aboutsummaryrefslogtreecommitdiffstats
path: root/roms/u-boot/test/dm/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'roms/u-boot/test/dm/core.c')
-rw-r--r--roms/u-boot/test/dm/core.c1202
1 files changed, 1202 insertions, 0 deletions
diff --git a/roms/u-boot/test/dm/core.c b/roms/u-boot/test/dm/core.c
new file mode 100644
index 000000000..2210345dd
--- /dev/null
+++ b/roms/u-boot/test/dm/core.c
@@ -0,0 +1,1202 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Tests for the core driver model code
+ *
+ * Copyright (c) 2013 Google, Inc
+ */
+
+#include <common.h>
+#include <errno.h>
+#include <dm.h>
+#include <fdtdec.h>
+#include <log.h>
+#include <malloc.h>
+#include <asm/global_data.h>
+#include <dm/device-internal.h>
+#include <dm/root.h>
+#include <dm/util.h>
+#include <dm/test.h>
+#include <dm/uclass-internal.h>
+#include <test/test.h>
+#include <test/ut.h>
+
+DECLARE_GLOBAL_DATA_PTR;
+
+enum {
+ TEST_INTVAL1 = 0,
+ TEST_INTVAL2 = 3,
+ TEST_INTVAL3 = 6,
+ TEST_INTVAL_MANUAL = 101112,
+ TEST_INTVAL_PRE_RELOC = 7,
+};
+
+static const struct dm_test_pdata test_pdata[] = {
+ { .ping_add = TEST_INTVAL1, },
+ { .ping_add = TEST_INTVAL2, },
+ { .ping_add = TEST_INTVAL3, },
+};
+
+static const struct dm_test_pdata test_pdata_manual = {
+ .ping_add = TEST_INTVAL_MANUAL,
+};
+
+static const struct dm_test_pdata test_pdata_pre_reloc = {
+ .ping_add = TEST_INTVAL_PRE_RELOC,
+};
+
+U_BOOT_DRVINFO(dm_test_info1) = {
+ .name = "test_drv",
+ .plat = &test_pdata[0],
+};
+
+U_BOOT_DRVINFO(dm_test_info2) = {
+ .name = "test_drv",
+ .plat = &test_pdata[1],
+};
+
+U_BOOT_DRVINFO(dm_test_info3) = {
+ .name = "test_drv",
+ .plat = &test_pdata[2],
+};
+
+static struct driver_info driver_info_manual = {
+ .name = "test_manual_drv",
+ .plat = &test_pdata_manual,
+};
+
+static struct driver_info driver_info_pre_reloc = {
+ .name = "test_pre_reloc_drv",
+ .plat = &test_pdata_pre_reloc,
+};
+
+static struct driver_info driver_info_act_dma = {
+ .name = "test_act_dma_drv",
+};
+
+static struct driver_info driver_info_vital_clk = {
+ .name = "test_vital_clk_drv",
+};
+
+static struct driver_info driver_info_act_dma_vital_clk = {
+ .name = "test_act_dma_vital_clk_drv",
+};
+
+void dm_leak_check_start(struct unit_test_state *uts)
+{
+ uts->start = mallinfo();
+ if (!uts->start.uordblks)
+ puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
+}
+
+int dm_leak_check_end(struct unit_test_state *uts)
+{
+ struct mallinfo end;
+ int id, diff;
+
+ /* Don't delete the root class, since we started with that */
+ for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
+ struct uclass *uc;
+
+ uc = uclass_find(id);
+ if (!uc)
+ continue;
+ ut_assertok(uclass_destroy(uc));
+ }
+
+ end = mallinfo();
+ diff = end.uordblks - uts->start.uordblks;
+ if (diff > 0)
+ printf("Leak: lost %#xd bytes\n", diff);
+ else if (diff < 0)
+ printf("Leak: gained %#xd bytes\n", -diff);
+ ut_asserteq(uts->start.uordblks, end.uordblks);
+
+ return 0;
+}
+
+/* Test that binding with plat occurs correctly */
+static int dm_test_autobind(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+
+ /*
+ * We should have a single class (UCLASS_ROOT) and a single root
+ * device with no children.
