diff options
Diffstat (limited to 'target/arm/cpu.c')
-rw-r--r-- | target/arm/cpu.c | 2162 |
1 files changed, 2162 insertions, 0 deletions
diff --git a/target/arm/cpu.c b/target/arm/cpu.c new file mode 100644 index 000000000..a211804fd --- /dev/null +++ b/target/arm/cpu.c @@ -0,0 +1,2162 @@ +/* + * QEMU ARM CPU + * + * Copyright (c) 2012 SUSE LINUX Products GmbH + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, see + * <http://www.gnu.org/licenses/gpl-2.0.html> + */ + +#include "qemu/osdep.h" +#include "qemu/qemu-print.h" +#include "qemu-common.h" +#include "target/arm/idau.h" +#include "qemu/module.h" +#include "qapi/error.h" +#include "qapi/visitor.h" +#include "cpu.h" +#ifdef CONFIG_TCG +#include "hw/core/tcg-cpu-ops.h" +#endif /* CONFIG_TCG */ +#include "internals.h" +#include "exec/exec-all.h" +#include "hw/qdev-properties.h" +#if !defined(CONFIG_USER_ONLY) +#include "hw/loader.h" +#include "hw/boards.h" +#endif +#include "sysemu/tcg.h" +#include "sysemu/hw_accel.h" +#include "kvm_arm.h" +#include "hvf_arm.h" +#include "disas/capstone.h" +#include "fpu/softfloat.h" + +static void arm_cpu_set_pc(CPUState *cs, vaddr value) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + if (is_a64(env)) { + env->pc = value; + env->thumb = 0; + } else { + env->regs[15] = value & ~1; + env->thumb = value & 1; + } +} + +#ifdef CONFIG_TCG +void arm_cpu_synchronize_from_tb(CPUState *cs, + const TranslationBlock *tb) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + /* + * It's OK to look at env for the current mode here, because it's + * never possible for an AArch64 TB to chain to an AArch32 TB. + */ + if (is_a64(env)) { + env->pc = tb->pc; + } else { + env->regs[15] = tb->pc; + } +} +#endif /* CONFIG_TCG */ + +static bool arm_cpu_has_work(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + + return (cpu->power_state != PSCI_OFF) + && cs->interrupt_request & + (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD + | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ + | CPU_INTERRUPT_EXITTB); +} + +void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, + void *opaque) +{ + ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); + + entry->hook = hook; + entry->opaque = opaque; + + QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); +} + +void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, + void *opaque) +{ + ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); + + entry->hook = hook; + entry->opaque = opaque; + + QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); +} + +static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) +{ + /* Reset a single ARMCPRegInfo register */ + ARMCPRegInfo *ri = value; + ARMCPU *cpu = opaque; + + if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) { + return; + } + + if (ri->resetfn) { + ri->resetfn(&cpu->env, ri); + return; + } + + /* A zero offset is never possible as it would be regs[0] + * so we use it to indicate that reset is being handled elsewhere. + * This is basically only used for fields in non-core coprocessors + * (like the pxa2xx ones). + */ + if (!ri->fieldoffset) { + return; + } + + if (cpreg_field_is_64bit(ri)) { + CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; + } else { + CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; + } +} + +static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) +{ + /* Purely an assertion check: we've already done reset once, + * so now check that running the reset for the cpreg doesn't + * change its value. This traps bugs where two different cpregs + * both try to reset the same state field but to different values. + */ + ARMCPRegInfo *ri = value; + ARMCPU *cpu = opaque; + uint64_t oldvalue, newvalue; + + if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { + return; + } + + oldvalue = read_raw_cp_reg(&cpu->env, ri); + cp_reg_reset(key, value, opaque); + newvalue = read_raw_cp_reg(&cpu->env, ri); + assert(oldvalue == newvalue); +} + +static void arm_cpu_reset(DeviceState *dev) +{ + CPUState *s = CPU(dev); + ARMCPU *cpu = ARM_CPU(s); + ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu); + CPUARMState *env = &cpu->env; + + acc->parent_reset(dev); + + memset(env, 0, offsetof(CPUARMState, end_reset_fields)); + + g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); + g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); + + env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; + env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; + env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; + env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; + + cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON; + + if (arm_feature(env, ARM_FEATURE_IWMMXT)) { + env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; + } + + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + /* 64 bit CPUs always start in 64 bit mode */ + env->aarch64 = 1; +#if defined(CONFIG_USER_ONLY) + env->pstate = PSTATE_MODE_EL0t; + /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ + env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; + /* Enable all PAC keys. */ + env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | + SCTLR_EnDA | SCTLR_EnDB); + /* and to the FP/Neon instructions */ + env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3); + /* and to the SVE instructions */ + env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3); + /* with reasonable vector length */ + if (cpu_isar_feature(aa64_sve, cpu)) { + env->vfp.zcr_el[1] = + aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1); + } + /* + * Enable TBI0 but not TBI1. + * Note that this must match useronly_clean_ptr. + */ + env->cp15.tcr_el[1].raw_tcr = (1ULL << 37); + + /* Enable MTE */ + if (cpu_isar_feature(aa64_mte, cpu)) { + /* Enable tag access, but leave TCF0 as No Effect (0). */ + env->cp15.sctlr_el[1] |= SCTLR_ATA0; + /* + * Exclude all tags, so that tag 0 is always used. + * This corresponds to Linux current->thread.gcr_incl = 0. + * + * Set RRND, so that helper_irg() will generate a seed later. + * Here in cpu_reset(), the crypto subsystem has not yet been + * initialized. + */ + env->cp15.gcr_el1 = 0x1ffff; + } +#else + /* Reset into the highest available EL */ + if (arm_feature(env, ARM_FEATURE_EL3)) { + env->pstate = PSTATE_MODE_EL3h; + } else if (arm_feature(env, ARM_FEATURE_EL2)) { + env->pstate = PSTATE_MODE_EL2h; + } else { + env->pstate = PSTATE_MODE_EL1h; + } + env->pc = cpu->rvbar; +#endif + } else { +#if defined(CONFIG_USER_ONLY) + /* Userspace expects access to cp10 and cp11 for FP/Neon */ + env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf); +#endif + } + +#if defined(CONFIG_USER_ONLY) + env->uncached_cpsr = ARM_CPU_MODE_USR; + /* For user mode we must enable access to coprocessors */ + env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; + if (arm_feature(env, ARM_FEATURE_IWMMXT)) { + env->cp15.c15_cpar = 3; + } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { + env->cp15.c15_cpar = 1; + } +#else + + /* + * If the highest available EL is EL2, AArch32 will start in Hyp + * mode; otherwise it starts in SVC. Note that if we start in + * AArch64 then these values in the uncached_cpsr will be ignored. + */ + if (arm_feature(env, ARM_FEATURE_EL2) && + !arm_feature(env, ARM_FEATURE_EL3)) { + env->uncached_cpsr = ARM_CPU_MODE_HYP; + } else { + env->uncached_cpsr = ARM_CPU_MODE_SVC; + } + env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; + + /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently + * executing as AArch32 then check if highvecs are enabled and + * adjust the PC accordingly. + */ + if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { + env->regs[15] = 0xFFFF0000; + } + + env->vfp.xregs[ARM_VFP_FPEXC] = 0; +#endif + + if (arm_feature(env, ARM_FEATURE_M)) { +#ifndef CONFIG_USER_ONLY + uint32_t initial_msp; /* Loaded from 0x0 */ + uint32_t initial_pc; /* Loaded from 0x4 */ + uint8_t *rom; + uint32_t vecbase; +#endif + + if (cpu_isar_feature(aa32_lob, cpu)) { + /* + * LTPSIZE is constant 4 if MVE not implemented, and resets + * to an UNKNOWN value if MVE is implemented. We choose to + * always reset to 4. + */ + env->v7m.ltpsize = 4; + /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ + env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; + env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; + } + + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + env->v7m.secure = true; + } else { + /* This bit resets to 0 if security is supported, but 1 if + * it is not. The bit is not present in v7M, but we set it + * here so we can avoid having to make checks on it conditional + * on ARM_FEATURE_V8 (we don't let the guest see the bit). + */ + env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; + /* + * Set NSACR to indicate "NS access permitted to everything"; + * this avoids having to have all the tests of it being + * conditional on ARM_FEATURE_M_SECURITY. Note also that from + * v8.1M the guest-visible value of NSACR in a CPU without the + * Security Extension is 0xcff. + */ + env->v7m.nsacr = 0xcff; + } + + /* In v7M the reset value of this bit is IMPDEF, but ARM recommends + * that it resets to 1, so QEMU always does that rather than making + * it dependent on CPU model. In v8M it is RES1. + */ + env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; + env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; + if (arm_feature(env, ARM_FEATURE_V8)) { + /* in v8M the NONBASETHRDENA bit [0] is RES1 */ + env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; + env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; + } + if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { + env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; + env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; + } + + if (cpu_isar_feature(aa32_vfp_simd, cpu)) { + env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; + env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | + R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; + } + +#ifndef CONFIG_USER_ONLY + /* Unlike A/R profile, M profile defines the reset LR value */ + env->regs[14] = 0xffffffff; + + env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; + env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; + + /* Load the initial SP and PC from offset 0 and 4 in the vector table */ + vecbase = env->v7m.vecbase[env->v7m.secure]; + rom = rom_ptr_for_as(s->as, vecbase, 8); + if (rom) { + /* Address zero is covered by ROM which hasn't yet been + * copied into physical memory. + */ + initial_msp = ldl_p(rom); + initial_pc = ldl_p(rom + 4); + } else { + /* Address zero not covered by a ROM blob, or the ROM blob + * is in non-modifiable memory and this is a second reset after + * it got copied into memory. In the latter case, rom_ptr + * will return a NULL pointer and we should use ldl_phys instead. + */ + initial_msp = ldl_phys(s->as, vecbase); + initial_pc = ldl_phys(s->as, vecbase + 4); + } + + env->regs[13] = initial_msp & 0xFFFFFFFC; + env->regs[15] = initial_pc & ~1; + env->thumb = initial_pc & 1; +#else + /* + * For user mode we run non-secure and with access to the FPU. + * The FPU context is active (ie does not need further setup) + * and is owned by non-secure. + */ + env->v7m.secure = false; + env->v7m.nsacr = 0xcff; + env->v7m.cpacr[M_REG_NS] = 0xf0ffff; + env->v7m.fpccr[M_REG_S] &= + ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); + env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; +#endif + } + + /* M profile requires that reset clears the exclusive monitor; + * A profile does not, but clearing it makes more sense than having it + * set with an exclusive access on address zero. + */ + arm_clear_exclusive(env); + + if (arm_feature(env, ARM_FEATURE_PMSA)) { + if (cpu->pmsav7_dregion > 0) { + if (arm_feature(env, ARM_FEATURE_V8)) { + memset(env->pmsav8.rbar[M_REG_NS], 0, + sizeof(*env->pmsav8.rbar[M_REG_NS]) + * cpu->pmsav7_dregion); + memset(env->pmsav8.rlar[M_REG_NS], 0, + sizeof(*env->pmsav8.rlar[M_REG_NS]) + * cpu->pmsav7_dregion); + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + memset(env->pmsav8.rbar[M_REG_S], 0, + sizeof(*env->pmsav8.rbar[M_REG_S]) + * cpu->pmsav7_dregion); + memset(env->pmsav8.rlar[M_REG_S], 0, + sizeof(*env->pmsav8.rlar[M_REG_S]) + * cpu->pmsav7_dregion); + } + } else if (arm_feature(env, ARM_FEATURE_V7)) { + memset(env->pmsav7.drbar, 0, + sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); + memset(env->pmsav7.drsr, 0, + sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); + memset(env->pmsav7.dracr, 0, + sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); + } + } + env->pmsav7.rnr[M_REG_NS] = 0; + env->pmsav7.rnr[M_REG_S] = 0; + env->pmsav8.mair0[M_REG_NS] = 0; + env->pmsav8.mair0[M_REG_S] = 0; + env->pmsav8.mair1[M_REG_NS] = 0; + env->pmsav8.mair1[M_REG_S] = 0; + } + + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + if (cpu->sau_sregion > 0) { + memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); + memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); + } + env->sau.rnr = 0; + /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what + * the Cortex-M33 does. + */ + env->sau.ctrl = 0; + } + + set_flush_to_zero(1, &env->vfp.standard_fp_status); + set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); + set_default_nan_mode(1, &env->vfp.standard_fp_status); + set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); + set_float_detect_tininess(float_tininess_before_rounding, + &env->vfp.fp_status); + set_float_detect_tininess(float_tininess_before_rounding, + &env->vfp.standard_fp_status); + set_float_detect_tininess(float_tininess_before_rounding, + &env->vfp.fp_status_f16); + set_float_detect_tininess(float_tininess_before_rounding, + &env->vfp.standard_fp_status_f16); +#ifndef CONFIG_USER_ONLY + if (kvm_enabled()) { + kvm_arm_reset_vcpu(cpu); + } +#endif + + hw_breakpoint_update_all(cpu); + hw_watchpoint_update_all(cpu); + arm_rebuild_hflags(env); +} + +#ifndef CONFIG_USER_ONLY + +static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, + unsigned int target_el, + unsigned int cur_el, bool secure, + uint64_t hcr_el2) +{ + CPUARMState *env = cs->env_ptr; + bool pstate_unmasked; + bool unmasked = false; + + /* + * Don't take exceptions if they target a lower EL. + * This check should catch any exceptions that would not be taken + * but left pending. + */ + if (cur_el > target_el) { + return false; + } + + switch (excp_idx) { + case EXCP_FIQ: + pstate_unmasked = !(env->daif & PSTATE_F); + break; + + case EXCP_IRQ: + pstate_unmasked = !(env->daif & PSTATE_I); + break; + + case EXCP_VFIQ: + if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { + /* VFIQs are only taken when hypervized. */ + return false; + } + return !(env->daif & PSTATE_F); + case EXCP_VIRQ: + if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { + /* VIRQs are only taken when hypervized. */ + return false; + } + return !