diff options
Diffstat (limited to 'target/arm/cpu.h')
-rw-r--r-- | target/arm/cpu.h | 4395 |
1 files changed, 4395 insertions, 0 deletions
diff --git a/target/arm/cpu.h b/target/arm/cpu.h new file mode 100644 index 000000000..e33f37b70 --- /dev/null +++ b/target/arm/cpu.h @@ -0,0 +1,4395 @@ +/* + * ARM virtual CPU header + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef ARM_CPU_H +#define ARM_CPU_H + +#include "kvm-consts.h" +#include "hw/registerfields.h" +#include "cpu-qom.h" +#include "exec/cpu-defs.h" +#include "qapi/qapi-types-common.h" + +/* ARM processors have a weak memory model */ +#define TCG_GUEST_DEFAULT_MO (0) + +#ifdef TARGET_AARCH64 +#define KVM_HAVE_MCE_INJECTION 1 +#endif + +#define EXCP_UDEF 1 /* undefined instruction */ +#define EXCP_SWI 2 /* software interrupt */ +#define EXCP_PREFETCH_ABORT 3 +#define EXCP_DATA_ABORT 4 +#define EXCP_IRQ 5 +#define EXCP_FIQ 6 +#define EXCP_BKPT 7 +#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ +#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ +#define EXCP_HVC 11 /* HyperVisor Call */ +#define EXCP_HYP_TRAP 12 +#define EXCP_SMC 13 /* Secure Monitor Call */ +#define EXCP_VIRQ 14 +#define EXCP_VFIQ 15 +#define EXCP_SEMIHOST 16 /* semihosting call */ +#define EXCP_NOCP 17 /* v7M NOCP UsageFault */ +#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ +#define EXCP_STKOF 19 /* v8M STKOF UsageFault */ +#define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ +#define EXCP_LSERR 21 /* v8M LSERR SecureFault */ +#define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ +#define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ +/* NB: add new EXCP_ defines to the array in arm_log_exception() too */ + +#define ARMV7M_EXCP_RESET 1 +#define ARMV7M_EXCP_NMI 2 +#define ARMV7M_EXCP_HARD 3 +#define ARMV7M_EXCP_MEM 4 +#define ARMV7M_EXCP_BUS 5 +#define ARMV7M_EXCP_USAGE 6 +#define ARMV7M_EXCP_SECURE 7 +#define ARMV7M_EXCP_SVC 11 +#define ARMV7M_EXCP_DEBUG 12 +#define ARMV7M_EXCP_PENDSV 14 +#define ARMV7M_EXCP_SYSTICK 15 + +/* For M profile, some registers are banked secure vs non-secure; + * these are represented as a 2-element array where the first element + * is the non-secure copy and the second is the secure copy. + * When the CPU does not have implement the security extension then + * only the first element is used. + * This means that the copy for the current security state can be + * accessed via env->registerfield[env->v7m.secure] (whether the security + * extension is implemented or not). + */ +enum { + M_REG_NS = 0, + M_REG_S = 1, + M_REG_NUM_BANKS = 2, +}; + +/* ARM-specific interrupt pending bits. */ +#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 +#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 +#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 + +/* The usual mapping for an AArch64 system register to its AArch32 + * counterpart is for the 32 bit world to have access to the lower + * half only (with writes leaving the upper half untouched). It's + * therefore useful to be able to pass TCG the offset of the least + * significant half of a uint64_t struct member. + */ +#ifdef HOST_WORDS_BIGENDIAN +#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) +#define offsetofhigh32(S, M) offsetof(S, M) +#else +#define offsetoflow32(S, M) offsetof(S, M) +#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) +#endif + +/* Meanings of the ARMCPU object's four inbound GPIO lines */ +#define ARM_CPU_IRQ 0 +#define ARM_CPU_FIQ 1 +#define ARM_CPU_VIRQ 2 +#define ARM_CPU_VFIQ 3 + +/* ARM-specific extra insn start words: + * 1: Conditional execution bits + * 2: Partial exception syndrome for data aborts + */ +#define TARGET_INSN_START_EXTRA_WORDS 2 + +/* The 2nd extra word holding syndrome info for data aborts does not use + * the upper 6 bits nor the lower 14 bits. We mask and shift it down to + * help the sleb128 encoder do a better job. + * When restoring the CPU state, we shift it back up. + */ +#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) +#define ARM_INSN_START_WORD2_SHIFT 14 + +/* We currently assume float and double are IEEE single and double + precision respectively. + Doing runtime conversions is tricky because VFP registers may contain + integer values (eg. as the result of a FTOSI instruction). + s<2n> maps to the least significant half of d<n> + s<2n+1> maps to the most significant half of d<n> + */ + +/** + * DynamicGDBXMLInfo: + * @desc: Contains the XML descriptions. + * @num: Number of the registers in this XML seen by GDB. + * @data: A union with data specific to the set of registers + * @cpregs_keys: Array that contains the corresponding Key of + * a given cpreg with the same order of the cpreg + * in the XML description. + */ +typedef struct DynamicGDBXMLInfo { + char *desc; + int num; + union { + struct { + uint32_t *keys; + } cpregs; + } data; +} DynamicGDBXMLInfo; + +/* CPU state for each instance of a generic timer (in cp15 c14) */ +typedef struct ARMGenericTimer { + uint64_t cval; /* Timer CompareValue register */ + uint64_t ctl; /* Timer Control register */ +} ARMGenericTimer; + +#define GTIMER_PHYS 0 +#define GTIMER_VIRT 1 +#define GTIMER_HYP 2 +#define GTIMER_SEC 3 +#define GTIMER_HYPVIRT 4 +#define NUM_GTIMERS 5 + +typedef struct { + uint64_t raw_tcr; + uint32_t mask; + uint32_t base_mask; +} TCR; + +#define VTCR_NSW (1u << 29) +#define VTCR_NSA (1u << 30) +#define VSTCR_SW VTCR_NSW +#define VSTCR_SA VTCR_NSA + +/* Define a maximum sized vector register. + * For 32-bit, this is a 128-bit NEON/AdvSIMD register. + * For 64-bit, this is a 2048-bit SVE register. + * + * Note that the mapping between S, D, and Q views of the register bank + * differs between AArch64 and AArch32. + * In AArch32: + * Qn = regs[n].d[1]:regs[n].d[0] + * Dn = regs[n / 2].d[n & 1] + * Sn = regs[n / 4].d[n % 4 / 2], + * bits 31..0 for even n, and bits 63..32 for odd n + * (and regs[16] to regs[31] are inaccessible) + * In AArch64: + * Zn = regs[n].d[*] + * Qn = regs[n].d[1]:regs[n].d[0] + * Dn = regs[n].d[0] + * Sn = regs[n].d[0] bits 31..0 + * Hn = regs[n].d[0] bits 15..0 + * + * This corresponds to the architecturally defined mapping between + * the two execution states, and means we do not need to explicitly + * map these registers when changing states. + * + * Align the data for use with TCG host vector operations. + */ + +#ifdef TARGET_AARCH64 +# define ARM_MAX_VQ 16 +void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp); +void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp); +#else +# define ARM_MAX_VQ 1 +static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { } +static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { } +#endif + +typedef struct ARMVectorReg { + uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); +} ARMVectorReg; + +#ifdef TARGET_AARCH64 +/* In AArch32 mode, predicate registers do not exist at all. */ +typedef struct ARMPredicateReg { + uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); +} ARMPredicateReg; + +/* In AArch32 mode, PAC keys do not exist at all. */ +typedef struct ARMPACKey { + uint64_t lo, hi; +} ARMPACKey; +#endif + +/* See the commentary above the TBFLAG field definitions. */ +typedef struct CPUARMTBFlags { + uint32_t flags; + target_ulong flags2; +} CPUARMTBFlags; + +typedef struct CPUARMState { + /* Regs for current mode. */ + uint32_t regs[16]; + + /* 32/64 switch only happens when taking and returning from + * exceptions so the overlap semantics are taken care of then + * instead of having a complicated union. + */ + /* Regs for A64 mode. */ + uint64_t xregs[32]; + uint64_t pc; + /* PSTATE isn't an architectural register for ARMv8. However, it is + * convenient for us to assemble the underlying state into a 32 bit format + * identical to the architectural format used for the SPSR. (This is also + * what the Linux kernel's 'pstate' field in signal handlers and KVM's + * 'pstate' register are.) Of the PSTATE bits: + * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same + * semantics as for AArch32, as described in the comments on each field) + * nRW (also known as M[4]) is kept, inverted, in env->aarch64 + * DAIF (exception masks) are kept in env->daif + * BTYPE is kept in env->btype + * all other bits are stored in their correct places in env->pstate + */ + uint32_t pstate; + uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ + + /* Cached TBFLAGS state. See below for which bits are included. */ + CPUARMTBFlags hflags; + + /* Frequently accessed CPSR bits are stored separately for efficiency. + This contains all the other bits. Use cpsr_{read,write} to access + the whole CPSR. */ + uint32_t uncached_cpsr; + uint32_t