+ */
+ ut_assert(uts->root);
+ ut_asserteq(1, list_count_items(gd->uclass_root));
+ ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
+
+ ut_assertok(dm_scan_plat(false));
+
+ /* We should have our test class now at least, plus more children */
+ ut_assert(1 < list_count_items(gd->uclass_root));
+ ut_assert(0 < list_count_items(&gd->dm_root->child_head));
+
+ /* Our 3 dm_test_infox children should be bound to the test uclass */
+ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
+
+ /* No devices should be probed */
+ list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
+ ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
+
+ /* Our test driver should have been bound 3 times */
+ ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
+
+ return 0;
+}
+DM_TEST(dm_test_autobind, 0);
+
+/* Test that binding with uclass plat allocation occurs correctly */
+static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
+{
+ struct dm_test_perdev_uc_pdata *uc_pdata;
+ struct udevice *dev;
+ struct uclass *uc;
+
+ ut_assertok(uclass_get(UCLASS_TEST, &uc));
+ ut_assert(uc);
+
+ /**
+ * Test if test uclass driver requires allocation for the uclass
+ * platform data and then check the dev->uclass_plat pointer.
+ */
+ ut_assert(uc->uc_drv->per_device_plat_auto);
+
+ for (uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ uclass_find_next_device(&dev)) {
+ ut_assertnonnull(dev);
+
+ uc_pdata = dev_get_uclass_plat(dev);
+ ut_assert(uc_pdata);
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
+
+/* Test that binding with uclass plat setting occurs correctly */
+static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
+{
+ struct dm_test_perdev_uc_pdata *uc_pdata;
+ struct udevice *dev;
+
+ /**
+ * In the test_postbind() method of test uclass driver, the uclass
+ * platform data should be set to three test int values - test it.
+ */
+ for (uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ uclass_find_next_device(&dev)) {
+ ut_assertnonnull(dev);
+
+ uc_pdata = dev_get_uclass_plat(dev);
+ ut_assert(uc_pdata);
+ ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
+ ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
+ ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
+
+/* Test that autoprobe finds all the expected devices */
+static int dm_test_autoprobe(struct unit_test_state *uts)
+{
+ int expected_base_add;
+ struct udevice *dev;
+ struct uclass *uc;
+ int i;
+
+ ut_assertok(uclass_get(UCLASS_TEST, &uc));
+ ut_assert(uc);
+
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
+
+ /* The root device should not be activated until needed */
+ ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
+
+ /*
+ * We should be able to find the three test devices, and they should
+ * all be activated as they are used (lazy activation, required by
+ * U-Boot)
+ */
+ for (i = 0; i < 3; i++) {
+ ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
+ ut_assert(dev);
+ ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
+ "Driver %d/%s already activated", i, dev->name);
+
+ /* This should activate it */
+ ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
+ ut_assert(dev);
+ ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
+
+ /* Activating a device should activate the root device */
+ if (!i)
+ ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
+ }
+
+ /*
+ * Our 3 dm_test_info children should be passed to pre_probe and
+ * post_probe
+ */
+ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
+ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
+
+ /* Also we can check the per-device data */
+ expected_base_add = 0;
+ for (i = 0; i < 3; i++) {
+ struct dm_test_uclass_perdev_priv *priv;
+ struct dm_test_pdata *pdata;
+
+ ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
+ ut_assert(dev);
+
+ priv = dev_get_uclass_priv(dev);
+ ut_assert(priv);
+ ut_asserteq(expected_base_add, priv->base_add);
+
+ pdata = dev_get_plat(dev);
+ expected_base_add += pdata->ping_add;
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
+
+/* Check that we see the correct plat in each device */
+static int dm_test_plat(struct unit_test_state *uts)
+{
+ const struct dm_test_pdata *pdata;
+ struct udevice *dev;
+ int i;
+
+ for (i = 0; i < 3; i++) {
+ ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
+ ut_assert(dev);
+ pdata = dev_get_plat(dev);
+ ut_assert(pdata->ping_add == test_pdata[i].ping_add);
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
+
+/* Test that we can bind, probe, remove, unbind a driver */
