aboutsummaryrefslogtreecommitdiffstats
path: root/roms/u-boot/drivers/nvme/nvme.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/u-boot/drivers/nvme/nvme.c')
-rw-r--r--roms/u-boot/drivers/nvme/nvme.c938
1 files changed, 938 insertions, 0 deletions
diff --git a/roms/u-boot/drivers/nvme/nvme.c b/roms/u-boot/drivers/nvme/nvme.c
new file mode 100644
index 000000000..f6465ea7f
--- /dev/null
+++ b/roms/u-boot/drivers/nvme/nvme.c
@@ -0,0 +1,938 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (C) 2017 NXP Semiconductors
+ * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
+ */
+
+#include <common.h>
+#include <blk.h>
+#include <cpu_func.h>
+#include <dm.h>
+#include <errno.h>
+#include <log.h>
+#include <malloc.h>
+#include <memalign.h>
+#include <pci.h>
+#include <time.h>
+#include <dm/device-internal.h>
+#include <linux/compat.h>
+#include "nvme.h"
+
+#define NVME_Q_DEPTH 2
+#define NVME_AQ_DEPTH 2
+#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
+#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
+#define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
+ ARCH_DMA_MINALIGN)
+#define ADMIN_TIMEOUT 60
+#define IO_TIMEOUT 30
+#define MAX_PRP_POOL 512
+
+enum nvme_queue_id {
+ NVME_ADMIN_Q,
+ NVME_IO_Q,
+ NVME_Q_NUM,
+};
+
+/*
+ * An NVM Express queue. Each device has at least two (one for admin
+ * commands and one for I/O commands).
+ */
+struct nvme_queue {
+ struct nvme_dev *dev;
+ struct nvme_command *sq_cmds;
+ struct nvme_completion *cqes;
+ wait_queue_head_t sq_full;
+ u32 __iomem *q_db;
+ u16 q_depth;
+ s16 cq_vector;
+ u16 sq_head;
+ u16 sq_tail;
+ u16 cq_head;
+ u16 qid;
+ u8 cq_phase;
+ u8 cqe_seen;
+ unsigned long cmdid_data[];
+};
+
+static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
+{
+ u32 bit = enabled ? NVME_CSTS_RDY : 0;
+ int timeout;
+ ulong start;
+
+ /* Timeout field in the CAP register is in 500 millisecond units */
+ timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
+
+ start = get_timer(0);
+ while (get_timer(start) < timeout) {
+ if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
+ return 0;
+ }
+
+ return -ETIME;
+}
+
+static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
+ int total_len, u64 dma_addr)
+{
+ u32 page_size = dev->page_size;
+ int offset = dma_addr & (page_size - 1);
+ u64 *prp_pool;
+ int length = total_len;
+ int i, nprps;
+ u32 prps_per_page = page_size >> 3;
+ u32 num_pages;
+
+ length -= (page_size - offset);
+
+ if (length <= 0) {
+ *prp2 = 0;
+ return 0;
+ }
+
+ if (length)
+ dma_addr += (page_size - offset);
+
+ if (length <= page_size) {
+ *prp2 = dma_addr;
+ return 0;
+ }
+
+ nprps = DIV_ROUND_UP(length, page_size);
+ num_pages = DIV_ROUND_UP(nprps, prps_per_page);
+
+ if (nprps > dev->prp_entry_num) {
+ free(dev->prp_pool);
+ /*
+ * Always increase in increments of pages. It doesn't waste
+ * much memory and reduces the number of allocations.
+ */
+ dev->prp_pool = memalign(page_size, num_pages * page_size);
+ if (!dev->prp_pool) {
+ printf("Error: malloc prp_pool fail\n");
+ return -ENOMEM;
+ }
+ dev->prp_entry_num = prps_per_page * num_pages;
+ }
+
+ prp_pool = dev->prp_pool;
+ i = 0;
+ while (nprps) {
+ if (i == ((page_size >> 3) - 1)) {
+ *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
+ page_size);
+ i = 0;
+ prp_pool += page_size;
+ }
+ *(prp_pool + i++) = cpu_to_le64(dma_addr);
+ dma_addr += page_size;
+ nprps--;
+ }
+ *prp2 = (ulong)dev->prp_pool;
+
+ flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
+ dev->prp_entry_num * sizeof(u64));
+
+ return 0;
+}
+
+static __le16 nvme_get_cmd_id(void)
+{
+ static unsigned short cmdid;
+
+ return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
+}
+
+static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
+{
+ /*
+ * Single CQ entries are always smaller than a cache line, so we
+ * can't invalidate them individually. However CQ entries are
+ * read only by the CPU, so it's safe to always invalidate all of them,
+ * as the cache line should never become dirty.
