fitable ecc bits (the near bigger one ) */ + if (*cap <= 2) + host->pmecc_corr_cap = 2; + else if (*cap <= 4) + host->pmecc_corr_cap = 4; + else if (*cap <= 8) + host->pmecc_corr_cap = 8; + else if (*cap <= 12) + host->pmecc_corr_cap = 12; + else if (*cap <= 24) + host->pmecc_corr_cap = 24; + else +#ifdef CONFIG_SAMA5D2 + host->pmecc_corr_cap = 32; +#else + host->pmecc_corr_cap = 24; +#endif + } + if (host->pmecc_sector_size == 0) { + /* use the most fitable sector size (the near smaller one ) */ + if (*sector_size >= 1024) + host->pmecc_sector_size = 1024; + else if (*sector_size >= 512) + host->pmecc_sector_size = 512; + else + return -EINVAL; + } + return 0; +} +#endif + +#if defined(NO_GALOIS_TABLE_IN_ROM) +static uint16_t *pmecc_galois_table; +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly) - 1; +} + +static int build_gf_tables(int mm, unsigned int poly, + int16_t *index_of, int16_t *alpha_to) +{ + unsigned int i, x = 1; + const unsigned int k = 1 << deg(poly); + unsigned int nn = (1 << mm) - 1; + + /* primitive polynomial must be of degree m */ + if (k != (1u << mm)) + return -EINVAL; + + for (i = 0; i < nn; i++) { + alpha_to[i] = x; + index_of[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ + return -EINVAL; + x <<= 1; + if (x & k) + x ^= poly; + } + + alpha_to[nn] = 1; + index_of[0] = 0; + + return 0; +} + +static uint16_t *create_lookup_table(int sector_size) +{ + int degree = (sector_size == 512) ? + PMECC_GF_DIMENSION_13 : + PMECC_GF_DIMENSION_14; + unsigned int poly = (sector_size == 512) ? + PMECC_GF_13_PRIMITIVE_POLY : + PMECC_GF_14_PRIMITIVE_POLY; + int table_size = (sector_size == 512) ? + PMECC_INDEX_TABLE_SIZE_512 : + PMECC_INDEX_TABLE_SIZE_1024; + + int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL); + if (addr && build_gf_tables(degree, poly, addr, addr + table_size)) + return NULL; + + return (uint16_t *)addr; +} +#endif + +static int atmel_pmecc_nand_init_params(struct nand_chip *nand, + struct mtd_info *mtd) +{ + struct atmel_nand_host *host; + int cap, sector_size; + + host = &pmecc_host; + nand_set_controller_data(nand, host); + + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.calculate = NULL; + nand->ecc.correct = NULL; + nand->ecc.hwctl = NULL; + +#ifdef CONFIG_SYS_NAND_ONFI_DETECTION + host->pmecc_corr_cap = host->pmecc_sector_size = 0; + +#ifdef CONFIG_PMECC_CAP + host->pmecc_corr_cap = CONFIG_PMECC_CAP; +#endif +#ifdef CONFIG_PMECC_SECTOR_SIZE + host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; +#endif + /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or + * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size + * from ONFI. + */ + if (pmecc_choose_ecc(host, nand, &cap, §or_size)) { + dev_err(mtd->dev, + "Required ECC %d bits in %d bytes not supported!\n", + cap, sector_size); + return -EINVAL; + } + + if (cap > host->pmecc_corr_cap) + dev_info(mtd->dev, + "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n", + host->pmecc_corr_cap, cap); + if (sector_size < host->pmecc_sector_size) + dev_info(mtd->dev, + "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n", + host->pmecc_sector_size, sector_size); +#else /* CONFIG_SYS_NAND_ONFI_DETECTION */ + host->pmecc_corr_cap = CONFIG_PMECC_CAP; + host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; +#endif + + cap = host->pmecc_corr_cap; + sector_size = host->pmecc_sector_size; + + /* TODO: need check whether cap & sector_size is validate */ +#if defined(NO_GALOIS_TABLE_IN_ROM) + /* + * As pmecc_rom_base is the begin of the gallois field table, So the + * index offset just set as 0. + */ + host->pmecc_index_table_offset = 0; +#else + if (host->pmecc_sector_size == 512) + host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512; + else + host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024; +#endif + + pr_debug("Initialize PMECC params, cap: %d, sector: %d\n", + cap, sector_size); + + host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC; + host->pmerrloc = (struct pmecc_errloc_regs __iomem *) + ATMEL_BASE_PMERRLOC; +#if