diff options
Diffstat (limited to 'roms/u-boot/test/dm/core.c')
-rw-r--r-- | roms/u-boot/test/dm/core.c | 1202 |
1 files changed, 1202 insertions, 0 deletions
diff --git a/roms/u-boot/test/dm/core.c b/roms/u-boot/test/dm/core.c new file mode 100644 index 000000000..2210345dd --- /dev/null +++ b/roms/u-boot/test/dm/core.c @@ -0,0 +1,1202 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Tests for the core driver model code + * + * Copyright (c) 2013 Google, Inc + */ + +#include <common.h> +#include <errno.h> +#include <dm.h> +#include <fdtdec.h> +#include <log.h> +#include <malloc.h> +#include <asm/global_data.h> +#include <dm/device-internal.h> +#include <dm/root.h> +#include <dm/util.h> +#include <dm/test.h> +#include <dm/uclass-internal.h> +#include <test/test.h> +#include <test/ut.h> + +DECLARE_GLOBAL_DATA_PTR; + +enum { + TEST_INTVAL1 = 0, + TEST_INTVAL2 = 3, + TEST_INTVAL3 = 6, + TEST_INTVAL_MANUAL = 101112, + TEST_INTVAL_PRE_RELOC = 7, +}; + +static const struct dm_test_pdata test_pdata[] = { + { .ping_add = TEST_INTVAL1, }, + { .ping_add = TEST_INTVAL2, }, + { .ping_add = TEST_INTVAL3, }, +}; + +static const struct dm_test_pdata test_pdata_manual = { + .ping_add = TEST_INTVAL_MANUAL, +}; + +static const struct dm_test_pdata test_pdata_pre_reloc = { + .ping_add = TEST_INTVAL_PRE_RELOC, +}; + +U_BOOT_DRVINFO(dm_test_info1) = { + .name = "test_drv", + .plat = &test_pdata[0], +}; + +U_BOOT_DRVINFO(dm_test_info2) = { + .name = "test_drv", + .plat = &test_pdata[1], +}; + +U_BOOT_DRVINFO(dm_test_info3) = { + .name = "test_drv", + .plat = &test_pdata[2], +}; + +static struct driver_info driver_info_manual = { + .name = "test_manual_drv", + .plat = &test_pdata_manual, +}; + +static struct driver_info driver_info_pre_reloc = { + .name = "test_pre_reloc_drv", + .plat = &test_pdata_pre_reloc, +}; + +static struct driver_info driver_info_act_dma = { + .name = "test_act_dma_drv", +}; + +static struct driver_info driver_info_vital_clk = { + .name = "test_vital_clk_drv", +}; + +static struct driver_info driver_info_act_dma_vital_clk = { + .name = "test_act_dma_vital_clk_drv", +}; + +void dm_leak_check_start(struct unit_test_state *uts) +{ + uts->start = mallinfo(); + if (!uts->start.uordblks) + puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n"); +} + +int dm_leak_check_end(struct unit_test_state *uts) +{ + struct mallinfo end; + int id, diff; + + /* Don't delete the root class, since we started with that */ + for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) { + struct uclass *uc; + + uc = uclass_find(id); + if (!uc) + continue; + ut_assertok(uclass_destroy(uc)); + } + + end = mallinfo(); + diff = end.uordblks - uts->start.uordblks; + if (diff > 0) + printf("Leak: lost %#xd bytes\n", diff); + else if (diff < 0) + printf("Leak: gained %#xd bytes\n", -diff); + ut_asserteq(uts->start.uordblks, end.uordblks); + + return 0; +} + +/* Test that binding with plat occurs correctly */ +static int dm_test_autobind(struct unit_test_state *uts) +{ + struct udevice *dev; + + /* + * We should have a single class (UCLASS_ROOT) and a single root + * device with no children. + */ + ut_assert(uts->root); + ut_asserteq(1, list_count_items(gd->uclass_root)); + ut_asserteq(0, list_count_items(&gd->dm_root->child_head)); + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); + + ut_assertok(dm_scan_plat(false)); + + /* We should have our test class now at least, plus more children */ + ut_assert(1 < list_count_items(gd->uclass_root)); + ut_assert(0 < list_count_items(&gd->dm_root->child_head)); + + /* Our 3 dm_test_infox children should be bound to the test uclass */ + ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]); + + /* No devices should be probed */ + list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node) + ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED)); + + /* Our test driver should have been bound 3 times */ + ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3); + + return 0; +} +DM_TEST(dm_test_autobind, 0); + +/* Test that binding with uclass plat allocation occurs correctly */ +static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts) +{ + struct dm_test_perdev_uc_pdata *uc_pdata; + struct udevice *dev; + struct uclass *uc; + + ut_assertok(uclass_get(UCLASS_TEST, &uc)); + ut_assert(uc); + + /** + * Test if test uclass driver requires allocation for the uclass + * platform data and then check the dev->uclass_plat pointer. + */ + ut_assert(uc->uc_drv->per_device_plat_auto); + + for (uclass_find_first_device(UCLASS_TEST, &dev); + dev; + uclass_find_next_device(&dev)) { + ut_assertnonnull(dev); + + uc_pdata = dev_get_uclass_plat(dev); + ut_assert(uc_pdata); + } + + return 0; +} +DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA); + +/* Test that binding with uclass plat setting occurs correctly */ +static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts) +{ + struct dm_test_perdev_uc_pdata *uc_pdata; + struct udevice *dev; + + /** + * In the test_postbind() method of test uclass driver, the uclass + * platform data should be set to three test int values - test it. + */ + for (uclass_find_first_device(UCLASS_TEST, &dev); + dev; + uclass_find_next_device(&dev)) { + ut_assertnonnull(dev); + + uc_pdata = dev_get_uclass_plat(dev); + ut_assert(uc_pdata); + ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1); + ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2); + ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3); + } + + return 0; +} +DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA); + +/* Test that autoprobe finds all the expected devices */ +static int dm_test_autoprobe(struct unit_test_state *uts) +{ + int expected_base_add; + struct udevice *dev; + struct uclass *uc; + int i; + + ut_assertok(uclass_get(UCLASS_TEST, &uc)); + ut_assert(uc); + + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); + + /* The root device should not be activated until needed */ + ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED); + + /* + * We should be able to find the three test devices, and they should + * all be activated as they are used (lazy activation, required by + * U-Boot) + */ + for (i = 0; i < 3; i++) { + ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); + ut_assert(dev); + ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED), + "Driver %d/%s already activated", i, dev->name); + + /* This should activate it */ + ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); + ut_assert(dev); + ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED); + + /* Activating a device should activate the root device */ + if (!i) + ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED); + } + + /* + * Our 3 dm_test_info children should be passed to pre_probe and + * post_probe + */ + ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]); + ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]); + + /* Also we can check the per-device data */ + expected_base_add = 0; + for (i = 0; i < 3; i++) { + struct dm_test_uclass_perdev_priv *priv; + struct dm_test_pdata *pdata; + + ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); + ut_assert(dev); + + priv = dev_get_uclass_priv(dev); + ut_assert(priv); + ut_asserteq(expected_base_add, priv->base_add); + + pdata = dev_get_plat(dev); + expected_base_add += pdata->ping_add; + } + + return 0; +} +DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA); + +/* Check that we see the correct plat in each device */ +static int dm_test_plat(struct unit_test_state *uts) +{ + const struct dm_test_pdata *pdata; + struct udevice *dev; + int i; + + for (i = 0; i < 3; i++) { + ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); + ut_assert(dev); + pdata = dev_get_plat(dev); + ut_assert(pdata->ping_add == test_pdata[i].ping_add); + } + + return 0; +} +DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA); + +/* Test that we can bind, probe, remove, unbind a driver */ +static int dm_test_lifecycle(struct unit_test_state *uts) +{ + int op_count[DM_TEST_OP_COUNT]; + struct udevice *dev, *test_dev; + int pingret; + int ret; + + memcpy(op_count, dm_testdrv_op_count, sizeof(op_count)); + + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &dev)); + ut_assert(dev); + ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] + == op_count[DM_TEST_OP_BIND] + 1); + ut_assert(!dev_get_priv(dev)); + + /* Probe the device - it should fail allocating private data */ + uts->force_fail_alloc = 1; + ret = device_probe(dev); + ut_assert(ret == -ENOMEM); + ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] + == op_count[DM_TEST_OP_PROBE] + 1); + ut_assert(!dev_get_priv(dev)); + + /* Try again without the alloc failure */ + uts->force_fail_alloc = 0; + ut_assertok(device_probe(dev)); + ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE] + == op_count[DM_TEST_OP_PROBE] + 2); + ut_assert(dev_get_priv(dev)); + + /* This should be device 3 in the uclass */ + ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); + ut_assert(dev == test_dev); + + /* Try ping */ + ut_assertok(test_ping(dev, 100, &pingret)); + ut_assert(pingret == 102); + + /* Now remove device 3 */ + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); + ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]); + + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); + ut_assertok(device_unbind(dev)); + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]); + + return 0; +} +DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST); + +/* Test that we can bind/unbind and the lists update correctly */ +static int dm_test_ordering(struct unit_test_state *uts) +{ + struct udevice *dev, *dev_penultimate, *dev_last, *test_dev; + int pingret; + + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &dev)); + ut_assert(dev); + + /* Bind two new devices (numbers 4 and 5) */ + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &dev_penultimate)); + ut_assert(dev_penultimate); + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &dev_last)); + ut_assert(dev_last); + + /* Now remove device 3 */ + ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); + ut_assertok(device_unbind(dev)); + + /* The device numbering should have shifted down one */ + ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); + ut_assert(dev_penultimate == test_dev); + ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev)); + ut_assert(dev_last == test_dev); + + /* Add back the original device 3, now in position 5 */ + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &dev)); + ut_assert(dev); + + /* Try ping */ + ut_assertok(test_ping(dev, 100, &pingret)); + ut_assert(pingret == 102); + + /* Remove 3 and 4 */ + ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL)); + ut_assertok(device_unbind(dev_penultimate)); + ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL)); + ut_assertok(device_unbind(dev_last)); + + /* Our device should now be in position 3 */ + ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev)); + ut_assert(dev == test_dev); + + /* Now remove device 3 */ + ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); + ut_assertok(device_unbind(dev)); + + return 0; +} +DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA); + +/* Check that we can perform operations on a device (do a ping) */ +int dm_check_operations(struct unit_test_state *uts, struct udevice *dev, + uint32_t base, struct dm_test_priv *priv) +{ + int expected; + int pingret; + + /* Getting the child device should allocate plat / priv */ + ut_assertok(testfdt_ping(dev, 10, &pingret)); + ut_assert(dev_get_priv(dev)); + ut_assert(dev_get_plat(dev)); + + expected = 10 + base; + ut_asserteq(expected, pingret); + + /* Do another ping */ + ut_assertok(testfdt_ping(dev, 20, &pingret)); + expected = 20 + base; + ut_asserteq(expected, pingret); + + /* Now check the ping_total */ + priv = dev_get_priv(dev); + ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2, + priv->ping_total); + + return 0; +} + +/* Check that we can perform operations on devices */ +static int dm_test_operations(struct unit_test_state *uts) +{ + struct udevice *dev; + int i; + + /* + * Now check that the ping adds are what we expect. This is using the + * ping-add property in each node. + */ + for (i = 0; i < ARRAY_SIZE(test_pdata); i++) { + uint32_t base; + + ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); + + /* + * Get the 'reg' property, which tells us what the ping add + * should be. We don't use the plat because we want + * to test the code that sets that up (testfdt_drv_probe()). + */ + base = test_pdata[i].ping_add; + debug("dev=%d, base=%d\n", i, base); + + ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev))); + } + + return 0; +} +DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA); + +/* Remove all drivers and check that things work */ +static int dm_test_remove(struct unit_test_state *uts) +{ + struct udevice *dev; + int i; + + for (i = 0; i < 3; i++) { + ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev)); + ut_assert(dev); + ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED, + "Driver %d/%s not activated", i, dev->name); + ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); + ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED), + "Driver %d/%s should have deactivated", i, + dev->name); + ut_assert(!dev_get_priv(dev)); + } + + return 0; +} +DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST); + +/* Remove and recreate everything, check for memory leaks */ +static int dm_test_leak(struct unit_test_state *uts) +{ + int i; + + for (i = 0; i < 2; i++) { + struct udevice *dev; + int ret; + int id; + + dm_leak_check_start(uts); + + ut_assertok(dm_scan_plat(false)); + ut_assertok(dm_scan_fdt(false)); + + /* Scanning the uclass is enough to probe all the devices */ + for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) { + for (ret = uclass_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_next_device(&dev)) + ; + ut_assertok(ret); + } + + ut_assertok(dm_leak_check_end(uts)); + } + + return 0; +} +DM_TEST(dm_test_leak, 0); + +/* Test uclass init/destroy methods */ +static int dm_test_uclass(struct unit_test_state *uts) +{ + struct uclass *uc; + + ut_assertok(uclass_get(UCLASS_TEST, &uc)); + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); + ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); + ut_assert(uclass_get_priv(uc)); + + ut_assertok(uclass_destroy(uc)); + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]); + ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]); + + return 0; +} +DM_TEST(dm_test_uclass, 0); + +/** + * create_children() - Create children of a parent node + * + * @dms: Test system state + * @parent: Parent device + * @count: Number of children to create + * @key: Key value to put in first child. Subsequence children + * receive an incrementing value + * @child: If not NULL, then the child device pointers are written into + * this array. + * @return 0 if OK, -ve on error + */ +static int create_children(struct unit_test_state *uts, struct udevice *parent, + int count, int key, struct udevice *child[]) +{ + struct udevice *dev; + int i; + + for (i = 0; i < count; i++) { + struct dm_test_pdata *pdata; + + ut_assertok(device_bind_by_name(parent, false, + &driver_info_manual, &dev)); + pdata = calloc(1, sizeof(*pdata)); + pdata->ping_add = key + i; + dev_set_plat(dev, pdata); + if (child) + child[i] = dev; + } + + return 0; +} + +#define NODE_COUNT 10 + +static int dm_test_children(struct unit_test_state *uts) +{ + struct udevice *top[NODE_COUNT]; + struct udevice *child[NODE_COUNT]; + struct udevice *grandchild[NODE_COUNT]; + struct udevice *dev; + int total; + int ret; + int i; + + /* We don't care about the numbering for this test */ + uts->skip_post_probe = 1; + + ut_assert(NODE_COUNT > 5); + + /* First create 10 top-level children */ + ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top)); + + /* Now a few have their own children */ + ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL)); + ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child)); + + /* And grandchildren */ + for (i = 0; i < NODE_COUNT; i++) + ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i, + i == 2 ? grandchild : NULL)); + + /* Check total number of devices */ + total = NODE_COUNT * (3 + NODE_COUNT); + ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); + + /* Try probing one of the grandchildren */ + ut_assertok(uclass_get_device(UCLASS_TEST, + NODE_COUNT * 3 + 2 * NODE_COUNT, &dev)); + ut_asserteq_ptr(grandchild[0], dev); + + /* + * This should have probed the child and top node also, for a total + * of 3 nodes. + */ + ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]); + + /* Probe the other grandchildren */ + for (i = 1; i < NODE_COUNT; i++) + ut_assertok(device_probe(grandchild[i])); + + ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]); + + /* Probe everything */ + for (ret = uclass_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_next_device(&dev)) + ; + ut_assertok(ret); + + ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]); + + /* Remove a top-level child and check that the children are removed */ + ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL)); + ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]); + dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0; + + /* Try one with grandchildren */ + ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); + ut_asserteq_ptr(dev, top[5]); + ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); + ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), + dm_testdrv_op_count[DM_TEST_OP_REMOVE]); + + /* Try the same with unbind */ + ut_assertok(device_unbind(top[2])); + ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]); + dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0; + + /* Try one with grandchildren */ + ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev)); + ut_asserteq_ptr(dev, top[6]); + ut_assertok(device_unbind(top[5])); + ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT), + dm_testdrv_op_count[DM_TEST_OP_UNBIND]); + + return 0; +} +DM_TEST(dm_test_children, 0); + +static int dm_test_device_reparent(struct unit_test_state *uts) +{ + struct udevice *top[NODE_COUNT]; + struct udevice *child[NODE_COUNT]; + struct udevice *grandchild[NODE_COUNT]; + struct udevice *dev; + int total; + int ret; + int i; + + /* We don't care about the numbering for this