aboutsummaryrefslogtreecommitdiffstats
path: root/target/arm/cpu.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/cpu.c')
-rw-r--r--target/arm/cpu.c2162
1 files changed, 2162 insertions, 0 deletions
diff --git a/target/arm/cpu.c b/target/arm/cpu.c
new file mode 100644
index 000000000..a211804fd
--- /dev/null
+++ b/target/arm/cpu.c
@@ -0,0 +1,2162 @@
+/*
+ * QEMU ARM CPU
+ *
+ * Copyright (c) 2012 SUSE LINUX Products GmbH
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see
+ * <http://www.gnu.org/licenses/gpl-2.0.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/qemu-print.h"
+#include "qemu-common.h"
+#include "target/arm/idau.h"
+#include "qemu/module.h"
+#include "qapi/error.h"
+#include "qapi/visitor.h"
+#include "cpu.h"
+#ifdef CONFIG_TCG
+#include "hw/core/tcg-cpu-ops.h"
+#endif /* CONFIG_TCG */
+#include "internals.h"
+#include "exec/exec-all.h"
+#include "hw/qdev-properties.h"
+#if !defined(CONFIG_USER_ONLY)
+#include "hw/loader.h"
+#include "hw/boards.h"
+#endif
+#include "sysemu/tcg.h"
+#include "sysemu/hw_accel.h"
+#include "kvm_arm.h"
+#include "hvf_arm.h"
+#include "disas/capstone.h"
+#include "fpu/softfloat.h"
+
+static void arm_cpu_set_pc(CPUState *cs, vaddr value)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ if (is_a64(env)) {
+ env->pc = value;
+ env->thumb = 0;
+ } else {
+ env->regs[15] = value & ~1;
+ env->thumb = value & 1;
+ }
+}
+
+#ifdef CONFIG_TCG
+void arm_cpu_synchronize_from_tb(CPUState *cs,
+ const TranslationBlock *tb)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ /*
+ * It's OK to look at env for the current mode here, because it's
+ * never possible for an AArch64 TB to chain to an AArch32 TB.
+ */
+ if (is_a64(env)) {
+ env->pc = tb->pc;
+ } else {
+ env->regs[15] = tb->pc;
+ }
+}
+#endif /* CONFIG_TCG */
+
+static bool arm_cpu_has_work(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+
+ return (cpu->power_state != PSCI_OFF)
+ && cs->interrupt_request &
+ (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
+ | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
+ | CPU_INTERRUPT_EXITTB);
+}
+
+void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
+ void *opaque)
+{
+ ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
+
+ entry->hook = hook;
+ entry->opaque = opaque;
+
+ QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
+}
+
+void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
+ void *opaque)
+{
+ ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
+
+ entry->hook = hook;
+ entry->opaque = opaque;
+
+ QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
+}
+
+static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
+{
+ /* Reset a single ARMCPRegInfo register */
+ ARMCPRegInfo *ri = value;
+ ARMCPU *cpu = opaque;
+
+ if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
+ return;
+ }
+
+ if (ri->resetfn) {
+ ri->resetfn(&cpu->env, ri);
+ return;
+ }
+
+ /* A zero offset is never possible as it would be regs[0]
+ * so we use it to indicate that reset is being handled elsewhere.
+ * This is basically only used for fields in non-core coprocessors
+ * (like the pxa2xx ones).
+ */
+ if (!ri->fieldoffset) {
+ return;
+ }
+
+ if (cpreg_field_is_64bit(ri)) {
+ CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
+ } else {
+ CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
+ }
+}
+
+static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
+{
+ /* Purely an assertion check: we've already done reset once,
+ * so now check that running the reset for the cpreg doesn't
+ * change its value. This traps bugs where two different cpregs
+ * both try to reset the same state field but to different values.
+ */
+ ARMCPRegInfo *ri = value;
+ ARMCPU *cpu = opaque;
+ uint64_t oldvalue, newvalue;
+
+ if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
+ return;
+ }
+
+ oldvalue = read_raw_cp_reg(&cpu->env, ri);
+ cp_reg_reset(key, value, opaque);
+ newvalue = read_raw_cp_reg(&cpu->env, ri);
+ assert(oldvalue == newvalue);
+}
+
+static void arm_cpu_reset(DeviceState *dev)
+{
+ CPUState *s = CPU(dev);
+ ARMCPU *cpu = ARM_CPU(s);
+ ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
+ CPUARMState *env = &cpu->env;
+
+ acc->parent_reset(dev);
+
+ memset(env, 0, offsetof(CPUARMState, end_reset_fields));
+
+ g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
+ g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
+
+ env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
+ env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
+ env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
+ env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
+
+ cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
+
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
+ }
+
+ if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+ /* 64 bit CPUs always start in 64 bit mode */
+ env->aarch64 = 1;
+#if defined(CONFIG_USER_ONLY)
+ env->pstate = PSTATE_MODE_EL0t;
+ /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
+ env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
+ /* Enable all PAC keys. */
+ env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
+ SCTLR_EnDA | SCTLR_EnDB);
+ /* and to the FP/Neon instructions */
+ env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
+ /* and to the SVE instructions */
+ env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
+ /* with reasonable vector length */
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ env->vfp.zcr_el[1] =
+ aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
+ }
+ /*
+ * Enable TBI0 but not TBI1.
+ * Note that this must match useronly_clean_ptr.
+ */
+ env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
+
+ /* Enable MTE */
+ if (cpu_isar_feature(aa64_mte, cpu)) {
+ /* Enable tag access, but leave TCF0 as No Effect (0). */
+ env->cp15.sctlr_el[1] |= SCTLR_ATA0;
+ /*
+ * Exclude all tags, so that tag 0 is always used.
+ * This corresponds to Linux current->thread.gcr_incl = 0.
+ *
+ * Set RRND, so that helper_irg() will generate a seed later.
+ * Here in cpu_reset(), the crypto subsystem has not yet been
+ * initialized.
+ */
+ env->cp15.gcr_el1 = 0x1ffff;
+ }
+#else
+ /* Reset into the highest available EL */
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ env->pstate = PSTATE_MODE_EL3h;
+ } else if (arm_feature(env, ARM_FEATURE_EL2)) {
+ env->pstate = PSTATE_MODE_EL2h;
+ } else {
+ env->pstate = PSTATE_MODE_EL1h;
+ }
+ env->pc = cpu->rvbar;
+#endif
+ } else {
+#if defined(CONFIG_USER_ONLY)
+ /* Userspace expects access to cp10 and cp11 for FP/Neon */
+ env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
+#endif
+ }
+
+#if defined(CONFIG_USER_ONLY)
+ env->uncached_cpsr = ARM_CPU_MODE_USR;
+ /* For user mode we must enable access to coprocessors */
+ env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ env->cp15.c15_cpar = 3;
+ } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ env->cp15.c15_cpar = 1;
+ }
+#else
+
+ /*
+ * If the highest available EL is EL2, AArch32 will start in Hyp
+ * mode; otherwise it starts in SVC. Note that if we start in
+ * AArch64 then these values in the uncached_cpsr will be ignored.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL2) &&
+ !arm_feature(env, ARM_FEATURE_EL3)) {
+ env->uncached_cpsr = ARM_CPU_MODE_HYP;
+ } else {
+ env->uncached_cpsr = ARM_CPU_MODE_SVC;
+ }
+ env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
+
+ /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
+ * executing as AArch32 then check if highvecs are enabled and
+ * adjust the PC accordingly.
+ */
+ if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
+ env->regs[15] = 0xFFFF0000;
+ }
+
+ env->vfp.xregs[ARM_VFP_FPEXC] = 0;
+#endif
+
+ if (arm_feature(env, ARM_FEATURE_M)) {
+#ifndef CONFIG_USER_ONLY
+ uint32_t initial_msp; /* Loaded from 0x0 */
+ uint32_t initial_pc; /* Loaded from 0x4 */
+ uint8_t *rom;
+ uint32_t vecbase;
+#endif
+
+ if (cpu_isar_feature(aa32_lob, cpu)) {
+ /*
+ * LTPSIZE is constant 4 if MVE not implemented, and resets
+ * to an UNKNOWN value if MVE is implemented. We choose to
+ * always reset to 4.