(env->daif & PSTATE_I); + default: + g_assert_not_reached(); + } + + /* + * Use the target EL, current execution state and SCR/HCR settings to + * determine whether the corresponding CPSR bit is used to mask the + * interrupt. + */ + if ((target_el > cur_el) && (target_el != 1)) { + /* Exceptions targeting a higher EL may not be maskable */ + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + /* + * 64-bit masking rules are simple: exceptions to EL3 + * can't be masked, and exceptions to EL2 can only be + * masked from Secure state. The HCR and SCR settings + * don't affect the masking logic, only the interrupt routing. + */ + if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) { + unmasked = true; + } + } else { + /* + * The old 32-bit-only environment has a more complicated + * masking setup. HCR and SCR bits not only affect interrupt + * routing but also change the behaviour of masking. + */ + bool hcr, scr; + + switch (excp_idx) { + case EXCP_FIQ: + /* + * If FIQs are routed to EL3 or EL2 then there are cases where + * we override the CPSR.F in determining if the exception is + * masked or not. If neither of these are set then we fall back + * to the CPSR.F setting otherwise we further assess the state + * below. + */ + hcr = hcr_el2 & HCR_FMO; + scr = (env->cp15.scr_el3 & SCR_FIQ); + + /* + * When EL3 is 32-bit, the SCR.FW bit controls whether the + * CPSR.F bit masks FIQ interrupts when taken in non-secure + * state. If SCR.FW is set then FIQs can be masked by CPSR.F + * when non-secure but only when FIQs are only routed to EL3. + */ + scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); + break; + case EXCP_IRQ: + /* + * When EL3 execution state is 32-bit, if HCR.IMO is set then + * we may override the CPSR.I masking when in non-secure state. + * The SCR.IRQ setting has already been taken into consideration + * when setting the target EL, so it does not have a further + * affect here. + */ + hcr = hcr_el2 & HCR_IMO; + scr = false; + break; + default: + g_assert_not_reached(); + } + + if ((scr || hcr) && !secure) { + unmasked = true; + } + } + } + + /* + * The PSTATE bits only mask the interrupt if we have not overriden the + * ability above. + */ + return unmasked || pstate_unmasked; +} + +static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) +{ + CPUClass *cc = CPU_GET_CLASS(cs); + CPUARMState *env = cs->env_ptr; + uint32_t cur_el = arm_current_el(env); + bool secure = arm_is_secure(env); + uint64_t hcr_el2 = arm_hcr_el2_eff(env); + uint32_t target_el; + uint32_t excp_idx; + + /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ + + if (interrupt_request & CPU_INTERRUPT_FIQ) { + excp_idx = EXCP_FIQ; + target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); + if (arm_excp_unmasked(cs, excp_idx, target_el, + cur_el, secure, hcr_el2)) { + goto found; + } + } + if (interrupt_request & CPU_INTERRUPT_HARD) { + excp_idx = EXCP_IRQ; + target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); + if (arm_excp_unmasked(cs, excp_idx, target_el, + cur_el, secure, hcr_el2)) { + goto found; + } + } + if (interrupt_request & CPU_INTERRUPT_VIRQ) { + excp_idx = EXCP_VIRQ; + target_el = 1; + if (arm_excp_unmasked(cs, excp_idx, target_el, + cur_el, secure, hcr_el2)) { + goto found; + } + } + if (interrupt_request & CPU_INTERRUPT_VFIQ) { + excp_idx = EXCP_VFIQ; + target_el = 1; + if (arm_excp_unmasked(cs, excp_idx, target_el, + cur_el, secure, hcr_el2)) { + goto found; + } + } + return false; + + found: + cs->exception_index = excp_idx; + env->exception.target_el = target_el; + cc->tcg_ops->do_interrupt(cs); + return true; +} +#endif /* !CONFIG_USER_ONLY */ + +void arm_cpu_update_virq(ARMCPU *cpu) +{ + /* + * Update the interrupt level for VIRQ, which is the logical OR of + * the HCR_EL2.VI bit and the input line level from the GIC. + */ + CPUARMState *env = &cpu->env; + CPUState *cs = CPU(cpu); + + bool new_state = (env->cp15.hcr_el2 & HCR_VI) || + (env->irq_line_state & CPU_INTERRUPT_VIRQ); + + if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { + if (new_state) { + cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); + } else { + cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); + } + } +} + +void arm_cpu_update_vfiq(ARMCPU *cpu) +{ + /* + * Update the interrupt level for VFIQ, which is the logical OR of + * the HCR_EL2.VF bit and the input line level from the GIC. + */ + CPUARMState *env = &cpu->env; + CPUState *cs = CPU(cpu); + + bool new_state = (env->cp15.hcr_el2 & HCR_VF) || + (env->irq_line_state & CPU_INTERRUPT_VFIQ); + + if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { + if (new_state) { + cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); + } else { + cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); + } + } +} + +#ifndef CONFIG_USER_ONLY +static void arm_cpu_set_irq(void *opaque, int irq, int level) +{ + ARMCPU *cpu = opaque; + CPUARMState *env = &cpu->env; + CPUState *cs = CPU(cpu); + static const int mask[] = { + [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, + [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, + [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, + [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ + }; + + if (level) { + env->irq_line_state |= mask[irq]; + } else { + env->irq_line_state &= ~mask[irq]; + } + + switch (irq) { + case ARM_CPU_VIRQ: + assert(arm_feature(env, ARM_FEATURE_EL2)); + arm_cpu_update_virq(cpu); + break; + case ARM_CPU_VFIQ: + assert(arm_feature(env, ARM_FEATURE_EL2)); + arm_cpu_update_vfiq(cpu); + break; + case ARM_CPU_IRQ: + case ARM_CPU_FIQ: + if (level) { + cpu_interrupt(cs, mask[irq]); + } else { + cpu_reset_interrupt(cs, mask[irq]); + } + break; + default: + g_assert_not_reached(); + } +} + +static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) +{ +#ifdef CONFIG_KVM + ARMCPU *cpu = opaque; + CPUARMState *env = &cpu->env; + CPUState *cs = CPU(cpu); + uint32_t linestate_bit; + int irq_id; + + switch (irq) { + case ARM_CPU_IRQ: + irq_id = KVM_ARM_IRQ_CPU_IRQ; + linestate_bit = CPU_INTERRUPT_HARD; + break; + case ARM_CPU_FIQ: + irq_id = KVM_ARM_IRQ_CPU_FIQ; + linestate_bit = CPU_INTERRUPT_FIQ; + break; + default: + g_assert_not_reached(); + } + + if (level) { + env->irq_line_state |= linestate_bit; + } else { + env->irq_line_state &= ~linestate_bit; + } + kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); +#endif +} + +static bool arm_cpu_virtio_is_big_endian(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + cpu_synchronize_state(cs); + return arm_cpu_data_is_big_endian(env); +} + +#endif + +static int +print_insn_thumb1(bfd_vma pc, disassemble_info *info) +{ + return print_insn_arm(pc | 1, info); +} + +static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) +{ + ARMCPU *ac = ARM_CPU(cpu); + CPUARMState *env = &ac->env; + bool sctlr_b; + + if (is_a64(env)) { + /* We might not be compiled with the A64 disassembler + * because it needs a C++ compiler. Leave print_insn + * unset in this case to use the caller default behaviour. + */ +#if defined(CONFIG_ARM_A64_DIS) + info->print_insn = print_insn_arm_a64; +#endif + info->cap_arch = CS_ARCH_ARM64; + info->cap_insn_unit = 4; + info->cap_insn_split = 4; + } else { + int cap_mode; + if (env->thumb) { + info->print_insn = print_insn_thumb1; + info->cap_insn_unit = 2; + info->cap_insn_split = 4; + cap_mode = CS_MODE_THUMB; + } else { + info->print_insn = print_insn_arm; + info->cap_insn_unit = 4; + info->cap_insn_split = 4; + cap_mode = CS_MODE_ARM; + } + if (arm_feature(env, ARM_FEATURE_V8)) { + cap_mode |= CS_MODE_V8; + } + if (arm_feature(env, ARM_FEATURE_M)) { + cap_mode |= CS_MODE_MCLASS; + } + info->cap_arch = CS_ARCH_ARM; + info->cap_mode = cap_mode; + } + + sctlr_b = arm_sctlr_b(env); + if (bswap_code(sctlr_b)) { +#ifdef TARGET_WORDS_BIGENDIAN + info->endian = BFD_ENDIAN_LITTLE; +#else + info->endian = BFD_ENDIAN_BIG; +#endif + } + info->flags &= ~INSN_ARM_BE32; +#ifndef CONFIG_USER_ONLY + if (sctlr_b) { + info->flags |= INSN_ARM_BE32; + } +#endif +} + +#ifdef TARGET_AARCH64 + +static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint32_t psr = pstate_read(env); + int i; + int el = arm_current_el(env); + const char *ns_status; + + qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); + for (i = 0; i < 32; i++) { + if (i == 31) { + qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); + } else { + qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], + (i + 2) % 3 ? " " : "\n"); + } + } + + if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { + ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; + } else { + ns_status = ""; + } + qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", + psr, + psr & PSTATE_N ? 'N' : '-', + psr & PSTATE_Z ? 'Z' : '-', + psr & PSTATE_C ? 'C' : '-', + psr & PSTATE_V ? 'V' : '-', + ns_status, + el, + psr & PSTATE_SP ? 'h' : 't'); + + if (cpu_isar_feature(aa64_bti, cpu)) { + qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); + } + if (!(flags & CPU_DUMP_FPU)) { + qemu_fprintf(f, "\n"); + return; + } + if (fp_exception_el(env, el) != 0) { + qemu_fprintf(f, " FPU disabled\n"); + return; + } + qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", + vfp_get_fpcr(env), vfp_get_fpsr(env)); + + if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { + int j, zcr_len = sve_zcr_len_for_el(env, el); + + for (i = 0; i <= FFR_PRED_NUM; i++) { + bool eol; + if (i == FFR_PRED_NUM) { + qemu_fprintf(f, "FFR="); + /* It's last, so end the line. */ + eol = true; + } else { + qemu_fprintf(f, "P%02d=", i); + switch (zcr_len) { + case 0: + eol = i % 8 == 7; + break; + case 1: + eol = i % 6 == 5; + break; + case 2: + case 3: + eol = i % 3 == 2; + break; + default: + /* More than one quadword per predicate. */ + eol = true; + break; + } + } + for (j = zcr_len / 4; j >= 0; j--) { + int digits; + if (j * 4 + 4 <= zcr_len + 1) { + digits = 16; + } else { + digits = (zcr_len % 4 + 1) * 4; + } + qemu_fprintf(f, "%0*" PRIx64 "%s", digits, + env->vfp.pregs[i].p[j], + j ? ":" : eol ? "\n" : " "); + } + } + + for (i = 0; i < 32; i++) { + if (zcr_len == 0) { + qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", + i, env->vfp.zregs[i].d[1], + env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); + } else if (zcr_len == 1) { + qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 + ":%016" PRIx64 ":%016" PRIx64 "\n", + i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], + env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); + } else { + for (j = zcr_len; j >= 0; j--) { + bool odd = (zcr_len - j) % 2 != 0; + if (j == zcr_len) { + qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); + } else if (!odd) { + if (j > 0) { + qemu_fprintf(f, " [%x-%x]=", j, j - 1); + } else { + qemu_fprintf(f, " [%x]=", j); + } + } + qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", + env->vfp.zregs[i].d[j * 2 + 1], + env->vfp.zregs[i].d[j * 2], + odd || j == 0 ? "\n" : ":"); + } + } + } + } else { + for (i = 0; i < 32; i++) { + uint64_t *q = aa64_vfp_qreg(env, i); + qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", + i, q[1], q[0], (i & 1 ? "\n" : " ")); + } + } +} + +#else + +static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + g_assert_not_reached(); +} + +#endif + +static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + int i; + + if (is_a64(env)) { + aarch64_cpu_dump_state(cs, f, flags); + return; + } + + for (i = 0; i < 16; i++) { + qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); + if ((i % 4) == 3) { + qemu_fprintf(f, "\n"); + } else { + qemu_fprintf(f, " "); + } + } + + if (arm_feature(env, ARM_FEATURE_M)) { + uint32_t xpsr = xpsr_read(env); + const char *mode; + const char *ns_status = ""; + + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + ns_status = env->v7m.secure ? "S " : "NS "; + } + + if (xpsr & XPSR_EXCP) { + mode = "handler"; + } else { + if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { + mode = "unpriv-thread"; + } else { + mode = "priv-thread"; + } + } + + qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", + xpsr, + xpsr & XPSR_N ? 'N' : '-', + xpsr & XPSR_Z ? 'Z' : '-', + xpsr & XPSR_C ? 'C' : '-', + xpsr & XPSR_V ? 'V' : '-', + xpsr & XPSR_T ? 'T' : 'A', + ns_status, + mode); + } else { + uint32_t psr = cpsr_read(env); + const char *ns_status = ""; + + if (arm_feature(env, ARM_FEATURE_EL3) && + (psr & CPSR_M) != ARM_CPU_MODE_MON) { + ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; + } + + qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", + psr, + psr & CPSR_N ? 'N' : '-', + psr & CPSR_Z ? 'Z' : '-', + psr & CPSR_C ? 'C' : '-', + psr & CPSR_V ? 'V' : '-', + psr & CPSR_T ? 'T' : 'A', + ns_status, + aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); + } + + if (flags & CPU_DUMP_FPU) { + int numvfpregs = 0; + if (cpu_isar_feature(aa32_simd_r32, cpu)) { + numvfpregs = 32; + } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { + numvfpregs = 16; + } + for (i = 0; i < numvfpregs; i++) { + uint64_t v = *aa32_vfp_dreg(env, i); + qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", + i * 2, (uint32_t)v, + i * 2 + 1, (uint32_t)(v >> 32), + i, v); + } + qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); + if (cpu_isar_feature(aa32_mve, cpu)) { + qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); + } + } +} + +uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) +{ + uint32_t Aff1 = idx / clustersz; + uint32_t Aff0 = idx % clustersz; + return (Aff1 << ARM_AFF1_SHIFT) | Aff0; +} + +static void cpreg_hashtable_data_destroy(gpointer data) +{ + /* + * Destroy function for cpu->cp_regs hashtable data entries. + * We must free the name string because it was g_strdup()ed in + * add_cpreg_to_hashtable(). It's OK to cast away the 'const' + * from r->name because we know we definitely allocated it. + */ + ARMCPRegInfo *r = data; + + g_free((void *)r->name); + g_free(r); +} + +static void arm_cpu_initfn(Object *obj) +{ + ARMCPU *cpu = ARM_CPU(obj); + + cpu_set_cpustate_pointers(cpu); + cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal, + g_free, cpreg_hashtable_data_destroy); + + QLIST_INIT(&cpu->pre_el_change_hooks); + QLIST_INIT(&cpu->el_change_hooks); + +#ifdef CONFIG_USER_ONLY +# ifdef TARGET_AARCH64 + /* + * The linux kernel defaults to 512-bit vectors, when sve is supported. + * See documentation for /proc/sys/abi/sve_default_vector_length, and + * our corresponding sve-default-vector-length cpu property. + */ + cpu->sve_default_vq = 4; +# endif +#else + /* Our inbound IRQ and FIQ lines */ + if (kvm_enabled()) { + /* VIRQ and VFIQ are unused with KVM but we add them to maintain + * the same interface as non-KVM CPUs. + */ + qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4); + } else { + qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4); + } + + qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, + ARRAY_SIZE(cpu->gt_timer_outputs)); + + qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, + "gicv3-maintenance-interrupt", 1); + qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, + "pmu-interrupt", 1); +#endif + + /* DTB consumers generally don't in fact care what the 'compatible' + * string is, so always provide some string and trust that a hypothetical + * picky DTB consumer will also provide a helpful error message. + */ + cpu->dtb_compatible = "qemu,unknown"; + cpu->psci_version = 1; /* By default assume PSCI v0.1 */ + cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; + + if (tcg_enabled() || hvf_enabled()) { + cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */ + } +} + +static Property arm_cpu_gt_cntfrq_property = + DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, + NANOSECONDS_PER_SECOND / GTIMER_SCALE); + +static Property arm_cpu_reset_cbar_property = + DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); + +static Property arm_cpu_reset_hivecs_property = + DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); + +static Property arm_cpu_rvbar_property = + DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0); + +#ifndef CONFIG_USER_ONLY +static Property arm_cpu_has_el2_property = + DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); + +static Property arm_cpu_has_el3_property = + DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); +#endif + +static Property arm_cpu_cfgend_property = + DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); + +static Property arm_cpu_has_vfp_property = + DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); + +static Property arm_cpu_has_neon_property = + DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); + +static Property arm_cpu_has_dsp_property = + DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); + +static Property arm_cpu_has_mpu_property = + DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); + +/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, + * because the CPU initfn will have already set cpu->pmsav7_dregion to + * the right value for that particular CPU type, and we don't want + * to override that with an incorrect constant value. + */ +static Property arm_cpu_pmsav7_dregion_property = + DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, + pmsav7_dregion, + qdev_prop_uint32, uint32_t); + +static bool arm_get_pmu(Object *obj, Error **errp) +{ + ARMCPU *cpu = ARM_CPU(obj); + + return cpu->has_pmu; +} + +static void arm_set_pmu(Object *obj, bool value, Error **errp) +{ + ARMCPU *cpu = ARM_CPU(obj); + + if (value) { + if (kvm_enabled() && !kvm_arm_pmu_supported()) { + error_setg(errp, "'pmu' feature not supported by KVM on this host"); + return; + } + set_feature(&cpu->env, ARM_FEATURE_PMU); + } else { + unset_feature(&cpu->env, ARM_FEATURE_PMU); + } + cpu->has_pmu = value; +} + +unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) +{ + /* + * The exact approach to calculating guest ticks is: + * + * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, + * NANOSECONDS_PER_SECOND); + * + * We don't do that. Rather we intentionally use integer division + * truncation below and in the caller for the conversion of host monotonic + * time to guest ticks to provide the exact inverse for the semantics of + * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so + * it loses precision when representing frequencies where + * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to + * provide an exact inverse leads to scheduling timers with negative + * periods, which in turn leads to sticky behaviour in the guest. + * + * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor + * cannot become zero. + */ + return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? + NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; +} + +void arm_cpu_post_init(Object *obj) +{ + ARMCPU *cpu = ARM_CPU(obj); + + /* M profile implies PMSA. We have to do this here rather than + * in realize with the other feature-implication checks because + * we look at the PMSA bit to see if we should add some properties. + */ + if (arm_feature(&cpu->env, ARM_FEATURE_M)) { + set_feature(&cpu->env, ARM_FEATURE_PMSA); + } + + if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || + arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); + } + + if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); + } + + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property); + } + +#ifndef CONFIG_USER_ONLY + if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { + /* Add the has_el3 state CPU property only if EL3 is allowed. This will + * prevent "has_el3" from existing on CPUs which cannot support EL3. + */ + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); + + object_property_add_link(obj, "secure-memory", + TYPE_MEMORY_REGION, + (Object **)&cpu->secure_memory, + qdev_prop_allow_set_link_before_realize, + OBJ_PROP_LINK_STRONG); + } + + if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); + } +#endif + + if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { + cpu->has_pmu = true; + object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); + } + + /* + * Allow user to turn off VFP and Neon support, but only for TCG -- + * KVM does not currently allow us to lie to the guest about its + * ID/feature registers, so the guest always sees what the host has. + */ + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) + ? cpu_isar_feature(aa64_fp_simd, cpu) + : cpu_isar_feature(aa32_vfp, cpu)) { + cpu->has_vfp = true; + if (!kvm_enabled()) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property); + } + } + + if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { + cpu->has_neon = true; + if (!kvm_enabled()) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); + } + } + + if (arm_feature(&cpu->env, ARM_FEATURE_M) && + arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); + } + + if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { + qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); + if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { + qdev_property_add_static(DEVICE(obj), + &arm_cpu_pmsav7_dregion_property); + } + } + + if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { + object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, + qdev_prop_allow_set_link_before_realize, + OBJ_PROP_LINK_STRONG); + /* + * M profile: initial value of the Secure VTOR. We can't just use + * a simple DEFINE_PROP_UINT32 for this because we want to permit + * the property to be set after realize. + */ + object_property_add_uint32_ptr(obj, "init-svtor", + &cpu->init_svtor, + OBJ_PROP_FLAG_READWRITE); + } + if (arm_feature(&cpu->env, ARM_FEATURE_M)) { + /* + * Initial value of the NS VTOR (for cores without the Security + * extension, this is the only VTOR) + */ + object_property_add_uint32_ptr(obj, "init-nsvtor", + &cpu->init_nsvtor, + OBJ_PROP_FLAG_READWRITE); + } + + qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); + + if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { + qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); + } + + if (kvm_enabled()) { + kvm_arm_add_vcpu_properties(obj); + } + +#ifndef CONFIG_USER_ONLY + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && + cpu_isar_feature(aa64_mte, cpu)) { + object_property_add_link(obj, "tag-memory", + TYPE_MEMORY_REGION, + (Object **)&cpu->tag_memory, + qdev_prop_allow_set_link_before_realize, + OBJ_PROP_LINK_STRONG); + + if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { + object_property_add_link(obj, "secure-tag-memory", + TYPE_MEMORY_REGION, + (Object **)&cpu->secure_tag_memory, + qdev_prop_allow_set_link_before_realize, + OBJ_PROP_LINK_STRONG); + } + } +#endif +} + +static void arm_cpu_finalizefn(Object *obj) +{ + ARMCPU *cpu = ARM_CPU(obj); + ARMELChangeHook *hook, *next; + + g_hash_table_destroy(cpu->cp_regs); + + QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { + QLIST_REMOVE(hook, node); + g_free(hook); + } + QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { + QLIST_REMOVE(hook, node); + g_free(hook); + } +#ifndef CONFIG_USER_ONLY + if (cpu->pmu_timer) { + timer_free(cpu->pmu_timer); + } +#endif +} + +void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) +{ + Error *local_err = NULL; + + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + arm_cpu_sve_finalize(cpu, &local_err); + if (local_err != NULL) { + error_propagate(errp, local_err); + return; + } + + /* + * KVM does not support modifications to this feature. + * We have not registered the cpu properties when KVM + * is in use, so the user will not be able to set them. + */ + if (!kvm_enabled()) { + arm_cpu_pauth_finalize(cpu, &local_err); + if (local_err != NULL) { + error_propagate(errp, local_err); + return; + } + } + } + + if (kvm_enabled()) { + kvm_arm_steal_time_finalize(cpu, &local_err); + if (local_err != NULL) { + error_propagate(errp, local_err); + return; + } + } +} + +static void arm_cpu_realizefn(DeviceState *dev, Error **errp) +{ + CPUState *cs = CPU(dev); + ARMCPU *cpu = ARM_CPU(dev); + ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); + CPUARMState *env = &cpu->env; + int pagebits; + Error *local_err = NULL; + bool no_aa32 = false; + + /* If we needed to query the host kernel for the CPU features + * then it's possible that might have failed in the initfn, but + * this is the first point where we can report it. + */ + if (cpu->host_cpu_probe_failed) { + if (!kvm_enabled() && !hvf_enabled()) { + error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); + } else { + error_setg(errp, "Failed to retrieve host CPU features"); + } + return; + } + +#ifndef CONFIG_USER_ONLY + /* The NVIC and M-profile CPU are two halves of a single piece of + * hardware; trying to use one without the other is a command line + * error and will result in segfaults if not caught here. + */ + if (arm_feature(env, ARM_FEATURE_M)) { + if (!env->nvic) { + error_setg(errp, "This board cannot be used with Cortex-M CPUs"); + return; + } + } else { + if (env->nvic) { + error_setg(errp, "This board can only be used with Cortex-M CPUs"); + return; + } + } + + if (kvm_enabled()) { + /* + * Catch all the cases which might cause us to create more than one + * address space for the CPU (otherwise we will assert() later in + * cpu_address_space_init()). + */ + if (arm_feature(env, ARM_FEATURE_M)) { + error_setg(errp, + "Cannot enable KVM when using an M-profile guest CPU"); + return; + } + if (cpu->has_el3) { + error_setg(errp, + "Cannot enable KVM when guest CPU has EL3 enabled"); + return; + } + if (cpu->tag_memory) { + error_setg(errp, + "Cannot enable KVM when guest CPUs has MTE enabled"); + return; + } + } + + { + uint64_t scale; + + if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { + if (!cpu->gt_cntfrq_hz) { + error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", + cpu->gt_cntfrq_hz); + return; + } + scale = gt_cntfrq_period_ns(cpu); + } else { + scale = GTIMER_SCALE; + } + + cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, + arm_gt_ptimer_cb, cpu); + cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, + arm_gt_vtimer_cb, cpu); + cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, + arm_gt_htimer_cb, cpu); + cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, + arm_gt_stimer_cb, cpu); + cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, + arm_gt_hvtimer_cb, cpu); + } +#endif + + cpu_exec_realizefn(cs, &local_err); + if (local_err != NULL) { + error_propagate(errp, local_err); + return; + } + + arm_cpu_finalize_features(cpu, &local_err); + if (local_err != NULL) { + error_propagate(errp, local_err); + return; + } + + if (arm_feature(env, ARM_FEATURE_AARCH64) && + cpu->has_vfp != cpu->has_neon) { + /* + * This is an architectural requirement for AArch64; AArch32 is + * more flexible and permits VFP-no-Neon and Neon-no-VFP. + */ + error_setg(errp, + "AArch64 CPUs must have both VFP and Neon or neither"); + return; + } + + if (!cpu->has_vfp) { + uint64_t t; + uint32_t u; + + t = cpu->isar.id_aa64isar1; + t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); + cpu->isar.id_aa64isar1 = t; + + t = cpu->isar.id_aa64pfr0; + t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); + cpu->isar.id_aa64pfr0 = t; + + u = cpu->isar.id_isar6; + u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); + u = FIELD_DP32(u, ID_ISAR6, BF16, 0); + cpu->isar.id_isar6 = u; + + u = cpu->isar.mvfr0; + u = FIELD_DP32(u, MVFR0, FPSP, 0); + u = FIELD_DP32(u, MVFR0, FPDP, 0); + u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); + u = FIELD_DP32(u, MVFR0, FPSQRT, 0); + u = FIELD_DP32(u, MVFR0, FPROUND, 0); + if (!arm_feature(env, ARM_FEATURE_M)) { + u = FIELD_DP32(u, MVFR0, FPTRAP, 0); + u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); + } + cpu->isar.mvfr0 = u; + + u = cpu->isar.mvfr1; + u = FIELD_DP32(u, MVFR1, FPFTZ, 0); + u = FIELD_DP32(u, MVFR1, FPDNAN, 0); + u = FIELD_DP32(u, MVFR1, FPHP, 0); + if (arm_feature(env, ARM_FEATURE_M)) { + u = FIELD_DP32(u, MVFR1, FP16, 0); + } + cpu->isar.mvfr1 = u; + + u = cpu->isar.mvfr2; + u = FIELD_DP32(u, MVFR2, FPMISC, 0); + cpu->isar.mvfr2 = u; + } + + if (!cpu->has_neon) { + uint64_t t; + uint32_t u; + + unset_feature(env, ARM_FEATURE_NEON); + + t = cpu->isar.id_aa64isar0; + t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); + cpu->isar.id_aa64isar0 = t; + + t = cpu->isar.id_aa64isar1; + t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); + t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); + t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); + cpu->isar.id_aa64isar1 = t; + + t = cpu->isar.id_aa64pfr0; + t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); + cpu->isar.id_aa64pfr0 = t; + + u = cpu->isar.id_isar5; + u = FIELD_DP32(u, ID_ISAR5, RDM, 0); + u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); + cpu->isar.id_isar5 = u; + + u = cpu->isar.id_isar6; + u = FIELD_DP32(u, ID_ISAR6, DP, 0); + u = FIELD_DP32(u, ID_ISAR6, FHM, 0); + u = FIELD_DP32(u, ID_ISAR6, BF16, 0); + u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); + cpu->isar.id_isar6 = u; + + if (!arm_feature(env, ARM_FEATURE_M)) { + u = cpu->isar.mvfr1; + u = FIELD_DP32(u, MVFR1, SIMDLS, 0); + u = FIELD_DP32(u, MVFR1, SIMDINT, 0); + u = FIELD_DP32(u, MVFR1, SIMDSP, 0); + u = FIELD_DP32(u, MVFR1, SIMDHP, 0); + cpu->isar.mvfr1 = u; + + u = cpu->isar.mvfr2; + u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); + cpu->isar.mvfr2 = u; + } + } + + if (!cpu->has_neon && !cpu->has_vfp) { + uint64_t t; + uint32_t u; + + t = cpu->isar.id_aa64isar0; + t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); + cpu->isar.id_aa64isar0 = t; + + t = cpu->isar.id_aa64isar1; + t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); + cpu->isar.id_aa64isar1 = t; + + u = cpu->isar.mvfr0; + u = FIELD_DP32(u, MVFR0, SIMDREG, 0); + cpu->isar.mvfr0 = u; + + /* Despite the name, this field covers both VFP and Neon */ + u = cpu->isar.mvfr1; + u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); + cpu->isar.mvfr1 = u; + } + + if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { + uint32_t