defined(NO_GALOIS_TABLE_IN_ROM) + pmecc_galois_table = create_lookup_table(host->pmecc_sector_size); + if (!pmecc_galois_table) { + dev_err(mtd->dev, "out of memory\n"); + return -ENOMEM; + } + + host->pmecc_rom_base = (void __iomem *)pmecc_galois_table; +#else + host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM; +#endif + + /* ECC is calculated for the whole page (1 step) */ + nand->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 2048: + case 4096: + case 8192: + host->pmecc_degree = (sector_size == 512) ? + PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; + host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; + host->pmecc_sector_number = mtd->writesize / sector_size; + host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( + cap, sector_size); + host->pmecc_alpha_to = pmecc_get_alpha_to(host); + host->pmecc_index_of = host->pmecc_rom_base + + host->pmecc_index_table_offset; + + nand->ecc.steps = 1; + nand->ecc.bytes = host->pmecc_bytes_per_sector * + host->pmecc_sector_number; + + if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) { + dev_err(mtd->dev, + "too large eccpos entries. max support ecc.bytes is %d\n", + MTD_MAX_ECCPOS_ENTRIES_LARGE); + return -EINVAL; + } + + if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) { + dev_err(mtd->dev, "No room for ECC bytes\n"); + return -EINVAL; + } + pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, + mtd->oobsize, + nand->ecc.bytes); + nand->ecc.layout = &atmel_pmecc_oobinfo; + break; + case 512: + case 1024: + /* TODO */ + dev_err(mtd->dev, + "Unsupported page size for PMECC, use Software ECC\n"); + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand->ecc.mode = NAND_ECC_SOFT; + nand->ecc.read_page = NULL; + nand->ecc.postpad = 0; + nand->ecc.prepad = 0; + nand->ecc.bytes = 0; + return 0; + } + + /* Allocate data for PMECC computation */ + if (pmecc_data_alloc(host)) { + dev_err(mtd->dev, + "Cannot allocate memory for PMECC computation!\n"); + return -ENOMEM; + } + + nand->options |= NAND_NO_SUBPAGE_WRITE; + nand->ecc.read_page = atmel_nand_pmecc_read_page; + nand->ecc.write_page = atmel_nand_pmecc_write_page; + nand->ecc.strength = cap; + + /* Check the PMECC ip version */ + host->pmecc_version = pmecc_readl(host->pmerrloc, version); + dev_dbg(mtd->dev, "PMECC IP version is: %x\n", host->pmecc_version); + + atmel_pmecc_core_init(mtd); + + return 0; +} + +#else + +/* oob layout for large page size + * bad block info is on bytes 0 and 1 + * the bytes have to be consecutives to avoid + * several NAND_CMD_RNDOUT during read + */ +static struct nand_ecclayout atmel_oobinfo_large = { + .eccbytes = 4, + .eccpos = {60, 61, 62, 63}, + .oobfree = { + {2, 58} + }, +}; + +/* oob layout for small page size + * bad block info is on bytes 4 and 5 + * the bytes have to be consecutives to avoid + * several NAND_CMD_RNDOUT during read + */ +static struct nand_ecclayout atmel_oobinfo_small = { + .eccbytes = 4, + .eccpos = {0, 1, 2, 3}, + .oobfree = { + {6, 10} + }, +}; + +/* + * Calculate HW ECC + * + * function called after a write + * + * mtd: MTD block structure + * dat: raw data (unused) + * ecc_code: buffer for ECC + */ +static int atmel_nand_calculate(struct mtd_info *mtd, + const u_char *dat, unsigned char *ecc_code) +{ + unsigned int ecc_value; + + /* get the first 2 ECC bytes */ + ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR); + + ecc_code[0] = ecc_value & 0xFF; + ecc_code[1] = (ecc_value >> 8) & 0xFF; + + /* get the last 2 ECC bytes */ + ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY; + + ecc_code[2] = ecc_value & 0xFF; + ecc_code[3] = (ecc_value >> 8) & 0xFF; + + return 0; +} + +/* + * HW ECC read page function + * + * mtd: mtd info structure + * chip: nand chip info structure + * buf: buffer to store read data + * oob_required: caller expects OOB data read to chip->oob_poi + */ +static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint32_t *eccpos = chip->ecc.layout->eccpos; + uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + