aboutsummaryrefslogtreecommitdiffstats
path: root/roms/u-boot/drivers/timer/tsc_timer.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/u-boot/drivers/timer/tsc_timer.c')
-rw-r--r--roms/u-boot/drivers/timer/tsc_timer.c494
1 files changed, 494 insertions, 0 deletions
diff --git a/roms/u-boot/drivers/timer/tsc_timer.c b/roms/u-boot/drivers/timer/tsc_timer.c
new file mode 100644
index 000000000..7d19a9962
--- /dev/null
+++ b/roms/u-boot/drivers/timer/tsc_timer.c
@@ -0,0 +1,494 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright (c) 2012 The Chromium OS Authors.
+ *
+ * TSC calibration codes are adapted from Linux kernel
+ * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
+ */
+
+#include <common.h>
+#include <bootstage.h>
+#include <dm.h>
+#include <log.h>
+#include <malloc.h>
+#include <time.h>
+#include <timer.h>
+#include <asm/cpu.h>
+#include <asm/global_data.h>
+#include <asm/io.h>
+#include <asm/i8254.h>
+#include <asm/ibmpc.h>
+#include <asm/msr.h>
+#include <asm/u-boot-x86.h>
+#include <linux/delay.h>
+
+#define MAX_NUM_FREQS 9
+
+#define INTEL_FAM6_SKYLAKE_MOBILE 0x4E
+#define INTEL_FAM6_ATOM_GOLDMONT 0x5C /* Apollo Lake */
+#define INTEL_FAM6_SKYLAKE_DESKTOP 0x5E
+#define INTEL_FAM6_ATOM_GOLDMONT_X 0x5F /* Denverton */
+#define INTEL_FAM6_KABYLAKE_MOBILE 0x8E
+#define INTEL_FAM6_KABYLAKE_DESKTOP 0x9E
+
+DECLARE_GLOBAL_DATA_PTR;
+
+/*
+ * native_calibrate_tsc
+ * Determine TSC frequency via CPUID, else return 0.
+ */
+static unsigned long native_calibrate_tsc(void)
+{
+ struct cpuid_result tsc_info;
+ unsigned int crystal_freq;
+
+ if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
+ return 0;
+
+ if (cpuid_eax(0) < 0x15)
+ return 0;
+
+ tsc_info = cpuid(0x15);
+
+ if (tsc_info.ebx == 0 || tsc_info.eax == 0)
+ return 0;
+
+ crystal_freq = tsc_info.ecx / 1000;
+ if (!CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE) && !crystal_freq) {
+ switch (gd->arch.x86_model) {
+ case INTEL_FAM6_SKYLAKE_MOBILE:
+ case INTEL_FAM6_SKYLAKE_DESKTOP:
+ case INTEL_FAM6_KABYLAKE_MOBILE:
+ case INTEL_FAM6_KABYLAKE_DESKTOP:
+ crystal_freq = 24000; /* 24.0 MHz */
+ break;
+ case INTEL_FAM6_ATOM_GOLDMONT_X:
+ crystal_freq = 25000; /* 25.0 MHz */
+ break;
+ case INTEL_FAM6_ATOM_GOLDMONT:
+ crystal_freq = 19200; /* 19.2 MHz */
+ break;
+ default:
+ return 0;
+ }
+ }
+
+ return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
+}
+
+static unsigned long cpu_mhz_from_cpuid(void)
+{
+ if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
+ return 0;
+
+ if (cpuid_eax(0) < 0x16)
+ return 0;
+
+ return cpuid_eax(0x16);
+}
+
+/*
+ * According to Intel 64 and IA-32 System Programming Guide,
+ * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
+ * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
+ * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
+ * so we need manually differentiate SoC families. This is what the
+ * field msr_plat does.
+ */
+struct freq_desc {
+ u8 x86_family; /* CPU family */
+ u8 x86_model; /* model */
+ /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
+ u8 msr_plat;
+ u32 freqs[MAX_NUM_FREQS];
+};
+
+static struct freq_desc freq_desc_tables[] = {
+ /* PNW */
+ { 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
+ /* CLV+ */
+ { 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
+ /* TNG - Intel Atom processor Z3400 series */
+ { 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
+ /* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
+ { 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
+ /* ANN - Intel Atom processor Z3500 series */
+ { 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
+ /* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
+ { 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
+ 80000, 93300, 90000, 88900, 87500 } },
+ /* Ivybridge */
+ { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
+};
+
+static int match_cpu(u8 family, u8 model)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
+ if ((family == freq_desc_tables[i].x86_family) &&
+ (model == freq_desc_tables[i].x86_model))
+ return i;
+ }
+
+ return -1;
+}
+
+/* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
+#define id_to_freq(cpu_index, freq_id) \
+ (freq_desc_tables[cpu_index].freqs[freq_id])
+
+/*
+ * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
+ * reliable and the frequency is known (provided by HW).
+ *
+ * On these platforms PIT/HPET is generally not available so calibration won't
+ * work at all and there is no other clocksource to act as a watchdog for the
+ * TSC, so we have no other choice than to trust it.
+ *
+ * Returns the TSC frequency in MHz or 0 if HW does not provide it.