+static int dm_test_lifecycle(struct unit_test_state *uts)
+{
+ int op_count[DM_TEST_OP_COUNT];
+ struct udevice *dev, *test_dev;
+ int pingret;
+ int ret;
+
+ memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
+
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &dev));
+ ut_assert(dev);
+ ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
+ == op_count[DM_TEST_OP_BIND] + 1);
+ ut_assert(!dev_get_priv(dev));
+
+ /* Probe the device - it should fail allocating private data */
+ uts->force_fail_alloc = 1;
+ ret = device_probe(dev);
+ ut_assert(ret == -ENOMEM);
+ ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
+ == op_count[DM_TEST_OP_PROBE] + 1);
+ ut_assert(!dev_get_priv(dev));
+
+ /* Try again without the alloc failure */
+ uts->force_fail_alloc = 0;
+ ut_assertok(device_probe(dev));
+ ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
+ == op_count[DM_TEST_OP_PROBE] + 2);
+ ut_assert(dev_get_priv(dev));
+
+ /* This should be device 3 in the uclass */
+ ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
+ ut_assert(dev == test_dev);
+
+ /* Try ping */
+ ut_assertok(test_ping(dev, 100, &pingret));
+ ut_assert(pingret == 102);
+
+ /* Now remove device 3 */
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
+ ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
+
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
+ ut_assertok(device_unbind(dev));
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
+
+ return 0;
+}
+DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
+
+/* Test that we can bind/unbind and the lists update correctly */
+static int dm_test_ordering(struct unit_test_state *uts)
+{
+ struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
+ int pingret;
+
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &dev));
+ ut_assert(dev);
+
+ /* Bind two new devices (numbers 4 and 5) */
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &dev_penultimate));
+ ut_assert(dev_penultimate);
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &dev_last));
+ ut_assert(dev_last);
+
+ /* Now remove device 3 */
+ ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
+ ut_assertok(device_unbind(dev));
+
+ /* The device numbering should have shifted down one */
+ ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
+ ut_assert(dev_penultimate == test_dev);
+ ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
+ ut_assert(dev_last == test_dev);
+
+ /* Add back the original device 3, now in position 5 */
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &dev));
+ ut_assert(dev);
+
+ /* Try ping */
+ ut_assertok(test_ping(dev, 100, &pingret));
+ ut_assert(pingret == 102);
+
+ /* Remove 3 and 4 */
+ ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
+ ut_assertok(device_unbind(dev_penultimate));
+ ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
+ ut_assertok(device_unbind(dev_last));
+
+ /* Our device should now be in position 3 */
+ ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
+ ut_assert(dev == test_dev);
+
+ /* Now remove device 3 */
+ ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
+ ut_assertok(device_unbind(dev));
+
+ return 0;
+}
+DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
+
+/* Check that we can perform operations on a device (do a ping) */
+int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
+ uint32_t base, struct dm_test_priv *priv)
+{
+ int expected;
+ int pingret;
+
+ /* Getting the child device should allocate plat / priv */
+ ut_assertok(testfdt_ping(dev, 10, &pingret));
+ ut_assert(dev_get_priv(dev));
+ ut_assert(dev_get_plat(dev));
+
+ expected = 10 + base;
+ ut_asserteq(expected, pingret);
+
+ /* Do another ping */
+ ut_assertok(testfdt_ping(dev, 20, &pingret));
+ expected = 20 + base;
+ ut_asserteq(expected, pingret);
+
+ /* Now check the ping_total */
+ priv = dev_get_priv(dev);
+ ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
+ priv->ping_total);
+
+ return 0;
+}
+
+/* Check that we can perform operations on devices */
+static int dm_test_operations(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+ int i;
+
+ /*
+ * Now check that the ping adds are what we expect. This is using the
+ * ping-add property in each node.
+ */
+ for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
+ uint32_t base;
+
+ ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
+
+ /*
+ * Get the 'reg' property, which tells us what the ping add
+ * should be. We don't use the plat because we want
+ * to test the code that sets that up (testfdt_drv_probe()).