+ */
+ env->v7m.ltpsize = 4;
+ /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
+ env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
+ env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+ env->v7m.secure = true;
+ } else {
+ /* This bit resets to 0 if security is supported, but 1 if
+ * it is not. The bit is not present in v7M, but we set it
+ * here so we can avoid having to make checks on it conditional
+ * on ARM_FEATURE_V8 (we don't let the guest see the bit).
+ */
+ env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
+ /*
+ * Set NSACR to indicate "NS access permitted to everything";
+ * this avoids having to have all the tests of it being
+ * conditional on ARM_FEATURE_M_SECURITY. Note also that from
+ * v8.1M the guest-visible value of NSACR in a CPU without the
+ * Security Extension is 0xcff.
+ */
+ env->v7m.nsacr = 0xcff;
+ }
+
+ /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
+ * that it resets to 1, so QEMU always does that rather than making
+ * it dependent on CPU model. In v8M it is RES1.
+ */
+ env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
+ env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ /* in v8M the NONBASETHRDENA bit [0] is RES1 */
+ env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
+ env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
+ }
+ if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
+ env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
+ env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
+ }
+
+ if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
+ env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
+ env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
+ R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
+ }
+
+#ifndef CONFIG_USER_ONLY
+ /* Unlike A/R profile, M profile defines the reset LR value */
+ env->regs[14] = 0xffffffff;
+
+ env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
+ env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
+
+ /* Load the initial SP and PC from offset 0 and 4 in the vector table */
+ vecbase = env->v7m.vecbase[env->v7m.secure];
+ rom = rom_ptr_for_as(s->as, vecbase, 8);
+ if (rom) {
+ /* Address zero is covered by ROM which hasn't yet been
+ * copied into physical memory.
+ */
+ initial_msp = ldl_p(rom);
+ initial_pc = ldl_p(rom + 4);
+ } else {
+ /* Address zero not covered by a ROM blob, or the ROM blob
+ * is in non-modifiable memory and this is a second reset after
+ * it got copied into memory. In the latter case, rom_ptr
+ * will return a NULL pointer and we should use ldl_phys instead.
+ */
+ initial_msp = ldl_phys(s->as, vecbase);
+ initial_pc = ldl_phys(s->as, vecbase + 4);
+ }
+
+ env->regs[13] = initial_msp & 0xFFFFFFFC;
+ env->regs[15] = initial_pc & ~1;
+ env->thumb = initial_pc & 1;
+#else
+ /*
+ * For user mode we run non-secure and with access to the FPU.
+ * The FPU context is active (ie does not need further setup)
+ * and is owned by non-secure.
+ */
+ env->v7m.secure = false;
+ env->v7m.nsacr = 0xcff;
+ env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
+ env->v7m.fpccr[M_REG_S] &=
+ ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
+ env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
+#endif
+ }
+
+ /* M profile requires that reset clears the exclusive monitor;
+ * A profile does not, but clearing it makes more sense than having it
+ * set with an exclusive access on address zero.
+ */
+ arm_clear_exclusive(env);
+
+ if (arm_feature(env, ARM_FEATURE_PMSA)) {
+ if (cpu->pmsav7_dregion > 0) {
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ memset(env->pmsav8.rbar[M_REG_NS], 0,
+ sizeof(*env->pmsav8.rbar[M_REG_NS])
+ * cpu->pmsav7_dregion);
+ memset(env->pmsav8.rlar[M_REG_NS], 0,
+ sizeof(*env->pmsav8.rlar[M_REG_NS])
+ * cpu->pmsav7_dregion);
+ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+ memset(env->pmsav8.rbar[M_REG_S], 0,
+ sizeof(*env->pmsav8.rbar[M_REG_S])
+ * cpu->pmsav7_dregion);
+ memset(env->pmsav8.rlar[M_REG_S], 0,
+ sizeof(*env->pmsav8.rlar[M_REG_S])
+ * cpu->pmsav7_dregion);
+ }
+ } else if (arm_feature(env, ARM_FEATURE_V7)) {
+ memset(env->pmsav7.drbar, 0,
+ sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
+ memset(env->pmsav7.drsr, 0,
+ sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
+ memset(env->pmsav7.dracr, 0,
+ sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
+ }
+ }
+ env->pmsav7.rnr[M_REG_NS] = 0;
+ env->pmsav7.rnr[M_REG_S] = 0;
+ env->pmsav8.mair0[M_REG_NS] = 0;
+ env->pmsav8.mair0[M_REG_S] = 0;
+ env->pmsav8.mair1[M_REG_NS] = 0;
+ env->pmsav8.mair1[M_REG_S] = 0;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+ if (cpu->sau_sregion > 0) {
+ memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
+ memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
+ }
+ env->sau.rnr = 0;
+ /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
+ * the Cortex-M33 does.
+ */
+ env->sau.ctrl = 0;
+ }
+
+ set_flush_to_zero(1, &env->vfp.standard_fp_status);
+ set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
+ set_default_nan_mode(1, &env->vfp.standard_fp_status);
+ set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
+ set_float_detect_tininess(float_tininess_before_rounding,
+ &env->vfp.fp_status);
+ set_float_detect_tininess(float_tininess_before_rounding,
+ &env->vfp.standard_fp_status);
+ set_float_detect_tininess(float_tininess_before_rounding,
+ &env->vfp.fp_status_f16);
+ set_float_detect_tininess(float_tininess_before_rounding,
+ &env->vfp.standard_fp_status_f16);
+#ifndef CONFIG_USER_ONLY
+ if (kvm_enabled()) {
+ kvm_arm_reset_vcpu(cpu);
+ }
+#endif
+
+ hw_breakpoint_update_all(cpu);
+ hw_watchpoint_update_all(cpu);
+ arm_rebuild_hflags(env);
+}
+
+#ifndef CONFIG_USER_ONLY
+
+static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
+ unsigned int target_el,
+ unsigned int cur_el, bool secure,
+ uint64_t hcr_el2)
+{
+ CPUARMState *env = cs->env_ptr;
+ bool pstate_unmasked;
+ bool unmasked = false;
+
+ /*
+ * Don't take exceptions if they target a lower EL.
+ * This check should catch any exceptions that would not be taken
+ * but left pending.
+ */
+ if (cur_el > target_el) {
+ return false;
+ }
+
+ switch (excp_idx) {
+ case EXCP_FIQ:
+ pstate_unmasked = !(env->daif & PSTATE_F);
+ break;
+
+ case EXCP_IRQ:
+ pstate_unmasked = !(env->daif & PSTATE_I);
+ break;
+
+ case EXCP_VFIQ:
+ if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
+ /* VFIQs are only taken when hypervized. */
+ return false;
+ }
+ return !(env->daif & PSTATE_F);
+ case EXCP_VIRQ:
+ if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
+ /* VIRQs are only taken when hypervized. */
+ return false;
+ }
+ return !(env->daif & PSTATE_I);
+ default:
+ g_assert_not_reached();
+ }
+
+ /*
+ * Use the target EL, current execution state and SCR/HCR settings to
+ * determine whether the corresponding CPSR bit is used to mask the
+ * interrupt.
+ */
+ if ((target_el > cur_el) && (target_el != 1)) {
+ /* Exceptions targeting a higher EL may not be maskable */
+ if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+ /*
+ * 64-bit masking rules are simple: exceptions to EL3
+ * can't be masked, and exceptions to EL2 can only be
+ * masked from Secure state. The HCR and SCR settings
+ * don't affect the masking logic, only the interrupt routing.
