diff options
Diffstat (limited to 'roms/u-boot/drivers/nvme/nvme.c')
-rw-r--r-- | roms/u-boot/drivers/nvme/nvme.c | 938 |
1 files changed, 938 insertions, 0 deletions
diff --git a/roms/u-boot/drivers/nvme/nvme.c b/roms/u-boot/drivers/nvme/nvme.c new file mode 100644 index 000000000..f6465ea7f --- /dev/null +++ b/roms/u-boot/drivers/nvme/nvme.c @@ -0,0 +1,938 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Copyright (C) 2017 NXP Semiconductors + * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com> + */ + +#include <common.h> +#include <blk.h> +#include <cpu_func.h> +#include <dm.h> +#include <errno.h> +#include <log.h> +#include <malloc.h> +#include <memalign.h> +#include <pci.h> +#include <time.h> +#include <dm/device-internal.h> +#include <linux/compat.h> +#include "nvme.h" + +#define NVME_Q_DEPTH 2 +#define NVME_AQ_DEPTH 2 +#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) +#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) +#define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \ + ARCH_DMA_MINALIGN) +#define ADMIN_TIMEOUT 60 +#define IO_TIMEOUT 30 +#define MAX_PRP_POOL 512 + +enum nvme_queue_id { + NVME_ADMIN_Q, + NVME_IO_Q, + NVME_Q_NUM, +}; + +/* + * An NVM Express queue. Each device has at least two (one for admin + * commands and one for I/O commands). + */ +struct nvme_queue { + struct nvme_dev *dev; + struct nvme_command *sq_cmds; + struct nvme_completion *cqes; + wait_queue_head_t sq_full; + u32 __iomem *q_db; + u16 q_depth; + s16 cq_vector; + u16 sq_head; + u16 sq_tail; + u16 cq_head; + u16 qid; + u8 cq_phase; + u8 cqe_seen; + unsigned long cmdid_data[]; +}; + +static int nvme_wait_ready(struct nvme_dev *dev, bool enabled) +{ + u32 bit = enabled ? NVME_CSTS_RDY : 0; + int timeout; + ulong start; + + /* Timeout field in the CAP register is in 500 millisecond units */ + timeout = NVME_CAP_TIMEOUT(dev->cap) * 500; + + start = get_timer(0); + while (get_timer(start) < timeout) { + if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit) + return 0; + } + + return -ETIME; +} + +static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2, + int total_len, u64 dma_addr) +{ + u32 page_size = dev->page_size; + int offset = dma_addr & (page_size - 1); + u64 *prp_pool; + int length = total_len; + int i, nprps; + u32 prps_per_page = page_size >> 3; + u32 num_pages; + + length -= (page_size - offset); + + if (length <= 0) { + *prp2 = 0; + return 0; + } + + if (length) + dma_addr += (page_size - offset); + + if (length <= page_size) { + *prp2 = dma_addr; + return 0; + } + + nprps = DIV_ROUND_UP(length, page_size); + num_pages = DIV_ROUND_UP(nprps, prps_per_page); + + if (nprps > dev->prp_entry_num) { + free(dev->prp_pool); + /* + * Always increase in increments of pages. It doesn't waste + * much memory and reduces the number of allocations. + */ + dev->prp_pool = memalign(page_size, num_pages * page_size); + if (!dev->prp_pool) { + printf("Error: malloc prp_pool fail\n"); + return -ENOMEM; + } + dev->prp_entry_num = prps_per_page * num_pages; + } + + prp_pool = dev->prp_pool; + i = 0; + while (nprps) { + if (i == ((page_size >> 3) - 1)) { + *(prp_pool + i) = cpu_to_le64((ulong)prp_pool + + page_size); + i = 0; + prp_pool += page_size; + } + *(prp_pool + i++) = cpu_to_le64(dma_addr); + dma_addr += page_size; + nprps--; + } + *prp2 = (ulong)dev->prp_pool; + + flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool + + dev->prp_entry_num * sizeof(u64)); + + return 0; +} + +static __le16 nvme_get_cmd_id(void) +{ + static unsigned short cmdid; + + return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0); +} + +static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index) +{ + /* + * Single CQ entries are always smaller than a cache line, so we + * can't invalidate them individually. However CQ entries are + * read only by the CPU, so it's safe to always invalidate all of them, + * as