diff options
Diffstat (limited to 'roms/u-boot/lib/efi_loader/efi_memory.c')
-rw-r--r-- | roms/u-boot/lib/efi_loader/efi_memory.c | 814 |
1 files changed, 814 insertions, 0 deletions
diff --git a/roms/u-boot/lib/efi_loader/efi_memory.c b/roms/u-boot/lib/efi_loader/efi_memory.c new file mode 100644 index 000000000..be2f655df --- /dev/null +++ b/roms/u-boot/lib/efi_loader/efi_memory.c @@ -0,0 +1,814 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * EFI application memory management + * + * Copyright (c) 2016 Alexander Graf + */ + +#include <common.h> +#include <efi_loader.h> +#include <init.h> +#include <malloc.h> +#include <mapmem.h> +#include <watchdog.h> +#include <asm/cache.h> +#include <asm/global_data.h> +#include <linux/list_sort.h> +#include <linux/sizes.h> + +DECLARE_GLOBAL_DATA_PTR; + +/* Magic number identifying memory allocated from pool */ +#define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2 + +efi_uintn_t efi_memory_map_key; + +struct efi_mem_list { + struct list_head link; + struct efi_mem_desc desc; +}; + +#define EFI_CARVE_NO_OVERLAP -1 +#define EFI_CARVE_LOOP_AGAIN -2 +#define EFI_CARVE_OVERLAPS_NONRAM -3 + +/* This list contains all memory map items */ +LIST_HEAD(efi_mem); + +#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER +void *efi_bounce_buffer; +#endif + +/** + * struct efi_pool_allocation - memory block allocated from pool + * + * @num_pages: number of pages allocated + * @checksum: checksum + * @data: allocated pool memory + * + * U-Boot services each UEFI AllocatePool() request as a separate + * (multiple) page allocation. We have to track the number of pages + * to be able to free the correct amount later. + * + * The checksum calculated in function checksum() is used in FreePool() to avoid + * freeing memory not allocated by AllocatePool() and duplicate freeing. + * + * EFI requires 8 byte alignment for pool allocations, so we can + * prepend each allocation with these header fields. + */ +struct efi_pool_allocation { + u64 num_pages; + u64 checksum; + char data[] __aligned(ARCH_DMA_MINALIGN); +}; + +/** + * checksum() - calculate checksum for memory allocated from pool + * + * @alloc: allocation header + * Return: checksum, always non-zero + */ +static u64 checksum(struct efi_pool_allocation *alloc) +{ + u64 addr = (uintptr_t)alloc; + u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^ + EFI_ALLOC_POOL_MAGIC; + if (!ret) + ++ret; + return ret; +} + +/* + * Sorts the memory list from highest address to lowest address + * + * When allocating memory we should always start from the highest + * address chunk, so sort the memory list such that the first list + * iterator gets the highest address and goes lower from there. + */ +static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) +{ + struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); + struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); + + if (mema->desc.physical_start == memb->desc.physical_start) + return 0; + else if (mema->desc.physical_start < memb->desc.physical_start) + return 1; + else + return -1; +} + +static uint64_t desc_get_end(struct efi_mem_desc *desc) +{ + return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT); +} + +static void efi_mem_sort(void) +{ + struct list_head *lhandle; + struct efi_mem_list *prevmem = NULL; + bool merge_again = true; + + list_sort(NULL, &efi_mem, efi_mem_cmp); + + /* Now merge entries that can be merged */ + while (merge_again) { + merge_again = false; + list_for_each(lhandle, &efi_mem) { + struct efi_mem_list *lmem; + struct efi_mem_desc *prev = &prevmem->desc; + struct efi_mem_desc *cur; + uint64_t pages; + + lmem = list_entry(lhandle, struct efi_mem_list, link); + if (!prevmem) { + prevmem = lmem; + continue; + } + + cur = &lmem->desc; + + if ((desc_get_end(cur) == prev->physical_start) && + (prev->type == cur->type) && + (prev->attribute == cur->attribute)) { + /* There is an existing map before, reuse it */ + pages = cur->num_pages; + prev->num_pages += pages; + prev->physical_start -= pages << EFI_PAGE_SHIFT; + prev->virtual_start -= pages << EFI_PAGE_SHIFT; + list_del(&lmem->link); + free(lmem); + + merge_again = true; + break; + } + + prevmem = lmem; + } + } +} + +/** efi_mem_carve_out - unmap memory region + * + * @map: memory map + * @carve_desc: memory region to unmap + * @overlap_only_ram: the carved out region may only overlap RAM + * Return Value: the number of overlapping pages which have been + * removed from the map, + * EFI_CARVE_NO_OVERLAP, if the regions don't overlap, + * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap, + * and the map contains anything but free ram + * (only when overlap_only_ram is true), + * EFI_CARVE_LOOP_AGAIN, if the mapping list should be + * traversed again, as it has been altered. + * + * Unmaps all memory occupied by the carve_desc region from the list entry + * pointed to by map. + * + * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility + * to re-add the already carved out pages to the mapping. + */ +static s64 efi_mem_carve_out(struct efi_mem_list *map, + struct efi_mem_desc *carve_desc, + bool overlap_only_ram) +{ + struct efi_mem_list *newmap; + struct efi_mem_desc *map_desc = &map->desc; + uint64_t map_start = map_desc->physical_start; + uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); + uint64_t carve_start = carve_desc->physical_start; + uint64_t carve_end = carve_start + + (carve_desc->num_pages << EFI_PAGE_SHIFT); + + /* check whether we're overlapping */ + if ((carve_end <= map_start) || (carve_start >= map_end)) + return EFI_CARVE_NO_OVERLAP; + + /* We're overlapping with non-RAM, warn the caller if desired */ + if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) + return EFI_CARVE_OVERLAPS_NONRAM; + + /* Sanitize carve_start and carve_end to lie within our bounds */ + carve_start = max(carve_start, map_start); + carve_end = min(carve_end, map_end); + + /* Carving at the beginning of our map? Just move it! */ + if (carve_start == map_start) { + if (map_end == carve_end) { + /* Full overlap, just remove map */ + list_del(&map->link); + free(map); + } else { + map->desc.physical_start = carve_end; + map->desc.virtual_start = carve_end; + map->desc.num_pages = (map_end - carve_end) + >> EFI_PAGE_SHIFT; + } + + return (carve_end - carve_start) >> EFI_PAGE_SHIFT; + } + + /* + * Overlapping maps, just split the list map at carve_start, + * it will get moved or removed in the next iteration. + * + * [ map_desc |__carve_start__| newmap ] + */ + + /* Create a new map from [ carve_start ... map_end ] */ + newmap = calloc(1, sizeof(*newmap)); + newmap->desc = map->desc; + newmap->desc.physical_start = carve_start; + newmap->desc.virtual_start = carve_start; + newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; + /* Insert before current entry (descending address order) */ + list_add_tail(&newmap->link, &map->link); + + /* Shrink the map to [ map_start ... carve_start ] */ + map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; + + return EFI_CARVE_LOOP_AGAIN; +} + +/** + * efi_add_memory_map_pg() - add pages to the memory map + * + * @start: start address, must be a multiple of EFI_PAGE_SIZE + * @pages: number of pages to add + * @memory_type: type of memory added + * @overlap_only_ram: region may only overlap RAM + * Return: status code + */ +static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages, + int memory_type, + bool overlap_only_ram) +{ + struct list_head *lhandle; + struct efi_mem_list *newlist; + bool carve_again; + uint64_t carved_pages = 0; + struct efi_event *evt; + + EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__, + start, pages, memory_type, overlap_only_ram ? "yes" : "no"); + + if (memory_type >= EFI_MAX_MEMORY_TYPE) + return EFI_INVALID_PARAMETER; + + if (!pages) + return EFI_SUCCESS; + + ++efi_memory_map_key; + newlist = calloc(1, sizeof(*newlist)); + newlist->desc.type = memory_type; + newlist->desc.physical_start = start; + newlist->desc.virtual_start = start; + newlist->desc.num_pages = pages; + + switch (memory_type) { + case EFI_RUNTIME_SERVICES_CODE: + case EFI_RUNTIME_SERVICES_DATA: + newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME; + break; + case EFI_MMAP_IO: + newlist->desc.attribute = EFI_MEMORY_RUNTIME; + break; + default: + newlist->desc.attribute = EFI_MEMORY_WB; + break; + } + + /* Add our new map */ + do { + carve_again = false; + list_for_each(lhandle, &efi_mem) { + struct efi_mem_list *lmem; + s64 r; + + lmem = list_entry(lhandle, struct efi_mem_list, link); + r = efi_mem_carve_out(lmem, &newlist->desc, + overlap_only_ram); + switch (r) { + case EFI_CARVE_OVERLAPS_NONRAM: + /* + * The user requested to only have RAM overlaps, + * but we hit a non-RAM region. Error out. + */ + return EFI_NO_MAPPING; + case