+ */
+ ulong start = (ulong)&nvmeq->cqes[0];
+ ulong stop = start + NVME_CQ_ALLOCATION;
+
+ invalidate_dcache_range(start, stop);
+
+ return readw(&(nvmeq->cqes[index].status));
+}
+
+/**
+ * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
+ *
+ * @nvmeq: The queue to use
+ * @cmd: The command to send
+ */
+static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
+{
+ u16 tail = nvmeq->sq_tail;
+
+ memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
+ flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
+ (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
+
+ if (++tail == nvmeq->q_depth)
+ tail = 0;
+ writel(tail, nvmeq->q_db);
+ nvmeq->sq_tail = tail;
+}
+
+static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
+ struct nvme_command *cmd,
+ u32 *result, unsigned timeout)
+{
+ u16 head = nvmeq->cq_head;
+ u16 phase = nvmeq->cq_phase;
+ u16 status;
+ ulong start_time;
+ ulong timeout_us = timeout * 100000;
+
+ cmd->common.command_id = nvme_get_cmd_id();
+ nvme_submit_cmd(nvmeq, cmd);
+
+ start_time = timer_get_us();
+
+ for (;;) {
+ status = nvme_read_completion_status(nvmeq, head);
+ if ((status & 0x01) == phase)
+ break;
+ if (timeout_us > 0 && (timer_get_us() - start_time)
+ >= timeout_us)
+ return -ETIMEDOUT;
+ }
+
+ status >>= 1;
+ if (status) {
+ printf("ERROR: status = %x, phase = %d, head = %d\n",
+ status, phase, head);
+ status = 0;
+ if (++head == nvmeq->q_depth) {
+ head = 0;
+ phase = !phase;
+ }
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+ nvmeq->cq_head = head;
+ nvmeq->cq_phase = phase;
+
+ return -EIO;
+ }
+
+ if (result)
+ *result = readl(&(nvmeq->cqes[head].result));
+
+ if (++head == nvmeq->q_depth) {
+ head = 0;
+ phase = !phase;
+ }
+ writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
+ nvmeq->cq_head = head;
+ nvmeq->cq_phase = phase;
+
+ return status;
+}
+
+static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
+ u32 *result)
+{
+ return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
+ result, ADMIN_TIMEOUT);
+}
+
+static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
+ int qid, int depth)
+{
+ struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
+ if (!nvmeq)
+ return NULL;
+ memset(nvmeq, 0, sizeof(*nvmeq));
+
+ nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
+ if (!nvmeq->cqes)
+ goto free_nvmeq;
+ memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
+
+ nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
+ if (!nvmeq->sq_cmds)
+ goto free_queue;
+ memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
+
+ nvmeq->dev = dev;
+
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ nvmeq->q_depth = depth;
+ nvmeq->qid = qid;
+ dev->queue_count++;
+ dev->queues[qid] = nvmeq;
+
+ return nvmeq;
+
+ free_queue:
+ free((void *)nvmeq->cqes);
+ free_nvmeq:
+ free(nvmeq);
+
+ return NULL;
+}
+
+static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.delete_queue.opcode = opcode;
+ c.delete_queue.qid = cpu_to_le16(id);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
+{
+ return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
+}
+
+static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
+{
+ return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
+}
+
+static int nvme_enable_ctrl(struct nvme_dev *dev)
+{
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config |= NVME_CC_ENABLE;
+ writel(dev->ctrl_config, &dev->bar->cc);
+
+ return nvme_wait_ready(dev, true);
+}
+
+static int nvme_disable_ctrl(struct nvme_dev *dev)
+{
+ dev->ctrl_config &= ~NVME_CC_SHN_MASK;
+ dev->ctrl_config &= ~NVME_CC_ENABLE;
+ writel(dev->ctrl_config, &dev->bar->cc);
+
+ return nvme_wait_ready(dev, false);
+}
+
+static void nvme_free_queue(struct nvme_queue *nvmeq)
+{
+ free((void *)nvmeq->cqes);
+ free(nvmeq->sq_cmds);
+ free(nvmeq);
+}
+
+static void nvme_free_queues(struct nvme_dev *dev, int lowest)
+{
+ int i;
+
+ for (i = dev->queue_count - 1; i >= lowest; i--) {
+ struct nvme_queue *nvmeq = dev->queues[i];
+ dev->queue_count--;
+ dev->queues[i] = NULL;
+ nvme_free_queue(nvmeq);
+ }
+}
+
+static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+
+ nvmeq->sq_tail = 0;
+ nvmeq->cq_head = 0;
+ nvmeq->cq_phase = 1;
+ nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
+ memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
+ flush_dcache_range((ulong)nvmeq->cqes,
+ (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
+ dev->online_queues++;
+}
+
+static int nvme_configure_admin_queue(struct nvme_dev *dev)
+{
+ int result;
+ u32 aqa;
+ u64 cap = dev->cap;
+ struct nvme_queue *nvmeq;
+ /* most architectures use 4KB as the page size */
+ unsigned page_shift = 12;
+ unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
+ unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
+
+ if (page_shift < dev_page_min) {
+ debug("Device minimum page size (%u) too large for host (%u)\n",
+ 1 << dev_page_min, 1 << page_shift);
+ return -ENODEV;
+ }
+
+ if (page_shift > dev_page_max) {
+ debug("Device maximum page size (%u) smaller than host (%u)\n",
+ 1 << dev_page_max, 1 << page_shift);
+ page_shift = dev_page_max;
+ }
+
+ result = nvme_disable_ctrl(dev);
+ if (result < 0)
+ return result;
+
+ nvmeq = dev->queues[NVME_ADMIN_Q];
+ if (!nvmeq) {
+ nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
+ if (!nvmeq)
+ return -ENOMEM;
+ }
+
+ aqa = nvmeq->q_depth - 1;
+ aqa |= aqa << 16;
+
+ dev->page_size = 1 << page_shift;
+
+ dev->ctrl_config = NVME_CC_CSS_NVM;
+ dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
+ dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
+ dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
+
+ writel(aqa, &dev->bar->aqa);
+ nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
+ nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
+
+ result = nvme_enable_ctrl(dev);
+ if (result)
+ goto free_nvmeq;
+
+ nvmeq->cq_vector = 0;
+
+ nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
+
+ return result;
+
+ free_nvmeq:
+ nvme_free_queues(dev, 0);
+
+ return result;
+}
+
+static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_command c;
+ int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
+
+ memset(&c, 0, sizeof(c));
+ c.create_cq.opcode = nvme_admin_create_cq;
+ c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
+ c.create_cq.cqid = cpu_to_le16(qid);
+ c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_cq.cq_flags = cpu_to_le16(flags);
+ c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
+ struct nvme_queue *nvmeq)
+{
+ struct nvme_command c;
+ int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
+
+ memset(&c, 0, sizeof(c));
+ c.create_sq.opcode = nvme_admin_create_sq;
+ c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
+ c.create_sq.sqid = cpu_to_le16(qid);
+ c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
+ c.create_sq.sq_flags = cpu_to_le16(flags);
+ c.create_sq.cqid = cpu_to_le16(qid);
+
+ return nvme_submit_admin_cmd(dev, &c, NULL);
+}
+
+int nvme_identify(struct nvme_dev *dev, unsigned nsid,
+ unsigned cns, dma_addr_t dma_addr)
+{
+ struct nvme_command c;
+ u32 page_size = dev->page_size;
+ int offset = dma_addr & (page_size - 1);
+ int length = sizeof(struct nvme_id_ctrl);
+ int ret;
+
+ memset(&c, 0, sizeof(c));
+ c.identify.opcode = nvme_admin_identify;
+ c.identify.nsid = cpu_to_le32(nsid);
+ c.identify.prp1 = cpu_to_le64(dma_addr);
+
+ length -= (page_size - offset);
+ if (length <= 0) {
+ c.identify.prp2 = 0;
+ } else {
+ dma_addr += (page_size - offset);
+ c.identify.prp2 = cpu_to_le64(dma_addr);
+ }
+
+ c.identify.cns = cpu_to_le32(cns);
+
+ invalidate_dcache_range(dma_addr,
+ dma_addr + sizeof(struct nvme_id_ctrl));
+
+ ret = nvme_submit_admin_cmd(dev, &c, NULL);
+ if (!ret)
+ invalidate_dcache_range(dma_addr,
+ dma_addr + sizeof(struct nvme_id_ctrl));
+
+ return ret;
+}
+
+int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
+ dma_addr_t dma_addr, u32 *result)
+{
+ struct nvme_command c;
+ int ret;
+
+ memset(&c, 0, sizeof(c));
+ c.features.opcode = nvme_admin_get_features;
+ c.features.nsid = cpu_to_le32(nsid);
+ c.features.prp1 = cpu_to_le64(dma_addr);
+ c.features.fid = cpu_to_le32(fid);
+
+ ret = nvme_submit_admin_cmd(dev, &c, result);
+
+ /*
+ * TODO: Add some cache invalidation when a DMA buffer is involved
+ * in the request, here and before the command gets submitted. The
+ * buffer size varies by feature, also some features use a different
+ * field in the command packet to hold the buffer address.
