aboutsummaryrefslogtreecommitdiffstats
path: root/roms/u-boot/lib/efi_loader/efi_memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/u-boot/lib/efi_loader/efi_memory.c')
-rw-r--r--roms/u-boot/lib/efi_loader/efi_memory.c814
1 files changed, 814 insertions, 0 deletions
diff --git a/roms/u-boot/lib/efi_loader/efi_memory.c b/roms/u-boot/lib/efi_loader/efi_memory.c
new file mode 100644
index 000000000..be2f655df
--- /dev/null
+++ b/roms/u-boot/lib/efi_loader/efi_memory.c
@@ -0,0 +1,814 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * EFI application memory management
+ *
+ * Copyright (c) 2016 Alexander Graf
+ */
+
+#include <common.h>
+#include <efi_loader.h>
+#include <init.h>
+#include <malloc.h>
+#include <mapmem.h>
+#include <watchdog.h>
+#include <asm/cache.h>
+#include <asm/global_data.h>
+#include <linux/list_sort.h>
+#include <linux/sizes.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+/* Magic number identifying memory allocated from pool */
+#define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
+
+efi_uintn_t efi_memory_map_key;
+
+struct efi_mem_list {
+ struct list_head link;
+ struct efi_mem_desc desc;
+};
+
+#define EFI_CARVE_NO_OVERLAP -1
+#define EFI_CARVE_LOOP_AGAIN -2
+#define EFI_CARVE_OVERLAPS_NONRAM -3
+
+/* This list contains all memory map items */
+LIST_HEAD(efi_mem);
+
+#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
+void *efi_bounce_buffer;
+#endif
+
+/**
+ * struct efi_pool_allocation - memory block allocated from pool
+ *
+ * @num_pages: number of pages allocated
+ * @checksum: checksum
+ * @data: allocated pool memory
+ *
+ * U-Boot services each UEFI AllocatePool() request as a separate
+ * (multiple) page allocation. We have to track the number of pages
+ * to be able to free the correct amount later.
+ *
+ * The checksum calculated in function checksum() is used in FreePool() to avoid
+ * freeing memory not allocated by AllocatePool() and duplicate freeing.
+ *
+ * EFI requires 8 byte alignment for pool allocations, so we can
+ * prepend each allocation with these header fields.
+ */
+struct efi_pool_allocation {
+ u64 num_pages;
+ u64 checksum;
+ char data[] __aligned(ARCH_DMA_MINALIGN);
+};
+
+/**
+ * checksum() - calculate checksum for memory allocated from pool
+ *
+ * @alloc: allocation header
+ * Return: checksum, always non-zero
+ */
+static u64 checksum(struct efi_pool_allocation *alloc)
+{
+ u64 addr = (uintptr_t)alloc;
+ u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
+ EFI_ALLOC_POOL_MAGIC;
+ if (!ret)
+ ++ret;
+ return ret;
+}
+
+/*
+ * Sorts the memory list from highest address to lowest address
+ *
+ * When allocating memory we should always start from the highest
+ * address chunk, so sort the memory list such that the first list
+ * iterator gets the highest address and goes lower from there.