spsr; + + /* Banked registers. */ + uint64_t banked_spsr[8]; + uint32_t banked_r13[8]; + uint32_t banked_r14[8]; + + /* These hold r8-r12. */ + uint32_t usr_regs[5]; + uint32_t fiq_regs[5]; + + /* cpsr flag cache for faster execution */ + uint32_t CF; /* 0 or 1 */ + uint32_t VF; /* V is the bit 31. All other bits are undefined */ + uint32_t NF; /* N is bit 31. All other bits are undefined. */ + uint32_t ZF; /* Z set if zero. */ + uint32_t QF; /* 0 or 1 */ + uint32_t GE; /* cpsr[19:16] */ + uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ + uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ + uint32_t btype; /* BTI branch type. spsr[11:10]. */ + uint64_t daif; /* exception masks, in the bits they are in PSTATE */ + + uint64_t elr_el[4]; /* AArch64 exception link regs */ + uint64_t sp_el[4]; /* AArch64 banked stack pointers */ + + /* System control coprocessor (cp15) */ + struct { + uint32_t c0_cpuid; + union { /* Cache size selection */ + struct { + uint64_t _unused_csselr0; + uint64_t csselr_ns; + uint64_t _unused_csselr1; + uint64_t csselr_s; + }; + uint64_t csselr_el[4]; + }; + union { /* System control register. */ + struct { + uint64_t _unused_sctlr; + uint64_t sctlr_ns; + uint64_t hsctlr; + uint64_t sctlr_s; + }; + uint64_t sctlr_el[4]; + }; + uint64_t cpacr_el1; /* Architectural feature access control register */ + uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ + uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ + uint64_t sder; /* Secure debug enable register. */ + uint32_t nsacr; /* Non-secure access control register. */ + union { /* MMU translation table base 0. */ + struct { + uint64_t _unused_ttbr0_0; + uint64_t ttbr0_ns; + uint64_t _unused_ttbr0_1; + uint64_t ttbr0_s; + }; + uint64_t ttbr0_el[4]; + }; + union { /* MMU translation table base 1. */ + struct { + uint64_t _unused_ttbr1_0; + uint64_t ttbr1_ns; + uint64_t _unused_ttbr1_1; + uint64_t ttbr1_s; + }; + uint64_t ttbr1_el[4]; + }; + uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ + uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ + /* MMU translation table base control. */ + TCR tcr_el[4]; + TCR vtcr_el2; /* Virtualization Translation Control. */ + TCR vstcr_el2; /* Secure Virtualization Translation Control. */ + uint32_t c2_data; /* MPU data cacheable bits. */ + uint32_t c2_insn; /* MPU instruction cacheable bits. */ + union { /* MMU domain access control register + * MPU write buffer control. + */ + struct { + uint64_t dacr_ns; + uint64_t dacr_s; + }; + struct { + uint64_t dacr32_el2; + }; + }; + uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ + uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ + uint64_t hcr_el2; /* Hypervisor configuration register */ + uint64_t scr_el3; /* Secure configuration register. */ + union { /* Fault status registers. */ + struct { + uint64_t ifsr_ns; + uint64_t ifsr_s; + }; + struct { + uint64_t ifsr32_el2; + }; + }; + union { + struct { + uint64_t _unused_dfsr; + uint64_t dfsr_ns; + uint64_t hsr; + uint64_t dfsr_s; + }; + uint64_t esr_el[4]; + }; + uint32_t c6_region[8]; /* MPU base/size registers. */ + union { /* Fault address registers. */ + struct { + uint64_t _unused_far0; +#ifdef HOST_WORDS_BIGENDIAN + uint32_t ifar_ns; + uint32_t dfar_ns; + uint32_t ifar_s; + uint32_t dfar_s; +#else + uint32_t dfar_ns; + uint32_t ifar_ns; + uint32_t dfar_s; + uint32_t ifar_s; +#endif + uint64_t _unused_far3; + }; + uint64_t far_el[4]; + }; + uint64_t hpfar_el2; + uint64_t hstr_el2; + union { /* Translation result. */ + struct { + uint64_t _unused_par_0; + uint64_t par_ns; + uint64_t _unused_par_1; + uint64_t par_s; + }; + uint64_t par_el[4]; + }; + + uint32_t c9_insn; /* Cache lockdown registers. */ + uint32_t c9_data; + uint64_t c9_pmcr; /* performance monitor control register */ + uint64_t c9_pmcnten; /* perf monitor counter enables */ + uint64_t c9_pmovsr; /* perf monitor overflow status */ + uint64_t c9_pmuserenr; /* perf monitor user enable */ + uint64_t c9_pmselr; /* perf monitor counter selection register */ + uint64_t c9_pminten; /* perf monitor interrupt enables */ + union { /* Memory attribute redirection */ + struct { +#ifdef HOST_WORDS_BIGENDIAN + uint64_t _unused_mair_0; + uint32_t mair1_ns; + uint32_t mair0_ns; + uint64_t _unused_mair_1; + uint32_t mair1_s; + uint32_t mair0_s; +#else + uint64_t _unused_mair_0; + uint32_t mair0_ns; + uint32_t mair1_ns; + uint64_t _unused_mair_1; + uint32_t mair0_s; + uint32_t mair1_s; +#endif + }; + uint64_t mair_el[4]; + }; + union { /* vector base address register */ + struct { + uint64_t _unused_vbar; + uint64_t vbar_ns; + uint64_t hvbar; + uint64_t vbar_s; + }; + uint64_t vbar_el[4]; + }; + uint32_t mvbar; /* (monitor) vector base address register */ + struct { /* FCSE PID. */ + uint32_t fcseidr_ns; + uint32_t fcseidr_s; + }; + union { /* Context ID. */ + struct { + uint64_t _unused_contextidr_0; + uint64_t contextidr_ns; + uint64_t _unused_contextidr_1; + uint64_t contextidr_s; + }; + uint64_t contextidr_el[4]; + }; + union { /* User RW Thread register. */ + struct { + uint64_t tpidrurw_ns; + uint64_t tpidrprw_ns; + uint64_t htpidr; + uint64_t _tpidr_el3; + }; + uint64_t tpidr_el[4]; + }; + /* The secure banks of these registers don't map anywhere */ + uint64_t tpidrurw_s; + uint64_t tpidrprw_s; + uint64_t tpidruro_s; + + union { /* User RO Thread register. */ + uint64_t tpidruro_ns; + uint64_t tpidrro_el[1]; + }; + uint64_t c14_cntfrq; /* Counter Frequency register */ + uint64_t c14_cntkctl; /* Timer Control register */ + uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ + uint64_t cntvoff_el2; /* Counter Virtual Offset register */ + ARMGenericTimer c14_timer[NUM_GTIMERS]; + uint32_t c15_cpar; /* XScale Coprocessor Access Register */ + uint32_t c15_ticonfig; /* TI925T configuration byte. */ + uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ + uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ + uint32_t c15_threadid; /* TI debugger thread-ID. */ + uint32_t c15_config_base_address; /* SCU base address. */ + uint32_t c15_diagnostic; /* diagnostic register */ + uint32_t c15_power_diagnostic; + uint32_t c15_power_control; /* power control */ + uint64_t dbgbvr[16]; /* breakpoint value registers */ + uint64_t dbgbcr[16]; /* breakpoint control registers */ + uint64_t dbgwvr[16]; /* watchpoint value registers */ + uint64_t dbgwcr[16]; /* watchpoint control registers */ + uint64_t mdscr_el1; + uint64_t oslsr_el1; /* OS Lock Status */ + uint64_t mdcr_el2; + uint64_t mdcr_el3; + /* Stores the architectural value of the counter *the last time it was + * updated* by pmccntr_op_start. Accesses should always be surrounded + * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest + * architecturally-correct value is being read/set. + */ + uint64_t c15_ccnt; + /* Stores the delta between the architectural value and the underlying + * cycle count during normal operation. It is used to update c15_ccnt + * to be the correct architectural value before accesses. During + * accesses, c15_ccnt_delta contains the underlying count being used + * for the access, after which it reverts to the delta value in + * pmccntr_op_finish. + */ + uint64_t c15_ccnt_delta; + uint64_t c14_pmevcntr[31]; + uint64_t c14_pmevcntr_delta[31]; + uint64_t c14_pmevtyper[31]; + uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ + uint64_t vpidr_el2; /* Virtualization Processor ID Register */ + uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ + uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ + uint64_t gcr_el1; + uint64_t rgsr_el1; + } cp15; + + struct { + /* M profile has up to 4 stack pointers: + * a Main Stack Pointer and a Process Stack Pointer for each + * of the Secure and Non-Secure states. (If the CPU doesn't support + * the security extension then it has only two SPs.) + * In QEMU we always store the currently active SP in regs[13], + * and the non-active SP for the current security state in + * v7m.other_sp. The stack pointers for the inactive security state + * are stored in other_ss_msp and other_ss_psp. + * switch_v7m_security_state() is responsible for rearranging them + * when we change security state. + */ + uint32_t other_sp; + uint32_t other_ss_msp; + uint32_t other_ss_psp; + uint32_t vecbase[M_REG_NUM_BANKS]; + uint32_t basepri[M_REG_NUM_BANKS]; + uint32_t control[M_REG_NUM_BANKS]; + uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ + uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ + uint32_t hfsr; /* HardFault Status */ + uint32_t dfsr; /* Debug Fault Status Register */ + uint32_t sfsr; /* Secure Fault Status Register */ + uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ + uint32_t bfar; /* BusFault