aboutsummaryrefslogtreecommitdiffstats
path: root/roms/u-boot/include/xen/interface/xen.h
diff options
context:
space:
mode:
Diffstat (limited to 'roms/u-boot/include/xen/interface/xen.h')
-rw-r--r--roms/u-boot/include/xen/interface/xen.h208
1 files changed, 208 insertions, 0 deletions
diff --git a/roms/u-boot/include/xen/interface/xen.h b/roms/u-boot/include/xen/interface/xen.h
new file mode 100644
index 000000000..eec8ab75b
--- /dev/null
+++ b/roms/u-boot/include/xen/interface/xen.h
@@ -0,0 +1,208 @@
+/* SPDX-License-Identifier: MIT
+ *
+ * xen.h
+ *
+ * Guest OS interface to Xen.
+ *
+ * Copyright (c) 2004, K A Fraser
+ */
+
+#ifndef __XEN_PUBLIC_XEN_H__
+#define __XEN_PUBLIC_XEN_H__
+
+#include <xen/arm/interface.h>
+
+/*
+ * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
+ */
+
+/*
+ * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
+ * EAX = return value
+ * (argument registers may be clobbered on return)
+ * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
+ * RAX = return value
+ * (argument registers not clobbered on return; RCX, R11 are)
+ */
+#define __HYPERVISOR_set_trap_table 0
+#define __HYPERVISOR_mmu_update 1
+#define __HYPERVISOR_set_gdt 2
+#define __HYPERVISOR_stack_switch 3
+#define __HYPERVISOR_set_callbacks 4
+#define __HYPERVISOR_fpu_taskswitch 5
+#define __HYPERVISOR_sched_op_compat 6
+#define __HYPERVISOR_platform_op 7
+#define __HYPERVISOR_set_debugreg 8
+#define __HYPERVISOR_get_debugreg 9
+#define __HYPERVISOR_update_descriptor 10
+#define __HYPERVISOR_memory_op 12
+#define __HYPERVISOR_multicall 13
+#define __HYPERVISOR_update_va_mapping 14
+#define __HYPERVISOR_set_timer_op 15
+#define __HYPERVISOR_event_channel_op_compat 16
+#define __HYPERVISOR_xen_version 17
+#define __HYPERVISOR_console_io 18
+#define __HYPERVISOR_physdev_op_compat 19
+#define __HYPERVISOR_grant_table_op 20
+#define __HYPERVISOR_vm_assist 21
+#define __HYPERVISOR_update_va_mapping_otherdomain 22
+#define __HYPERVISOR_iret 23 /* x86 only */
+#define __HYPERVISOR_vcpu_op 24
+#define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
+#define __HYPERVISOR_mmuext_op 26
+#define __HYPERVISOR_xsm_op 27
+#define __HYPERVISOR_nmi_op 28
+#define __HYPERVISOR_sched_op 29
+#define __HYPERVISOR_callback_op 30
+#define __HYPERVISOR_xenoprof_op 31
+#define __HYPERVISOR_event_channel_op 32
+#define __HYPERVISOR_physdev_op 33
+#define __HYPERVISOR_hvm_op 34
+#define __HYPERVISOR_sysctl 35
+#define __HYPERVISOR_domctl 36
+#define __HYPERVISOR_kexec_op 37
+#define __HYPERVISOR_tmem_op 38
+#define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */
+#define __HYPERVISOR_xenpmu_op 40
+#define __HYPERVISOR_dm_op 41
+
+/* Architecture-specific hypercall definitions. */
+#define __HYPERVISOR_arch_0 48
+#define __HYPERVISOR_arch_1 49
+#define __HYPERVISOR_arch_2 50
+#define __HYPERVISOR_arch_3 51
+#define __HYPERVISOR_arch_4 52
+#define __HYPERVISOR_arch_5 53
+#define __HYPERVISOR_arch_6 54
+#define __HYPERVISOR_arch_7 55
+
+#ifndef __ASSEMBLY__
+
+typedef u16 domid_t;
+
+/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
+#define DOMID_FIRST_RESERVED (0x7FF0U)
+
+/* DOMID_SELF is used in certain contexts to refer to oneself. */
+#define DOMID_SELF (0x7FF0U)
+
+/*
+ * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
+ * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
+ * is useful to ensure that no mappings to the OS's own heap are accidentally
+ * installed. (e.g., in Linux this could cause havoc as reference counts
+ * aren't adjusted on the I/O-mapping code path).
+ * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
+ * be specified by any calling domain.