+ */
+static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
+{
+ struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
+ struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
+
+ if (mema->desc.physical_start == memb->desc.physical_start)
+ return 0;
+ else if (mema->desc.physical_start < memb->desc.physical_start)
+ return 1;
+ else
+ return -1;
+}
+
+static uint64_t desc_get_end(struct efi_mem_desc *desc)
+{
+ return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
+}
+
+static void efi_mem_sort(void)
+{
+ struct list_head *lhandle;
+ struct efi_mem_list *prevmem = NULL;
+ bool merge_again = true;
+
+ list_sort(NULL, &efi_mem, efi_mem_cmp);
+
+ /* Now merge entries that can be merged */
+ while (merge_again) {
+ merge_again = false;
+ list_for_each(lhandle, &efi_mem) {
+ struct efi_mem_list *lmem;
+ struct efi_mem_desc *prev = &prevmem->desc;
+ struct efi_mem_desc *cur;
+ uint64_t pages;
+
+ lmem = list_entry(lhandle, struct efi_mem_list, link);
+ if (!prevmem) {
+ prevmem = lmem;
+ continue;
+ }
+
+ cur = &lmem->desc;
+
+ if ((desc_get_end(cur) == prev->physical_start) &&
+ (prev->type == cur->type) &&
+ (prev->attribute == cur->attribute)) {
+ /* There is an existing map before, reuse it */
+ pages = cur->num_pages;
+ prev->num_pages += pages;
+ prev->physical_start -= pages << EFI_PAGE_SHIFT;
+ prev->virtual_start -= pages << EFI_PAGE_SHIFT;
+ list_del(&lmem->link);
+ free(lmem);
+
+ merge_again = true;
+ break;
+ }
+
+ prevmem = lmem;
+ }
+ }
+}
+
+/** efi_mem_carve_out - unmap memory region
+ *
+ * @map: memory map
+ * @carve_desc: memory region to unmap
+ * @overlap_only_ram: the carved out region may only overlap RAM
+ * Return Value: the number of overlapping pages which have been
+ * removed from the map,
+ * EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
+ * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
+ * and the map contains anything but free ram
+ * (only when overlap_only_ram is true),
+ * EFI_CARVE_LOOP_AGAIN, if the mapping list should be
+ * traversed again, as it has been altered.
+ *
+ * Unmaps all memory occupied by the carve_desc region from the list entry
+ * pointed to by map.
+ *
+ * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
+ * to re-add the already carved out pages to the mapping.
+ */
+static s64 efi_mem_carve_out(struct efi_mem_list *map,
+ struct efi_mem_desc *carve_desc,
+ bool overlap_only_ram)
+{
+ struct efi_mem_list *newmap;
+ struct efi_mem_desc *map_desc = &map->desc;
+ uint64_t map_start = map_desc->physical_start;
+ uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
+ uint64_t carve_start = carve_desc->physical_start;
+ uint64_t carve_end = carve_start +
+ (carve_desc->num_pages << EFI_PAGE_SHIFT);
+
+ /* check whether we're overlapping */
+ if ((carve_end <= map_start) || (carve_start >= map_end))
+ return EFI_CARVE_NO_OVERLAP;
+
+ /* We're overlapping with non-RAM, warn the caller if desired */
+ if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
+ return EFI_CARVE_OVERLAPS_NONRAM;
+
+ /* Sanitize carve_start and carve_end to lie within our bounds */
+ carve_start = max(carve_start, map_start);
+ carve_end = min(carve_end, map_end);
+
+ /* Carving at the beginning of our map? Just move it! */
+ if (carve_start == map_start) {
+ if (map_end == carve_end) {
+ /* Full overlap, just remove map */
+ list_del(&map->link);
+ free(map);
+ } else {
+ map->desc.physical_start = carve_end;
+ map->desc.virtual_start = carve_end;
+ map->desc.num_pages = (map_end - carve_end)
+ >> EFI_PAGE_SHIFT;
+ }
+
+ return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
+ }
+
+ /*
+ * Overlapping maps, just split the list map at carve_start,
+ * it will get moved or removed in the next iteration.