Address */ + uint32_t sfar; /* Secure Fault Address Register */ + unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ + int exception; + uint32_t primask[M_REG_NUM_BANKS]; + uint32_t faultmask[M_REG_NUM_BANKS]; + uint32_t aircr; /* only holds r/w state if security extn implemented */ + uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ + uint32_t csselr[M_REG_NUM_BANKS]; + uint32_t scr[M_REG_NUM_BANKS]; + uint32_t msplim[M_REG_NUM_BANKS]; + uint32_t psplim[M_REG_NUM_BANKS]; + uint32_t fpcar[M_REG_NUM_BANKS]; + uint32_t fpccr[M_REG_NUM_BANKS]; + uint32_t fpdscr[M_REG_NUM_BANKS]; + uint32_t cpacr[M_REG_NUM_BANKS]; + uint32_t nsacr; + uint32_t ltpsize; + uint32_t vpr; + } v7m; + + /* Information associated with an exception about to be taken: + * code which raises an exception must set cs->exception_index and + * the relevant parts of this structure; the cpu_do_interrupt function + * will then set the guest-visible registers as part of the exception + * entry process. + */ + struct { + uint32_t syndrome; /* AArch64 format syndrome register */ + uint32_t fsr; /* AArch32 format fault status register info */ + uint64_t vaddress; /* virtual addr associated with exception, if any */ + uint32_t target_el; /* EL the exception should be targeted for */ + /* If we implement EL2 we will also need to store information + * about the intermediate physical address for stage 2 faults. + */ + } exception; + + /* Information associated with an SError */ + struct { + uint8_t pending; + uint8_t has_esr; + uint64_t esr; + } serror; + + uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ + + /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ + uint32_t irq_line_state; + + /* Thumb-2 EE state. */ + uint32_t teecr; + uint32_t teehbr; + + /* VFP coprocessor state. */ + struct { + ARMVectorReg zregs[32]; + +#ifdef TARGET_AARCH64 + /* Store FFR as pregs[16] to make it easier to treat as any other. */ +#define FFR_PRED_NUM 16 + ARMPredicateReg pregs[17]; + /* Scratch space for aa64 sve predicate temporary. */ + ARMPredicateReg preg_tmp; +#endif + + /* We store these fpcsr fields separately for convenience. */ + uint32_t qc[4] QEMU_ALIGNED(16); + int vec_len; + int vec_stride; + + uint32_t xregs[16]; + + /* Scratch space for aa32 neon expansion. */ + uint32_t scratch[8]; + + /* There are a number of distinct float control structures: + * + * fp_status: is the "normal" fp status. + * fp_status_fp16: used for half-precision calculations + * standard_fp_status : the ARM "Standard FPSCR Value" + * standard_fp_status_fp16 : used for half-precision + * calculations with the ARM "Standard FPSCR Value" + * + * Half-precision operations are governed by a separate + * flush-to-zero control bit in FPSCR:FZ16. We pass a separate + * status structure to control this. + * + * The "Standard FPSCR", ie default-NaN, flush-to-zero, + * round-to-nearest and is used by any operations (generally + * Neon) which the architecture defines as controlled by the + * standard FPSCR value rather than the FPSCR. + * + * The "standard FPSCR but for fp16 ops" is needed because + * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than + * using a fixed value for it. + * + * To avoid having to transfer exception bits around, we simply + * say that the FPSCR cumulative exception flags are the logical + * OR of the flags in the four fp statuses. This relies on the + * only thing which needs to read the exception flags being + * an explicit FPSCR read. + */ + float_status fp_status; + float_status fp_status_f16; + float_status standard_fp_status; + float_status standard_fp_status_f16; + + /* ZCR_EL[1-3] */ + uint64_t zcr_el[4]; + } vfp; + uint64_t exclusive_addr; + uint64_t exclusive_val; + uint64_t exclusive_high; + + /* iwMMXt coprocessor state. */ + struct { + uint64_t regs[16]; + uint64_t val; + + uint32_t cregs[16]; + } iwmmxt; + +#ifdef TARGET_AARCH64 + struct { + ARMPACKey apia; + ARMPACKey apib; + ARMPACKey apda; + ARMPACKey apdb; + ARMPACKey apga; + } keys; +#endif + +#if defined(CONFIG_USER_ONLY) + /* For usermode syscall translation. */ + int eabi; +#endif + + struct CPUBreakpoint *cpu_breakpoint[16]; + struct CPUWatchpoint *cpu_watchpoint[16]; + + /* Fields up to this point are cleared by a CPU reset */ + struct {} end_reset_fields; + + /* Fields after this point are preserved across CPU reset. */ + + /* Internal CPU feature flags. */ + uint64_t features; + + /* PMSAv7 MPU */ + struct { + uint32_t *drbar; + uint32_t *drsr; + uint32_t *dracr; + uint32_t rnr[M_REG_NUM_BANKS]; + } pmsav7; + + /* PMSAv8 MPU */ + struct { + /* The PMSAv8 implementation also shares some PMSAv7 config + * and state: + * pmsav7.rnr (region number register) + * pmsav7_dregion (number of configured regions) + */ + uint32_t *rbar[M_REG_NUM_BANKS]; + uint32_t *rlar[M_REG_NUM_BANKS]; + uint32_t mair0[M_REG_NUM_BANKS]; + uint32_t mair1[M_REG_NUM_BANKS]; + } pmsav8; + + /* v8M SAU */ + struct { + uint32_t *rbar; + uint32_t *rlar; + uint32_t rnr; + uint32_t ctrl; + } sau; + + void *nvic; + const struct arm_boot_info *boot_info; + /* Store GICv3CPUState to access from this struct */ + void *gicv3state; + +#ifdef TARGET_TAGGED_ADDRESSES + /* Linux syscall tagged address support */ + bool tagged_addr_enable; +#endif +} CPUARMState; + +static inline void set_feature(CPUARMState *env, int feature) +{ + env->features |= 1ULL << feature; +} + +static inline void unset_feature(CPUARMState *env, int feature) +{ + env->features &= ~(1ULL << feature); +} + +/** + * ARMELChangeHookFn: + * type of a function which can be registered via arm_register_el_change_hook() + * to get callbacks when the CPU changes its exception level or mode. + */ +typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); +typedef struct ARMELChangeHook ARMELChangeHook; +struct ARMELChangeHook { + ARMELChangeHookFn *hook; + void *opaque; + QLIST_ENTRY(ARMELChangeHook) node; +}; + +/* These values map onto the return values for + * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ +typedef enum ARMPSCIState { + PSCI_ON = 0, + PSCI_OFF = 1, + PSCI_ON_PENDING = 2 +} ARMPSCIState; + +typedef struct ARMISARegisters ARMISARegisters; + +/** + * ARMCPU: + * @env: #CPUARMState + * + * An ARM CPU core. + */ +struct ARMCPU { + /*< private >*/ + CPUState parent_obj; + /*< public >*/ + + CPUNegativeOffsetState neg; + CPUARMState env; + + /* Coprocessor information */ + GHashTable *cp_regs; + /* For marshalling (mostly coprocessor) register state between the + * kernel and QEMU (for KVM) and between two QEMUs (for migration), + * we use these arrays. + */ + /* List of register indexes managed via these arrays; (full KVM style + * 64 bit indexes, not CPRegInfo 32 bit indexes) + */ + uint64_t *cpreg_indexes; + /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ + uint64_t *cpreg_values; + /* Length of the indexes, values, reset_values arrays */ + int32_t cpreg_array_len; + /* These are used only for migration: incoming data arrives in + * these fields and is sanity checked in post_load before copying + * to the working data structures above. + */ + uint64_t *cpreg_vmstate_indexes; + uint64_t *cpreg_vmstate_values; + int32_t cpreg_vmstate_array_len; + + DynamicGDBXMLInfo dyn_sysreg_xml; + DynamicGDBXMLInfo dyn_svereg_xml; + + /* Timers used by the generic (architected) timer */ + QEMUTimer *gt_timer[NUM_GTIMERS]; + /* + * Timer used by the PMU. Its state is restored after migration by + * pmu_op_finish() - it does not need other handling during migration + */ + QEMUTimer *pmu_timer; + /* GPIO outputs for generic timer */ + qemu_irq gt_timer_outputs[NUM_GTIMERS]; + /* GPIO output for GICv3 maintenance interrupt signal */ + qemu_irq gicv3_maintenance_interrupt; + /* GPIO output for the PMU interrupt */ + qemu_irq pmu_interrupt; + + /* MemoryRegion to use for secure physical accesses */ + MemoryRegion *secure_memory; + + /* MemoryRegion to use for allocation tag accesses */ + MemoryRegion *tag_memory; + MemoryRegion *secure_tag_memory; + + /* For v8M, pointer to the IDAU interface provided by board/SoC */ + Object *idau; + + /* 'compatible' string for this CPU for Linux device trees */ + const char *dtb_compatible; + + /* PSCI version for this CPU + * Bits[31:16] = Major Version + * Bits[15:0] = Minor Version + */ + uint32_t psci_version; + + /* Current power state, access guarded by BQL */ + ARMPSCIState power_state; + + /* CPU has virtualization extension */ + bool has_el2; + /* CPU has security extension */ + bool has_el3; + /* CPU has PMU (Performance Monitor Unit) */ + bool has_pmu; + /* CPU has VFP */ + bool has_vfp; + /* CPU has Neon */ + bool has_neon; + /* CPU has M-profile DSP extension */ + bool has_dsp; + + /* CPU