+ */
+static unsigned long __maybe_unused cpu_mhz_from_msr(void)
+{
+ u32 lo, hi, ratio, freq_id, freq;
+ unsigned long res;
+ int cpu_index;
+
+ if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
+ return 0;
+
+ cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
+ if (cpu_index < 0)
+ return 0;
+
+ if (freq_desc_tables[cpu_index].msr_plat) {
+ rdmsr(MSR_PLATFORM_INFO, lo, hi);
+ ratio = (lo >> 8) & 0xff;
+ } else {
+ rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
+ ratio = (hi >> 8) & 0x1f;
+ }
+ debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
+
+ if (freq_desc_tables[cpu_index].msr_plat == 2) {
+ /* TODO: Figure out how best to deal with this */
+ freq = 100000;
+ debug("Using frequency: %u KHz\n", freq);
+ } else {
+ /* Get FSB FREQ ID */
+ rdmsr(MSR_FSB_FREQ, lo, hi);
+ freq_id = lo & 0x7;
+ freq = id_to_freq(cpu_index, freq_id);
+ debug("Resolved frequency ID: %u, frequency: %u KHz\n",
+ freq_id, freq);
+ }
+
+ /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
+ res = freq * ratio / 1000;
+ debug("TSC runs at %lu MHz\n", res);
+
+ return res;
+}
+
+/*
+ * This reads the current MSB of the PIT counter, and
+ * checks if we are running on sufficiently fast and
+ * non-virtualized hardware.
+ *
+ * Our expectations are:
+ *
+ * - the PIT is running at roughly 1.19MHz
+ *
+ * - each IO is going to take about 1us on real hardware,
+ * but we allow it to be much faster (by a factor of 10) or
+ * _slightly_ slower (ie we allow up to a 2us read+counter
+ * update - anything else implies a unacceptably slow CPU
+ * or PIT for the fast calibration to work.
+ *
+ * - with 256 PIT ticks to read the value, we have 214us to
+ * see the same MSB (and overhead like doing a single TSC
+ * read per MSB value etc).
+ *
+ * - We're doing 2 reads per loop (LSB, MSB), and we expect
+ * them each to take about a microsecond on real hardware.
+ * So we expect a count value of around 100. But we'll be
+ * generous, and accept anything over 50.
+ *
+ * - if the PIT is stuck, and we see *many* more reads, we
+ * return early (and the next caller of pit_expect_msb()
+ * then consider it a failure when they don't see the
+ * next expected value).
+ *
+ * These expectations mean that we know that we have seen the
+ * transition from one expected value to another with a fairly
+ * high accuracy, and we didn't miss any events. We can thus
+ * use the TSC value at the transitions to calculate a pretty
+ * good value for the TSC frequencty.
+ */
+static inline int pit_verify_msb(unsigned char val)
+{
+ /* Ignore LSB */
+ inb(0x42);
+ return inb(0x42) == val;
+}
+
+static inline int pit_expect_msb(unsigned char val, u64 *tscp,
+ unsigned long *deltap)
+{
+ int count;
+ u64 tsc = 0, prev_tsc = 0;
+
+ for (count = 0; count < 50000; count++) {
+ if (!pit_verify_msb(val))
+ break;
+ prev_tsc = tsc;
+ tsc = rdtsc();
+ }
+ *deltap = rdtsc() - prev_tsc;
+ *tscp = tsc;
+
+ /*
+ * We require _some_ success, but the quality control
+ * will be based on the error terms on the TSC values.
+ */
+ return count > 5;
+}
+
+/*
+ * How many MSB values do we want to see? We aim for
+ * a maximum error rate of 500ppm (in practice the
+ * real error is much smaller), but refuse to spend
+ * more than 50ms on it.
+ */
+#define MAX_QUICK_PIT_MS 50
+#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
+
+static unsigned long __maybe_unused quick_pit_calibrate(void)
+{
+ int i;
+ u64 tsc, delta;
+ unsigned long d1, d2;
+
+ /* Set the Gate high, disable speaker */
+ outb((inb(0x61) & ~0x02) | 0x01, 0x61);
+
+ /*
+ * Counter 2, mode 0 (one-shot), binary count
+ *
+ * NOTE! Mode 2 decrements by two (and then the
+ * output is flipped each time, giving the same
+ * final output frequency as a decrement-by-one),
+ * so mode 0 is much better when looking at the
+ * individual counts.
+ */
+ outb(0xb0, 0x43);
+
+ /* Start at 0xffff */
+ outb(0xff, 0x42);
+ outb(0xff, 0x42);
+
+ /*
+ * The PIT starts counting at the next edge, so we
+ * need to delay for a microsecond. The easiest way
+ * to do that is to just read back the 16-bit counter
+ * once from the PIT.
+ */
+ pit_verify_msb(0);
+
+ if (pit_expect_msb(0xff, &tsc, &d1)) {
+ for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
+ if (!pit_expect_msb(0xff-i, &delta, &d2))
+ break;
+
+ /*
+ * Iterate until the error is less than 500 ppm
+ */
+ delta -= tsc;
+ if (d1+d2 >= delta >> 11)
+ continue;
+
+ /*
+ * Check the PIT one more time to verify that
+ * all TSC reads were stable wrt the PIT.