+ */
+ if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
+ unmasked = true;
+ }
+ } else {
+ /*
+ * The old 32-bit-only environment has a more complicated
+ * masking setup. HCR and SCR bits not only affect interrupt
+ * routing but also change the behaviour of masking.
+ */
+ bool hcr, scr;
+
+ switch (excp_idx) {
+ case EXCP_FIQ:
+ /*
+ * If FIQs are routed to EL3 or EL2 then there are cases where
+ * we override the CPSR.F in determining if the exception is
+ * masked or not. If neither of these are set then we fall back
+ * to the CPSR.F setting otherwise we further assess the state
+ * below.
+ */
+ hcr = hcr_el2 & HCR_FMO;
+ scr = (env->cp15.scr_el3 & SCR_FIQ);
+
+ /*
+ * When EL3 is 32-bit, the SCR.FW bit controls whether the
+ * CPSR.F bit masks FIQ interrupts when taken in non-secure
+ * state. If SCR.FW is set then FIQs can be masked by CPSR.F
+ * when non-secure but only when FIQs are only routed to EL3.
+ */
+ scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
+ break;
+ case EXCP_IRQ:
+ /*
+ * When EL3 execution state is 32-bit, if HCR.IMO is set then
+ * we may override the CPSR.I masking when in non-secure state.
+ * The SCR.IRQ setting has already been taken into consideration
+ * when setting the target EL, so it does not have a further
+ * affect here.
+ */
+ hcr = hcr_el2 & HCR_IMO;
+ scr = false;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if ((scr || hcr) && !secure) {
+ unmasked = true;
+ }
+ }
+ }
+
+ /*
+ * The PSTATE bits only mask the interrupt if we have not overriden the
+ * ability above.
+ */
+ return unmasked || pstate_unmasked;
+}
+
+static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
+{
+ CPUClass *cc = CPU_GET_CLASS(cs);
+ CPUARMState *env = cs->env_ptr;
+ uint32_t cur_el = arm_current_el(env);
+ bool secure = arm_is_secure(env);
+ uint64_t hcr_el2 = arm_hcr_el2_eff(env);
+ uint32_t target_el;
+ uint32_t excp_idx;
+
+ /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
+
+ if (interrupt_request & CPU_INTERRUPT_FIQ) {
+ excp_idx = EXCP_FIQ;
+ target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
+ if (arm_excp_unmasked(cs, excp_idx, target_el,
+ cur_el, secure, hcr_el2)) {
+ goto found;
+ }
+ }
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ excp_idx = EXCP_IRQ;
+ target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
+ if (arm_excp_unmasked(cs, excp_idx, target_el,
+ cur_el, secure, hcr_el2)) {
+ goto found;
+ }
+ }
+ if (interrupt_request & CPU_INTERRUPT_VIRQ) {
+ excp_idx = EXCP_VIRQ;
+ target_el = 1;
+ if (arm_excp_unmasked(cs, excp_idx, target_el,
+ cur_el, secure, hcr_el2)) {
+ goto found;
+ }
+ }
+ if (interrupt_request & CPU_INTERRUPT_VFIQ) {
+ excp_idx = EXCP_VFIQ;
+ target_el = 1;
+ if (arm_excp_unmasked(cs, excp_idx, target_el,
+ cur_el, secure, hcr_el2)) {
+ goto found;
+ }
+ }
+ return false;
+
+ found:
+ cs->exception_index = excp_idx;
+ env->exception.target_el = target_el;
+ cc->tcg_ops->do_interrupt(cs);
+ return true;
+}
+#endif /* !CONFIG_USER_ONLY */
+
+void arm_cpu_update_virq(ARMCPU *cpu)
+{
+ /*
+ * Update the interrupt level for VIRQ, which is the logical OR of
+ * the HCR_EL2.VI bit and the input line level from the GIC.
+ */
+ CPUARMState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+
+ bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
+ (env->irq_line_state & CPU_INTERRUPT_VIRQ);
+
+ if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
+ if (new_state) {
+ cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
+ } else {
+ cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
+ }
+ }
+}
+
+void arm_cpu_update_vfiq(ARMCPU *cpu)
+{
+ /*
+ * Update the interrupt level for VFIQ, which is the logical OR of
+ * the HCR_EL2.VF bit and the input line level from the GIC.
+ */
+ CPUARMState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+
+ bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
+ (env->irq_line_state & CPU_INTERRUPT_VFIQ);
+
+ if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
+ if (new_state) {
+ cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
+ } else {
+ cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
+ }
+ }
+}
+
+#ifndef CONFIG_USER_ONLY
+static void arm_cpu_set_irq(void *opaque, int irq, int level)
+{
+ ARMCPU *cpu = opaque;
+ CPUARMState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+ static const int mask[] = {
+ [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
+ [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
+ [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
+ [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
+ };
+
+ if (level) {
+ env->irq_line_state |= mask[irq];
+ } else {
+ env->irq_line_state &= ~mask[irq];
+ }
+
+ switch (irq) {
+ case ARM_CPU_VIRQ:
+ assert(arm_feature(env, ARM_FEATURE_EL2));
+ arm_cpu_update_virq(cpu);
+ break;
+ case ARM_CPU_VFIQ:
+ assert(arm_feature(env, ARM_FEATURE_EL2));
+ arm_cpu_update_vfiq(cpu);
+ break;
+ case ARM_CPU_IRQ:
+ case ARM_CPU_FIQ:
+ if (level) {
+ cpu_interrupt(cs, mask[irq]);
+ } else {
+ cpu_reset_interrupt(cs, mask[irq]);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
+{
+#ifdef CONFIG_KVM
+ ARMCPU *cpu = opaque;
+ CPUARMState *env = &cpu->env;
+ CPUState *cs = CPU(cpu);
+ uint32_t linestate_bit;
+ int irq_id;
+
+ switch (irq) {
+ case ARM_CPU_IRQ:
+ irq_id = KVM_ARM_IRQ_CPU_IRQ;
+ linestate_bit = CPU_INTERRUPT_HARD;
+ break;
+ case ARM_CPU_FIQ:
+ irq_id = KVM_ARM_IRQ_CPU_FIQ;
+ linestate_bit = CPU_INTERRUPT_FIQ;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (level) {
+ env->irq_line_state |= linestate_bit;
+ } else {
+ env->irq_line_state &= ~linestate_bit;
+ }
+ kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
+#endif
+}
+
+static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ cpu_synchronize_state(cs);
+ return arm_cpu_data_is_big_endian(env);
+}
+
+#endif
+
+static int
+print_insn_thumb1(bfd_vma pc, disassemble_info *info)
+{
+ return print_insn_arm(pc | 1, info);
+}
+
+static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
+{
+ ARMCPU *ac = ARM_CPU(cpu);
+ CPUARMState *env = &ac->env;
+ bool sctlr_b;
+
+ if (is_a64(env)) {
+ /* We might not be compiled with the A64 disassembler
+ * because it needs a C++ compiler. Leave print_insn
+ * unset in this case to use the caller default behaviour.