has memory protection unit */ + bool has_mpu; + /* PMSAv7 MPU number of supported regions */ + uint32_t pmsav7_dregion; + /* v8M SAU number of supported regions */ + uint32_t sau_sregion; + + /* PSCI conduit used to invoke PSCI methods + * 0 - disabled, 1 - smc, 2 - hvc + */ + uint32_t psci_conduit; + + /* For v8M, initial value of the Secure VTOR */ + uint32_t init_svtor; + /* For v8M, initial value of the Non-secure VTOR */ + uint32_t init_nsvtor; + + /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or + * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. + */ + uint32_t kvm_target; + + /* KVM init features for this CPU */ + uint32_t kvm_init_features[7]; + + /* KVM CPU state */ + + /* KVM virtual time adjustment */ + bool kvm_adjvtime; + bool kvm_vtime_dirty; + uint64_t kvm_vtime; + + /* KVM steal time */ + OnOffAuto kvm_steal_time; + + /* Uniprocessor system with MP extensions */ + bool mp_is_up; + + /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init + * and the probe failed (so we need to report the error in realize) + */ + bool host_cpu_probe_failed; + + /* Specify the number of cores in this CPU cluster. Used for the L2CTLR + * register. + */ + int32_t core_count; + + /* The instance init functions for implementation-specific subclasses + * set these fields to specify the implementation-dependent values of + * various constant registers and reset values of non-constant + * registers. + * Some of these might become QOM properties eventually. + * Field names match the official register names as defined in the + * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix + * is used for reset values of non-constant registers; no reset_ + * prefix means a constant register. + * Some of these registers are split out into a substructure that + * is shared with the translators to control the ISA. + * + * Note that if you add an ID register to the ARMISARegisters struct + * you need to also update the 32-bit and 64-bit versions of the + * kvm_arm_get_host_cpu_features() function to correctly populate the + * field by reading the value from the KVM vCPU. + */ + struct ARMISARegisters { + uint32_t id_isar0; + uint32_t id_isar1; + uint32_t id_isar2; + uint32_t id_isar3; + uint32_t id_isar4; + uint32_t id_isar5; + uint32_t id_isar6; + uint32_t id_mmfr0; + uint32_t id_mmfr1; + uint32_t id_mmfr2; + uint32_t id_mmfr3; + uint32_t id_mmfr4; + uint32_t id_pfr0; + uint32_t id_pfr1; + uint32_t id_pfr2; + uint32_t mvfr0; + uint32_t mvfr1; + uint32_t mvfr2; + uint32_t id_dfr0; + uint32_t dbgdidr; + uint64_t id_aa64isar0; + uint64_t id_aa64isar1; + uint64_t id_aa64pfr0; + uint64_t id_aa64pfr1; + uint64_t id_aa64mmfr0; + uint64_t id_aa64mmfr1; + uint64_t id_aa64mmfr2; + uint64_t id_aa64dfr0; + uint64_t id_aa64dfr1; + uint64_t id_aa64zfr0; + } isar; + uint64_t midr; + uint32_t revidr; + uint32_t reset_fpsid; + uint64_t ctr; + uint32_t reset_sctlr; + uint64_t pmceid0; + uint64_t pmceid1; + uint32_t id_afr0; + uint64_t id_aa64afr0; + uint64_t id_aa64afr1; + uint64_t clidr; + uint64_t mp_affinity; /* MP ID without feature bits */ + /* The elements of this array are the CCSIDR values for each cache, + * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. + */ + uint64_t ccsidr[16]; + uint64_t reset_cbar; + uint32_t reset_auxcr; + bool reset_hivecs; + + /* + * Intermediate values used during property parsing. + * Once finalized, the values should be read from ID_AA64ISAR1. + */ + bool prop_pauth; + bool prop_pauth_impdef; + + /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ + uint32_t dcz_blocksize; + uint64_t rvbar; + + /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ + int gic_num_lrs; /* number of list registers */ + int gic_vpribits; /* number of virtual priority bits */ + int gic_vprebits; /* number of virtual preemption bits */ + + /* Whether the cfgend input is high (i.e. this CPU should reset into + * big-endian mode). This setting isn't used directly: instead it modifies + * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the + * architecture version. + */ + bool cfgend; + + QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; + QLIST_HEAD(, ARMELChangeHook) el_change_hooks; + + int32_t node_id; /* NUMA node this CPU belongs to */ + + /* Used to synchronize KVM and QEMU in-kernel device levels */ + uint8_t device_irq_level; + + /* Used to set the maximum vector length the cpu will support. */ + uint32_t sve_max_vq; + +#ifdef CONFIG_USER_ONLY + /* Used to set the default vector length at process start. */ + uint32_t sve_default_vq; +#endif + + /* + * In sve_vq_map each set bit is a supported vector length of + * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector + * length in quadwords. + * + * While processing properties during initialization, corresponding + * sve_vq_init bits are set for bits in sve_vq_map that have been + * set by properties. + * + * Bits set in sve_vq_supported represent valid vector lengths for + * the CPU type. + */ + DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ); + DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ); + DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ); + + /* Generic timer counter frequency, in Hz */ + uint64_t gt_cntfrq_hz; +}; + +unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); + +void arm_cpu_post_init(Object *obj); + +uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz); + +#ifndef CONFIG_USER_ONLY +extern const VMStateDescription vmstate_arm_cpu; + +void arm_cpu_do_interrupt(CPUState *cpu); +void arm_v7m_cpu_do_interrupt(CPUState *cpu); +#endif /* !CONFIG_USER_ONLY */ + +hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, + MemTxAttrs *attrs); + +int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); +int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); + +/* + * Helpers to dynamically generates XML descriptions of the sysregs + * and SVE registers. Returns the number of registers in each set. + */ +int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg); +int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg); + +/* Returns the dynamically generated XML for the gdb stub. + * Returns a pointer to the XML contents for the specified XML file or NULL + * if the XML name doesn't match the predefined one. + */ +const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); + +int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, + int cpuid, void *opaque); +int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, + int cpuid, void *opaque); + +#ifdef TARGET_AARCH64 +int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); +int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); +void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); +void aarch64_sve_change_el(CPUARMState *env, int old_el, + int new_el, bool el0_a64); +void aarch64_add_sve_properties(Object *obj); + +/* + * SVE registers are encoded in KVM's memory in an endianness-invariant format. + * The byte at offset i from the start of the in-memory representation contains + * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the + * lowest offsets are stored in the lowest memory addresses, then that nearly + * matches QEMU's representation, which is to use an array of host-endian + * uint64_t's, where the lower offsets are at the lower indices. To complete + * the translation we just need to byte swap the uint64_t's on big-endian hosts. + */ +static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) +{ +#ifdef HOST_WORDS_BIGENDIAN + int i; + + for (i = 0; i < nr; ++i) { + dst[i] = bswap64(src[i]); + } + + return dst; +#else + return src; +#endif +} + +#else +static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } +static inline void aarch64_sve_change_el(CPUARMState *env, int o, + int n, bool a) +{ } +static inline void aarch64_add_sve_properties(Object *obj) { } +#endif + +void aarch64_sync_32_to_64(CPUARMState *env); +void aarch64_sync_64_to_32(CPUARMState *env); + +int fp_exception_el(CPUARMState *env, int cur_el); +int sve_exception_el(CPUARMState *env, int cur_el); +uint32_t sve_zcr_len_for_el(CPUARMState *env, int el); + +static inline bool is_a64(CPUARMState *env) +{ + return env->aarch64; +} + +/** + * pmu_op_start/finish + * @env: CPUARMState + * + * Convert all PMU counters between their delta form (the typical mode when + * they are enabled) and the guest-visible values. These two calls must + * surround any action which might affect the counters. + */ +void pmu_op_start(CPUARMState *env); +void pmu_op_finish(CPUARMState *env); + +/* + * Called when a PMU counter is due to overflow + */ +void arm_pmu_timer_cb(void *opaque); + +/** + * Functions to register as EL change hooks for PMU mode