test */ + uts->skip_post_probe = 1; + + ut_assert(NODE_COUNT > 5); + + /* First create 10 top-level children */ + ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top)); + + /* Now a few have their own children */ + ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL)); + ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child)); + + /* And grandchildren */ + for (i = 0; i < NODE_COUNT; i++) + ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i, + i == 2 ? grandchild : NULL)); + + /* Check total number of devices */ + total = NODE_COUNT * (3 + NODE_COUNT); + ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]); + + /* Probe everything */ + for (i = 0; i < total; i++) + ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev)); + + /* Re-parent top-level children with no grandchildren. */ + ut_assertok(device_reparent(top[3], top[0])); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_reparent(top[4], top[0])); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + /* Re-parent top-level children with grandchildren. */ + ut_assertok(device_reparent(top[2], top[0])); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_reparent(top[5], top[2])); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + /* Re-parent grandchildren. */ + ut_assertok(device_reparent(grandchild[0], top[1])); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_reparent(grandchild[1], top[1])); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + /* Remove re-pareneted devices. */ + ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL)); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL)); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL)); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL)); + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL)); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL)); + /* try to get devices */ + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + /* Try the same with unbind */ + ut_assertok(device_unbind(top[3])); + ut_assertok(device_unbind(top[4])); + ut_assertok(device_unbind(top[5])); + ut_assertok(device_unbind(top[2])); + + ut_assertok(device_unbind(grandchild[0])); + ut_assertok(device_unbind(grandchild[1])); + + return 0; +} +DM_TEST(dm_test_device_reparent, 0); + +/* Test that pre-relocation devices work as expected */ +static int dm_test_pre_reloc(struct unit_test_state *uts) +{ + struct udevice *dev; + + /* The normal driver should refuse to bind before relocation */ + ut_asserteq(-EPERM, device_bind_by_name(uts->root, true, + &driver_info_manual, &dev)); + + /* But this one is marked pre-reloc */ + ut_assertok(device_bind_by_name(uts->root, true, + &driver_info_pre_reloc, &dev)); + + return 0; +} +DM_TEST(dm_test_pre_reloc, 0); + +/* + * Test that removal of devices, either via the "normal" device_remove() + * API or via the device driver selective flag works as expected + */ +static int dm_test_remove_active_dma(struct unit_test_state *uts) +{ + struct udevice *dev; + + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma, + &dev)); + ut_assert(dev); + + /* Probe the device */ + ut_assertok(device_probe(dev)); + + /* Test if device is active right now */ + ut_asserteq(true, device_active(dev)); + + /* Remove the device via selective remove flag */ + dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL); + + /* Test if device is inactive right now */ + ut_asserteq(false, device_active(dev)); + + /* Probe the device again */ + ut_assertok(device_probe(dev)); + + /* Test if device is active right now */ + ut_asserteq(true, device_active(dev)); + + /* Remove the device via "normal" remove API */ + ut_assertok(device_remove(dev, DM_REMOVE_NORMAL)); + + /* Test if device is inactive right now */ + ut_asserteq(false, device_active(dev)); + + /* + * Test if a device without the active DMA flags is not removed upon + * the active DMA remove call + */ + ut_assertok(device_unbind(dev)); + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &dev)); + ut_assert(dev); + + /* Probe the device */ + ut_assertok(device_probe(dev)); + + /* Test if device is active right now */ + ut_asserteq(true, device_active(dev)); + + /* Remove the device via selective remove flag */ + dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL); + + /* Test if device is still active right now */ + ut_asserteq(true, device_active(dev)); + + return 0; +} +DM_TEST(dm_test_remove_active_dma, 0); + +/* Test removal of 'vital' devices */ +static int dm_test_remove_vital(struct unit_test_state *uts) +{ + struct udevice *normal, *dma, *vital, *dma_vital; + + /* Skip the behaviour in