+ */
+#if defined(CONFIG_ARM_A64_DIS)
+ info->print_insn = print_insn_arm_a64;
+#endif
+ info->cap_arch = CS_ARCH_ARM64;
+ info->cap_insn_unit = 4;
+ info->cap_insn_split = 4;
+ } else {
+ int cap_mode;
+ if (env->thumb) {
+ info->print_insn = print_insn_thumb1;
+ info->cap_insn_unit = 2;
+ info->cap_insn_split = 4;
+ cap_mode = CS_MODE_THUMB;
+ } else {
+ info->print_insn = print_insn_arm;
+ info->cap_insn_unit = 4;
+ info->cap_insn_split = 4;
+ cap_mode = CS_MODE_ARM;
+ }
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ cap_mode |= CS_MODE_V8;
+ }
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ cap_mode |= CS_MODE_MCLASS;
+ }
+ info->cap_arch = CS_ARCH_ARM;
+ info->cap_mode = cap_mode;
+ }
+
+ sctlr_b = arm_sctlr_b(env);
+ if (bswap_code(sctlr_b)) {
+#ifdef TARGET_WORDS_BIGENDIAN
+ info->endian = BFD_ENDIAN_LITTLE;
+#else
+ info->endian = BFD_ENDIAN_BIG;
+#endif
+ }
+ info->flags &= ~INSN_ARM_BE32;
+#ifndef CONFIG_USER_ONLY
+ if (sctlr_b) {
+ info->flags |= INSN_ARM_BE32;
+ }
+#endif
+}
+
+#ifdef TARGET_AARCH64
+
+static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint32_t psr = pstate_read(env);
+ int i;
+ int el = arm_current_el(env);
+ const char *ns_status;
+
+ qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
+ for (i = 0; i < 32; i++) {
+ if (i == 31) {
+ qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
+ } else {
+ qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
+ (i + 2) % 3 ? " " : "\n");
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
+ ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
+ } else {
+ ns_status = "";
+ }
+ qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
+ psr,
+ psr & PSTATE_N ? 'N' : '-',
+ psr & PSTATE_Z ? 'Z' : '-',
+ psr & PSTATE_C ? 'C' : '-',
+ psr & PSTATE_V ? 'V' : '-',
+ ns_status,
+ el,
+ psr & PSTATE_SP ? 'h' : 't');
+
+ if (cpu_isar_feature(aa64_bti, cpu)) {
+ qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
+ }
+ if (!(flags & CPU_DUMP_FPU)) {
+ qemu_fprintf(f, "\n");
+ return;
+ }
+ if (fp_exception_el(env, el) != 0) {
+ qemu_fprintf(f, " FPU disabled\n");
+ return;
+ }
+ qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
+ vfp_get_fpcr(env), vfp_get_fpsr(env));
+
+ if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
+ int j, zcr_len = sve_zcr_len_for_el(env, el);
+
+ for (i = 0; i <= FFR_PRED_NUM; i++) {
+ bool eol;
+ if (i == FFR_PRED_NUM) {
+ qemu_fprintf(f, "FFR=");
+ /* It's last, so end the line. */
+ eol = true;
+ } else {
+ qemu_fprintf(f, "P%02d=", i);
+ switch (zcr_len) {
+ case 0:
+ eol = i % 8 == 7;
+ break;
+ case 1:
+ eol = i % 6 == 5;
+ break;
+ case 2:
+ case 3:
+ eol = i % 3 == 2;
+ break;
+ default:
+ /* More than one quadword per predicate. */
+ eol = true;
+ break;
+ }
+ }
+ for (j = zcr_len / 4; j >= 0; j--) {
+ int digits;
+ if (j * 4 + 4 <= zcr_len + 1) {
+ digits = 16;
+ } else {
+ digits = (zcr_len % 4 + 1) * 4;
+ }
+ qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
+ env->vfp.pregs[i].p[j],
+ j ? ":" : eol ? "\n" : " ");
+ }
+ }
+
+ for (i = 0; i < 32; i++) {
+ if (zcr_len == 0) {
+ qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
+ i, env->vfp.zregs[i].d[1],
+ env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
+ } else if (zcr_len == 1) {
+ qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
+ ":%016" PRIx64 ":%016" PRIx64 "\n",
+ i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
+ env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
+ } else {
+ for (j = zcr_len; j >= 0; j--) {
+ bool odd = (zcr_len - j) % 2 != 0;
+ if (j == zcr_len) {
+ qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
+ } else if (!odd) {
+ if (j > 0) {
+ qemu_fprintf(f, " [%x-%x]=", j, j - 1);
+ } else {
+ qemu_fprintf(f, " [%x]=", j);
+ }
+ }
+ qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
+ env->vfp.zregs[i].d[j * 2 + 1],
+ env->vfp.zregs[i].d[j * 2],
+ odd || j == 0 ? "\n" : ":");
+ }
+ }
+ }
+ } else {
+ for (i = 0; i < 32; i++) {
+ uint64_t *q = aa64_vfp_qreg(env, i);
+ qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
+ i, q[1], q[0], (i & 1 ? "\n" : " "));
+ }
+ }
+}
+
+#else
+
+static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+ g_assert_not_reached();
+}
+
+#endif
+
+static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ int i;
+
+ if (is_a64(env)) {
+ aarch64_cpu_dump_state(cs, f, flags);
+ return;
+ }
+
+ for (i = 0; i < 16; i++) {
+ qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
+ if ((i % 4) == 3) {
+ qemu_fprintf(f, "\n");
+ } else {
+ qemu_fprintf(f, " ");
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ uint32_t xpsr = xpsr_read(env);
+ const char *mode;
+ const char *ns_status = "";
+
+ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+ ns_status = env->v7m.secure ? "S " : "NS ";
+ }
+
+ if (xpsr & XPSR_EXCP) {
+ mode = "handler";
+ } else {
+ if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
+ mode = "unpriv-thread";
+ } else {
+ mode = "priv-thread";
+ }
+ }
+
+ qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
+ xpsr,
+ xpsr & XPSR_N ? 'N' : '-',
+ xpsr & XPSR_Z ? 'Z' : '-',
+ xpsr & XPSR_C ? 'C' : '-',
+ xpsr & XPSR_V ? 'V' : '-',
+ xpsr & XPSR_T ? 'T' : 'A',
+ ns_status,
+ mode);
+ } else {
+ uint32_t psr = cpsr_read(env);
+ const char *ns_status = "";
+
+ if (arm_feature(env, ARM_FEATURE_EL3) &&
+ (psr & CPSR_M) != ARM_CPU_MODE_MON) {
+ ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
+ }
+
+ qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
+ psr,
+ psr & CPSR_N ? 'N' : '-',
+ psr & CPSR_Z ? 'Z' : '-',
+ psr & CPSR_C ? 'C' : '-',
+ psr & CPSR_V ? 'V' : '-',
+ psr & CPSR_T ? 'T' : 'A',
+ ns_status,
+ aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
+ }
+
+ if (flags & CPU_DUMP_FPU) {
+ int numvfpregs = 0;
+ if (cpu_isar_feature(aa32_simd_r32, cpu)) {
+ numvfpregs = 32;
+ } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
+ numvfpregs = 16;
+ }
+ for (i = 0; i < numvfpregs; i++) {
+ uint64_t v = *aa32_vfp_dreg(env, i);
+ qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
+ i * 2, (uint32_t)v,
+ i * 2 + 1, (uint32_t)(v >> 32),
+ i, v);
+ }
+ qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
+ if (cpu_isar_feature(aa32_mve, cpu)) {
+ qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
+ }
+ }
+}
+
+uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
+{
+ uint32_t Aff1 = idx / clustersz;
+ uint32_t Aff0 = idx % clustersz;
+ return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
+}
+
+static void cpreg_hashtable_data_destroy(gpointer data)
+{
+ /*
+ * Destroy function for cpu->cp_regs hashtable data entries.
+ * We must free the name string because it was g_strdup()ed in
+ * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
+ * from r->name because we know we definitely allocated it.
+ */
+ ARMCPRegInfo *r = data;
+
+ g_free((void *)r->name);
+ g_free(r);
+}
+
+static void arm_cpu_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ cpu_set_cpustate_pointers(cpu);
+ cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
+ g_free, cpreg_hashtable_data_destroy);
+
+ QLIST_INIT(&cpu->pre_el_change_hooks);
+ QLIST_INIT(&cpu->el_change_hooks);
+
+#ifdef CONFIG_USER_ONLY
+# ifdef TARGET_AARCH64
+ /*
+ * The linux kernel defaults to 512-bit vectors, when sve is supported.
+ * See documentation for /proc/sys/abi/sve_default_vector_length, and
+ * our corresponding sve-default-vector-length cpu property.