+ */
+ base = test_pdata[i].ping_add;
+ debug("dev=%d, base=%d\n", i, base);
+
+ ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
+
+/* Remove all drivers and check that things work */
+static int dm_test_remove(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+ int i;
+
+ for (i = 0; i < 3; i++) {
+ ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
+ ut_assert(dev);
+ ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
+ "Driver %d/%s not activated", i, dev->name);
+ ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
+ ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
+ "Driver %d/%s should have deactivated", i,
+ dev->name);
+ ut_assert(!dev_get_priv(dev));
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
+
+/* Remove and recreate everything, check for memory leaks */
+static int dm_test_leak(struct unit_test_state *uts)
+{
+ int i;
+
+ for (i = 0; i < 2; i++) {
+ struct udevice *dev;
+ int ret;
+ int id;
+
+ dm_leak_check_start(uts);
+
+ ut_assertok(dm_scan_plat(false));
+ ut_assertok(dm_scan_fdt(false));
+
+ /* Scanning the uclass is enough to probe all the devices */
+ for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
+ for (ret = uclass_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_next_device(&dev))
+ ;
+ ut_assertok(ret);
+ }
+
+ ut_assertok(dm_leak_check_end(uts));
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_leak, 0);
+
+/* Test uclass init/destroy methods */
+static int dm_test_uclass(struct unit_test_state *uts)
+{
+ struct uclass *uc;
+
+ ut_assertok(uclass_get(UCLASS_TEST, &uc));
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
+ ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
+ ut_assert(uclass_get_priv(uc));
+
+ ut_assertok(uclass_destroy(uc));
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
+ ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
+
+ return 0;
+}
+DM_TEST(dm_test_uclass, 0);
+
+/**
+ * create_children() - Create children of a parent node
+ *
+ * @dms: Test system state
+ * @parent: Parent device
+ * @count: Number of children to create
+ * @key: Key value to put in first child. Subsequence children
+ * receive an incrementing value
+ * @child: If not NULL, then the child device pointers are written into
+ * this array.
+ * @return 0 if OK, -ve on error
+ */
+static int create_children(struct unit_test_state *uts, struct udevice *parent,
+ int count, int key, struct udevice *child[])
+{
+ struct udevice *dev;
+ int i;
+
+ for (i = 0; i < count; i++) {
+ struct dm_test_pdata *pdata;
+
+ ut_assertok(device_bind_by_name(parent, false,
+ &driver_info_manual, &dev));
+ pdata = calloc(1, sizeof(*pdata));
+ pdata->ping_add = key + i;
+ dev_set_plat(dev, pdata);
+ if (child)
+ child[i] = dev;
+ }
+
+ return 0;
+}
+
+#define NODE_COUNT 10
+
+static int dm_test_children(struct unit_test_state *uts)
+{
+ struct udevice *top[NODE_COUNT];
+ struct udevice *child[NODE_COUNT];
+ struct udevice *grandchild[NODE_COUNT];
+ struct udevice *dev;
+ int total;
+ int ret;
+ int i;
+
+ /* We don't care about the numbering for this test */
+ uts->skip_post_probe = 1;
+
+ ut_assert(NODE_COUNT > 5);
+
+ /* First create 10 top-level children */
+ ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
+
+ /* Now a few have their own children */
+ ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
+ ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
+
+ /* And grandchildren */
+ for (i = 0; i < NODE_COUNT; i++)
+ ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
+ i == 2 ? grandchild : NULL));
+
+ /* Check total number of devices */
+ total = NODE_COUNT * (3 + NODE_COUNT);
+ ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
+
+ /* Try probing one of the grandchildren */
+ ut_assertok(uclass_get_device(UCLASS_TEST,
+ NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
+ ut_asserteq_ptr(grandchild[0], dev);
+
+ /*
+ * This should have probed the child and top node also, for a total
+ * of 3 nodes.