+ *
+ * [ map_desc |__carve_start__| newmap ]
+ */
+
+ /* Create a new map from [ carve_start ... map_end ] */
+ newmap = calloc(1, sizeof(*newmap));
+ newmap->desc = map->desc;
+ newmap->desc.physical_start = carve_start;
+ newmap->desc.virtual_start = carve_start;
+ newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
+ /* Insert before current entry (descending address order) */
+ list_add_tail(&newmap->link, &map->link);
+
+ /* Shrink the map to [ map_start ... carve_start ] */
+ map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
+
+ return EFI_CARVE_LOOP_AGAIN;
+}
+
+/**
+ * efi_add_memory_map_pg() - add pages to the memory map
+ *
+ * @start: start address, must be a multiple of EFI_PAGE_SIZE
+ * @pages: number of pages to add
+ * @memory_type: type of memory added
+ * @overlap_only_ram: region may only overlap RAM
+ * Return: status code
+ */
+static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
+ int memory_type,
+ bool overlap_only_ram)
+{
+ struct list_head *lhandle;
+ struct efi_mem_list *newlist;
+ bool carve_again;
+ uint64_t carved_pages = 0;
+ struct efi_event *evt;
+
+ EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
+ start, pages, memory_type, overlap_only_ram ? "yes" : "no");
+
+ if (memory_type >= EFI_MAX_MEMORY_TYPE)
+ return EFI_INVALID_PARAMETER;
+
+ if (!pages)
+ return EFI_SUCCESS;
+
+ ++efi_memory_map_key;
+ newlist = calloc(1, sizeof(*newlist));
+ newlist->desc.type = memory_type;
+ newlist->desc.physical_start = start;
+ newlist->desc.virtual_start = start;
+ newlist->desc.num_pages = pages;
+
+ switch (memory_type) {
+ case EFI_RUNTIME_SERVICES_CODE:
+ case EFI_RUNTIME_SERVICES_DATA:
+ newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
+ break;
+ case EFI_MMAP_IO:
+ newlist->desc.attribute = EFI_MEMORY_RUNTIME;
+ break;
+ default:
+ newlist->desc.attribute = EFI_MEMORY_WB;
+ break;
+ }
+
+ /* Add our new map */
+ do {
+ carve_again = false;
+ list_for_each(lhandle, &efi_mem) {
+ struct efi_mem_list *lmem;
+ s64 r;
+
+ lmem = list_entry(lhandle, struct efi_mem_list, link);
+ r = efi_mem_carve_out(lmem, &newlist->desc,
+ overlap_only_ram);
+ switch (r) {
+ case EFI_CARVE_OVERLAPS_NONRAM:
+ /*
+ * The user requested to only have RAM overlaps,
+ * but we hit a non-RAM region. Error out.
+ */
+ return EFI_NO_MAPPING;
+ case EFI_CARVE_NO_OVERLAP:
+ /* Just ignore this list entry */
+ break;
+ case EFI_CARVE_LOOP_AGAIN:
+ /*
+ * We split an entry, but need to loop through
+ * the list again to actually carve it.
+ */
+ carve_again = true;
+ break;
+ default:
+ /* We carved a number of pages */
+ carved_pages += r;
+ carve_again = true;
+ break;
+ }
+
+ if (carve_again) {
+ /* The list changed, we need to start over */
+ break;
+ }
+ }
+ } while (carve_again);
+
+ if (overlap_only_ram && (carved_pages != pages)) {
+ /*
+ * The payload wanted to have RAM overlaps, but we overlapped
+ * with an unallocated region. Error out.
+ */
+ return EFI_NO_MAPPING;
+ }
+
+ /* Add our new map */
+ list_add_tail(&newlist->link, &efi_mem);
+
+ /* And make sure memory is listed in descending order */
+ efi_mem_sort();
+
+ /* Notify that the memory map was changed */
+ list_for_each_entry(evt, &efi_events, link) {
+ if (evt->group &&
+ !guidcmp(evt->group,
+ &efi_guid_event_group_memory_map_change)) {
+ efi_signal_event(evt);
+ break;
+ }
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ * efi_add_memory_map() - add memory area to the memory map
+ *
+ * @start: start address of the memory area
+ * @size: length in bytes of the memory area
+ * @memory_type: type of memory added
+ *
+ * Return: status code
+ *
+ * This function automatically aligns the start and size of the memory area
+ * to EFI_PAGE_SIZE.
+ */
+efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
+{
+ u64 pages;
+
+ pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
+ start &= ~EFI_PAGE_MASK;
+
+ return efi_add_memory_map_pg(start, pages, memory_type, false);
+}
+
+/**
+ * efi_check_allocated() - validate address to be freed
+ *
+ * Check that the address is within allocated memory:
+ *
+ * * The address must be in a range of the memory map.
+ * * The address may not point to EFI_CONVENTIONAL_MEMORY.
+ *
+ * Page alignment is not checked as this is not a requirement of
+ * efi_free_pool().