+ */
+ cpu->sve_default_vq = 4;
+# endif
+#else
+ /* Our inbound IRQ and FIQ lines */
+ if (kvm_enabled()) {
+ /* VIRQ and VFIQ are unused with KVM but we add them to maintain
+ * the same interface as non-KVM CPUs.
+ */
+ qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
+ } else {
+ qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
+ }
+
+ qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
+ ARRAY_SIZE(cpu->gt_timer_outputs));
+
+ qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
+ "gicv3-maintenance-interrupt", 1);
+ qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
+ "pmu-interrupt", 1);
+#endif
+
+ /* DTB consumers generally don't in fact care what the 'compatible'
+ * string is, so always provide some string and trust that a hypothetical
+ * picky DTB consumer will also provide a helpful error message.
+ */
+ cpu->dtb_compatible = "qemu,unknown";
+ cpu->psci_version = 1; /* By default assume PSCI v0.1 */
+ cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
+
+ if (tcg_enabled() || hvf_enabled()) {
+ cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
+ }
+}
+
+static Property arm_cpu_gt_cntfrq_property =
+ DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
+ NANOSECONDS_PER_SECOND / GTIMER_SCALE);
+
+static Property arm_cpu_reset_cbar_property =
+ DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
+
+static Property arm_cpu_reset_hivecs_property =
+ DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
+
+static Property arm_cpu_rvbar_property =
+ DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
+
+#ifndef CONFIG_USER_ONLY
+static Property arm_cpu_has_el2_property =
+ DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
+
+static Property arm_cpu_has_el3_property =
+ DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
+#endif
+
+static Property arm_cpu_cfgend_property =
+ DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
+
+static Property arm_cpu_has_vfp_property =
+ DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
+
+static Property arm_cpu_has_neon_property =
+ DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
+
+static Property arm_cpu_has_dsp_property =
+ DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
+
+static Property arm_cpu_has_mpu_property =
+ DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
+
+/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
+ * because the CPU initfn will have already set cpu->pmsav7_dregion to
+ * the right value for that particular CPU type, and we don't want
+ * to override that with an incorrect constant value.
+ */
+static Property arm_cpu_pmsav7_dregion_property =
+ DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
+ pmsav7_dregion,
+ qdev_prop_uint32, uint32_t);
+
+static bool arm_get_pmu(Object *obj, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ return cpu->has_pmu;
+}
+
+static void arm_set_pmu(Object *obj, bool value, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ if (value) {
+ if (kvm_enabled() && !kvm_arm_pmu_supported()) {
+ error_setg(errp, "'pmu' feature not supported by KVM on this host");
+ return;
+ }
+ set_feature(&cpu->env, ARM_FEATURE_PMU);
+ } else {
+ unset_feature(&cpu->env, ARM_FEATURE_PMU);
+ }
+ cpu->has_pmu = value;
+}
+
+unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
+{
+ /*
+ * The exact approach to calculating guest ticks is:
+ *
+ * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
+ * NANOSECONDS_PER_SECOND);
+ *
+ * We don't do that. Rather we intentionally use integer division
+ * truncation below and in the caller for the conversion of host monotonic
+ * time to guest ticks to provide the exact inverse for the semantics of
+ * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
+ * it loses precision when representing frequencies where
+ * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
+ * provide an exact inverse leads to scheduling timers with negative
+ * periods, which in turn leads to sticky behaviour in the guest.
+ *
+ * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
+ * cannot become zero.
+ */
+ return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
+ NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
+}
+
+void arm_cpu_post_init(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ /* M profile implies PMSA. We have to do this here rather than
+ * in realize with the other feature-implication checks because
+ * we look at the PMSA bit to see if we should add some properties.
+ */
+ if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
+ set_feature(&cpu->env, ARM_FEATURE_PMSA);
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
+ arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
+ }
+
+ if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
+ }
+
+#ifndef CONFIG_USER_ONLY
+ if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
+ /* Add the has_el3 state CPU property only if EL3 is allowed. This will
+ * prevent "has_el3" from existing on CPUs which cannot support EL3.
+ */
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
+
+ object_property_add_link(obj, "secure-memory",
+ TYPE_MEMORY_REGION,
+ (Object **)&cpu->secure_memory,
+ qdev_prop_allow_set_link_before_realize,
+ OBJ_PROP_LINK_STRONG);
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
+ }
+#endif
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
+ cpu->has_pmu = true;
+ object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
+ }
+
+ /*
+ * Allow user to turn off VFP and Neon support, but only for TCG --
+ * KVM does not currently allow us to lie to the guest about its
+ * ID/feature registers, so the guest always sees what the host has.
+ */
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
+ ? cpu_isar_feature(aa64_fp_simd, cpu)
+ : cpu_isar_feature(aa32_vfp, cpu)) {
+ cpu->has_vfp = true;
+ if (!kvm_enabled()) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
+ }
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
+ cpu->has_neon = true;
+ if (!kvm_enabled()) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
+ }
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
+ arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
+ if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
+ qdev_property_add_static(DEVICE(obj),
+ &arm_cpu_pmsav7_dregion_property);
+ }
+ }
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
+ object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
+ qdev_prop_allow_set_link_before_realize,
+ OBJ_PROP_LINK_STRONG);
+ /*
+ * M profile: initial value of the Secure VTOR. We can't just use
+ * a simple DEFINE_PROP_UINT32 for this because we want to permit
+ * the property to be set after realize.
+ */
+ object_property_add_uint32_ptr(obj, "init-svtor",
+ &cpu->init_svtor,
+ OBJ_PROP_FLAG_READWRITE);
+ }
+ if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
+ /*
+ * Initial value of the NS VTOR (for cores without the Security
+ * extension, this is the only VTOR)
+ */
+ object_property_add_uint32_ptr(obj, "init-nsvtor",
+ &cpu->init_nsvtor,
+ OBJ_PROP_FLAG_READWRITE);
+ }
+
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
+ qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
+ }
+
+ if (kvm_enabled()) {
+ kvm_arm_add_vcpu_properties(obj);
+ }
+
+#ifndef CONFIG_USER_ONLY
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
+ cpu_isar_feature(aa64_mte, cpu)) {
+ object_property_add_link(obj, "tag-memory",
+ TYPE_MEMORY_REGION,
+ (Object **)&cpu->tag_memory,
+ qdev_prop_allow_set_link_before_realize,
+ OBJ_PROP_LINK_STRONG);
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
+ object_property_add_link(obj, "secure-tag-memory",
+ TYPE_MEMORY_REGION,
+ (Object **)&cpu->secure_tag_memory,
+ qdev_prop_allow_set_link_before_realize,
+ OBJ_PROP_LINK_STRONG);
+ }
+ }
+#endif
+}
+
+static void arm_cpu_finalizefn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ ARMELChangeHook *hook, *next;
+
+ g_hash_table_destroy(cpu->cp_regs);
+
+ QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
+ QLIST_REMOVE(hook, node);
+ g_free(hook);
+ }
+ QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
+ QLIST_REMOVE(hook, node);
+ g_free(hook);
+ }
+#ifndef CONFIG_USER_ONLY
+ if (cpu->pmu_timer) {
+ timer_free(cpu->pmu_timer);
+ }
+#endif
+}
+
+void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
+{
+ Error *local_err = NULL;
+
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ arm_cpu_sve_finalize(cpu, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ return;
+ }
+
+ /*
+ * KVM does not support modifications to this feature.
+ * We have not registered the cpu properties when KVM
+ * is in use, so the user will not be able to set them.
+ */
+ if (!kvm_enabled()) {
+ arm_cpu_pauth_finalize(cpu, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ return;
+ }
+ }
+ }
+
+ if (kvm_enabled()) {
+ kvm_arm_steal_time_finalize(cpu, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ return;
+ }
+ }
+}
+
+static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
+{
+ CPUState *cs = CPU(dev);
+ ARMCPU *cpu = ARM_CPU(dev);
+ ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
+ CPUARMState *env = &cpu->env;
+ int pagebits;
+ Error *local_err = NULL;
+ bool no_aa32 = false;
+
+ /* If we needed to query the host kernel for the CPU features
+ * then it's possible that might have failed in the initfn, but
+ * this is the first point where we can report it.