+ * Section 5.21.1 (Set Features command) in the NVMe specification
+ * details the buffer requirements for each feature.
+ *
+ * At the moment there is no user of this function.
+ */
+
+ return ret;
+}
+
+int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
+ dma_addr_t dma_addr, u32 *result)
+{
+ struct nvme_command c;
+
+ memset(&c, 0, sizeof(c));
+ c.features.opcode = nvme_admin_set_features;
+ c.features.prp1 = cpu_to_le64(dma_addr);
+ c.features.fid = cpu_to_le32(fid);
+ c.features.dword11 = cpu_to_le32(dword11);
+
+ /*
+ * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
+ * involved in the request. The buffer size varies by feature, also
+ * some features use a different field in the command packet to hold
+ * the buffer address. Section 5.21.1 (Set Features command) in the
+ * NVMe specification details the buffer requirements for each
+ * feature.
+ * At the moment the only user of this function is not using
+ * any DMA buffer at all.
+ */
+
+ return nvme_submit_admin_cmd(dev, &c, result);
+}
+
+static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
+{
+ struct nvme_dev *dev = nvmeq->dev;
+ int result;
+
+ nvmeq->cq_vector = qid - 1;
+ result = nvme_alloc_cq(dev, qid, nvmeq);
+ if (result < 0)
+ goto release_cq;
+
+ result = nvme_alloc_sq(dev, qid, nvmeq);
+ if (result < 0)
+ goto release_sq;
+
+ nvme_init_queue(nvmeq, qid);
+
+ return result;
+
+ release_sq:
+ nvme_delete_sq(dev, qid);
+ release_cq:
+ nvme_delete_cq(dev, qid);
+
+ return result;
+}
+
+static int nvme_set_queue_count(struct nvme_dev *dev, int count)
+{
+ int status;
+ u32 result;
+ u32 q_count = (count - 1) | ((count - 1) << 16);
+
+ status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
+ q_count, 0, &result);
+
+ if (status < 0)
+ return status;
+ if (status > 1)
+ return 0;
+
+ return min(result & 0xffff, result >> 16) + 1;
+}
+
+static void nvme_create_io_queues(struct nvme_dev *dev)
+{
+ unsigned int i;
+
+ for (i = dev->queue_count; i <= dev->max_qid; i++)
+ if (!nvme_alloc_queue(dev, i, dev->q_depth))
+ break;
+
+ for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
+ if (nvme_create_queue(dev->queues[i], i))
+ break;
+}
+
+static int nvme_setup_io_queues(struct nvme_dev *dev)
+{
+ int nr_io_queues;
+ int result;
+
+ nr_io_queues = 1;
+ result = nvme_set_queue_count(dev, nr_io_queues);
+ if (result <= 0)
+ return result;
+
+ dev->max_qid = nr_io_queues;
+
+ /* Free previously allocated queues */
+ nvme_free_queues(dev, nr_io_queues + 1);
+ nvme_create_io_queues(dev);
+
+ return 0;
+}
+
+static int nvme_get_info_from_identify(struct nvme_dev *dev)
+{
+ struct nvme_id_ctrl *ctrl;
+ int ret;
+ int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
+
+ ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
+ if (!ctrl)
+ return -ENOMEM;
+
+ ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
+ if (ret) {
+ free(ctrl);
+ return -EIO;
+ }
+
+ dev->nn = le32_to_cpu(ctrl->nn);
+ dev->vwc = ctrl->vwc;
+ memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
+ memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
+ memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
+ if (ctrl->mdts)
+ dev->max_transfer_shift = (ctrl->mdts + shift);
+ else {
+ /*
+ * Maximum Data Transfer Size (MDTS) field indicates the maximum
+ * data transfer size between the host and the controller. The
+ * host should not submit a command that exceeds this transfer
+ * size. The value is in units of the minimum memory page size
+ * and is reported as a power of two (2^n).