EFI_CARVE_NO_OVERLAP: + /* Just ignore this list entry */ + break; + case EFI_CARVE_LOOP_AGAIN: + /* + * We split an entry, but need to loop through + * the list again to actually carve it. + */ + carve_again = true; + break; + default: + /* We carved a number of pages */ + carved_pages += r; + carve_again = true; + break; + } + + if (carve_again) { + /* The list changed, we need to start over */ + break; + } + } + } while (carve_again); + + if (overlap_only_ram && (carved_pages != pages)) { + /* + * The payload wanted to have RAM overlaps, but we overlapped + * with an unallocated region. Error out. + */ + return EFI_NO_MAPPING; + } + + /* Add our new map */ + list_add_tail(&newlist->link, &efi_mem); + + /* And make sure memory is listed in descending order */ + efi_mem_sort(); + + /* Notify that the memory map was changed */ + list_for_each_entry(evt, &efi_events, link) { + if (evt->group && + !guidcmp(evt->group, + &efi_guid_event_group_memory_map_change)) { + efi_signal_event(evt); + break; + } + } + + return EFI_SUCCESS; +} + +/** + * efi_add_memory_map() - add memory area to the memory map + * + * @start: start address of the memory area + * @size: length in bytes of the memory area + * @memory_type: type of memory added + * + * Return: status code + * + * This function automatically aligns the start and size of the memory area + * to EFI_PAGE_SIZE. + */ +efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type) +{ + u64 pages; + + pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK)); + start &= ~EFI_PAGE_MASK; + + return efi_add_memory_map_pg(start, pages, memory_type, false); +} + +/** + * efi_check_allocated() - validate address to be freed + * + * Check that the address is within allocated memory: + * + * * The address must be in a range of the memory map. + * * The address may not point to EFI_CONVENTIONAL_MEMORY. + * + * Page alignment is not checked as this is not a requirement of + * efi_free_pool(). + * + * @addr: address of page to be freed + * @must_be_allocated: return success if the page is allocated + * Return: status code + */ +static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated) +{ + struct efi_mem_list *item; + + list_for_each_entry(item, &efi_mem, link) { + u64 start = item->desc.physical_start; + u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT); + + if (addr >= start && addr < end) { + if (must_be_allocated ^ + (item->desc.type == EFI_CONVENTIONAL_MEMORY)) + return EFI_SUCCESS; + else + return EFI_NOT_FOUND; + } + } + + return EFI_NOT_FOUND; +} + +static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) +{ + struct list_head *lhandle; + + /* + * Prealign input max address, so we simplify our matching + * logic below and can just reuse it as return pointer. + */ + max_addr &= ~EFI_PAGE_MASK; + + list_for_each(lhandle, &efi_mem) { + struct efi_mem_list *lmem = list_entry(lhandle, + struct efi_mem_list, link); + struct efi_mem_desc *desc = &lmem->desc; + uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; + uint64_t desc_end = desc->physical_start + desc_len; + uint64_t curmax = min(max_addr, desc_end); + uint64_t ret = curmax - len; + + /* We only take memory from free RAM */ + if (desc->type != EFI_CONVENTIONAL_MEMORY) + continue; + + /* Out of bounds for max_addr */ + if ((ret + len) > max_addr) + continue; + + /* Out of bounds for upper map limit */ + if ((ret + len) > desc_end) + continue; + + /* Out of bounds for lower map limit */ + if (ret < desc->physical_start) + continue; + + /* Return the highest address in this map within bounds */ + return ret; + } + + return 0; +} + +/* + * Allocate memory pages. + * + * @type type of allocation to be performed + * @memory_type usage type of the allocated memory + * @pages number of pages to be allocated + * @memory allocated memory + * @return status code + */ +efi_status_t efi_allocate_pages(int type, int memory_type, + efi_uintn_t pages, uint64_t *memory) +{ + u64 len = pages << EFI_PAGE_SHIFT; + efi_status_t ret; + uint64_t addr; + + /* Check import parameters */ + if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE && + memory_type <= 0x6FFFFFFF) + return EFI_INVALID_PARAMETER; + if (!memory) + return EFI_INVALID_PARAMETER; + + switch (type) { + case EFI_ALLOCATE_ANY_PAGES: + /* Any page */ + addr = efi_find_free_memory(len, -1ULL); + if (!addr) + return EFI_OUT_OF_RESOURCES; + break; + case EFI_ALLOCATE_MAX_ADDRESS: + /* Max address */ + addr = efi_find_free_memory(len, *memory); + if (!addr) + return EFI_OUT_OF_RESOURCES; + break; + case EFI_ALLOCATE_ADDRESS: + /* Exact address, reserve it. The addr is already in *memory. */ + ret = efi_check_allocated(*memory, false); + if (ret != EFI_SUCCESS) + return EFI_NOT_FOUND; + addr = *memory; + break; + default: + /* UEFI doesn't specify other allocation types */ + return EFI_INVALID_PARAMETER; + } + + /* Reserve that map in our memory maps */ + ret = efi_add_memory_map_pg(addr, pages, memory_type, true); + if (ret != EFI_SUCCESS) + /* Map would overlap, bail out */ + return EFI_OUT_OF_RESOURCES; + + *memory = addr; + + return EFI_SUCCESS; +} + +void *efi_alloc(uint64_t len, int memory_type) +{ + uint64_t ret = 0; + uint64_t pages = efi_size_in_pages(len); + efi_status_t r; + + r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages, + &ret); + if (r == EFI_SUCCESS) + return (void*)(uintptr_t)ret; + + return NULL; +} + +/** + * efi_free_pages() - free memory pages + * + * @memory: start of the memory area to be freed + * @pages: number of pages to be freed + * Return: status code + */ +efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) +{ + efi_status_t ret; + + ret = efi_check_allocated(memory, true); + if (ret != EFI_SUCCESS) + return ret; + + /* Sanity check */ + if (!memory || (memory & EFI_PAGE_MASK) || !pages) { + printf("%s: illegal free 0x%llx, 0x%zx\n", __func__, + memory, pages); + return EFI_INVALID_PARAMETER; + } + + ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY, + false); + if (ret != EFI_SUCCESS) + return EFI_NOT_FOUND; + + return ret; +} + +/** + * efi_allocate_pool - allocate memory from pool + * + * @pool_type: type of the pool from which memory is to be allocated + * @size: number of bytes to be allocated + * @buffer: allocated memory + * Return: status code + */ +efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer) +{ + efi_status_t r; + u64 addr; + struct efi_pool_allocation *alloc; + u64 num_pages = efi_size_in_pages(size + + sizeof(struct efi_pool_allocation)); + + if (!buffer) + return EFI_INVALID_PARAMETER; + + if (size == 0) { + *buffer = NULL; + return EFI_SUCCESS; + } + + r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages, + &addr); + if (r == EFI_SUCCESS) { + alloc = (struct efi_pool_allocation *)(uintptr_t)addr; + alloc->num_pages = num_pages; + alloc->checksum = checksum(alloc); + *buffer = alloc->data; + } + + return r; +} + +/** + * efi_free_pool() - free memory from pool + * + * @buffer: start of memory to be freed + * Return: status code + */ +efi_status_t efi_free_pool(void *buffer) +{ + efi_status_t ret; + struct efi_pool_allocation *alloc; + + if (!buffer) + return EFI_INVALID_PARAMETER; + + ret = efi_check_allocated((uintptr_t)buffer, true); + if (ret != EFI_SUCCESS) + return ret; + + alloc = container_of(buffer, struct efi_pool_allocation, data); + + /* Check that this memory was allocated by efi_allocate_pool() */ + if (((uintptr_t)alloc & EFI_PAGE_MASK) || + alloc->checksum != checksum(alloc)) { + printf("%s: illegal free 0x%p\n", __func__, buffer); + return EFI_INVALID_PARAMETER; + } + /* Avoid double free */ + alloc->checksum = 0; + + ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages); + + return ret; +} + +/* + * Get map describing memory usage. + * + * @memory_map_size on entry the size, in bytes, of the memory map buffer, + * on exit the size of the copied memory map + * @memory_map buffer to which the memory map is written + * @map_key key for the memory map + * @descriptor_size size of an individual memory descriptor + * @descriptor_version version number of the memory descriptor structure + * @return status code + */ +efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, + struct efi_mem_desc *memory_map, + efi_uintn_t *map_key, + efi_uintn_t *descriptor_size, + uint32_t *descriptor_version) +{ + efi_uintn_t map_size = 0; + int map_entries = 0; + struct list_head *lhandle; + efi_uintn_t provided_map_size; + + if (!memory_map_size) + return EFI_INVALID_PARAMETER; + + provided_map_size = *memory_map_size; + + list_for_each(lhandle, &efi_mem) + map_entries++; + + map_size = map_entries * sizeof(struct efi_mem_desc); + + *memory_map_size = map_size; + + if (descriptor_size) + *descriptor_size = sizeof(struct efi_mem_desc); + + if (descriptor_version) + *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; + + if (provided_map_size < map_size) + return EFI_BUFFER_TOO_SMALL; + + if (!memory_map) + return EFI_INVALID_PARAMETER; + + /* Copy list into array */ + /* Return the list in ascending order */ + memory_map = &memory_map[map_entries - 1]; + list_for_each(lhandle, &efi_mem) { + struct efi_mem_list *lmem; + + lmem = list_entry(lhandle, struct efi_mem_list, link); + *memory_map = lmem->desc; + memory_map--; + } + + if (map_key) + *map_key = efi_memory_map_key; + + return EFI_SUCCESS; +} + +/** + * efi_add_conventional_memory_map() - add a RAM memory area to the map + * + * @ram_start: start address of a RAM memory area + * @ram_end: end address of a RAM memory area + * @ram_top: max address to be used as conventional memory + * Return: status code + */ +efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end, + u64 ram_top) +{ + u64 pages; + + /* Remove partial pages */ + ram_end &= ~EFI_PAGE_MASK; + ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; + + if (ram_end <= ram_start) { + /* Invalid mapping */ + return EFI_INVALID_PARAMETER; + } + + pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT; + + efi_add_memory_map_pg(ram_start, pages, + EFI_CONVENTIONAL_MEMORY, false); + + /* + * Boards may indicate to the U-Boot memory core that they + * can not support memory above ram_top. Let's honor this + * in the efi_loader subsystem too by declaring any memory + * above ram_top as "already occupied by firmware". + */ + if (ram_top < ram_start) { + /* ram_top is before this region, reserve all */ + efi_add_memory_map_pg(ram_start, pages, + EFI_BOOT_SERVICES_DATA, true); + } else if ((ram_top >= ram_start) && (ram_top < ram_end)) { + /* ram_top is inside this region, reserve parts */ + pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT; + + efi_add_memory_map_pg(ram_top, pages, + EFI_BOOT_SERVICES_DATA, true); + } + + return EFI_SUCCESS; +} + +__weak void efi_add_known_memory(void) +{ + u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK; + int i; + + /* + * ram_top is just outside mapped memory. So use an offset of one for + * mapping the sandbox address. + */ + ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1; + + /* Fix for 32bit targets with ram_top at 4G */ + if (!ram_top) + ram_top = 0x100000000ULL; + + /* Add RAM */ + for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { + u64 ram_end, ram_start; + + ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0); + ram_end = ram_start + gd->bd->bi_dram[i].size; + + efi_add_conventional_memory_map(ram_start, ram_end, ram_top); + } +} + +/* Add memory regions for U-Boot's memory and for the runtime services code */ +static void add_u_boot_and_runtime(void) +{ + unsigned long runtime_start, runtime_end, runtime_pages; + unsigned long runtime_mask = EFI_PAGE_MASK; + unsigned long uboot_start, uboot_pages; + unsigned long uboot_stack_size = CONFIG_STACK_SIZE; + + /* Add U-Boot */ + uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) - + uboot_stack_size) & ~EFI_PAGE_MASK; + uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) - + uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; + efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_LOADER_DATA, + false); + +#if defined(__aarch64__) + /* + * Runtime Services must be 64KiB aligned according to the + * "AArch64 Platforms" section in the UEFI spec (2.7+). + */ + + runtime_mask = SZ_64K - 1; +#endif + + /* + * Add Runtime Services. We mark surrounding boottime code as runtime as + * well to fulfill the runtime alignment constraints but avoid padding. + */ + runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask; + runtime_end = (ulong)&__efi_runtime_stop; + runtime_end = (runtime_end + runtime_mask) & ~runtime_mask; + runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; + efi_add_memory_map_pg(runtime_start, runtime_pages, + EFI_RUNTIME_SERVICES_CODE, false); +} + +int efi_memory_init(void) +{ + efi_add_known_memory(); + + add_u_boot_and_runtime(); + +#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER + /* Request a 32bit 64MB bounce buffer region */ + uint64_t efi_bounce_buffer_addr = 0xffffffff; + + if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA, + (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, + &efi_bounce_buffer_addr) != EFI_SUCCESS) + return -1; + + efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; +#endif + + return 0; +} |