+ *
+ * @addr: address of page to be freed
+ * @must_be_allocated: return success if the page is allocated
+ * Return: status code
+ */
+static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
+{
+ struct efi_mem_list *item;
+
+ list_for_each_entry(item, &efi_mem, link) {
+ u64 start = item->desc.physical_start;
+ u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
+
+ if (addr >= start && addr < end) {
+ if (must_be_allocated ^
+ (item->desc.type == EFI_CONVENTIONAL_MEMORY))
+ return EFI_SUCCESS;
+ else
+ return EFI_NOT_FOUND;
+ }
+ }
+
+ return EFI_NOT_FOUND;
+}
+
+static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
+{
+ struct list_head *lhandle;
+
+ /*
+ * Prealign input max address, so we simplify our matching
+ * logic below and can just reuse it as return pointer.
+ */
+ max_addr &= ~EFI_PAGE_MASK;
+
+ list_for_each(lhandle, &efi_mem) {
+ struct efi_mem_list *lmem = list_entry(lhandle,
+ struct efi_mem_list, link);
+ struct efi_mem_desc *desc = &lmem->desc;
+ uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
+ uint64_t desc_end = desc->physical_start + desc_len;
+ uint64_t curmax = min(max_addr, desc_end);
+ uint64_t ret = curmax - len;
+
+ /* We only take memory from free RAM */
+ if (desc->type != EFI_CONVENTIONAL_MEMORY)
+ continue;
+
+ /* Out of bounds for max_addr */
+ if ((ret + len) > max_addr)
+ continue;
+
+ /* Out of bounds for upper map limit */
+ if ((ret + len) > desc_end)
+ continue;
+
+ /* Out of bounds for lower map limit */
+ if (ret < desc->physical_start)
+ continue;
+
+ /* Return the highest address in this map within bounds */
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Allocate memory pages.
+ *
+ * @type type of allocation to be performed
+ * @memory_type usage type of the allocated memory
+ * @pages number of pages to be allocated
+ * @memory allocated memory
+ * @return status code
+ */
+efi_status_t efi_allocate_pages(int type, int memory_type,
+ efi_uintn_t pages, uint64_t *memory)
+{
+ u64 len = pages << EFI_PAGE_SHIFT;
+ efi_status_t ret;
+ uint64_t addr;
+
+ /* Check import parameters */
+ if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
+ memory_type <= 0x6FFFFFFF)
+ return EFI_INVALID_PARAMETER;
+ if (!memory)
+ return EFI_INVALID_PARAMETER;
+
+ switch (type) {
+ case EFI_ALLOCATE_ANY_PAGES:
+ /* Any page */
+ addr = efi_find_free_memory(len, -1ULL);
+ if (!addr)
+ return EFI_OUT_OF_RESOURCES;
+ break;
+ case EFI_ALLOCATE_MAX_ADDRESS:
+ /* Max address */
+ addr = efi_find_free_memory(len, *memory);
+ if (!addr)
+ return EFI_OUT_OF_RESOURCES;
+ break;
+ case EFI_ALLOCATE_ADDRESS:
+ /* Exact address, reserve it. The addr is already in *memory. */
+ ret = efi_check_allocated(*memory, false);
+ if (ret != EFI_SUCCESS)
+ return EFI_NOT_FOUND;
+ addr = *memory;
+ break;
+ default:
+ /* UEFI doesn't specify other allocation types */
+ return EFI_INVALID_PARAMETER;
+ }
+
+ /* Reserve that map in our memory maps */
+ ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
+ if (ret != EFI_SUCCESS)
+ /* Map would overlap, bail out */
+ return EFI_OUT_OF_RESOURCES;
+
+ *memory = addr;
+
+ return EFI_SUCCESS;
+}
+
+void *efi_alloc(uint64_t len, int memory_type)
+{
+ uint64_t ret = 0;
+ uint64_t pages = efi_size_in_pages(len);
+ efi_status_t r;
+
+ r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
+ &ret);
+ if (r == EFI_SUCCESS)
+ return (void*)(uintptr_t)ret;
+
+ return NULL;
+}
+
+/**
+ * efi_free_pages() - free memory pages
+ *
+ * @memory: start of the memory area to be freed
+ * @pages: number of pages to be freed
+ * Return: status code
+ */
+efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
+{
+ efi_status_t ret;
+
+ ret = efi_check_allocated(memory, true);
+ if (ret != EFI_SUCCESS)