+ */
+ ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
+
+ /* Probe the other grandchildren */
+ for (i = 1; i < NODE_COUNT; i++)
+ ut_assertok(device_probe(grandchild[i]));
+
+ ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
+
+ /* Probe everything */
+ for (ret = uclass_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_next_device(&dev))
+ ;
+ ut_assertok(ret);
+
+ ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
+
+ /* Remove a top-level child and check that the children are removed */
+ ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
+ ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
+ dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
+
+ /* Try one with grandchildren */
+ ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
+ ut_asserteq_ptr(dev, top[5]);
+ ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
+ ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
+ dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
+
+ /* Try the same with unbind */
+ ut_assertok(device_unbind(top[2]));
+ ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
+ dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
+
+ /* Try one with grandchildren */
+ ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
+ ut_asserteq_ptr(dev, top[6]);
+ ut_assertok(device_unbind(top[5]));
+ ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
+ dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
+
+ return 0;
+}
+DM_TEST(dm_test_children, 0);
+
+static int dm_test_device_reparent(struct unit_test_state *uts)
+{
+ struct udevice *top[NODE_COUNT];
+ struct udevice *child[NODE_COUNT];
+ struct udevice *grandchild[NODE_COUNT];
+ struct udevice *dev;
+ int total;
+ int ret;
+ int i;
+
+ /* We don't care about the numbering for this test */
+ uts->skip_post_probe = 1;
+
+ ut_assert(NODE_COUNT > 5);
+
+ /* First create 10 top-level children */
+ ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
+
+ /* Now a few have their own children */
+ ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
+ ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
+
+ /* And grandchildren */
+ for (i = 0; i < NODE_COUNT; i++)
+ ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
+ i == 2 ? grandchild : NULL));
+
+ /* Check total number of devices */
+ total = NODE_COUNT * (3 + NODE_COUNT);
+ ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
+
+ /* Probe everything */
+ for (i = 0; i < total; i++)
+ ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
+
+ /* Re-parent top-level children with no grandchildren. */
+ ut_assertok(device_reparent(top[3], top[0]));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_reparent(top[4], top[0]));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ /* Re-parent top-level children with grandchildren. */
+ ut_assertok(device_reparent(top[2], top[0]));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_reparent(top[5], top[2]));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ /* Re-parent grandchildren. */
+ ut_assertok(device_reparent(grandchild[0], top[1]));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_reparent(grandchild[1], top[1]));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ /* Remove re-pareneted devices. */
+ ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
+ /* try to get devices */
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ /* Try the same with unbind */
+ ut_assertok(device_unbind(top[3]));
+ ut_assertok(device_unbind(top[4]));
+ ut_assertok(device_unbind(top[5]));
+ ut_assertok(device_unbind(top[2]));
+
+ ut_assertok(device_unbind(grandchild[0]));
+ ut_assertok(device_unbind(grandchild[1]));
+
+ return 0;
+}
+DM_TEST(dm_test_device_reparent, 0);
+
+/* Test that pre-relocation devices work as expected */
+static int dm_test_pre_reloc(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+
+ /* The normal driver should refuse to bind before relocation */
+ ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
+ &driver_info_manual, &dev));
+
+ /* But this one is marked pre-reloc */
+ ut_assertok(device_bind_by_name(uts->root, true,
+ &driver_info_pre_reloc, &dev));
+
+ return 0;
+}
+DM_TEST(dm_test_pre_reloc, 0);
+
+/*
+ * Test that removal of devices, either via the "normal" device_remove()
+ * API or via the device driver selective flag works as expected
+ */
+static int dm_test_remove_active_dma(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
+ &dev));
+ ut_assert(dev);
+
+ /* Probe the device */
+ ut_assertok(device_probe(dev));
+
+ /* Test if device is active right now */
+ ut_asserteq(true, device_active(dev));
+
+ /* Remove the device via selective remove flag */
+ dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
+
+ /* Test if device is inactive right now */
+ ut_asserteq(false, device_active(dev));
+
+ /* Probe the device again */
+ ut_assertok(device_probe(dev));
+
+ /* Test if device is active right now */
+ ut_asserteq(true, device_active(dev));
+
+ /* Remove the device via "normal" remove API */
+ ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
+
+ /* Test if device is inactive right now */
+ ut_asserteq(false, device_active(dev));
+
+ /*
+ * Test if a device without the active DMA flags is not removed upon
+ * the active DMA remove call
+ */
+ ut_assertok(device_unbind(dev));
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &dev));
+ ut_assert(dev);
+
+ /* Probe the device */
+ ut_assertok(device_probe(dev));
+
+ /* Test if device is active right now */
+ ut_asserteq(true, device_active(dev));
+
+ /* Remove the device via selective remove flag */
+ dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
+
+ /* Test if device is still active right now */
+ ut_asserteq(true, device_active(dev));
+
+ return 0;
+}
+DM_TEST(dm_test_remove_active_dma, 0);
+
+/* Test removal of 'vital' devices */
+static int dm_test_remove_vital(struct unit_test_state *uts)
+{
+ struct udevice *normal, *dma, *vital, *dma_vital;
+
+ /* Skip the behaviour in test_post_probe() */
+ uts->skip_post_probe = 1;
+
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
+ &normal));
+ ut_assertnonnull(normal);
+
+ ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
+ &dma));
+ ut_assertnonnull(dma);
+
+ ut_assertok(device_bind_by_name(uts->root, false,
+ &driver_info_vital_clk, &vital));
+ ut_assertnonnull(vital);
+
+ ut_assertok(device_bind_by_name(uts->root, false,
+ &driver_info_act_dma_vital_clk,
+ &dma_vital));
+ ut_assertnonnull(dma_vital);
+
+ /* Probe the devices */
+ ut_assertok(device_probe(normal));
+ ut_assertok(device_probe(dma));
+ ut_assertok(device_probe(vital));
+ ut_assertok(device_probe(dma_vital));
+
+ /* Check that devices are active right now */
+ ut_asserteq(true, device_active(normal));
+ ut_asserteq(true, device_active(dma));
+ ut_asserteq(true, device_active(vital));
+ ut_asserteq(true, device_active(dma_vital));
+
+ /* Remove active devices via selective remove flag */
+ dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
+
+ /*
+ * Check that this only has an effect on the dma device, since two
+ * devices are vital and the third does not have active DMA
+ */
+ ut_asserteq(true, device_active(normal));
+ ut_asserteq(false, device_active(dma));
+ ut_asserteq(true, device_active(vital));
+ ut_asserteq(true, device_active(dma_vital));
+
+ /* Remove active devices via selective remove flag */
+ ut_assertok(device_probe(dma));
+ dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
+
+ /* This should have affected both active-dma devices */
+ ut_asserteq(true, device_active(normal));
+ ut_asserteq(false, device_active(dma));
+ ut_asserteq(true, device_active(vital));
+ ut_asserteq(false, device_active(dma_vital));
+
+ /* Remove non-vital devices */
+ ut_assertok(device_probe(dma));
+ ut_assertok(device_probe(dma_vital));
+ dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
+
+ /* This should have affected only non-vital devices */
+ ut_asserteq(false, device_active(normal));
+ ut_asserteq(false, device_active(dma));
+ ut_asserteq(true, device_active(vital));
+ ut_asserteq(true, device_active(dma_vital));
+
+ /* Remove vital devices via normal remove flag */
+ ut_assertok(device_probe(normal));
+ ut_assertok(device_probe(dma));
+ dm_remove_devices_flags(DM_REMOVE_NORMAL);
+
+ /* Check that all devices are inactive right now */
+ ut_asserteq(false, device_active(normal));
+ ut_asserteq(false, device_active(dma));
+ ut_asserteq(false, device_active(vital));
+ ut_asserteq(false, device_active(dma_vital));
+
+ return 0;
+}
+DM_TEST(dm_test_remove_vital, 0);
+
+static int dm_test_uclass_before_ready(struct unit_test_state *uts)
+{
+ struct uclass *uc;
+
+ ut_assertok(uclass_get(UCLASS_TEST, &uc));
+
+ gd->dm_root = NULL;
+ gd->dm_root_f = NULL;
+ memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
+
+ ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
+
+ return 0;
+}
+DM_TEST(dm_test_uclass_before_ready, 0);
+
+static int dm_test_uclass_devices_find(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+ int ret;
+
+ for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_find_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assertnonnull(dev);
+ }
+
+ ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
+ ut_assertnull(dev);
+
+ return 0;
+}
+DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
+
+static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
+{
+ struct udevice *finddev;
+ struct udevice *testdev;
+ int findret, ret;
+
+ /*
+ * For each test device found in fdt like: "a-test", "b-test", etc.,
+ * use its name and try to find it by uclass_find_device_by_name().
+ * Then, on success check if:
+ * - current 'testdev' name is equal to the returned 'finddev' name
+ * - current 'testdev' pointer is equal to the returned 'finddev'
+ *
+ * We assume that, each uclass's device name is unique, so if not, then
+ * this will fail on checking condition: testdev == finddev, since the
+ * uclass_find_device_by_name(), returns the first device by given name.