filtering + */ +void pmu_pre_el_change(ARMCPU *cpu, void *ignored); +void pmu_post_el_change(ARMCPU *cpu, void *ignored); + +/* + * pmu_init + * @cpu: ARMCPU + * + * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state + * for the current configuration + */ +void pmu_init(ARMCPU *cpu); + +/* SCTLR bit meanings. Several bits have been reused in newer + * versions of the architecture; in that case we define constants + * for both old and new bit meanings. Code which tests against those + * bits should probably check or otherwise arrange that the CPU + * is the architectural version it expects. + */ +#define SCTLR_M (1U << 0) +#define SCTLR_A (1U << 1) +#define SCTLR_C (1U << 2) +#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ +#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ +#define SCTLR_SA (1U << 3) /* AArch64 only */ +#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ +#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ +#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ +#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ +#define SCTLR_CP15BEN (1U << 5) /* v7 onward */ +#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ +#define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */ +#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ +#define SCTLR_ITD (1U << 7) /* v8 onward */ +#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ +#define SCTLR_SED (1U << 8) /* v8 onward */ +#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ +#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ +#define SCTLR_F (1U << 10) /* up to v6 */ +#define SCTLR_SW (1U << 10) /* v7 */ +#define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ +#define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ +#define SCTLR_EOS (1U << 11) /* v8.5-ExS */ +#define SCTLR_I (1U << 12) +#define SCTLR_V (1U << 13) /* AArch32 only */ +#define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ +#define SCTLR_RR (1U << 14) /* up to v7 */ +#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ +#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ +#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ +#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ +#define SCTLR_nTWI (1U << 16) /* v8 onward */ +#define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ +#define SCTLR_BR (1U << 17) /* PMSA only */ +#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ +#define SCTLR_nTWE (1U << 18) /* v8 onward */ +#define SCTLR_WXN (1U << 19) +#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ +#define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ +#define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ +#define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ +#define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ +#define SCTLR_EIS (1U << 22) /* v8.5-ExS */ +#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ +#define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ +#define SCTLR_VE (1U << 24) /* up to v7 */ +#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ +#define SCTLR_EE (1U << 25) +#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ +#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ +#define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ +#define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ +#define SCTLR_TRE (1U << 28) /* AArch32 only */ +#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ +#define SCTLR_AFE (1U << 29) /* AArch32 only */ +#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ +#define SCTLR_TE (1U << 30) /* AArch32 only */ +#define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ +#define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ +#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ +#define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ +#define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ +#define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ +#define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ +#define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ +#define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ +#define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ +#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ + +#define CPTR_TCPAC (1U << 31) +#define CPTR_TTA (1U << 20) +#define CPTR_TFP (1U << 10) +#define CPTR_TZ (1U << 8) /* CPTR_EL2 */ +#define CPTR_EZ (1U << 8) /* CPTR_EL3 */ + +#define MDCR_EPMAD (1U << 21) +#define MDCR_EDAD (1U << 20) +#define MDCR_SPME (1U << 17) /* MDCR_EL3 */ +#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */ +#define MDCR_SDD (1U << 16) +#define MDCR_SPD (3U << 14) +#define MDCR_TDRA (1U << 11) +#define MDCR_TDOSA (1U << 10) +#define MDCR_TDA (1U << 9) +#define MDCR_TDE (1U << 8) +#define MDCR_HPME (1U << 7) +#define MDCR_TPM (1U << 6) +#define MDCR_TPMCR (1U << 5) +#define MDCR_HPMN (0x1fU) + +/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ +#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) + +#define CPSR_M (0x1fU) +#define CPSR_T (1U << 5) +#define CPSR_F (1U << 6) +#define CPSR_I (1U << 7) +#define CPSR_A (1U << 8) +#define CPSR_E (1U << 9) +#define CPSR_IT_2_7 (0xfc00U) +#define CPSR_GE (0xfU << 16) +#define CPSR_IL (1U << 20) +#define CPSR_DIT (1U << 21) +#define CPSR_PAN (1U << 22) +#define CPSR_SSBS (1U << 23) +#define CPSR_J (1U << 24) +#define CPSR_IT_0_1 (3U << 25) +#define CPSR_Q (1U << 27) +#define CPSR_V (1U << 28) +#define CPSR_C (1U << 29) +#define CPSR_Z (1U << 30) +#define CPSR_N (1U << 31) +#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) +#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) + +#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) +#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ + | CPSR_NZCV) +/* Bits writable in user mode. */ +#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) +/* Execution state bits. MRS read as zero, MSR writes ignored. */ +#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) + +/* Bit definitions for M profile XPSR. Most are the same as CPSR. */ +#define XPSR_EXCP 0x1ffU +#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ +#define XPSR_IT_2_7 CPSR_IT_2_7 +#define XPSR_GE CPSR_GE +#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ +#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ +#define XPSR_IT_0_1 CPSR_IT_0_1 +#define XPSR_Q CPSR_Q +#define XPSR_V CPSR_V +#define XPSR_C CPSR_C +#define XPSR_Z CPSR_Z +#define XPSR_N CPSR_N +#define XPSR_NZCV CPSR_NZCV +#define XPSR_IT CPSR_IT + +#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ +#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ +#define TTBCR_PD0 (1U << 4) +#define TTBCR_PD1 (1U << 5) +#define TTBCR_EPD0 (1U << 7) +#define TTBCR_IRGN0 (3U << 8) +#define TTBCR_ORGN0 (3U << 10) +#define TTBCR_SH0 (3U << 12) +#define TTBCR_T1SZ (3U << 16) +#define TTBCR_A1 (1U << 22) +#define TTBCR_EPD1 (1U << 23) +#define TTBCR_IRGN1 (3U << 24) +#define TTBCR_ORGN1 (3U << 26) +#define TTBCR_SH1 (1U << 28) +#define TTBCR_EAE (1U << 31) + +/* Bit definitions for ARMv8 SPSR (PSTATE) format. + * Only these are valid when in AArch64 mode; in + * AArch32 mode SPSRs are basically CPSR-format. + */ +#define PSTATE_SP (1U) +#define PSTATE_M (0xFU) +#define PSTATE_nRW (1U << 4) +#define PSTATE_F (1U << 6) +#define PSTATE_I (1U << 7) +#define PSTATE_A (1U << 8) +#define PSTATE_D (1U << 9) +#define PSTATE_BTYPE (3U << 10) +#define PSTATE_SSBS (1U << 12) +#define PSTATE_IL (1U << 20) +#define PSTATE_SS (1U << 21) +#define PSTATE_PAN (1U << 22) +#define PSTATE_UAO (1U << 23) +#define PSTATE_DIT (1U << 24) +#define PSTATE_TCO (1U << 25) +#define PSTATE_V (1U << 28) +#define PSTATE_C (1U << 29) +#define PSTATE_Z (1U << 30) +#define PSTATE_N (1U << 31) +#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) +#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) +#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) +/* Mode values for AArch64 */ +#define PSTATE_MODE_EL3h 13 +#define PSTATE_MODE_EL3t 12 +#define PSTATE_MODE_EL2h 9 +#define PSTATE_MODE_EL2t 8 +#define PSTATE_MODE_EL1h 5 +#define PSTATE_MODE_EL1t 4 +#define PSTATE_MODE_EL0t 0 + +/* Write a new value to v7m.exception, thus transitioning into or out + * of Handler mode; this may result in a change of active stack pointer. + */ +void write_v7m_exception(CPUARMState *env, uint32_t new_exc); + +/* Map EL and handler into a PSTATE_MODE. */ +static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) +{ + return (el << 2) | handler; +} + +/* Return the current PSTATE value. For the moment we don't support 32<->64 bit + * interprocessing, so we don't attempt to sync with the cpsr state used by + * the 