u; + + unset_feature(env, ARM_FEATURE_THUMB_DSP); + + u = cpu->isar.id_isar1; + u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); + cpu->isar.id_isar1 = u; + + u = cpu->isar.id_isar2; + u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); + u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); + cpu->isar.id_isar2 = u; + + u = cpu->isar.id_isar3; + u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); + u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); + cpu->isar.id_isar3 = u; + } + + /* Some features automatically imply others: */ + if (arm_feature(env, ARM_FEATURE_V8)) { + if (arm_feature(env, ARM_FEATURE_M)) { + set_feature(env, ARM_FEATURE_V7); + } else { + set_feature(env, ARM_FEATURE_V7VE); + } + } + + /* + * There exist AArch64 cpus without AArch32 support. When KVM + * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. + * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. + * As a general principle, we also do not make ID register + * consistency checks anywhere unless using TCG, because only + * for TCG would a consistency-check failure be a QEMU bug. + */ + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); + } + + if (arm_feature(env, ARM_FEATURE_V7VE)) { + /* v7 Virtualization Extensions. In real hardware this implies + * EL2 and also the presence of the Security Extensions. + * For QEMU, for backwards-compatibility we implement some + * CPUs or CPU configs which have no actual EL2 or EL3 but do + * include the various other features that V7VE implies. + * Presence of EL2 itself is ARM_FEATURE_EL2, and of the + * Security Extensions is ARM_FEATURE_EL3. + */ + assert(!tcg_enabled() || no_aa32 || + cpu_isar_feature(aa32_arm_div, cpu)); + set_feature(env, ARM_FEATURE_LPAE); + set_feature(env, ARM_FEATURE_V7); + } + if (arm_feature(env, ARM_FEATURE_V7)) { + set_feature(env, ARM_FEATURE_VAPA); + set_feature(env, ARM_FEATURE_THUMB2); + set_feature(env, ARM_FEATURE_MPIDR); + if (!arm_feature(env, ARM_FEATURE_M)) { + set_feature(env, ARM_FEATURE_V6K); + } else { + set_feature(env, ARM_FEATURE_V6); + } + + /* Always define VBAR for V7 CPUs even if it doesn't exist in + * non-EL3 configs. This is needed by some legacy boards. + */ + set_feature(env, ARM_FEATURE_VBAR); + } + if (arm_feature(env, ARM_FEATURE_V6K)) { + set_feature(env, ARM_FEATURE_V6); + set_feature(env, ARM_FEATURE_MVFR); + } + if (arm_feature(env, ARM_FEATURE_V6)) { + set_feature(env, ARM_FEATURE_V5); + if (!arm_feature(env, ARM_FEATURE_M)) { + assert(!tcg_enabled() || no_aa32 || + cpu_isar_feature(aa32_jazelle, cpu)); + set_feature(env, ARM_FEATURE_AUXCR); + } + } + if (arm_feature(env, ARM_FEATURE_V5)) { + set_feature(env, ARM_FEATURE_V4T); + } + if (arm_feature(env, ARM_FEATURE_LPAE)) { + set_feature(env, ARM_FEATURE_V7MP); + } + if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { + set_feature(env, ARM_FEATURE_CBAR); + } + if (arm_feature(env, ARM_FEATURE_THUMB2) && + !arm_feature(env, ARM_FEATURE_M)) { + set_feature(env, ARM_FEATURE_THUMB_DSP); + } + + /* + * We rely on no XScale CPU having VFP so we can use the same bits in the + * TB flags field for VECSTRIDE and XSCALE_CPAR. + */ + assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) || + !cpu_isar_feature(aa32_vfp_simd, cpu) || + !arm_feature(env, ARM_FEATURE_XSCALE)); + + if (arm_feature(env, ARM_FEATURE_V7) && + !arm_feature(env, ARM_FEATURE_M) && + !arm_feature(env, ARM_FEATURE_PMSA)) { + /* v7VMSA drops support for the old ARMv5 tiny pages, so we + * can use 4K pages. + */ + pagebits = 12; + } else { + /* For CPUs which might have tiny 1K pages, or which have an + * MPU and might have small region sizes, stick with 1K pages. + */ + pagebits = 10; + } + if (!set_preferred_target_page_bits(pagebits)) { + /* This can only ever happen for hotplugging a CPU, or if + * the board code incorrectly creates a CPU which it has + * promised via minimum_page_size that it will not. + */ + error_setg(errp, "This CPU requires a smaller page size than the " + "system is using"); + return; + } + + /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. + * We don't support setting cluster ID ([16..23]) (known as Aff2 + * in later ARM ARM versions), or any of the higher affinity level fields, + * so these bits always RAZ. + */ + if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { + cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index, + ARM_DEFAULT_CPUS_PER_CLUSTER); + } + + if (cpu->reset_hivecs) { + cpu->reset_sctlr |= (1 << 13); + } + + if (cpu->cfgend) { + if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { + cpu->reset_sctlr |= SCTLR_EE; + } else { + cpu->reset_sctlr |= SCTLR_B; + } + } + + if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { + /* If the has_el3 CPU property is disabled then we need to disable the + * feature. + */ + unset_feature(env, ARM_FEATURE_EL3); + + /* Disable the security extension feature bits in the processor feature + * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12]. + */ + cpu->isar.id_pfr1 &= ~0xf0; + cpu->isar.id_aa64pfr0 &= ~0xf000; + } + + if (!cpu->has_el2) { + unset_feature(env, ARM_FEATURE_EL2); + } + + if (!cpu->has_pmu) { + unset_feature(env, ARM_FEATURE_PMU); + } + if (arm_feature(env, ARM_FEATURE_PMU)) { + pmu_init(cpu); + + if (!kvm_enabled()) { + arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); + arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); + } + +#ifndef CONFIG_USER_ONLY + cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, + cpu); +#endif + } else { + cpu->isar.id_aa64dfr0 = + FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); + cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); + cpu->pmceid0 = 0; + cpu->pmceid1 = 0; + } + + if (!arm_feature(env, ARM_FEATURE_EL2)) { + /* Disable the hypervisor feature bits in the processor feature + * registers if we don't have EL2. These are id_pfr1[15:12] and + * id_aa64pfr0_el1[11:8]. + */ + cpu->isar.id_aa64pfr0 &= ~0xf00; + cpu->isar.id_pfr1 &= ~0xf000; + } + +#ifndef CONFIG_USER_ONLY + if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) { + /* + * Disable the MTE feature bits if we do not have tag-memory + * provided by the machine. + */ + cpu->isar.id_aa64pfr1 = + FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); + } +#endif + + /* MPU can be configured out of a PMSA CPU either by setting has-mpu + * to false or by setting pmsav7-dregion to 0. + */ + if (!cpu->has_mpu) { + cpu->pmsav7_dregion = 0; + } + if (cpu->pmsav7_dregion == 0) { + cpu->has_mpu = false; + } + + if (arm_feature(env, ARM_FEATURE_PMSA) && + arm_feature(env, ARM_FEATURE_V7)) { + uint32_t nr = cpu->pmsav7_dregion; + + if (nr > 0xff) { + error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); + return; + } + + if (nr) { + if (arm_feature(env, ARM_FEATURE_V8)) { + /* PMSAv8 */ + env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); + env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); + env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); + } + } else { + env->pmsav7.drbar = g_new0(uint32_t, nr); + env->pmsav7.drsr = g_new0(uint32_t, nr); + env->pmsav7.dracr = g_new0(uint32_t, nr); + } + } + } + + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + uint32_t nr = cpu->sau_sregion; + + if (nr > 0xff) { + error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); + return; + } + + if (nr) { + env->sau.rbar = g_new0(uint32_t, nr); + env->sau.rlar = g_new0(uint32_t, nr); + } + } + + if (arm_feature(env, ARM_FEATURE_EL3)) { + set_feature(env, ARM_FEATURE_VBAR); + } + + register_cp_regs_for_features(cpu); + arm_cpu_register_gdb_regs_for_features(cpu); + + init_cpreg_list(cpu); + +#ifndef CONFIG_USER_ONLY + MachineState *ms = MACHINE(qdev_get_machine()); + unsigned int smp_cpus = ms->smp.cpus; + bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); + + /* + * We must set cs->num_ases to the final value before + * the first call to cpu_address_space_init. + */ + if (cpu->tag_memory != NULL) { + cs->num_ases = 3 + has_secure; + } else { + cs->num_ases = 1 + has_secure; + } + + if (has_secure) { + if (!cpu->secure_memory) { + cpu->secure_memory = cs->memory; + } + cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", + cpu->secure_memory); + } + + if (cpu->tag_memory != NULL) { + cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", + cpu->tag_memory); + if (has_secure) { + cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", + cpu->secure_tag_memory); + } + } + + cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); + + /* No core_count specified, default to smp_cpus. */ + if (cpu->core_count == -1) { + cpu->core_count = smp_cpus; + } +#endif + + if (tcg_enabled()) { + int dcz_blocklen = 4 << cpu->dcz_blocksize; + + /* + * We only support DCZ blocklen that fits on one page. + * + * Architectually this is always true. However TARGET_PAGE_SIZE + * is variable and, for compatibility with -machine virt-2.7, + * is only 1KiB, as an artifact of legacy ARMv5 subpage support. + * But even then, while the largest architectural DCZ blocklen + * is 2KiB, no cpu actually uses such a large blocklen. + */ + assert(dcz_blocklen <= TARGET_PAGE_SIZE); + + /* + * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say + * both nibbles of each byte storing tag data may be written at once. + * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. + */ + if (cpu_isar_feature(aa64_mte, cpu)) { + assert(dcz_blocklen >= 2 * TAG_GRANULE); + } + } + + qemu_init_vcpu(cs); + cpu_reset(cs); + + acc->parent_realize(dev, errp); +} + +static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) +{ + ObjectClass *oc; + char *typename; + char **cpuname; + const char *cpunamestr; + + cpuname = g_strsplit(cpu_model, ",", 1); + cpunamestr = cpuname[0]; +#ifdef CONFIG_USER_ONLY + /* For backwards compatibility usermode emulation allows "-cpu any", + * which has the same semantics as "-cpu max". + */ + if (!strcmp(cpunamestr, "any")) { + cpunamestr = "max"; + } +#endif + typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); + oc = object_class_by_name(typename); + g_strfreev(cpuname); + g_free(typename); + if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) || + object_class_is_abstract(oc)) { + return NULL; + } + return oc; +} + +static Property arm_cpu_properties[] = { + DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0), + DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), + DEFINE_PROP_UINT64("mp-affinity", ARMCPU, + mp_affinity, ARM64_AFFINITY_INVALID), + DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), + DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), + DEFINE_PROP_END_OF_LIST() +}; + +static gchar *arm_gdb_arch_name(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + if (arm_feature(env, ARM_FEATURE_IWMMXT)) { + return g_strdup("iwmmxt"); + } + return g_strdup("arm"); +} + +#ifndef CONFIG_USER_ONLY +#include "hw/core/sysemu-cpu-ops.h" + +static const struct SysemuCPUOps arm_sysemu_ops = { + .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, + .asidx_from_attrs = arm_asidx_from_attrs, + .write_elf32_note = arm_cpu_write_elf32_note, + .write_elf64_note = arm_cpu_write_elf64_note, + .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, + .legacy_vmsd = &vmstate_arm_cpu, +}; +#endif + +#ifdef CONFIG_TCG +static const struct TCGCPUOps arm_tcg_ops = { + .initialize = arm_translate_init, + .synchronize_from_tb = arm_cpu_synchronize_from_tb, + .debug_excp_handler = arm_debug_excp_handler, + +#ifdef CONFIG_USER_ONLY + .record_sigsegv = arm_cpu_record_sigsegv, + .record_sigbus = arm_cpu_record_sigbus, +#else + .tlb_fill = arm_cpu_tlb_fill, + .cpu_exec_interrupt = arm_cpu_exec_interrupt, + .do_interrupt = arm_cpu_do_interrupt, + .do_transaction_failed = arm_cpu_do_transaction_failed, + .do_unaligned_access = arm_cpu_do_unaligned_access, + .adjust_watchpoint_address = arm_adjust_watchpoint_address, + .debug_check_watchpoint = arm_debug_check_watchpoint, + .debug_check_breakpoint = arm_debug_check_breakpoint, +#endif /* !CONFIG_USER_ONLY */ +}; +#endif /* CONFIG_TCG */ + +static void arm_cpu_class_init(ObjectClass *oc, void *data) +{ + ARMCPUClass *acc = ARM_CPU_CLASS(oc); + CPUClass *cc = CPU_CLASS(acc); + DeviceClass *dc = DEVICE_CLASS(oc); + + device_class_set_parent_realize(dc, arm_cpu_realizefn, + &acc->parent_realize); + + device_class_set_props(dc, arm_cpu_properties); + device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset); + + cc->class_by_name = arm_cpu_class_by_name; + cc->has_work = arm_cpu_has_work; + cc->dump_state = arm_cpu_dump_state; + cc->set_pc = arm_cpu_set_pc; + cc->gdb_read_register = arm_cpu_gdb_read_register; + cc->gdb_write_register = arm_cpu_gdb_write_register; +#ifndef CONFIG_USER_ONLY + cc->sysemu_ops = &arm_sysemu_ops; +#endif + cc->gdb_num_core_regs = 26; + cc->gdb_core_xml_file = "arm-core.xml"; + cc->gdb_arch_name = arm_gdb_arch_name; + cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; + cc->gdb_stop_before_watchpoint = true; + cc->disas_set_info = arm_disas_set_info; + +#ifdef CONFIG_TCG + cc->tcg_ops = &arm_tcg_ops; +#endif /* CONFIG_TCG */ +} + +#if defined(CONFIG_KVM) || defined(CONFIG_HVF) +static void arm_host_initfn(Object *obj) +{ + ARMCPU *cpu = ARM_CPU(obj); + +#ifdef CONFIG_KVM + kvm_arm_set_cpu_features_from_host(cpu); + if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { + aarch64_add_sve_properties(obj); + } +#else + hvf_arm_set_cpu_features_from_host(cpu); +#endif + arm_cpu_post_init(obj); +} + +static const TypeInfo host_arm_cpu_type_info = { + .name = TYPE_ARM_HOST_CPU, + .parent = TYPE_AARCH64_CPU, + .instance_init = arm_host_initfn, +}; + +#endif + +static void arm_cpu_instance_init(Object *obj) +{ + ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); + + acc->info->initfn(obj); + arm_cpu_post_init(obj); +} + +static void cpu_register_class_init(ObjectClass *oc, void *data) +{ + ARMCPUClass *acc = ARM_CPU_CLASS(oc); + + acc->info = data; +} + +void arm_cpu_register(const ARMCPUInfo *info) +{ + TypeInfo type_info = { + .parent = TYPE_ARM_CPU, + .instance_size = sizeof(ARMCPU), + .instance_align = __alignof__(ARMCPU), + .instance_init = arm_cpu_instance_init, + .class_size = sizeof(ARMCPUClass), + .class_init = info->class_init ?: cpu_register_class_init, + .class_data = (void *)info, + }; + + type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); + type_register(&type_info); + g_free((void *)type_info.name); +} + +static const TypeInfo arm_cpu_type_info = { + .name = TYPE_ARM_CPU, + .parent = TYPE_CPU, + .instance_size = sizeof(ARMCPU), + .instance_align = __alignof__(ARMCPU), + .instance_init = arm_cpu_initfn, + .instance_finalize = arm_cpu_finalizefn, + .abstract = true, + .class_size = sizeof(ARMCPUClass), + .class_init = arm_cpu_class_init, +}; + +static void arm_cpu_register_types(void) +{ + type_register_static(&arm_cpu_type_info); + +#if defined(CONFIG_KVM) || defined(CONFIG_HVF) + type_register_static(&host_arm_cpu_type_info); +#endif +} + +type_init(arm_cpu_register_types) |