+ */
+ for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
+ testdev;
+ ret = uclass_find_next_device(&testdev)) {
+ ut_assertok(ret);
+ ut_assertnonnull(testdev);
+
+ findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
+ testdev->name,
+ &finddev);
+
+ ut_assertok(findret);
+ ut_assert(testdev);
+ ut_asserteq_str(testdev->name, finddev->name);
+ ut_asserteq_ptr(testdev, finddev);
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
+
+static int dm_test_uclass_devices_get(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+ int ret;
+
+ for (ret = uclass_first_device(UCLASS_TEST, &dev);
+ dev;
+ ret = uclass_next_device(&dev)) {
+ ut_assert(!ret);
+ ut_assert(dev);
+ ut_assert(device_active(dev));
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
+
+static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
+{
+ struct udevice *finddev;
+ struct udevice *testdev;
+ int ret, findret;
+
+ /*
+ * For each test device found in fdt like: "a-test", "b-test", etc.,
+ * use its name and try to get it by uclass_get_device_by_name().
+ * On success check if:
+ * - returned finddev' is active
+ * - current 'testdev' name is equal to the returned 'finddev' name
+ * - current 'testdev' pointer is equal to the returned 'finddev'
+ *
+ * We asserts that the 'testdev' is active on each loop entry, so we
+ * could be sure that the 'finddev' is activated too, but for sure
+ * we check it again.
+ *
+ * We assume that, each uclass's device name is unique, so if not, then
+ * this will fail on checking condition: testdev == finddev, since the
+ * uclass_get_device_by_name(), returns the first device by given name.
+ */
+ for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
+ testdev;
+ ret = uclass_next_device(&testdev)) {
+ ut_assertok(ret);
+ ut_assert(testdev);
+ ut_assert(device_active(testdev));
+
+ findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
+ testdev->name,
+ &finddev);
+
+ ut_assertok(findret);
+ ut_assert(finddev);
+ ut_assert(device_active(finddev));
+ ut_asserteq_str(testdev->name, finddev->name);
+ ut_asserteq_ptr(testdev, finddev);
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
+
+static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+
+ ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
+ ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
+
+ return 0;
+}
+DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
+
+static int dm_test_uclass_names(struct unit_test_state *uts)
+{
+ ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
+ ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
+
+ return 0;
+}
+DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
+
+static int dm_test_inactive_child(struct unit_test_state *uts)
+{
+ struct udevice *parent, *dev1, *dev2;
+
+ /* Skip the behaviour in test_post_probe() */
+ uts->skip_post_probe = 1;
+
+ ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
+
+ /*
+ * Create a child but do not activate it. Calling the function again
+ * should return the same child.
+ */
+ ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
+ UCLASS_TEST, &dev1));
+ ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
+ "test_child", 0, ofnode_null(), &dev1));
+
+ ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
+ &dev2));
+ ut_asserteq_ptr(dev1, dev2);
+
+ ut_assertok(device_probe(dev1));
+ ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
+ UCLASS_TEST, &dev2));
+
+ return 0;
+}
+DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
+
+/* Make sure all bound devices have a sequence number */
+static int dm_test_all_have_seq(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+ struct uclass *uc;
+
+ list_for_each_entry(uc, gd->uclass_root, sibling_node) {
+ list_for_each_entry(dev, &uc->dev_head, uclass_node) {
+ if (dev->seq_ == -1)
+ printf("Device '%s' has no seq (%d)\n",
+ dev->name, dev->seq_);
+ ut_assert(dev->seq_ != -1);
+ }
+ }
+
+ return 0;
+}
+DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
+
+static int dm_test_dma_offset(struct unit_test_state *uts)
+{
+ struct udevice *dev;
+ ofnode node;
+
+ /* Make sure the bus's dma-ranges aren't taken into account here */
+ node = ofnode_path("/mmio-bus@0");
+ ut_assert(ofnode_valid(node));
+ ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
+ ut_asserteq_64(0, dev->dma_offset);
+
+ /* Device behind a bus with dma-ranges */
+ node = ofnode_path("/mmio-bus@0/subnode@0");
+ ut_assert(ofnode_valid(node));
+ ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
+ ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
+
+ /* This one has no dma-ranges */
+ node = ofnode_path("/mmio-bus@1");
+ ut_assert(ofnode_valid(node));
+ ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
+ node = ofnode_path("/mmio-bus@1/subnode@0");
+ ut_assert(ofnode_valid(node));
+ ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
+ ut_asserteq_64(0, dev->dma_offset);
+
+ return 0;
+}
+DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);