uint8_t *ecc_pos; + int stat; + + /* read the page */ + chip->read_buf(mtd, p, eccsize); + + /* move to ECC position if needed */ + if (eccpos[0] != 0) { + /* This only works on large pages + * because the ECC controller waits for + * NAND_CMD_RNDOUTSTART after the + * NAND_CMD_RNDOUT. + * anyway, for small pages, the eccpos[0] == 0 + */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, + mtd->writesize + eccpos[0], -1); + } + + /* the ECC controller needs to read the ECC just after the data */ + ecc_pos = oob + eccpos[0]; + chip->read_buf(mtd, ecc_pos, eccbytes); + + /* check if there's an error */ + stat = chip->ecc.correct(mtd, p, oob, NULL); + + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + /* get back to oob start (end of page) */ + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); + + /* read the oob */ + chip->read_buf(mtd, oob, mtd->oobsize); + + return 0; +} + +/* + * HW ECC Correction + * + * function called after a read + * + * mtd: MTD block structure + * dat: raw data read from the chip + * read_ecc: ECC from the chip (unused) + * isnull: unused + * + * Detect and correct a 1 bit error for a page + */ +static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *isnull) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + unsigned int ecc_status; + unsigned int ecc_word, ecc_bit; + + /* get the status from the Status Register */ + ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR); + + /* if there's no error */ + if (likely(!(ecc_status & ATMEL_ECC_RECERR))) + return 0; + + /* get error bit offset (4 bits) */ + ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR; + /* get word address (12 bits) */ + ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR; + ecc_word >>= 4; + + /* if there are multiple errors */ + if (ecc_status & ATMEL_ECC_MULERR) { + /* check if it is a freshly erased block + * (filled with 0xff) */ + if ((ecc_bit == ATMEL_ECC_BITADDR) + && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { + /* the block has just been erased, return OK */ + return 0; + } + /* it doesn't seems to be a freshly + * erased block. + * We can't correct so many errors */ + dev_warn(mtd->dev, + "multiple errors detected. Unable to correct.\n"); + return -EBADMSG; + } + + /* if there's a single bit error : we can correct it */ + if (ecc_status & ATMEL_ECC_ECCERR) { + /* there's nothing much to do here. + * the bit error is on the ECC itself. + */ + dev_warn(mtd->dev, + "one bit error on ECC code. Nothing to correct\n"); + return 0; + } + + dev_warn(mtd->dev, + "one bit error on data. (word offset in the page : 0x%x bit offset : 0x%x)\n", + ecc_word, ecc_bit); + /* correct the error */ + if (nand_chip->options & NAND_BUSWIDTH_16) { + /* 16 bits words */ + ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); + } else { + /* 8 bits words */ + dat[ecc_word] ^= (1 << ecc_bit); + } + dev_warn(mtd->dev, "error corrected\n"); + return 1; +} + +/* + * Enable HW ECC : unused on most chips + */ +static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) +{ +} + +int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd) +{ + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.calculate = atmel_nand_calculate; + nand->ecc.correct = atmel_nand_correct; + nand->ecc.hwctl = atmel_nand_hwctl; + nand->ecc.read_page = atmel_nand_read_page; + nand->ecc.bytes = 4; + nand->ecc.strength = 4; + + if (nand->ecc.mode == NAND_ECC_HW) { + /* ECC is calculated for the whole page (1 step) */ + nand->ecc.size = mtd->writesize; + + /* set ECC page size and oob layout */ + switch (mtd->writesize) { + case 512: + nand->ecc.layout = &atmel_oobinfo_small; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_528); + break; + case 1024: + nand->ecc.layout = &atmel_oobinfo_large; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_1056); + break; + case 2048: + nand->ecc.layout = &atmel_oobinfo_large; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_2112); + break; + case 4096: + nand->ecc.layout = &atmel_oobinfo_large; + ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR, + ATMEL_ECC_PAGESIZE_4224); + break; + default: + /* page size not handled by HW ECC */ + /* switching back to soft ECC */ + nand->ecc.mode = NAND_ECC_SOFT; + nand->ecc.calculate = NULL; + nand->ecc.correct = NULL; + nand->ecc.hwctl = NULL; + nand->ecc.read_page = NULL; + nand->ecc.postpad = 0; + nand->ecc.prepad = 0; + nand->ecc.bytes = 0; + break; + } + } + + return 0; +} + +#endif /* CONFIG_ATMEL_NAND_HW_PMECC */ + +#endif /* CONFIG_ATMEL_NAND_HWECC */ + +static void at91_nand_hwcontrol(struct mtd_info *mtd, + int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + if (ctrl & NAND_CTRL_CHANGE) { + ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; + IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE + | CONFIG_SYS_NAND_MASK_CLE); + + if (ctrl & NAND_CLE) + IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE; + if (ctrl & NAND_ALE) + IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE; + +#ifdef CONFIG_SYS_NAND_ENABLE_PIN + at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN, + !(ctrl & NAND_NCE)); +#endif + this->IO_ADDR_W = (void *) IO_ADDR_W; + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, this->IO_ADDR_W); +} + +#ifdef CONFIG_SYS_NAND_READY_PIN +static int at91_nand_ready(struct mtd_info *mtd) +{ + return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN); +} +#endif + +#ifdef CONFIG_SPL_BUILD +/* The following code is for SPL */ +static struct mtd_info *mtd; +static struct nand_chip nand_chip; + +static int nand_command(int block, int page, uint32_t offs, u8 cmd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; + void (*hwctrl)(struct mtd_info *mtd, int cmd, + unsigned int ctrl) = this->cmd_ctrl; + + while (!this->dev_ready(mtd)) + ; + + if (cmd == NAND_CMD_READOOB) { + offs += CONFIG_SYS_NAND_PAGE_SIZE; + cmd = NAND_CMD_READ0; + } + + hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + + if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd)) + offs >>= 1; + + hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE); + hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); + hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); + hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE); +#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE + hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE); +#endif + hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + while (!this->dev_ready(mtd)) + ; + + return 0; +} + +static int nand_is_bad_block(int block) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB); + + if (this->options & NAND_BUSWIDTH_16) { + if (readw(this->IO_ADDR_R) != 0xffff) + return 1; + } else { + if (readb(this->IO_ADDR_R) != 0xff) + return 1; + } + + return 0; +} + +#ifdef CONFIG_SPL_NAND_ECC +static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS; +#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \ + CONFIG_SYS_NAND_ECCSIZE) +#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES) + +static int nand_read_page(int block, int page, void *dst) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u_char ecc_calc[ECCTOTAL]; + u_char ecc_code[ECCTOTAL]; + u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; + int eccsize = CONFIG_SYS_NAND_ECCSIZE; + int eccbytes = CONFIG_SYS_NAND_ECCBYTES; + int eccsteps = ECCSTEPS; + int i; + uint8_t *p = dst; + nand_command(block, page, 0, NAND_CMD_READ0); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + if (this->ecc.mode != NAND_ECC_SOFT) + this->ecc.hwctl(mtd, NAND_ECC_READ); + this->read_buf(mtd, p, eccsize); + this->ecc.calculate(mtd, p, &ecc_calc[i]); + } + this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); + + for (i = 0; i < ECCTOTAL; i++) + ecc_code[i] = oob_data[nand_ecc_pos[i]]; + + eccsteps = ECCSTEPS; + p = dst; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + + return 0; +} + +int spl_nand_erase_one(int block, int page) +{ + struct nand_chip *this = mtd_to_nand(mtd); + void (*hwctrl)(struct mtd_info *mtd, int cmd, + unsigned int ctrl) = this->cmd_ctrl; + int