+ */
+ if (cpu->host_cpu_probe_failed) {
+ if (!kvm_enabled() && !hvf_enabled()) {
+ error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
+ } else {
+ error_setg(errp, "Failed to retrieve host CPU features");
+ }
+ return;
+ }
+
+#ifndef CONFIG_USER_ONLY
+ /* The NVIC and M-profile CPU are two halves of a single piece of
+ * hardware; trying to use one without the other is a command line
+ * error and will result in segfaults if not caught here.
+ */
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ if (!env->nvic) {
+ error_setg(errp, "This board cannot be used with Cortex-M CPUs");
+ return;
+ }
+ } else {
+ if (env->nvic) {
+ error_setg(errp, "This board can only be used with Cortex-M CPUs");
+ return;
+ }
+ }
+
+ if (kvm_enabled()) {
+ /*
+ * Catch all the cases which might cause us to create more than one
+ * address space for the CPU (otherwise we will assert() later in
+ * cpu_address_space_init()).
+ */
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ error_setg(errp,
+ "Cannot enable KVM when using an M-profile guest CPU");
+ return;
+ }
+ if (cpu->has_el3) {
+ error_setg(errp,
+ "Cannot enable KVM when guest CPU has EL3 enabled");
+ return;
+ }
+ if (cpu->tag_memory) {
+ error_setg(errp,
+ "Cannot enable KVM when guest CPUs has MTE enabled");
+ return;
+ }
+ }
+
+ {
+ uint64_t scale;
+
+ if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
+ if (!cpu->gt_cntfrq_hz) {
+ error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
+ cpu->gt_cntfrq_hz);
+ return;
+ }
+ scale = gt_cntfrq_period_ns(cpu);
+ } else {
+ scale = GTIMER_SCALE;
+ }
+
+ cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
+ arm_gt_ptimer_cb, cpu);
+ cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
+ arm_gt_vtimer_cb, cpu);
+ cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
+ arm_gt_htimer_cb, cpu);
+ cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
+ arm_gt_stimer_cb, cpu);
+ cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
+ arm_gt_hvtimer_cb, cpu);
+ }
+#endif
+
+ cpu_exec_realizefn(cs, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ return;
+ }
+
+ arm_cpu_finalize_features(cpu, &local_err);
+ if (local_err != NULL) {
+ error_propagate(errp, local_err);
+ return;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_AARCH64) &&
+ cpu->has_vfp != cpu->has_neon) {
+ /*
+ * This is an architectural requirement for AArch64; AArch32 is
+ * more flexible and permits VFP-no-Neon and Neon-no-VFP.
+ */
+ error_setg(errp,
+ "AArch64 CPUs must have both VFP and Neon or neither");
+ return;
+ }
+
+ if (!cpu->has_vfp) {
+ uint64_t t;
+ uint32_t u;
+
+ t = cpu->isar.id_aa64isar1;
+ t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
+ cpu->isar.id_aa64isar1 = t;
+
+ t = cpu->isar.id_aa64pfr0;
+ t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
+ cpu->isar.id_aa64pfr0 = t;
+
+ u = cpu->isar.id_isar6;
+ u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
+ u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
+ cpu->isar.id_isar6 = u;
+
+ u = cpu->isar.mvfr0;
+ u = FIELD_DP32(u, MVFR0, FPSP, 0);
+ u = FIELD_DP32(u, MVFR0, FPDP, 0);
+ u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
+ u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
+ u = FIELD_DP32(u, MVFR0, FPROUND, 0);
+ if (!arm_feature(env, ARM_FEATURE_M)) {
+ u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
+ u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
+ }
+ cpu->isar.mvfr0 = u;
+
+ u = cpu->isar.mvfr1;
+ u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
+ u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
+ u = FIELD_DP32(u, MVFR1, FPHP, 0);
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ u = FIELD_DP32(u, MVFR1, FP16, 0);
+ }
+ cpu->isar.mvfr1 = u;
+
+ u = cpu->isar.mvfr2;
+ u = FIELD_DP32(u, MVFR2, FPMISC, 0);
+ cpu->isar.mvfr2 = u;
+ }
+
+ if (!cpu->has_neon) {
+ uint64_t t;
+ uint32_t u;
+
+ unset_feature(env, ARM_FEATURE_NEON);
+
+ t = cpu->isar.id_aa64isar0;
+ t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
+ cpu->isar.id_aa64isar0 = t;
+
+ t = cpu->isar.id_aa64isar1;
+ t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
+ t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
+ t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
+ cpu->isar.id_aa64isar1 = t;
+
+ t = cpu->isar.id_aa64pfr0;
+ t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
+ cpu->isar.id_aa64pfr0 = t;
+
+ u = cpu->isar.id_isar5;
+ u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
+ u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
+ cpu->isar.id_isar5 = u;
+
+ u = cpu->isar.id_isar6;
+ u = FIELD_DP32(u, ID_ISAR6, DP, 0);
+ u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
+ u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
+ u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
+ cpu->isar.id_isar6 = u;
+
+ if (!arm_feature(env, ARM_FEATURE_M)) {
+ u = cpu->isar.mvfr1;
+ u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
+ u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
+ u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
+ u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
+ cpu->isar.mvfr1 = u;
+
+ u = cpu->isar.mvfr2;
+ u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
+ cpu->isar.mvfr2 = u;
+ }
+ }
+
+ if (!cpu->has_neon && !cpu->has_vfp) {
+ uint64_t t;
+ uint32_t u;
+
+ t = cpu->isar.id_aa64isar0;
+ t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
+ cpu->isar.id_aa64isar0 = t;
+
+ t = cpu->isar.id_aa64isar1;
+ t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
+ cpu->isar.id_aa64isar1 = t;
+
+ u = cpu->isar.mvfr0;
+ u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
+ cpu->isar.mvfr0 = u;
+
+ /* Despite the name, this field covers both VFP and Neon */
+ u = cpu->isar.mvfr1;
+ u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
+ cpu->isar.mvfr1 = u;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
+ uint32_t u;
+
+ unset_feature(env, ARM_FEATURE_THUMB_DSP);
+
+ u = cpu->isar.id_isar1;
+ u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
+ cpu->isar.id_isar1 = u;
+
+ u = cpu->isar.id_isar2;
+ u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
+ u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
+ cpu->isar.id_isar2 = u;
+
+ u = cpu->isar.id_isar3;
+ u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
+ u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
+ cpu->isar.id_isar3 = u;
+ }
+
+ /* Some features automatically imply others: */
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ set_feature(env, ARM_FEATURE_V7);
+ } else {
+ set_feature(env, ARM_FEATURE_V7VE);
+ }
+ }
+
+ /*
+ * There exist AArch64 cpus without AArch32 support. When KVM
+ * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
+ * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
+ * As a general principle, we also do not make ID register
+ * consistency checks anywhere unless using TCG, because only
+ * for TCG would a consistency-check failure be a QEMU bug.
+ */
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
+ }
+
+ if (arm_feature(env, ARM_FEATURE_V7VE)) {
+ /* v7 Virtualization Extensions. In real hardware this implies
+ * EL2 and also the presence of the Security Extensions.
+ * For QEMU, for backwards-compatibility we implement some
+ * CPUs or CPU configs which have no actual EL2 or EL3 but do
+ * include the various other features that V7VE implies.
+ * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
+ * Security Extensions is ARM_FEATURE_EL3.