+ return ret;
+
+ /* Sanity check */
+ if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
+ printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
+ memory, pages);
+ return EFI_INVALID_PARAMETER;
+ }
+
+ ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
+ false);
+ if (ret != EFI_SUCCESS)
+ return EFI_NOT_FOUND;
+
+ return ret;
+}
+
+/**
+ * efi_allocate_pool - allocate memory from pool
+ *
+ * @pool_type: type of the pool from which memory is to be allocated
+ * @size: number of bytes to be allocated
+ * @buffer: allocated memory
+ * Return: status code
+ */
+efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
+{
+ efi_status_t r;
+ u64 addr;
+ struct efi_pool_allocation *alloc;
+ u64 num_pages = efi_size_in_pages(size +
+ sizeof(struct efi_pool_allocation));
+
+ if (!buffer)
+ return EFI_INVALID_PARAMETER;
+
+ if (size == 0) {
+ *buffer = NULL;
+ return EFI_SUCCESS;
+ }
+
+ r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
+ &addr);
+ if (r == EFI_SUCCESS) {
+ alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
+ alloc->num_pages = num_pages;
+ alloc->checksum = checksum(alloc);
+ *buffer = alloc->data;
+ }
+
+ return r;
+}
+
+/**
+ * efi_free_pool() - free memory from pool
+ *
+ * @buffer: start of memory to be freed
+ * Return: status code
+ */
+efi_status_t efi_free_pool(void *buffer)
+{
+ efi_status_t ret;
+ struct efi_pool_allocation *alloc;
+
+ if (!buffer)
+ return EFI_INVALID_PARAMETER;
+
+ ret = efi_check_allocated((uintptr_t)buffer, true);
+ if (ret != EFI_SUCCESS)
+ return ret;
+
+ alloc = container_of(buffer, struct efi_pool_allocation, data);
+
+ /* Check that this memory was allocated by efi_allocate_pool() */
+ if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
+ alloc->checksum != checksum(alloc)) {
+ printf("%s: illegal free 0x%p\n", __func__, buffer);
+ return EFI_INVALID_PARAMETER;
+ }
+ /* Avoid double free */
+ alloc->checksum = 0;
+
+ ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
+
+ return ret;
+}
+
+/*
+ * Get map describing memory usage.
+ *
+ * @memory_map_size on entry the size, in bytes, of the memory map buffer,
+ * on exit the size of the copied memory map
+ * @memory_map buffer to which the memory map is written
+ * @map_key key for the memory map
+ * @descriptor_size size of an individual memory descriptor
+ * @descriptor_version version number of the memory descriptor structure
+ * @return status code
+ */
+efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
+ struct efi_mem_desc *memory_map,
+ efi_uintn_t *map_key,
+ efi_uintn_t *descriptor_size,
+ uint32_t *descriptor_version)
+{
+ efi_uintn_t map_size = 0;
+ int map_entries = 0;
+ struct list_head *lhandle;
+ efi_uintn_t provided_map_size;
+
+ if (!memory_map_size)
+ return EFI_INVALID_PARAMETER;
+
+ provided_map_size = *memory_map_size;
+
+ list_for_each(lhandle, &efi_mem)
+ map_entries++;
+
+ map_size = map_entries * sizeof(struct efi_mem_desc);
+
+ *memory_map_size = map_size;
+
+ if (descriptor_size)
+ *descriptor_size = sizeof(struct efi_mem_desc);
+
+ if (descriptor_version)
+ *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
+
+ if (provided_map_size < map_size)
+ return EFI_BUFFER_TOO_SMALL;
+
+ if (!memory_map)
+ return EFI_INVALID_PARAMETER;
+
+ /* Copy list into array */
+ /* Return the list in ascending order */
+ memory_map = &memory_map[map_entries - 1];
+ list_for_each(lhandle, &efi_mem) {
+ struct efi_mem_list *lmem;
+
+ lmem = list_entry(lhandle, struct efi_mem_list, link);
+ *memory_map = lmem->desc;
+ memory_map--;
+ }
+
+ if (map_key)
+ *map_key = efi_memory_map_key;
+
+ return EFI_SUCCESS;
+}
+
+/**
+ * efi_add_conventional_memory_map() - add a RAM memory area to the map
+ *
+ * @ram_start: start address of a RAM memory area