test_post_probe() */ + uts->skip_post_probe = 1; + + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual, + &normal)); + ut_assertnonnull(normal); + + ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma, + &dma)); + ut_assertnonnull(dma); + + ut_assertok(device_bind_by_name(uts->root, false, + &driver_info_vital_clk, &vital)); + ut_assertnonnull(vital); + + ut_assertok(device_bind_by_name(uts->root, false, + &driver_info_act_dma_vital_clk, + &dma_vital)); + ut_assertnonnull(dma_vital); + + /* Probe the devices */ + ut_assertok(device_probe(normal)); + ut_assertok(device_probe(dma)); + ut_assertok(device_probe(vital)); + ut_assertok(device_probe(dma_vital)); + + /* Check that devices are active right now */ + ut_asserteq(true, device_active(normal)); + ut_asserteq(true, device_active(dma)); + ut_asserteq(true, device_active(vital)); + ut_asserteq(true, device_active(dma_vital)); + + /* Remove active devices via selective remove flag */ + dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL); + + /* + * Check that this only has an effect on the dma device, since two + * devices are vital and the third does not have active DMA + */ + ut_asserteq(true, device_active(normal)); + ut_asserteq(false, device_active(dma)); + ut_asserteq(true, device_active(vital)); + ut_asserteq(true, device_active(dma_vital)); + + /* Remove active devices via selective remove flag */ + ut_assertok(device_probe(dma)); + dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL); + + /* This should have affected both active-dma devices */ + ut_asserteq(true, device_active(normal)); + ut_asserteq(false, device_active(dma)); + ut_asserteq(true, device_active(vital)); + ut_asserteq(false, device_active(dma_vital)); + + /* Remove non-vital devices */ + ut_assertok(device_probe(dma)); + ut_assertok(device_probe(dma_vital)); + dm_remove_devices_flags(DM_REMOVE_NON_VITAL); + + /* This should have affected only non-vital devices */ + ut_asserteq(false, device_active(normal)); + ut_asserteq(false, device_active(dma)); + ut_asserteq(true, device_active(vital)); + ut_asserteq(true, device_active(dma_vital)); + + /* Remove vital devices via normal remove flag */ + ut_assertok(device_probe(normal)); + ut_assertok(device_probe(dma)); + dm_remove_devices_flags(DM_REMOVE_NORMAL); + + /* Check that all devices are inactive right now */ + ut_asserteq(false, device_active(normal)); + ut_asserteq(false, device_active(dma)); + ut_asserteq(false, device_active(vital)); + ut_asserteq(false, device_active(dma_vital)); + + return 0; +} +DM_TEST(dm_test_remove_vital, 0); + +static int dm_test_uclass_before_ready(struct unit_test_state *uts) +{ + struct uclass *uc; + + ut_assertok(uclass_get(UCLASS_TEST, &uc)); + + gd->dm_root = NULL; + gd->dm_root_f = NULL; + memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root)); + + ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST)); + + return 0; +} +DM_TEST(dm_test_uclass_before_ready, 0); + +static int dm_test_uclass_devices_find(struct unit_test_state *uts) +{ + struct udevice *dev; + int ret; + + for (ret = uclass_find_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_find_next_device(&dev)) { + ut_assert(!ret); + ut_assertnonnull(dev); + } + + ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev)); + ut_assertnull(dev); + + return 0; +} +DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA); + +static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts) +{ + struct udevice *finddev; + struct udevice *testdev; + int findret, ret; + + /* + * For each test device found in fdt like: "a-test", "b-test", etc., + * use its name and try to find it by uclass_find_device_by_name(). + * Then, on success check if: + * - current 'testdev' name is equal to the returned 'finddev' name + * - current 'testdev' pointer is equal to the returned 'finddev' + * + * We assume that, each uclass's device name is unique, so if not, then + * this will fail on checking condition: testdev == finddev, since the + * uclass_find_device_by_name(), returns the first device by given name. + */ + for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev); + testdev; + ret = uclass_find_next_device(&testdev)) { + ut_assertok(ret); + ut_assertnonnull(testdev); + + findret = uclass_find_device_by_name(UCLASS_TEST_FDT, + testdev->name, + &finddev); + + ut_assertok(findret); + ut_assert(testdev); + ut_asserteq_str(testdev->name, finddev->name); + ut_asserteq_ptr(testdev, finddev); + } + + return 0; +} +DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT); + +static int dm_test_uclass_devices_get(struct unit_test_state *uts) +{ + struct udevice *dev; + int ret; + + for (ret = uclass_first_device(UCLASS_TEST, &dev); + dev; + ret = uclass_next_device(&dev)) { + ut_assert(!ret); + ut_assert(dev); + ut_assert(device_active(dev)); + } + + return 0; +} +DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA); + +static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts) +{ + struct udevice *finddev; + struct udevice *testdev; + int ret, findret; + + /* + * For each test device found in fdt like: "a-test", "b-test", etc., + * use its name and try to get it by uclass_get_device_by_name(). + * On success check if: + * - returned finddev' is active + * - current 'testdev' name is equal to the returned 'finddev' name + * - current 'testdev' pointer is equal to the returned 'finddev' + * + * We asserts that the 'testdev' is active on each loop entry, so we + * could be sure that the 'finddev' is activated too, but for sure + * we check it again. + * + * We assume that, each uclass's device name is unique, so if not, then + * this will fail on checking condition: testdev == finddev, since the + * uclass_get_device_by_name(), returns the first device by given name. + */ + for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev); + testdev; + ret = uclass_next_device(&testdev)) { + ut_assertok(ret); + ut_assert(testdev); + ut_assert(device_active(testdev)); + + findret = uclass_get_device_by_name(UCLASS_TEST_FDT, + testdev->name, + &finddev); + + ut_assertok(findret); + ut_assert(finddev); + ut_assert(device_active(finddev)); + ut_asserteq_str(testdev->name, finddev->name); + ut_asserteq_ptr(testdev, finddev); + } + + return 0; +} +DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT); + +static int dm_test_device_get_uclass_id(struct unit_test_state *uts) +{ + struct udevice *dev; + + ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev)); + ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev)); + + return 0; +} +DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA); + +static int dm_test_uclass_names(struct unit_test_state *uts) +{ + ut_asserteq_str("test", uclass_get_name(UCLASS_TEST)); + ut_asserteq(UCLASS_TEST, uclass_get_by_name("test")); + + return 0; +} +DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA); + +static int dm_test_inactive_child(struct unit_test_state *uts) +{ + struct udevice *parent, *dev1, *dev2; + + /* Skip the behaviour in test_post_probe() */ + uts->skip_post_probe = 1; + + ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent)); + + /* + * Create a child but do not activate it. Calling the function again + * should return the same child. + */ + ut_asserteq(-ENODEV, device_find_first_inactive_child(parent, + UCLASS_TEST, &dev1)); + ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv), + "test_child", 0, ofnode_null(), &dev1)); + + ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST, + &dev2)); + ut_asserteq_ptr(dev1, dev2); + + ut_assertok(device_probe(dev1)); + ut_asserteq(-ENODEV, device_find_first_inactive_child(parent, + UCLASS_TEST, &dev2)); + + return 0; +} +DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA); + +/* Make sure all bound devices have a sequence number */ +static int dm_test_all_have_seq(struct unit_test_state *uts) +{ + struct udevice *dev; + struct uclass *uc; + + list_for_each_entry(uc, gd->uclass_root, sibling_node) { + list_for_each_entry(dev, &uc->dev_head, uclass_node) { + if (dev->seq_ == -1) + printf("Device '%s' has no seq (%d)\n", + dev->name, dev->seq_); + ut_assert(dev->seq_ != -1); + } + } + + return 0; +} +DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA); + +static int dm_test_dma_offset(struct unit_test_state *uts) +{ + struct udevice *dev; + ofnode node; + + /* Make sure the bus's dma-ranges aren't taken into account here */ + node = ofnode_path("/mmio-bus@0"); + ut_assert(ofnode_valid(node)); + ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev)); + ut_asserteq_64(0, dev->dma_offset); + + /* Device behind a bus with dma-ranges */ + node = ofnode_path("/mmio-bus@0/subnode@0"); + ut_assert(ofnode_valid(node)); + ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev)); + ut_asserteq_64(-0x10000000ULL, dev->dma_offset); + + /* This one has no dma-ranges */ + node = ofnode_path("/mmio-bus@1"); + ut_assert(ofnode_valid(node)); + ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev)); + node = ofnode_path("/mmio-bus@1/subnode@0"); + ut_assert(ofnode_valid(node)); + ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev)); + ut_asserteq_64(0, dev->dma_offset); + + return 0; +} +DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); |