32 bit decoder. + */ +static inline uint32_t pstate_read(CPUARMState *env) +{ + int ZF; + + ZF = (env->ZF == 0); + return (env->NF & 0x80000000) | (ZF << 30) + | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) + | env->pstate | env->daif | (env->btype << 10); +} + +static inline void pstate_write(CPUARMState *env, uint32_t val) +{ + env->ZF = (~val) & PSTATE_Z; + env->NF = val; + env->CF = (val >> 29) & 1; + env->VF = (val << 3) & 0x80000000; + env->daif = val & PSTATE_DAIF; + env->btype = (val >> 10) & 3; + env->pstate = val & ~CACHED_PSTATE_BITS; +} + +/* Return the current CPSR value. */ +uint32_t cpsr_read(CPUARMState *env); + +typedef enum CPSRWriteType { + CPSRWriteByInstr = 0, /* from guest MSR or CPS */ + CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ + CPSRWriteRaw = 2, + /* trust values, no reg bank switch, no hflags rebuild */ + CPSRWriteByGDBStub = 3, /* from the GDB stub */ +} CPSRWriteType; + +/* + * Set the CPSR. Note that some bits of mask must be all-set or all-clear. + * This will do an arm_rebuild_hflags() if any of the bits in @mask + * correspond to TB flags bits cached in the hflags, unless @write_type + * is CPSRWriteRaw. + */ +void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, + CPSRWriteType write_type); + +/* Return the current xPSR value. */ +static inline uint32_t xpsr_read(CPUARMState *env) +{ + int ZF; + ZF = (env->ZF == 0); + return (env->NF & 0x80000000) | (ZF << 30) + | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) + | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) + | ((env->condexec_bits & 0xfc) << 8) + | (env->GE << 16) + | env->v7m.exception; +} + +/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ +static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) +{ + if (mask & XPSR_NZCV) { + env->ZF = (~val) & XPSR_Z; + env->NF = val; + env->CF = (val >> 29) & 1; + env->VF = (val << 3) & 0x80000000; + } + if (mask & XPSR_Q) { + env->QF = ((val & XPSR_Q) != 0); + } + if (mask & XPSR_GE) { + env->GE = (val & XPSR_GE) >> 16; + } +#ifndef CONFIG_USER_ONLY + if (mask & XPSR_T) { + env->thumb = ((val & XPSR_T) != 0); + } + if (mask & XPSR_IT_0_1) { + env->condexec_bits &= ~3; + env->condexec_bits |= (val >> 25) & 3; + } + if (mask & XPSR_IT_2_7) { + env->condexec_bits &= 3; + env->condexec_bits |= (val >> 8) & 0xfc; + } + if (mask & XPSR_EXCP) { + /* Note that this only happens on exception exit */ + write_v7m_exception(env, val & XPSR_EXCP); + } +#endif +} + +#define HCR_VM (1ULL << 0) +#define HCR_SWIO (1ULL << 1) +#define HCR_PTW (1ULL << 2) +#define HCR_FMO (1ULL << 3) +#define HCR_IMO (1ULL << 4) +#define HCR_AMO (1ULL << 5) +#define HCR_VF (1ULL << 6) +#define HCR_VI (1ULL << 7) +#define HCR_VSE (1ULL << 8) +#define HCR_FB (1ULL << 9) +#define HCR_BSU_MASK (3ULL << 10) +#define HCR_DC (1ULL << 12) +#define HCR_TWI (1ULL << 13) +#define HCR_TWE (1ULL << 14) +#define HCR_TID0 (1ULL << 15) +#define HCR_TID1 (1ULL << 16) +#define HCR_TID2 (1ULL << 17) +#define HCR_TID3 (1ULL << 18) +#define HCR_TSC (1ULL << 19) +#define HCR_TIDCP (1ULL << 20) +#define HCR_TACR (1ULL << 21) +#define HCR_TSW (1ULL << 22) +#define HCR_TPCP (1ULL << 23) +#define HCR_TPU (1ULL << 24) +#define HCR_TTLB (1ULL << 25) +#define HCR_TVM (1ULL << 26) +#define HCR_TGE (1ULL << 27) +#define HCR_TDZ (1ULL << 28) +#define HCR_HCD (1ULL << 29) +#define HCR_TRVM (1ULL << 30) +#define HCR_RW (1ULL << 31) +#define HCR_CD (1ULL << 32) +#define HCR_ID (1ULL << 33) +#define HCR_E2H (1ULL << 34) +#define HCR_TLOR (1ULL << 35) +#define HCR_TERR (1ULL << 36) +#define HCR_TEA (1ULL << 37) +#define HCR_MIOCNCE (1ULL << 38) +/* RES0 bit 39 */ +#define HCR_APK (1ULL << 40) +#define HCR_API (1ULL << 41) +#define HCR_NV (1ULL << 42) +#define HCR_NV1 (1ULL << 43) +#define HCR_AT (1ULL << 44) +#define HCR_NV2 (1ULL << 45) +#define HCR_FWB (1ULL << 46) +#define HCR_FIEN (1ULL << 47) +/* RES0 bit 48 */ +#define HCR_TID4 (1ULL << 49) +#define HCR_TICAB (1ULL << 50) +#define HCR_AMVOFFEN (1ULL << 51) +#define HCR_TOCU (1ULL << 52) +#define HCR_ENSCXT (1ULL << 53) +#define HCR_TTLBIS (1ULL << 54) +#define HCR_TTLBOS (1ULL << 55) +#define HCR_ATA (1ULL << 56) +#define HCR_DCT (1ULL << 57) +#define HCR_TID5 (1ULL << 58) +#define HCR_TWEDEN (1ULL << 59) +#define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) + +#define HPFAR_NS (1ULL << 63) + +#define SCR_NS (1U << 0) +#define SCR_IRQ (1U << 1) +#define SCR_FIQ (1U << 2) +#define SCR_EA (1U << 3) +#define SCR_FW (1U << 4) +#define SCR_AW (1U << 5) +#define SCR_NET (1U << 6) +#define SCR_SMD (1U << 7) +#define SCR_HCE (1U << 8) +#define SCR_SIF (1U << 9) +#define SCR_RW (1U << 10) +#define SCR_ST (1U << 11) +#define SCR_TWI (1U << 12) +#define SCR_TWE (1U << 13) +#define SCR_TLOR (1U << 14) +#define SCR_TERR (1U << 15) +#define SCR_APK (1U << 16) +#define SCR_API (1U << 17) +#define SCR_EEL2 (1U << 18) +#define SCR_EASE (1U << 19) +#define SCR_NMEA (1U << 20) +#define SCR_FIEN (1U << 21) +#define SCR_ENSCXT (1U << 25) +#define SCR_ATA (1U << 26) + +#define HSTR_TTEE (1 << 16) +#define HSTR_TJDBX (1 << 17) + +/* Return the current FPSCR value. */ +uint32_t vfp_get_fpscr(CPUARMState *env); +void vfp_set_fpscr(CPUARMState *env, uint32_t val); + +/* FPCR, Floating Point Control Register + * FPSR, Floating Poiht Status Register + * + * For A64 the FPSCR is split into two logically distinct registers, + * FPCR and FPSR. However since they still use non-overlapping bits + * we store the underlying state in fpscr and just mask on read/write. + */ +#define FPSR_MASK 0xf800009f +#define FPCR_MASK 0x07ff9f00 + +#define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ +#define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ +#define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ +#define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ +#define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ +#define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ +#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ +#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ +#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ +#define FPCR_DN (1 << 25) /* Default NaN enable bit */ +#define FPCR_AHP (1 << 26) /* Alternative half-precision */ +#define FPCR_QC (1 << 27) /* Cumulative saturation bit */ +#define FPCR_V (1 << 28) /* FP overflow flag */ +#define FPCR_C (1 << 29) /* FP carry flag */ +#define FPCR_Z (1 << 30) /* FP zero flag */ +#define FPCR_N (1 << 31) /* FP negative flag */ + +#define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ +#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) +#define FPCR_LTPSIZE_LENGTH 3 + +#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V) +#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC) + +static inline uint32_t vfp_get_fpsr(CPUARMState *env) +{ + return vfp_get_fpscr(env) & FPSR_MASK; +} + +static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) +{ + uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); + vfp_set_fpscr(env, new_fpscr); +} + +static inline uint32_t vfp_get_fpcr(CPUARMState *env) +{ + return vfp_get_fpscr(env) & FPCR_MASK; +} + +static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) +{ + uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); + vfp_set_fpscr(env, new_fpscr); +} + +enum arm_cpu_mode { + ARM_CPU_MODE_USR = 0x10, + ARM_CPU_MODE_FIQ = 0x11, + ARM_CPU_MODE_IRQ = 0x12, + ARM_CPU_MODE_SVC = 0x13, + ARM_CPU_MODE_MON = 0x16, + ARM_CPU_MODE_ABT = 0x17, + ARM_CPU_MODE_HYP = 0x1a, + ARM_CPU_MODE_UND = 0x1b, + ARM_CPU_MODE_SYS = 0x1f +}; + +/* VFP system registers. */ +#define ARM_VFP_FPSID 0 +#define ARM_VFP_FPSCR 1 +#define ARM_VFP_MVFR2 5 +#define ARM_VFP_MVFR1 6 +#define ARM_VFP_MVFR0 7 +#define ARM_VFP_FPEXC 8 +#define ARM_VFP_FPINST 9 +#define ARM_VFP_FPINST2 10 +/* These ones are M-profile only */ +#define ARM_VFP_FPSCR_NZCVQC 2 +#define ARM_VFP_VPR 12 +#define ARM_VFP_P0 13 +#define ARM_VFP_FPCXT_NS 14 +#define ARM_VFP_FPCXT_S 15 + +/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ +#define QEMU_VFP_FPSCR_NZCV 0xffff + +/* iwMMXt coprocessor control registers. */ +#define ARM_IWMMXT_wCID 0 +#define ARM_IWMMXT_wCon 1 +#define ARM_IWMMXT_wCSSF 2 +#define ARM_IWMMXT_wCASF 3 +#define ARM_IWMMXT_wCGR0 8 +#define ARM_IWMMXT_wCGR1 9 +#define ARM_IWMMXT_wCGR2 10 +#define ARM_IWMMXT_wCGR3 11 + +/* V7M CCR bits */ +FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) +FIELD(V7M_CCR, USERSETMPEND, 1, 1) +FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) +FIELD(V7M_CCR, DIV_0_TRP, 4, 1) +FIELD(V7M_CCR, BFHFNMIGN, 8, 1) +FIELD(V7M_CCR, STKALIGN, 9, 1) +FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) +FIELD(V7M_CCR, DC, 