page_addr; + + if (nand_chip.select_chip) + nand_chip.select_chip(mtd, 0); + + page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT; + hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + /* Row address */ + hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE); + hwctrl(mtd, ((page_addr >> 8) & 0xff), + NAND_CTRL_ALE | NAND_CTRL_CHANGE); +#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE + /* One more address cycle for devices > 128MiB */ + hwctrl(mtd, (page_addr >> 16) & 0x0f, + NAND_CTRL_ALE | NAND_CTRL_CHANGE); +#endif + hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE); + + while (!this->dev_ready(mtd)) + ; + + nand_deselect(); + + return 0; +} +#else +static int nand_read_page(int block, int page, void *dst) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + nand_command(block, page, 0, NAND_CMD_READ0); + atmel_nand_pmecc_read_page(mtd, this, dst, 0, page); + + return 0; +} +#endif /* CONFIG_SPL_NAND_ECC */ + +int at91_nand_wait_ready(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + udelay(this->chip_delay); + + return 1; +} + +int board_nand_init(struct nand_chip *nand) +{ + int ret = 0; + + nand->ecc.mode = NAND_ECC_SOFT; +#ifdef CONFIG_SYS_NAND_DBW_16 + nand->options = NAND_BUSWIDTH_16; + nand->read_buf = nand_read_buf16; +#else + nand->read_buf = nand_read_buf; +#endif + nand->cmd_ctrl = at91_nand_hwcontrol; +#ifdef CONFIG_SYS_NAND_READY_PIN + nand->dev_ready = at91_nand_ready; +#else + nand->dev_ready = at91_nand_wait_ready; +#endif + nand->chip_delay = 20; +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT + nand->bbt_options |= NAND_BBT_USE_FLASH; +#endif + +#ifdef CONFIG_ATMEL_NAND_HWECC +#ifdef CONFIG_ATMEL_NAND_HW_PMECC + ret = atmel_pmecc_nand_init_params(nand, mtd); +#endif +#endif + + return ret; +} + +void nand_init(void) +{ + mtd = nand_to_mtd(&nand_chip); + mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE; + mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE; + nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE; + nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE; + board_nand_init(&nand_chip); + +#ifdef CONFIG_SPL_NAND_ECC + if (nand_chip.ecc.mode == NAND_ECC_SOFT) { + nand_chip.ecc.calculate = nand_calculate_ecc; + nand_chip.ecc.correct = nand_correct_data; + } +#endif + + if (nand_chip.select_chip) + nand_chip.select_chip(mtd, 0); +} + +void nand_deselect(void) +{ + if (nand_chip.select_chip) + nand_chip.select_chip(mtd, -1); +} + +#include "nand_spl_loaders.c" + +#else + +#ifndef CONFIG_SYS_NAND_BASE_LIST +#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } +#endif +static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; +static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; + +int atmel_nand_chip_init(int devnum, ulong base_addr) +{ + int ret; + struct nand_chip *nand = &nand_chip[devnum]; + struct mtd_info *mtd = nand_to_mtd(nand); + + nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr; + +#ifdef CONFIG_NAND_ECC_BCH + nand->ecc.mode = NAND_ECC_SOFT_BCH; +#else + nand->ecc.mode = NAND_ECC_SOFT; +#endif +#ifdef CONFIG_SYS_NAND_DBW_16 + nand->options = NAND_BUSWIDTH_16; +#endif + nand->cmd_ctrl = at91_nand_hwcontrol; +#ifdef CONFIG_SYS_NAND_READY_PIN + nand->dev_ready = at91_nand_ready; +#endif + nand->chip_delay = 75; +#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT + nand->bbt_options |= NAND_BBT_USE_FLASH; +#endif + + ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); + if (ret) + return ret; + +#ifdef CONFIG_ATMEL_NAND_HWECC +#ifdef CONFIG_ATMEL_NAND_HW_PMECC + ret = atmel_pmecc_nand_init_params(nand, mtd); +#else + ret = atmel_hwecc_nand_init_param(nand, mtd); +#endif + if (ret) + return ret; +#endif + + ret = nand_scan_tail(mtd); + if (!ret) + nand_register(devnum, mtd); + + return ret; +} + +void board_nand_init(void) +{ + int i; + for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) + if (atmel_nand_chip_init(i, base_addr[i])) + log_err("atmel_nand: Fail to initialize #%d chip", i); +} +#endif /* CONFIG_SPL_BUILD */ |