the cache line should never become dirty. + */ + ulong start = (ulong)&nvmeq->cqes[0]; + ulong stop = start + NVME_CQ_ALLOCATION; + + invalidate_dcache_range(start, stop); + + return readw(&(nvmeq->cqes[index].status)); +} + +/** + * nvme_submit_cmd() - copy a command into a queue and ring the doorbell + * + * @nvmeq: The queue to use + * @cmd: The command to send + */ +static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) +{ + u16 tail = nvmeq->sq_tail; + + memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); + flush_dcache_range((ulong)&nvmeq->sq_cmds[tail], + (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd)); + + if (++tail == nvmeq->q_depth) + tail = 0; + writel(tail, nvmeq->q_db); + nvmeq->sq_tail = tail; +} + +static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, + struct nvme_command *cmd, + u32 *result, unsigned timeout) +{ + u16 head = nvmeq->cq_head; + u16 phase = nvmeq->cq_phase; + u16 status; + ulong start_time; + ulong timeout_us = timeout * 100000; + + cmd->common.command_id = nvme_get_cmd_id(); + nvme_submit_cmd(nvmeq, cmd); + + start_time = timer_get_us(); + + for (;;) { + status = nvme_read_completion_status(nvmeq, head); + if ((status & 0x01) == phase) + break; + if (timeout_us > 0 && (timer_get_us() - start_time) + >= timeout_us) + return -ETIMEDOUT; + } + + status >>= 1; + if (status) { + printf("ERROR: status = %x, phase = %d, head = %d\n", + status, phase, head); + status = 0; + if (++head == nvmeq->q_depth) { + head = 0; + phase = !phase; + } + writel(head, nvmeq->q_db + nvmeq->dev->db_stride); + nvmeq->cq_head = head; + nvmeq->cq_phase = phase; + + return -EIO; + } + + if (result) + *result = readl(&(nvmeq->cqes[head].result)); + + if (++head == nvmeq->q_depth) { + head = 0; + phase = !phase; + } + writel(head, nvmeq->q_db + nvmeq->dev->db_stride); + nvmeq->cq_head = head; + nvmeq->cq_phase = phase; + + return status; +} + +static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, + u32 *result) +{ + return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd, + result, ADMIN_TIMEOUT); +} + +static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, + int qid, int depth) +{ + struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq)); + if (!nvmeq) + return NULL; + memset(nvmeq, 0, sizeof(*nvmeq)); + + nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION); + if (!nvmeq->cqes) + goto free_nvmeq; + memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth)); + + nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth)); + if (!nvmeq->sq_cmds) + goto free_queue; + memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth)); + + nvmeq->dev = dev; + + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + nvmeq->q_depth = depth; + nvmeq->qid = qid; + dev->queue_count++; + dev->queues[qid] = nvmeq; + + return nvmeq; + + free_queue: + free((void *)nvmeq->cqes); + free_nvmeq: + free(nvmeq); + + return NULL; +} + +static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.delete_queue.opcode = opcode; + c.delete_queue.qid = cpu_to_le16(id); + + return nvme_submit_admin_cmd(dev, &c, NULL); +} + +static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid) +{ + return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid); +} + +static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid) +{ + return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid); +} + +static int nvme_enable_ctrl(struct nvme_dev *dev) +{ + dev->ctrl_config &= ~NVME_CC_SHN_MASK; + dev->ctrl_config |= NVME_CC_ENABLE; + writel(dev->ctrl_config, &dev->bar->cc); + + return nvme_wait_ready(dev, true); +} + +static int nvme_disable_ctrl(struct nvme_dev *dev) +{ + dev->ctrl_config &= ~NVME_CC_SHN_MASK; + dev->ctrl_config &= ~NVME_CC_ENABLE; + writel(dev->ctrl_config, &dev->bar->cc); + + return nvme_wait_ready(dev, false); +} + +static void nvme_free_queue(struct nvme_queue *nvmeq) +{ + free((void *)nvmeq->cqes); + free(nvmeq->sq_cmds); + free(nvmeq); +} + +static void nvme_free_queues(struct nvme_dev *dev, int lowest) +{ + int i; + + for (i = dev->queue_count - 1; i >= lowest; i--) { + struct nvme_queue *nvmeq = dev->queues[i]; + dev->queue_count--; + dev->queues[i] = NULL; + nvme_free_queue(nvmeq); + } +} + +static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) +{ + struct nvme_dev *dev = nvmeq->dev; + + nvmeq->sq_tail = 0; + nvmeq->cq_head = 0; + nvmeq->cq_phase = 1; + nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; + memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth)); + flush_dcache_range((ulong)nvmeq->cqes, + (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION); + dev->online_queues++; +} + +static int nvme_configure_admin_queue(struct nvme_dev *dev) +{ + int result; + u32 aqa; + u64 cap = dev->cap; + struct nvme_queue *nvmeq; + /* most architectures use 4KB as the page size */ + unsigned page_shift = 12; + unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; + unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12; + + if (page_shift < dev_page_min) { + debug("Device minimum page size (%u) too large for host (%u)\n", + 1 << dev_page_min, 1 << page_shift); + return -ENODEV; + } + + if (page_shift > dev_page_max) { + debug("Device maximum page size (%u) smaller than host (%u)\n", + 1 << dev_page_max, 1 << page_shift); + page_shift = dev_page_max; + } + + result = nvme_disable_ctrl(dev); + if (result < 0) + return result; + + nvmeq = dev->queues[NVME_ADMIN_Q]; + if (!nvmeq) { + nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); + if (!nvmeq) + return -ENOMEM; + } + + aqa = nvmeq->q_depth - 1; + aqa |= aqa << 16; + + dev->page_size = 1 << page_shift; + + dev->ctrl_config = NVME_CC_CSS_NVM; + dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; + dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; + dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; + + writel(aqa, &dev->bar->aqa); + nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq); + nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq); + + result = nvme_enable_ctrl(dev); + if (result) + goto free_nvmeq; + + nvmeq->cq_vector = 0; + + nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0); + + return result; + + free_nvmeq: + nvme_free_queues(dev, 0); + + return result; +} + +static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq) +{ + struct nvme_command c; + int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; + + memset(&c, 0, sizeof(c)); + c.create_cq.opcode = nvme_admin_create_cq; + c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes); + c.create_cq.cqid = cpu_to_le16(qid); + c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_cq.cq_flags = cpu_to_le16(flags); + c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); + + return nvme_submit_admin_cmd(dev, &c, NULL); +} + +static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid, + struct nvme_queue *nvmeq) +{ + struct nvme_command c; + int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; + + memset(&c, 0, sizeof(c)); + c.create_sq.opcode = nvme_admin_create_sq; + c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds); + c.create_sq.sqid = cpu_to_le16(qid); + c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); + c.create_sq.sq_flags = cpu_to_le16(flags); + c.create_sq.cqid = cpu_to_le16(qid); + + return nvme_submit_admin_cmd(dev, &c, NULL); +} + +int nvme_identify(struct nvme_dev *dev, unsigned nsid, + unsigned cns, dma_addr_t dma_addr) +{ + struct nvme_command c; + u32 page_size = dev->page_size; + int offset = dma_addr & (page_size - 1); + int length = sizeof(struct nvme_id_ctrl); + int ret; + + memset(&c, 0, sizeof(c)); + c.identify.opcode = nvme_admin_identify; + c.identify.nsid = cpu_to_le32(nsid); + c.identify.prp1 = cpu_to_le64(dma_addr); + + length -= (page_size - offset); + if (length <= 0) { + c.identify.prp2 = 0; + } else { + dma_addr += (page_size - offset); + c.identify.prp2 = cpu_to_le64(dma_addr); + } + + c.identify.cns = cpu_to_le32(cns); + + invalidate_dcache_range(dma_addr, + dma_addr + sizeof(struct nvme_id_ctrl)); + + ret = nvme_submit_admin_cmd(dev, &c, NULL); + if (!ret) + invalidate_dcache_range(dma_addr, + dma_addr + sizeof(struct nvme_id_ctrl)); + + return ret; +} + +int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, + dma_addr_t dma_addr, u32 *result) +{ + struct nvme_command c; + int ret; + + memset(&c, 0, sizeof(c)); + c.features.opcode = nvme_admin_get_features; + c.features.nsid = cpu_to_le32(nsid); + c.features.prp1 = cpu_to_le64(dma_addr); + c.features.fid = cpu_to_le32(fid); + + ret = nvme_submit_admin_cmd(dev, &c, result); + + /* + * TODO: Add some cache invalidation when a DMA buffer is involved + * in the request, here and before the command gets submitted. The + * buffer size varies by feature, also some features use a different + * field in the command packet to hold the buffer address. + * Section 5.21.1 (Set Features command) in the NVMe specification + * details the buffer requirements for each feature. + * + * At the moment there is no user of this function. + */ + + return ret; +} + +int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, + dma_addr_t dma_addr, u32 *result) +{ + struct nvme_command c; + + memset(&c, 0, sizeof(c)); + c.features.opcode = nvme_admin_set_features; + c.features.prp1 = cpu_to_le64(dma_addr); + c.features.fid = cpu_to_le32(fid); + c.features.dword11 = cpu_to_le32(dword11); + + /* + * TODO: Add a cache clean (aka flush) operation when a DMA buffer is + * involved in the request. The buffer size varies by feature, also + * some features use a different field in the command packet to hold + * the buffer address. Section 5.21.1 (Set Features command) in the + * NVMe specification details the buffer requirements for each + * feature. + * At the moment the only user of this function is not using + * any DMA buffer at all. + */ + + return nvme_submit_admin_cmd(dev, &c, result); +} + +static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) +{ + struct nvme_dev *dev = nvmeq->dev; + int result; + + nvmeq->cq_vector = qid - 1; + result = nvme_alloc_cq(dev, qid, nvmeq); + if (result < 0) + goto release_cq; + + result = nvme_alloc_sq(dev, qid, nvmeq); + if (result < 0) + goto release_sq; + + nvme_init_queue(nvmeq, qid); + + return result; + + release_sq: + nvme_delete_sq(dev, qid); + release_cq: + nvme_delete_cq(dev, qid); + + return result; +} + +static int nvme_set_queue_count(struct nvme_dev *dev, int count) +{ + int status; + u32 result; + u32 q_count = (count - 1) | ((count - 1) << 16); + + status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, + q_count, 0, &result); + + if (status < 0) + return status; + if (status > 1) + return 0; + + return min(result & 0xffff, result >> 16) + 1; +} + +static void nvme_create_io_queues(struct nvme_dev *dev) +{ + unsigned int i; + + for (i = dev->queue_count; i <= dev->max_qid; i++) + if (!nvme_alloc_queue(dev, i, dev->q_depth)) + break; + + for (i = dev->online_queues; i <= dev->queue_count - 1; i++) + if (nvme_create_queue(dev->queues[i], i)) + break; +} + +static int nvme_setup_io_queues(struct nvme_dev *dev) +{ + int nr_io_queues; + int result; + + nr_io_queues = 1; + result = nvme_set_queue_count(dev, nr_io_queues); + if (result <= 0) + return result; + + dev->max_qid = nr_io_queues; + + /* Free previously allocated queues */ + nvme_free_queues(dev, nr_io_queues + 1); + nvme_create_io_queues(dev); + + return 0; +} + +static int nvme_get_info_from_identify(struct nvme_dev *dev) +{ + struct nvme_id_ctrl *ctrl; + int ret; + int shift = NVME_CAP_MPSMIN(dev->cap) + 12; + + ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl)); + if (!ctrl) + return -ENOMEM; + + ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl); + if (ret) { + free(ctrl); + return -EIO; + } + + dev->nn = le32_to_cpu(ctrl->nn); + dev->vwc = ctrl->vwc; + memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); + memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); + memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); + if (ctrl->mdts) + dev->max_transfer_shift = (ctrl->mdts + shift); + else { + /* + * Maximum Data Transfer Size (MDTS) field indicates the maximum + * data transfer size between the host and the controller. The + * host should not submit a command that exceeds this transfer + * size. The value is in units of the minimum memory page size + * and is reported as a power of two (2^n). + * + * The spec also says: a value of 0h indicates no restrictions + * on transfer size. But in nvme_blk_read/write() below we have + * the following algorithm for maximum number of logic blocks + * per transfer: + * + * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); + * + * In order for lbas not to overflow, the maximum number is 15 + * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift). + * Let's use 20 which provides 1MB size. + */ + dev->max_transfer_shift = 20; + } + + free(ctrl); + return 0; +} + +int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64) +{ + struct nvme_ns *ns = dev_get_priv(udev); + + if (ns_id) + *ns_id = ns->ns_id; + if (eui64) + memcpy(eui64, ns->eui64, sizeof(ns->eui64)); + + return 0; +} + +int nvme_scan_namespace(void) +{ + struct uclass *uc; + struct udevice *dev; + int ret; + + ret = uclass_get(UCLASS_NVME, &uc); + if (ret) + return ret; + + uclass_foreach_dev(dev, uc) { + ret = device_probe(dev); + if (ret) + return ret; + } + + return 0; +} + +static int nvme_blk_probe(struct udevice *udev) +{ + struct nvme_dev *ndev = dev_get_priv(udev->parent); + struct blk_desc *desc = dev_get_uclass_plat(udev); + struct nvme_ns *ns = dev_get_priv(udev); + u8 flbas; + struct pci_child_plat *pplat; + struct nvme_id_ns *id; + + id = memalign(ndev->page_size, sizeof(struct nvme_id_ns)); + if (!id) + return -ENOMEM; + + ns->dev = ndev; + /* extract the namespace id from the block device name */ + ns->ns_id = trailing_strtol(udev->name); + if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) { + free(id); + return -EIO; + } + + memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64)); + flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK; + ns->flbas = flbas; + ns->lba_shift = id->lbaf[flbas].ds; + list_add(&ns->list, &ndev->namespaces); + + desc->lba = le64_to_cpu(id->nsze); + desc->log2blksz = ns->lba_shift; + desc->blksz = 1 << ns->lba_shift; + desc->bdev = udev; + pplat = dev_get_parent_plat(udev->parent); + sprintf(desc->vendor, "0x%.4x", pplat->vendor); + memcpy(desc->product, ndev->serial, sizeof(ndev->serial)); + memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev)); + + free(id); + return 0; +} + +static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr, + lbaint_t blkcnt, void *buffer, bool read) +{ + struct nvme_ns *ns = dev_get_priv(udev); + struct nvme_dev *dev = ns->dev; + struct nvme_command c; + struct blk_desc *desc = dev_get_uclass_plat(udev); + int status; + u64 prp2; + u64 total_len = blkcnt << desc->log2blksz; + u64 temp_len = total_len; + + u64 slba = blknr; + u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); + u64 total_lbas = blkcnt; + + flush_dcache_range((unsigned long)buffer, + (unsigned long)buffer + total_len); + + c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write; + c.rw.flags = 0; + c.rw.nsid = cpu_to_le32(ns->ns_id); + c.rw.control = 0; + c.rw.dsmgmt = 0; + c.rw.reftag = 0; + c.rw.apptag = 0; + c.rw.appmask = 0; + c.rw.metadata = 0; + + while (total_lbas) { + if (total_lbas < lbas) { + lbas = (u16)total_lbas; + total_lbas = 0; + } else { + total_lbas -= lbas; + } + + if (nvme_setup_prps(dev, &prp2, + lbas << ns->lba_shift, (ulong)buffer)) + return -EIO; + c.rw.slba = cpu_to_le64(slba); + slba += lbas; + c.rw.length = cpu_to_le16(lbas - 1); + c.rw.prp1 = cpu_to_le64((ulong)buffer); + c.rw.prp2 = cpu_to_le64(prp2); + status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q], + &c, NULL, IO_TIMEOUT); + if (status) + break; + temp_len -= (u32)lbas << ns->lba_shift; + buffer += lbas << ns->lba_shift; + } + + if (read) + invalidate_dcache_range((unsigned long)buffer, + (unsigned long)buffer + total_len); + + return (total_len - temp_len) >> desc->log2blksz; +} + +static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr, + lbaint_t blkcnt, void *buffer) +{ + return nvme_blk_rw(udev, blknr, blkcnt, buffer, true); +} + +static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr, + lbaint_t blkcnt, const void *buffer) +{ + return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false); +} + +static const struct blk_ops nvme_blk_ops = { + .read = nvme_blk_read, + .write = nvme_blk_write, +}; + +U_BOOT_DRIVER(nvme_blk) = { + .name = "nvme-blk", + .id = UCLASS_BLK, + .probe = nvme_blk_probe, + .ops = &nvme_blk_ops, + .priv_auto = sizeof(struct nvme_ns), +}; + +static int nvme_bind(struct udevice *udev) +{ + static int ndev_num; + char name[20]; + + sprintf(name, "nvme#%d", ndev_num++); + + return device_set_name(udev, name); +} + +static int nvme_probe(struct udevice *udev) +{ + int ret; + struct nvme_dev *ndev = dev_get_priv(udev); + struct nvme_id_ns *id; + + ndev->instance = trailing_strtol(udev->name); + + INIT_LIST_HEAD(&ndev->namespaces); + ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0, + PCI_REGION_MEM); + if (readl(&ndev->bar->csts) == -1) { + ret = -ENODEV; + printf("Error: %s: Out of memory!\n", udev->name); + goto free_nvme; + } + + ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *)); + if (!ndev->queues) { + ret = -ENOMEM; + printf("Error: %s: Out of memory!\n", udev->name); + goto free_nvme; + } + memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *)); + + ndev->cap = nvme_readq(&ndev->bar->cap); + ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH); + ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap); + ndev->dbs = ((void __iomem *)ndev->bar) + 4096; + + ret = nvme_configure_admin_queue(ndev); + if (ret) + goto free_queue; + + /* Allocate after the page size is known */ + ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL); + if (!ndev->prp_pool) { + ret = -ENOMEM; + printf("Error: %s: Out of memory!\n", udev->name); + goto free_nvme; + } + ndev->prp_entry_num = MAX_PRP_POOL >> 3; + + ret = nvme_setup_io_queues(ndev); + if (ret) + goto free_queue; + + nvme_get_info_from_identify(ndev); + + /* Create a blk device for each namespace */ + + id = memalign(ndev->page_size, sizeof(struct nvme_id_ns)); + if (!id) { + ret = -ENOMEM; + goto free_queue; + } + + for (int i = 1; i <= ndev->nn; i++) { + struct udevice *ns_udev; + char name[20]; + + memset(id, 0, sizeof(*id)); + if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) { + ret = -EIO; + goto free_id; + } + + /* skip inactive namespace */ + if (!id->nsze) + continue; + + /* + * Encode the namespace id to the device name so that + * we can extract it when doing the probe. + */ + sprintf(name, "blk#%d", i); + + /* The real blksz and size will be set by nvme_blk_probe() */ + ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME, + -1, 512, 0, &ns_udev); + if (ret) + goto free_id; + } + + free(id); + return 0; + +free_id: + free(id); +free_queue: + free((void *)ndev->queues); +free_nvme: + return ret; +} + +U_BOOT_DRIVER(nvme) = { + .name = "nvme", + .id = UCLASS_NVME, + .bind = nvme_bind, + .probe = nvme_probe, + .priv_auto = sizeof(struct nvme_dev), +}; + +struct pci_device_id nvme_supported[] = { + { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) }, + {} +}; + +U_BOOT_PCI_DEVICE(nvme, nvme_supported); |