+ * @ram_end: end address of a RAM memory area
+ * @ram_top: max address to be used as conventional memory
+ * Return: status code
+ */
+efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
+ u64 ram_top)
+{
+ u64 pages;
+
+ /* Remove partial pages */
+ ram_end &= ~EFI_PAGE_MASK;
+ ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
+
+ if (ram_end <= ram_start) {
+ /* Invalid mapping */
+ return EFI_INVALID_PARAMETER;
+ }
+
+ pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
+
+ efi_add_memory_map_pg(ram_start, pages,
+ EFI_CONVENTIONAL_MEMORY, false);
+
+ /*
+ * Boards may indicate to the U-Boot memory core that they
+ * can not support memory above ram_top. Let's honor this
+ * in the efi_loader subsystem too by declaring any memory
+ * above ram_top as "already occupied by firmware".
+ */
+ if (ram_top < ram_start) {
+ /* ram_top is before this region, reserve all */
+ efi_add_memory_map_pg(ram_start, pages,
+ EFI_BOOT_SERVICES_DATA, true);
+ } else if ((ram_top >= ram_start) && (ram_top < ram_end)) {
+ /* ram_top is inside this region, reserve parts */
+ pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
+
+ efi_add_memory_map_pg(ram_top, pages,
+ EFI_BOOT_SERVICES_DATA, true);
+ }
+
+ return EFI_SUCCESS;
+}
+
+__weak void efi_add_known_memory(void)
+{
+ u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK;
+ int i;
+
+ /*
+ * ram_top is just outside mapped memory. So use an offset of one for
+ * mapping the sandbox address.
+ */
+ ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
+
+ /* Fix for 32bit targets with ram_top at 4G */
+ if (!ram_top)
+ ram_top = 0x100000000ULL;
+
+ /* Add RAM */
+ for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
+ u64 ram_end, ram_start;
+
+ ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
+ ram_end = ram_start + gd->bd->bi_dram[i].size;
+
+ efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
+ }
+}
+
+/* Add memory regions for U-Boot's memory and for the runtime services code */
+static void add_u_boot_and_runtime(void)
+{
+ unsigned long runtime_start, runtime_end, runtime_pages;
+ unsigned long runtime_mask = EFI_PAGE_MASK;
+ unsigned long uboot_start, uboot_pages;
+ unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
+
+ /* Add U-Boot */
+ uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
+ uboot_stack_size) & ~EFI_PAGE_MASK;
+ uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
+ uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
+ efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_LOADER_DATA,
+ false);
+
+#if defined(__aarch64__)
+ /*
+ * Runtime Services must be 64KiB aligned according to the
+ * "AArch64 Platforms" section in the UEFI spec (2.7+).
+ */
+
+ runtime_mask = SZ_64K - 1;
+#endif
+
+ /*
+ * Add Runtime Services. We mark surrounding boottime code as runtime as
+ * well to fulfill the runtime alignment constraints but avoid padding.
+ */
+ runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
+ runtime_end = (ulong)&__efi_runtime_stop;
+ runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
+ runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
+ efi_add_memory_map_pg(runtime_start, runtime_pages,
+ EFI_RUNTIME_SERVICES_CODE, false);
+}
+
+int efi_memory_init(void)
+{
+ efi_add_known_memory();
+
+ add_u_boot_and_runtime();
+
+#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
+ /* Request a 32bit 64MB bounce buffer region */
+ uint64_t efi_bounce_buffer_addr = 0xffffffff;
+
+ if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
+ (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
+ &efi_bounce_buffer_addr) != EFI_SUCCESS)
+ return -1;
+
+ efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
+#endif
+
+ return 0;
+}