+ */
+#define DOMID_IO (0x7FF1U)
+
+/*
+ * DOMID_XEN is used to allow privileged domains to map restricted parts of
+ * Xen's heap space (e.g., the machine_to_phys table).
+ * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
+ * the caller is privileged.
+ */
+#define DOMID_XEN (0x7FF2U)
+
+/* DOMID_COW is used as the owner of sharable pages */
+#define DOMID_COW (0x7FF3U)
+
+/* DOMID_INVALID is used to identify pages with unknown owner. */
+#define DOMID_INVALID (0x7FF4U)
+
+/* Idle domain. */
+#define DOMID_IDLE (0x7FFFU)
+
+struct vcpu_info {
+ /*
+ * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
+ * a pending notification for a particular VCPU. It is then cleared
+ * by the guest OS /before/ checking for pending work, thus avoiding
+ * a set-and-check race. Note that the mask is only accessed by Xen
+ * on the CPU that is currently hosting the VCPU. This means that the
+ * pending and mask flags can be updated by the guest without special
+ * synchronisation (i.e., no need for the x86 LOCK prefix).
+ * This may seem suboptimal because if the pending flag is set by
+ * a different CPU then an IPI may be scheduled even when the mask
+ * is set. However, note:
+ * 1. The task of 'interrupt holdoff' is covered by the per-event-
+ * channel mask bits. A 'noisy' event that is continually being
+ * triggered can be masked at source at this very precise
+ * granularity.
+ * 2. The main purpose of the per-VCPU mask is therefore to restrict
+ * reentrant execution: whether for concurrency control, or to
+ * prevent unbounded stack usage. Whatever the purpose, we expect
+ * that the mask will be asserted only for short periods at a time,
+ * and so the likelihood of a 'spurious' IPI is suitably small.
+ * The mask is read before making an event upcall to the guest: a
+ * non-zero mask therefore guarantees that the VCPU will not receive
+ * an upcall activation. The mask is cleared when the VCPU requests
+ * to block: this avoids wakeup-waiting races.
+ */
+ u8 evtchn_upcall_pending;
+ u8 evtchn_upcall_mask;
+ xen_ulong_t evtchn_pending_sel;
+ struct arch_vcpu_info arch;
+ struct pvclock_vcpu_time_info time;
+}; /* 64 bytes (x86) */
+
+/*
+ * Xen/kernel shared data -- pointer provided in start_info.
+ * NB. We expect that this struct is smaller than a page.
+ */
+struct shared_info {
+ struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
+
+ /*
+ * A domain can create "event channels" on which it can send and receive
+ * asynchronous event notifications. There are three classes of event that
+ * are delivered by this mechanism:
+ * 1. Bi-directional inter- and intra-domain connections. Domains must
+ * arrange out-of-band to set up a connection (usually by allocating
+ * an unbound 'listener' port and avertising that via a storage service
+ * such as xenstore).
+ * 2. Physical interrupts. A domain with suitable hardware-access
+ * privileges can bind an event-channel port to a physical interrupt
+ * source.
+ * 3. Virtual interrupts ('events'). A domain can bind an event-channel
+ * port to a virtual interrupt source, such as the virtual-timer
+ * device or the emergency console.
+ *
+ * Event channels are addressed by a "port index". Each channel is
+ * associated with two bits of information:
+ * 1. PENDING -- notifies the domain that there is a pending notification
+ * to be processed. This bit is cleared by the guest.
+ * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
+ * will cause an asynchronous upcall to be scheduled. This bit is only
+ * updated by the guest. It is read-only within Xen. If a channel
+ * becomes pending while the channel is masked then the 'edge' is lost
+ * (i.e., when the channel is unmasked, the guest must manually handle
+ * pending notifications as no upcall will be scheduled by Xen).
+ *
+ * To expedite scanning of pending notifications, any 0->1 pending
+ * transition on an unmasked channel causes a corresponding bit in a
+ * per-vcpu selector word to be set. Each bit in the selector covers a
+ * 'C long' in the PENDING bitfield array.
+ */
+ xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
+ xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
+
+ /*
+ * Wallclock time: updated only by control software. Guests should base
+ * their gettimeofday() syscall on this wallclock-base value.
+ */
+ struct pvclock_wall_clock wc;
+
+ struct arch_shared_info arch;
+
+};
+
+#else /* __ASSEMBLY__ */
+
+/* In assembly code we cannot use C numeric constant suffixes. */
+#define mk_unsigned_long(x) x
+
+#endif /* !__ASSEMBLY__ */
+
+#endif /* __XEN_PUBLIC_XEN_H__ */