16, 1) +FIELD(V7M_CCR, IC, 17, 1) +FIELD(V7M_CCR, BP, 18, 1) +FIELD(V7M_CCR, LOB, 19, 1) +FIELD(V7M_CCR, TRD, 20, 1) + +/* V7M SCR bits */ +FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) +FIELD(V7M_SCR, SLEEPDEEP, 2, 1) +FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) +FIELD(V7M_SCR, SEVONPEND, 4, 1) + +/* V7M AIRCR bits */ +FIELD(V7M_AIRCR, VECTRESET, 0, 1) +FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) +FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) +FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) +FIELD(V7M_AIRCR, PRIGROUP, 8, 3) +FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) +FIELD(V7M_AIRCR, PRIS, 14, 1) +FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) +FIELD(V7M_AIRCR, VECTKEY, 16, 16) + +/* V7M CFSR bits for MMFSR */ +FIELD(V7M_CFSR, IACCVIOL, 0, 1) +FIELD(V7M_CFSR, DACCVIOL, 1, 1) +FIELD(V7M_CFSR, MUNSTKERR, 3, 1) +FIELD(V7M_CFSR, MSTKERR, 4, 1) +FIELD(V7M_CFSR, MLSPERR, 5, 1) +FIELD(V7M_CFSR, MMARVALID, 7, 1) + +/* V7M CFSR bits for BFSR */ +FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) +FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) +FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) +FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) +FIELD(V7M_CFSR, STKERR, 8 + 4, 1) +FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) +FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) + +/* V7M CFSR bits for UFSR */ +FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) +FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) +FIELD(V7M_CFSR, INVPC, 16 + 2, 1) +FIELD(V7M_CFSR, NOCP, 16 + 3, 1) +FIELD(V7M_CFSR, STKOF, 16 + 4, 1) +FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) +FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) + +/* V7M CFSR bit masks covering all of the subregister bits */ +FIELD(V7M_CFSR, MMFSR, 0, 8) +FIELD(V7M_CFSR, BFSR, 8, 8) +FIELD(V7M_CFSR, UFSR, 16, 16) + +/* V7M HFSR bits */ +FIELD(V7M_HFSR, VECTTBL, 1, 1) +FIELD(V7M_HFSR, FORCED, 30, 1) +FIELD(V7M_HFSR, DEBUGEVT, 31, 1) + +/* V7M DFSR bits */ +FIELD(V7M_DFSR, HALTED, 0, 1) +FIELD(V7M_DFSR, BKPT, 1, 1) +FIELD(V7M_DFSR, DWTTRAP, 2, 1) +FIELD(V7M_DFSR, VCATCH, 3, 1) +FIELD(V7M_DFSR, EXTERNAL, 4, 1) + +/* V7M SFSR bits */ +FIELD(V7M_SFSR, INVEP, 0, 1) +FIELD(V7M_SFSR, INVIS, 1, 1) +FIELD(V7M_SFSR, INVER, 2, 1) +FIELD(V7M_SFSR, AUVIOL, 3, 1) +FIELD(V7M_SFSR, INVTRAN, 4, 1) +FIELD(V7M_SFSR, LSPERR, 5, 1) +FIELD(V7M_SFSR, SFARVALID, 6, 1) +FIELD(V7M_SFSR, LSERR, 7, 1) + +/* v7M MPU_CTRL bits */ +FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) +FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) +FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) + +/* v7M CLIDR bits */ +FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) +FIELD(V7M_CLIDR, LOUIS, 21, 3) +FIELD(V7M_CLIDR, LOC, 24, 3) +FIELD(V7M_CLIDR, LOUU, 27, 3) +FIELD(V7M_CLIDR, ICB, 30, 2) + +FIELD(V7M_CSSELR, IND, 0, 1) +FIELD(V7M_CSSELR, LEVEL, 1, 3) +/* We use the combination of InD and Level to index into cpu->ccsidr[]; + * define a mask for this and check that it doesn't permit running off + * the end of the array. + */ +FIELD(V7M_CSSELR, INDEX, 0, 4) + +/* v7M FPCCR bits */ +FIELD(V7M_FPCCR, LSPACT, 0, 1) +FIELD(V7M_FPCCR, USER, 1, 1) +FIELD(V7M_FPCCR, S, 2, 1) +FIELD(V7M_FPCCR, THREAD, 3, 1) +FIELD(V7M_FPCCR, HFRDY, 4, 1) +FIELD(V7M_FPCCR, MMRDY, 5, 1) +FIELD(V7M_FPCCR, BFRDY, 6, 1) +FIELD(V7M_FPCCR, SFRDY, 7, 1) +FIELD(V7M_FPCCR, MONRDY, 8, 1) +FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) +FIELD(V7M_FPCCR, UFRDY, 10, 1) +FIELD(V7M_FPCCR, RES0, 11, 15) +FIELD(V7M_FPCCR, TS, 26, 1) +FIELD(V7M_FPCCR, CLRONRETS, 27, 1) +FIELD(V7M_FPCCR, CLRONRET, 28, 1) +FIELD(V7M_FPCCR, LSPENS, 29, 1) +FIELD(V7M_FPCCR, LSPEN, 30, 1) +FIELD(V7M_FPCCR, ASPEN, 31, 1) +/* These bits are banked. Others are non-banked and live in the M_REG_S bank */ +#define R_V7M_FPCCR_BANKED_MASK \ + (R_V7M_FPCCR_LSPACT_MASK | \ + R_V7M_FPCCR_USER_MASK | \ + R_V7M_FPCCR_THREAD_MASK | \ + R_V7M_FPCCR_MMRDY_MASK | \ + R_V7M_FPCCR_SPLIMVIOL_MASK | \ + R_V7M_FPCCR_UFRDY_MASK | \ + R_V7M_FPCCR_ASPEN_MASK) + +/* v7M VPR bits */ +FIELD(V7M_VPR, P0, 0, 16) +FIELD(V7M_VPR, MASK01, 16, 4) +FIELD(V7M_VPR, MASK23, 20, 4) + +/* + * System register ID fields. + */ +FIELD(CLIDR_EL1, CTYPE1, 0, 3) +FIELD(CLIDR_EL1, CTYPE2, 3, 3) +FIELD(CLIDR_EL1, CTYPE3, 6, 3) +FIELD(CLIDR_EL1, CTYPE4, 9, 3) +FIELD(CLIDR_EL1, CTYPE5, 12, 3) +FIELD(CLIDR_EL1, CTYPE6, 15, 3) +FIELD(CLIDR_EL1, CTYPE7, 18, 3) +FIELD(CLIDR_EL1, LOUIS, 21, 3) +FIELD(CLIDR_EL1, LOC, 24, 3) +FIELD(CLIDR_EL1, LOUU, 27, 3) +FIELD(CLIDR_EL1, ICB, 30, 3) + +/* When FEAT_CCIDX is implemented */ +FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) +FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) +FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) + +/* When FEAT_CCIDX is not implemented */ +FIELD(CCSIDR_EL1, LINESIZE, 0, 3) +FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) +FIELD(CCSIDR_EL1, NUMSETS, 13, 15) + +FIELD(CTR_EL0, IMINLINE, 0, 4) +FIELD(CTR_EL0, L1IP, 14, 2) +FIELD(CTR_EL0, DMINLINE, 16, 4) +FIELD(CTR_EL0, ERG, 20, 4) +FIELD(CTR_EL0, CWG, 24, 4) +FIELD(CTR_EL0, IDC, 28, 1) +FIELD(CTR_EL0, DIC, 29, 1) +FIELD(CTR_EL0, TMINLINE, 32, 6) + +FIELD(MIDR_EL1, REVISION, 0, 4) +FIELD(MIDR_EL1, PARTNUM, 4, 12) +FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) +FIELD(MIDR_EL1, VARIANT, 20, 4) +FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) + +FIELD(ID_ISAR0, SWAP, 0, 4) +FIELD(ID_ISAR0, BITCOUNT, 4, 4) +FIELD(ID_ISAR0, BITFIELD, 8, 4) +FIELD(ID_ISAR0, CMPBRANCH, 12, 4) +FIELD(ID_ISAR0, COPROC, 16, 4) +FIELD(ID_ISAR0, DEBUG, 20, 4) +FIELD(ID_ISAR0, DIVIDE, 24, 4) + +FIELD(ID_ISAR1, ENDIAN, 0, 4) +FIELD(ID_ISAR1, EXCEPT, 4, 4) +FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) +FIELD(ID_ISAR1, EXTEND, 12, 4) +FIELD(ID_ISAR1, IFTHEN, 16, 4) +FIELD(ID_ISAR1, IMMEDIATE, 20, 4) +FIELD(ID_ISAR1, INTERWORK, 24, 4) +FIELD(ID_ISAR1, JAZELLE, 28, 4) + +FIELD(ID_ISAR2, LOADSTORE, 0, 4) +FIELD(ID_ISAR2, MEMHINT, 4, 4) +FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) +FIELD(ID_ISAR2, MULT, 12, 4) +FIELD(ID_ISAR2, MULTS, 16, 4) +FIELD(ID_ISAR2, MULTU, 20, 4) +FIELD(ID_ISAR2, PSR_AR, 24, 4) +FIELD(ID_ISAR2, REVERSAL, 28, 4) + +FIELD(ID_ISAR3, SATURATE, 0, 4) +FIELD(ID_ISAR3, SIMD, 4, 4) +FIELD(ID_ISAR3, SVC, 8, 4) +FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) +FIELD(ID_ISAR3, TABBRANCH, 16, 4) +FIELD(ID_ISAR3, T32COPY, 20, 4) +FIELD(ID_ISAR3, TRUENOP, 24, 4) +FIELD(ID_ISAR3, T32EE, 28, 4) + +FIELD(ID_ISAR4, UNPRIV, 0, 4) +FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) +FIELD(ID_ISAR4, WRITEBACK, 8, 4) +FIELD(ID_ISAR4, SMC, 12, 4) +FIELD(ID_ISAR4, BARRIER, 16, 4) +FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) +FIELD(ID_ISAR4, PSR_M, 24, 4) +FIELD(ID_ISAR4, SWP_FRAC, 28, 4) + +FIELD(ID_ISAR5, SEVL, 0, 4) +FIELD(ID_ISAR5, AES, 4, 4) +FIELD(ID_ISAR5, SHA1, 8, 4) +FIELD(ID_ISAR5, SHA2, 12, 4) +FIELD(ID_ISAR5, CRC32, 16, 4) +FIELD(ID_ISAR5, RDM, 24, 4) +FIELD(ID_ISAR5, VCMA, 28, 4) + +FIELD(ID_ISAR6, JSCVT, 0, 4) +FIELD(ID_ISAR6, DP, 4, 4) +FIELD(ID_ISAR6, FHM, 8, 4) +FIELD(ID_ISAR6, SB, 12, 4) +FIELD(ID_ISAR6, SPECRES, 16, 4) +FIELD(ID_ISAR6, BF16, 20, 4) +FIELD(ID_ISAR6, I8MM, 24, 4) + +FIELD(ID_MMFR0, VMSA, 0, 4) +FIELD(ID_MMFR0, PMSA, 4, 4) +FIELD(ID_MMFR0, OUTERSHR, 8, 4) +FIELD(ID_MMFR0, SHARELVL, 12, 4) +FIELD(ID_MMFR0, TCM, 16, 4) +FIELD(ID_MMFR0, AUXREG, 20, 4) +FIELD(ID_MMFR0, FCSE, 24, 4) +FIELD(ID_MMFR0, INNERSHR, 28, 4) + +FIELD(ID_MMFR1, L1HVDVA, 0, 4) +FIELD(ID_MMFR1, L1UNIVA, 4, 4) +FIELD(ID_MMFR1, L1HVDSW, 8, 4) +FIELD(ID_MMFR1, L1UNISW, 12, 4) +FIELD(ID_MMFR1, L1HVD, 16, 4) +FIELD(ID_MMFR1, L1UNI, 20, 4) +FIELD(ID_MMFR1, L1TSTCLN, 24, 4) +FIELD(ID_MMFR1, BPRED, 28, 4) + +FIELD(ID_MMFR2, L1HVDFG, 0, 4) +FIELD(ID_MMFR2, L1HVDBG, 4, 4) +FIELD(ID_MMFR2, L1HVDRNG, 8, 4) +FIELD(ID_MMFR2, HVDTLB, 12, 4) +FIELD(ID_MMFR2, UNITLB, 16, 4) +FIELD(ID_MMFR2, MEMBARR, 20, 4) +FIELD(ID_MMFR2, WFISTALL, 24, 4) +FIELD(ID_MMFR2, HWACCFLG, 28, 4) + +FIELD(ID_MMFR3, CMAINTVA, 0, 4) +FIELD(ID_MMFR3, CMAINTSW, 4, 4) +FIELD(ID_MMFR3, BPMAINT, 8, 4) +FIELD(ID_MMFR3, MAINTBCST, 12, 4) +FIELD(ID_MMFR3, PAN, 16, 4) +FIELD(ID_MMFR3, COHWALK, 20, 4) +FIELD(ID_MMFR3, CMEMSZ, 24, 4) +FIELD(ID_MMFR3, SUPERSEC, 28, 4) + +FIELD(ID_MMFR4, SPECSEI, 0, 4) +FIELD(ID_MMFR4, AC2, 4, 4) +FIELD(ID_MMFR4, XNX, 8, 4) +FIELD(ID_MMFR4, CNP, 12, 4) +FIELD(ID_MMFR4, HPDS, 16, 4) +FIELD(ID_MMFR4, LSM, 20, 4) +FIELD(ID_MMFR4, CCIDX, 24, 4) +FIELD(ID_MMFR4, EVT, 28, 4) + +FIELD(ID_MMFR5, ETS, 0, 4) + +FIELD(ID_PFR0, STATE0, 0, 4) +FIELD(ID_PFR0, STATE1, 4, 4) +FIELD(ID_PFR0, STATE2, 8, 4) +FIELD(ID_PFR0, STATE3, 