+ */
+ assert(!tcg_enabled() || no_aa32 ||
+ cpu_isar_feature(aa32_arm_div, cpu));
+ set_feature(env, ARM_FEATURE_LPAE);
+ set_feature(env, ARM_FEATURE_V7);
+ }
+ if (arm_feature(env, ARM_FEATURE_V7)) {
+ set_feature(env, ARM_FEATURE_VAPA);
+ set_feature(env, ARM_FEATURE_THUMB2);
+ set_feature(env, ARM_FEATURE_MPIDR);
+ if (!arm_feature(env, ARM_FEATURE_M)) {
+ set_feature(env, ARM_FEATURE_V6K);
+ } else {
+ set_feature(env, ARM_FEATURE_V6);
+ }
+
+ /* Always define VBAR for V7 CPUs even if it doesn't exist in
+ * non-EL3 configs. This is needed by some legacy boards.
+ */
+ set_feature(env, ARM_FEATURE_VBAR);
+ }
+ if (arm_feature(env, ARM_FEATURE_V6K)) {
+ set_feature(env, ARM_FEATURE_V6);
+ set_feature(env, ARM_FEATURE_MVFR);
+ }
+ if (arm_feature(env, ARM_FEATURE_V6)) {
+ set_feature(env, ARM_FEATURE_V5);
+ if (!arm_feature(env, ARM_FEATURE_M)) {
+ assert(!tcg_enabled() || no_aa32 ||
+ cpu_isar_feature(aa32_jazelle, cpu));
+ set_feature(env, ARM_FEATURE_AUXCR);
+ }
+ }
+ if (arm_feature(env, ARM_FEATURE_V5)) {
+ set_feature(env, ARM_FEATURE_V4T);
+ }
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ set_feature(env, ARM_FEATURE_V7MP);
+ }
+ if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
+ set_feature(env, ARM_FEATURE_CBAR);
+ }
+ if (arm_feature(env, ARM_FEATURE_THUMB2) &&
+ !arm_feature(env, ARM_FEATURE_M)) {
+ set_feature(env, ARM_FEATURE_THUMB_DSP);
+ }
+
+ /*
+ * We rely on no XScale CPU having VFP so we can use the same bits in the
+ * TB flags field for VECSTRIDE and XSCALE_CPAR.
+ */
+ assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
+ !cpu_isar_feature(aa32_vfp_simd, cpu) ||
+ !arm_feature(env, ARM_FEATURE_XSCALE));
+
+ if (arm_feature(env, ARM_FEATURE_V7) &&
+ !arm_feature(env, ARM_FEATURE_M) &&
+ !arm_feature(env, ARM_FEATURE_PMSA)) {
+ /* v7VMSA drops support for the old ARMv5 tiny pages, so we
+ * can use 4K pages.
+ */
+ pagebits = 12;
+ } else {
+ /* For CPUs which might have tiny 1K pages, or which have an
+ * MPU and might have small region sizes, stick with 1K pages.
+ */
+ pagebits = 10;
+ }
+ if (!set_preferred_target_page_bits(pagebits)) {
+ /* This can only ever happen for hotplugging a CPU, or if
+ * the board code incorrectly creates a CPU which it has
+ * promised via minimum_page_size that it will not.
+ */
+ error_setg(errp, "This CPU requires a smaller page size than the "
+ "system is using");
+ return;
+ }
+
+ /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
+ * We don't support setting cluster ID ([16..23]) (known as Aff2
+ * in later ARM ARM versions), or any of the higher affinity level fields,
+ * so these bits always RAZ.
+ */
+ if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
+ cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
+ ARM_DEFAULT_CPUS_PER_CLUSTER);
+ }
+
+ if (cpu->reset_hivecs) {
+ cpu->reset_sctlr |= (1 << 13);
+ }
+
+ if (cpu->cfgend) {
+ if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
+ cpu->reset_sctlr |= SCTLR_EE;
+ } else {
+ cpu->reset_sctlr |= SCTLR_B;
+ }
+ }
+
+ if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
+ /* If the has_el3 CPU property is disabled then we need to disable the
+ * feature.
+ */
+ unset_feature(env, ARM_FEATURE_EL3);
+
+ /* Disable the security extension feature bits in the processor feature
+ * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
+ */
+ cpu->isar.id_pfr1 &= ~0xf0;
+ cpu->isar.id_aa64pfr0 &= ~0xf000;
+ }
+
+ if (!cpu->has_el2) {
+ unset_feature(env, ARM_FEATURE_EL2);
+ }
+
+ if (!cpu->has_pmu) {
+ unset_feature(env, ARM_FEATURE_PMU);
+ }
+ if (arm_feature(env, ARM_FEATURE_PMU)) {
+ pmu_init(cpu);
+
+ if (!kvm_enabled()) {
+ arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
+ arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
+ }
+
+#ifndef CONFIG_USER_ONLY
+ cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
+ cpu);
+#endif
+ } else {
+ cpu->isar.id_aa64dfr0 =
+ FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
+ cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
+ cpu->pmceid0 = 0;
+ cpu->pmceid1 = 0;
+ }
+
+ if (!arm_feature(env, ARM_FEATURE_EL2)) {
+ /* Disable the hypervisor feature bits in the processor feature
+ * registers if we don't have EL2. These are id_pfr1[15:12] and
+ * id_aa64pfr0_el1[11:8].
+ */
+ cpu->isar.id_aa64pfr0 &= ~0xf00;
+ cpu->isar.id_pfr1 &= ~0xf000;
+ }
+
+#ifndef CONFIG_USER_ONLY
+ if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
+ /*
+ * Disable the MTE feature bits if we do not have tag-memory
+ * provided by the machine.
+ */
+ cpu->isar.id_aa64pfr1 =
+ FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
+ }
+#endif
+
+ /* MPU can be configured out of a PMSA CPU either by setting has-mpu
+ * to false or by setting pmsav7-dregion to 0.
+ */
+ if (!cpu->has_mpu) {
+ cpu->pmsav7_dregion = 0;
+ }
+ if (cpu->pmsav7_dregion == 0) {
+ cpu->has_mpu = false;
+ }
+
+ if (arm_feature(env, ARM_FEATURE_PMSA) &&
+ arm_feature(env, ARM_FEATURE_V7)) {
+ uint32_t nr = cpu->pmsav7_dregion;
+
+ if (nr > 0xff) {
+ error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
+ return;
+ }
+
+ if (nr) {
+ if (arm_feature(env, ARM_FEATURE_V8)) {
+ /* PMSAv8 */
+ env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
+ env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
+ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+ env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
+ env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
+ }
+ } else {
+ env->pmsav7.drbar = g_new0(uint32_t, nr);
+ env->pmsav7.drsr = g_new0(uint32_t, nr);
+ env->pmsav7.dracr = g_new0(uint32_t, nr);
+ }
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
+ uint32_t nr = cpu->sau_sregion;
+
+ if (nr > 0xff) {
+ error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
+ return;
+ }
+
+ if (nr) {
+ env->sau.rbar = g_new0(uint32_t, nr);
+ env->sau.rlar = g_new0(uint32_t, nr);
+ }
+ }
+
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ set_feature(env, ARM_FEATURE_VBAR);
+ }
+
+ register_cp_regs_for_features(cpu);
+ arm_cpu_register_gdb_regs_for_features(cpu);
+
+ init_cpreg_list(cpu);
+
+#ifndef CONFIG_USER_ONLY
+ MachineState *ms = MACHINE(qdev_get_machine());
+ unsigned int smp_cpus = ms->smp.cpus;
+ bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
+
+ /*
+ * We must set cs->num_ases to the final value before
+ * the first call to cpu_address_space_init.