+ *
+ * This also guarantees serialization of the
+ * last cycle read ('d2') in pit_expect_msb.
+ */
+ if (!pit_verify_msb(0xfe - i))
+ break;
+ goto success;
+ }
+ }
+ debug("Fast TSC calibration failed\n");
+ return 0;
+
+success:
+ /*
+ * Ok, if we get here, then we've seen the
+ * MSB of the PIT decrement 'i' times, and the
+ * error has shrunk to less than 500 ppm.
+ *
+ * As a result, we can depend on there not being
+ * any odd delays anywhere, and the TSC reads are
+ * reliable (within the error).
+ *
+ * kHz = ticks / time-in-seconds / 1000;
+ * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
+ * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
+ */
+ delta *= PIT_TICK_RATE;
+ delta /= (i*256*1000);
+ debug("Fast TSC calibration using PIT\n");
+ return delta / 1000;
+}
+
+/* Get the speed of the TSC timer in MHz */
+unsigned notrace long get_tbclk_mhz(void)
+{
+ return get_tbclk() / 1000000;
+}
+
+static ulong get_ms_timer(void)
+{
+ return (get_ticks() * 1000) / get_tbclk();
+}
+
+ulong get_timer(ulong base)
+{
+ return get_ms_timer() - base;
+}
+
+ulong notrace timer_get_us(void)
+{
+ return get_ticks() / get_tbclk_mhz();
+}
+
+ulong timer_get_boot_us(void)
+{
+ return timer_get_us();
+}
+
+void __udelay(unsigned long usec)
+{
+ u64 now = get_ticks();
+ u64 stop;
+
+ stop = now + (u64)usec * get_tbclk_mhz();
+
+ while ((int64_t)(stop - get_ticks()) > 0)
+#if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
+ /*
+ * Add a 'pause' instruction on qemu target,
+ * to give other VCPUs a chance to run.
+ */
+ asm volatile("pause");
+#else
+ ;
+#endif
+}
+
+static u64 tsc_timer_get_count(struct udevice *dev)
+{
+ u64 now_tick = rdtsc();
+
+ return now_tick - gd->arch.tsc_base;
+}
+
+static void tsc_timer_ensure_setup(bool early)
+{
+ if (gd->arch.tsc_inited)
+ return;
+ if (IS_ENABLED(CONFIG_X86_TSC_READ_BASE))
+ gd->arch.tsc_base = rdtsc();
+
+ if (!gd->arch.clock_rate) {
+ unsigned long fast_calibrate;
+
+ fast_calibrate = native_calibrate_tsc();
+ if (fast_calibrate)
+ goto done;
+
+ /* Reduce code size by dropping other methods */
+ if (CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE))
+ panic("no timer");
+
+ fast_calibrate = cpu_mhz_from_cpuid();
+ if (fast_calibrate)
+ goto done;
+
+ fast_calibrate = cpu_mhz_from_msr();
+ if (fast_calibrate)
+ goto done;
+
+ fast_calibrate = quick_pit_calibrate();
+ if (fast_calibrate)
+ goto done;
+
+ if (early)
+ fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
+ else
+ return;
+
+done:
+ gd->arch.clock_rate = fast_calibrate * 1000000;
+ }
+ gd->arch.tsc_inited = true;
+}
+
+static int tsc_timer_probe(struct udevice *dev)
+{
+ struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
+
+ /* Try hardware calibration first */
+ tsc_timer_ensure_setup(false);
+ if (!gd->arch.clock_rate) {
+ /*
+ * Use the clock frequency specified in the
+ * device tree as last resort
+ */
+ if (!uc_priv->clock_rate)
+ panic("TSC frequency is ZERO");
+ } else {
+ uc_priv->clock_rate = gd->arch.clock_rate;
+ }
+
+ return 0;
+}
+
+unsigned long notrace timer_early_get_rate(void)
+{
+ /*
+ * When TSC timer is used as the early timer, be warned that the timer
+ * clock rate can only be calibrated via some hardware ways. Specifying
+ * it in the device tree won't work for the early timer.
+ */
+ tsc_timer_ensure_setup(true);
+
+ return gd->arch.clock_rate;
+}
+
+u64 notrace timer_early_get_count(void)
+{
+ tsc_timer_ensure_setup(true);
+
+ return rdtsc() - gd->arch.tsc_base;
+}
+
+static const struct timer_ops tsc_timer_ops = {
+ .get_count = tsc_timer_get_count,
+};
+
+#if !CONFIG_IS_ENABLED(OF_PLATDATA)
+static const struct udevice_id tsc_timer_ids[] = {
+ { .compatible = "x86,tsc-timer", },
+ { }
+};
+#endif
+
+U_BOOT_DRIVER(x86_tsc_timer) = {
+ .name = "x86_tsc_timer",
+ .id = UCLASS_TIMER,
+ .of_match = of_match_ptr(tsc_timer_ids),
+ .probe = tsc_timer_probe,
+ .ops = &tsc_timer_ops,
+};