+ *
+ * The spec also says: a value of 0h indicates no restrictions
+ * on transfer size. But in nvme_blk_read/write() below we have
+ * the following algorithm for maximum number of logic blocks
+ * per transfer:
+ *
+ * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
+ *
+ * In order for lbas not to overflow, the maximum number is 15
+ * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
+ * Let's use 20 which provides 1MB size.
+ */
+ dev->max_transfer_shift = 20;
+ }
+
+ free(ctrl);
+ return 0;
+}
+
+int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
+{
+ struct nvme_ns *ns = dev_get_priv(udev);
+
+ if (ns_id)
+ *ns_id = ns->ns_id;
+ if (eui64)
+ memcpy(eui64, ns->eui64, sizeof(ns->eui64));
+
+ return 0;
+}
+
+int nvme_scan_namespace(void)
+{
+ struct uclass *uc;
+ struct udevice *dev;
+ int ret;
+
+ ret = uclass_get(UCLASS_NVME, &uc);
+ if (ret)
+ return ret;
+
+ uclass_foreach_dev(dev, uc) {
+ ret = device_probe(dev);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int nvme_blk_probe(struct udevice *udev)
+{
+ struct nvme_dev *ndev = dev_get_priv(udev->parent);
+ struct blk_desc *desc = dev_get_uclass_plat(udev);
+ struct nvme_ns *ns = dev_get_priv(udev);
+ u8 flbas;
+ struct pci_child_plat *pplat;
+ struct nvme_id_ns *id;
+
+ id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
+ if (!id)
+ return -ENOMEM;
+
+ ns->dev = ndev;
+ /* extract the namespace id from the block device name */
+ ns->ns_id = trailing_strtol(udev->name);
+ if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
+ free(id);
+ return -EIO;
+ }
+
+ memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
+ flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
+ ns->flbas = flbas;
+ ns->lba_shift = id->lbaf[flbas].ds;
+ list_add(&ns->list, &ndev->namespaces);
+
+ desc->lba = le64_to_cpu(id->nsze);
+ desc->log2blksz = ns->lba_shift;
+ desc->blksz = 1 << ns->lba_shift;
+ desc->bdev = udev;
+ pplat = dev_get_parent_plat(udev->parent);
+ sprintf(desc->vendor, "0x%.4x", pplat->vendor);
+ memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
+ memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
+
+ free(id);
+ return 0;
+}
+
+static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
+ lbaint_t blkcnt, void *buffer, bool read)
+{
+ struct nvme_ns *ns = dev_get_priv(udev);
+ struct nvme_dev *dev = ns->dev;
+ struct nvme_command c;
+ struct blk_desc *desc = dev_get_uclass_plat(udev);
+ int status;
+ u64 prp2;
+ u64 total_len = blkcnt << desc->log2blksz;
+ u64 temp_len = total_len;
+
+ u64 slba = blknr;
+ u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
+ u64 total_lbas = blkcnt;
+
+ flush_dcache_range((unsigned long)buffer,
+ (unsigned long)buffer + total_len);
+
+ c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
+ c.rw.flags = 0;
+ c.rw.nsid = cpu_to_le32(ns->ns_id);
+ c.rw.control = 0;
+ c.rw.dsmgmt = 0;
+ c.rw.reftag = 0;
+ c.rw.apptag = 0;
+ c.rw.appmask = 0;
+ c.rw.metadata = 0;
+
+ while (total_lbas) {
+ if (total_lbas < lbas) {
+ lbas = (u16)total_lbas;
+ total_lbas = 0;
+ } else {
+ total_lbas -= lbas;
+ }
+
+ if (nvme_setup_prps(dev, &prp2,
+ lbas << ns->lba_shift, (ulong)buffer))
+ return -EIO;
+ c.rw.slba = cpu_to_le64(slba);
+ slba += lbas;
+ c.rw.length = cpu_to_le16(lbas - 1);
+ c.rw.prp1 = cpu_to_le64((ulong)buffer);
+ c.rw.prp2 = cpu_to_le64(prp2);
+ status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
+ &c, NULL, IO_TIMEOUT);
+ if (status)
+ break;