+ */
+ if (cpu->tag_memory != NULL) {
+ cs->num_ases = 3 + has_secure;
+ } else {
+ cs->num_ases = 1 + has_secure;
+ }
+
+ if (has_secure) {
+ if (!cpu->secure_memory) {
+ cpu->secure_memory = cs->memory;
+ }
+ cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
+ cpu->secure_memory);
+ }
+
+ if (cpu->tag_memory != NULL) {
+ cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
+ cpu->tag_memory);
+ if (has_secure) {
+ cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
+ cpu->secure_tag_memory);
+ }
+ }
+
+ cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
+
+ /* No core_count specified, default to smp_cpus. */
+ if (cpu->core_count == -1) {
+ cpu->core_count = smp_cpus;
+ }
+#endif
+
+ if (tcg_enabled()) {
+ int dcz_blocklen = 4 << cpu->dcz_blocksize;
+
+ /*
+ * We only support DCZ blocklen that fits on one page.
+ *
+ * Architectually this is always true. However TARGET_PAGE_SIZE
+ * is variable and, for compatibility with -machine virt-2.7,
+ * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
+ * But even then, while the largest architectural DCZ blocklen
+ * is 2KiB, no cpu actually uses such a large blocklen.
+ */
+ assert(dcz_blocklen <= TARGET_PAGE_SIZE);
+
+ /*
+ * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
+ * both nibbles of each byte storing tag data may be written at once.
+ * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
+ */
+ if (cpu_isar_feature(aa64_mte, cpu)) {
+ assert(dcz_blocklen >= 2 * TAG_GRANULE);
+ }
+ }
+
+ qemu_init_vcpu(cs);
+ cpu_reset(cs);
+
+ acc->parent_realize(dev, errp);
+}
+
+static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
+{
+ ObjectClass *oc;
+ char *typename;
+ char **cpuname;
+ const char *cpunamestr;
+
+ cpuname = g_strsplit(cpu_model, ",", 1);
+ cpunamestr = cpuname[0];
+#ifdef CONFIG_USER_ONLY
+ /* For backwards compatibility usermode emulation allows "-cpu any",
+ * which has the same semantics as "-cpu max".
+ */
+ if (!strcmp(cpunamestr, "any")) {
+ cpunamestr = "max";
+ }
+#endif
+ typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
+ oc = object_class_by_name(typename);
+ g_strfreev(cpuname);
+ g_free(typename);
+ if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
+ object_class_is_abstract(oc)) {
+ return NULL;
+ }
+ return oc;
+}
+
+static Property arm_cpu_properties[] = {
+ DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
+ DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
+ DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
+ mp_affinity, ARM64_AFFINITY_INVALID),
+ DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
+ DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
+ DEFINE_PROP_END_OF_LIST()
+};
+
+static gchar *arm_gdb_arch_name(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
+ return g_strdup("iwmmxt");
+ }
+ return g_strdup("arm");
+}
+
+#ifndef CONFIG_USER_ONLY
+#include "hw/core/sysemu-cpu-ops.h"
+
+static const struct SysemuCPUOps arm_sysemu_ops = {
+ .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
+ .asidx_from_attrs = arm_asidx_from_attrs,
+ .write_elf32_note = arm_cpu_write_elf32_note,
+ .write_elf64_note = arm_cpu_write_elf64_note,
+ .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
+ .legacy_vmsd = &vmstate_arm_cpu,
+};
+#endif
+
+#ifdef CONFIG_TCG
+static const struct TCGCPUOps arm_tcg_ops = {
+ .initialize = arm_translate_init,
+ .synchronize_from_tb = arm_cpu_synchronize_from_tb,
+ .debug_excp_handler = arm_debug_excp_handler,
+
+#ifdef CONFIG_USER_ONLY
+ .record_sigsegv = arm_cpu_record_sigsegv,
+ .record_sigbus = arm_cpu_record_sigbus,
+#else
+ .tlb_fill = arm_cpu_tlb_fill,
+ .cpu_exec_interrupt = arm_cpu_exec_interrupt,
+ .do_interrupt = arm_cpu_do_interrupt,
+ .do_transaction_failed = arm_cpu_do_transaction_failed,
+ .do_unaligned_access = arm_cpu_do_unaligned_access,
+ .adjust_watchpoint_address = arm_adjust_watchpoint_address,
+ .debug_check_watchpoint = arm_debug_check_watchpoint,
+ .debug_check_breakpoint = arm_debug_check_breakpoint,
+#endif /* !CONFIG_USER_ONLY */
+};
+#endif /* CONFIG_TCG */
+
+static void arm_cpu_class_init(ObjectClass *oc, void *data)
+{
+ ARMCPUClass *acc = ARM_CPU_CLASS(oc);
+ CPUClass *cc = CPU_CLASS(acc);
+ DeviceClass *dc = DEVICE_CLASS(oc);
+
+ device_class_set_parent_realize(dc, arm_cpu_realizefn,
+ &acc->parent_realize);
+
+ device_class_set_props(dc, arm_cpu_properties);
+ device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
+
+ cc->class_by_name = arm_cpu_class_by_name;
+ cc->has_work = arm_cpu_has_work;
+ cc->dump_state = arm_cpu_dump_state;
+ cc->set_pc = arm_cpu_set_pc;
+ cc->gdb_read_register = arm_cpu_gdb_read_register;
+ cc->gdb_write_register = arm_cpu_gdb_write_register;
+#ifndef CONFIG_USER_ONLY
+ cc->sysemu_ops = &arm_sysemu_ops;
+#endif
+ cc->gdb_num_core_regs = 26;
+ cc->gdb_core_xml_file = "arm-core.xml";
+ cc->gdb_arch_name = arm_gdb_arch_name;
+ cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
+ cc->gdb_stop_before_watchpoint = true;
+ cc->disas_set_info = arm_disas_set_info;
+
+#ifdef CONFIG_TCG
+ cc->tcg_ops = &arm_tcg_ops;
+#endif /* CONFIG_TCG */
+}
+
+#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
+static void arm_host_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+#ifdef CONFIG_KVM
+ kvm_arm_set_cpu_features_from_host(cpu);
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ aarch64_add_sve_properties(obj);
+ }
+#else
+ hvf_arm_set_cpu_features_from_host(cpu);
+#endif
+ arm_cpu_post_init(obj);
+}
+
+static const TypeInfo host_arm_cpu_type_info = {
+ .name = TYPE_ARM_HOST_CPU,
+ .parent = TYPE_AARCH64_CPU,
+ .instance_init = arm_host_initfn,
+};
+
+#endif
+
+static void arm_cpu_instance_init(Object *obj)
+{
+ ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
+
+ acc->info->initfn(obj);
+ arm_cpu_post_init(obj);
+}
+
+static void cpu_register_class_init(ObjectClass *oc, void *data)
+{
+ ARMCPUClass *acc = ARM_CPU_CLASS(oc);
+
+ acc->info = data;
+}
+
+void arm_cpu_register(const ARMCPUInfo *info)
+{
+ TypeInfo type_info = {
+ .parent = TYPE_ARM_CPU,
+ .instance_size = sizeof(ARMCPU),
+ .instance_align = __alignof__(ARMCPU),
+ .instance_init = arm_cpu_instance_init,
+ .class_size = sizeof(ARMCPUClass),
+ .class_init = info->class_init ?: cpu_register_class_init,
+ .class_data = (void *)info,
+ };
+
+ type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
+ type_register(&type_info);
+ g_free((void *)type_info.name);
+}
+
+static const TypeInfo arm_cpu_type_info = {
+ .name = TYPE_ARM_CPU,
+ .parent = TYPE_CPU,
+ .instance_size = sizeof(ARMCPU),
+ .instance_align = __alignof__(ARMCPU),
+ .instance_init = arm_cpu_initfn,
+ .instance_finalize = arm_cpu_finalizefn,
+ .abstract = true,
+ .class_size = sizeof(ARMCPUClass),
+ .class_init = arm_cpu_class_init,
+};
+
+static void arm_cpu_register_types(void)
+{
+ type_register_static(&arm_cpu_type_info);
+
+#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
+ type_register_static(&host_arm_cpu_type_info);
+#endif
+}
+
+type_init(arm_cpu_register_types)