+ temp_len -= (u32)lbas << ns->lba_shift;
+ buffer += lbas << ns->lba_shift;
+ }
+
+ if (read)
+ invalidate_dcache_range((unsigned long)buffer,
+ (unsigned long)buffer + total_len);
+
+ return (total_len - temp_len) >> desc->log2blksz;
+}
+
+static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
+ lbaint_t blkcnt, void *buffer)
+{
+ return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
+}
+
+static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
+ lbaint_t blkcnt, const void *buffer)
+{
+ return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
+}
+
+static const struct blk_ops nvme_blk_ops = {
+ .read = nvme_blk_read,
+ .write = nvme_blk_write,
+};
+
+U_BOOT_DRIVER(nvme_blk) = {
+ .name = "nvme-blk",
+ .id = UCLASS_BLK,
+ .probe = nvme_blk_probe,
+ .ops = &nvme_blk_ops,
+ .priv_auto = sizeof(struct nvme_ns),
+};
+
+static int nvme_bind(struct udevice *udev)
+{
+ static int ndev_num;
+ char name[20];
+
+ sprintf(name, "nvme#%d", ndev_num++);
+
+ return device_set_name(udev, name);
+}
+
+static int nvme_probe(struct udevice *udev)
+{
+ int ret;
+ struct nvme_dev *ndev = dev_get_priv(udev);
+ struct nvme_id_ns *id;
+
+ ndev->instance = trailing_strtol(udev->name);
+
+ INIT_LIST_HEAD(&ndev->namespaces);
+ ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
+ PCI_REGION_MEM);
+ if (readl(&ndev->bar->csts) == -1) {
+ ret = -ENODEV;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+
+ ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
+ if (!ndev->queues) {
+ ret = -ENOMEM;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+ memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
+
+ ndev->cap = nvme_readq(&ndev->bar->cap);
+ ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
+ ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
+ ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
+
+ ret = nvme_configure_admin_queue(ndev);
+ if (ret)
+ goto free_queue;
+
+ /* Allocate after the page size is known */
+ ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
+ if (!ndev->prp_pool) {
+ ret = -ENOMEM;
+ printf("Error: %s: Out of memory!\n", udev->name);
+ goto free_nvme;
+ }
+ ndev->prp_entry_num = MAX_PRP_POOL >> 3;
+
+ ret = nvme_setup_io_queues(ndev);
+ if (ret)
+ goto free_queue;
+
+ nvme_get_info_from_identify(ndev);
+
+ /* Create a blk device for each namespace */
+
+ id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
+ if (!id) {
+ ret = -ENOMEM;
+ goto free_queue;
+ }
+
+ for (int i = 1; i <= ndev->nn; i++) {
+ struct udevice *ns_udev;
+ char name[20];
+
+ memset(id, 0, sizeof(*id));
+ if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
+ ret = -EIO;
+ goto free_id;
+ }
+
+ /* skip inactive namespace */
+ if (!id->nsze)
+ continue;
+
+ /*
+ * Encode the namespace id to the device name so that
+ * we can extract it when doing the probe.
+ */
+ sprintf(name, "blk#%d", i);
+
+ /* The real blksz and size will be set by nvme_blk_probe() */
+ ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME,
+ -1, 512, 0, &ns_udev);
+ if (ret)
+ goto free_id;
+ }
+
+ free(id);
+ return 0;
+
+free_id:
+ free(id);
+free_queue:
+ free((void *)ndev->queues);
+free_nvme:
+ return ret;
+}
+
+U_BOOT_DRIVER(nvme) = {
+ .name = "nvme",
+ .id = UCLASS_NVME,
+ .bind = nvme_bind,
+ .probe = nvme_probe,
+ .priv_auto = sizeof(struct nvme_dev),
+};
+
+struct pci_device_id nvme_supported[] = {
+ { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
+ {}
+};
+
+U_BOOT_PCI_DEVICE(nvme, nvme_supported);