12, 4) +FIELD(ID_PFR0, CSV2, 16, 4) +FIELD(ID_PFR0, AMU, 20, 4) +FIELD(ID_PFR0, DIT, 24, 4) +FIELD(ID_PFR0, RAS, 28, 4) + +FIELD(ID_PFR1, PROGMOD, 0, 4) +FIELD(ID_PFR1, SECURITY, 4, 4) +FIELD(ID_PFR1, MPROGMOD, 8, 4) +FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) +FIELD(ID_PFR1, GENTIMER, 16, 4) +FIELD(ID_PFR1, SEC_FRAC, 20, 4) +FIELD(ID_PFR1, VIRT_FRAC, 24, 4) +FIELD(ID_PFR1, GIC, 28, 4) + +FIELD(ID_PFR2, CSV3, 0, 4) +FIELD(ID_PFR2, SSBS, 4, 4) +FIELD(ID_PFR2, RAS_FRAC, 8, 4) + +FIELD(ID_AA64ISAR0, AES, 4, 4) +FIELD(ID_AA64ISAR0, SHA1, 8, 4) +FIELD(ID_AA64ISAR0, SHA2, 12, 4) +FIELD(ID_AA64ISAR0, CRC32, 16, 4) +FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) +FIELD(ID_AA64ISAR0, RDM, 28, 4) +FIELD(ID_AA64ISAR0, SHA3, 32, 4) +FIELD(ID_AA64ISAR0, SM3, 36, 4) +FIELD(ID_AA64ISAR0, SM4, 40, 4) +FIELD(ID_AA64ISAR0, DP, 44, 4) +FIELD(ID_AA64ISAR0, FHM, 48, 4) +FIELD(ID_AA64ISAR0, TS, 52, 4) +FIELD(ID_AA64ISAR0, TLB, 56, 4) +FIELD(ID_AA64ISAR0, RNDR, 60, 4) + +FIELD(ID_AA64ISAR1, DPB, 0, 4) +FIELD(ID_AA64ISAR1, APA, 4, 4) +FIELD(ID_AA64ISAR1, API, 8, 4) +FIELD(ID_AA64ISAR1, JSCVT, 12, 4) +FIELD(ID_AA64ISAR1, FCMA, 16, 4) +FIELD(ID_AA64ISAR1, LRCPC, 20, 4) +FIELD(ID_AA64ISAR1, GPA, 24, 4) +FIELD(ID_AA64ISAR1, GPI, 28, 4) +FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) +FIELD(ID_AA64ISAR1, SB, 36, 4) +FIELD(ID_AA64ISAR1, SPECRES, 40, 4) +FIELD(ID_AA64ISAR1, BF16, 44, 4) +FIELD(ID_AA64ISAR1, DGH, 48, 4) +FIELD(ID_AA64ISAR1, I8MM, 52, 4) + +FIELD(ID_AA64PFR0, EL0, 0, 4) +FIELD(ID_AA64PFR0, EL1, 4, 4) +FIELD(ID_AA64PFR0, EL2, 8, 4) +FIELD(ID_AA64PFR0, EL3, 12, 4) +FIELD(ID_AA64PFR0, FP, 16, 4) +FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) +FIELD(ID_AA64PFR0, GIC, 24, 4) +FIELD(ID_AA64PFR0, RAS, 28, 4) +FIELD(ID_AA64PFR0, SVE, 32, 4) +FIELD(ID_AA64PFR0, SEL2, 36, 4) +FIELD(ID_AA64PFR0, MPAM, 40, 4) +FIELD(ID_AA64PFR0, AMU, 44, 4) +FIELD(ID_AA64PFR0, DIT, 48, 4) +FIELD(ID_AA64PFR0, CSV2, 56, 4) +FIELD(ID_AA64PFR0, CSV3, 60, 4) + +FIELD(ID_AA64PFR1, BT, 0, 4) +FIELD(ID_AA64PFR1, SSBS, 4, 4) +FIELD(ID_AA64PFR1, MTE, 8, 4) +FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) +FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) + +FIELD(ID_AA64MMFR0, PARANGE, 0, 4) +FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) +FIELD(ID_AA64MMFR0, BIGEND, 8, 4) +FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) +FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) +FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) +FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) +FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) +FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) +FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) +FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) +FIELD(ID_AA64MMFR0, EXS, 44, 4) +FIELD(ID_AA64MMFR0, FGT, 56, 4) +FIELD(ID_AA64MMFR0, ECV, 60, 4) + +FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) +FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) +FIELD(ID_AA64MMFR1, VH, 8, 4) +FIELD(ID_AA64MMFR1, HPDS, 12, 4) +FIELD(ID_AA64MMFR1, LO, 16, 4) +FIELD(ID_AA64MMFR1, PAN, 20, 4) +FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) +FIELD(ID_AA64MMFR1, XNX, 28, 4) +FIELD(ID_AA64MMFR1, TWED, 32, 4) +FIELD(ID_AA64MMFR1, ETS, 36, 4) + +FIELD(ID_AA64MMFR2, CNP, 0, 4) +FIELD(ID_AA64MMFR2, UAO, 4, 4) +FIELD(ID_AA64MMFR2, LSM, 8, 4) +FIELD(ID_AA64MMFR2, IESB, 12, 4) +FIELD(ID_AA64MMFR2, VARANGE, 16, 4) +FIELD(ID_AA64MMFR2, CCIDX, 20, 4) +FIELD(ID_AA64MMFR2, NV, 24, 4) +FIELD(ID_AA64MMFR2, ST, 28, 4) +FIELD(ID_AA64MMFR2, AT, 32, 4) +FIELD(ID_AA64MMFR2, IDS, 36, 4) +FIELD(ID_AA64MMFR2, FWB, 40, 4) +FIELD(ID_AA64MMFR2, TTL, 48, 4) +FIELD(ID_AA64MMFR2, BBM, 52, 4) +FIELD(ID_AA64MMFR2, EVT, 56, 4) +FIELD(ID_AA64MMFR2, E0PD, 60, 4) + +FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) +FIELD(ID_AA64DFR0, TRACEVER, 4, 4) +FIELD(ID_AA64DFR0, PMUVER, 8, 4) +FIELD(ID_AA64DFR0, BRPS, 12, 4) +FIELD(ID_AA64DFR0, WRPS, 20, 4) +FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) +FIELD(ID_AA64DFR0, PMSVER, 32, 4) +FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) +FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) +FIELD(ID_AA64DFR0, MTPMU, 48, 4) + +FIELD(ID_AA64ZFR0, SVEVER, 0, 4) +FIELD(ID_AA64ZFR0, AES, 4, 4) +FIELD(ID_AA64ZFR0, BITPERM, 16, 4) +FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) +FIELD(ID_AA64ZFR0, SHA3, 32, 4) +FIELD(ID_AA64ZFR0, SM4, 40, 4) +FIELD(ID_AA64ZFR0, I8MM, 44, 4) +FIELD(ID_AA64ZFR0, F32MM, 52, 4) +FIELD(ID_AA64ZFR0, F64MM, 56, 4) + +FIELD(ID_DFR0, COPDBG, 0, 4) +FIELD(ID_DFR0, COPSDBG, 4, 4) +FIELD(ID_DFR0, MMAPDBG, 8, 4) +FIELD(ID_DFR0, COPTRC, 12, 4) +FIELD(ID_DFR0, MMAPTRC, 16, 4) +FIELD(ID_DFR0, MPROFDBG, 20, 4) +FIELD(ID_DFR0, PERFMON, 24, 4) +FIELD(ID_DFR0, TRACEFILT, 28, 4) + +FIELD(ID_DFR1, MTPMU, 0, 4) + +FIELD(DBGDIDR, SE_IMP, 12, 1) +FIELD(DBGDIDR, NSUHD_IMP, 14, 1) +FIELD(DBGDIDR, VERSION, 16, 4) +FIELD(DBGDIDR, CTX_CMPS, 20, 4) +FIELD(DBGDIDR, BRPS, 24, 4) +FIELD(DBGDIDR, WRPS, 28, 4) + +FIELD(MVFR0, SIMDREG, 0, 4) +FIELD(MVFR0, FPSP, 4, 4) +FIELD(MVFR0, FPDP, 8, 4) +FIELD(MVFR0, FPTRAP, 12, 4) +FIELD(MVFR0, FPDIVIDE, 16, 4) +FIELD(MVFR0, FPSQRT, 20, 4) +FIELD(MVFR0, FPSHVEC, 24, 4) +FIELD(MVFR0, FPROUND, 28, 4) + +FIELD(MVFR1, FPFTZ, 0, 4) +FIELD(MVFR1, FPDNAN, 4, 4) +FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ +FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ +FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ +FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ +FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ +FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ +FIELD(MVFR1, FPHP, 24, 4) +FIELD(MVFR1, SIMDFMAC, 28, 4) + +FIELD(MVFR2, SIMDMISC, 0, 4) +FIELD(MVFR2, FPMISC, 4, 4) + +QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); + +/* If adding a feature bit which corresponds to a Linux ELF + * HWCAP bit, remember to update the feature-bit-to-hwcap + * mapping in linux-user/elfload.c:get_elf_hwcap(). + */ +enum arm_features { + ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ + ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ + ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ + ARM_FEATURE_V6, + ARM_FEATURE_V6K, + ARM_FEATURE_V7, + ARM_FEATURE_THUMB2, + ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ + ARM_FEATURE_NEON, + ARM_FEATURE_M, /* Microcontroller profile. */ + ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ + ARM_FEATURE_THUMB2EE, + ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ + ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ + ARM_FEATURE_V4T, + ARM_FEATURE_V5, + ARM_FEATURE_STRONGARM, + ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ + ARM_FEATURE_GENERIC_TIMER, + ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ + ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ + ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ + ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ + ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ + ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ + ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ + ARM_FEATURE_V8, + ARM_FEATURE_AARCH64, /* supports 64 bit mode */ + ARM_FEATURE_CBAR, /* has cp15 CBAR */ + ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ + ARM_FEATURE_EL2, /* has EL2 Virtualization support */ + ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ + ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ + ARM_FEATURE_PMU, /* has PMU support */ + ARM_FEATURE_VBAR, /* has cp15 VBAR */ + ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ + ARM_FEATURE_M_MAIN, /* M profile Main Extension */ + ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ +}; + +static inline int arm_feature(CPUARMState *env, int feature) +{ + return (env->features & (1ULL << feature)) != 0; +} + +void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); + +#if !defined(CONFIG_USER_ONLY) +/* Return true if exception levels below EL3 are in secure state, + * or would be following an exception return to that level. + * Unlike arm_is_secure() (which is always a question about the + * _current_ state of the CPU) this doesn't care about the current + * EL or mode. + */ +static inline bool arm_is_secure_below_el3(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL3)) { + return !(env->cp15.scr_el3 & SCR_NS); + } else { + /* If EL3 is not supported then the secure state is implementation + * defined, in which case QEMU defaults to non-secure. + */ + return false; + } +} + +/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ +static inline bool arm_is_el3_or_mon(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL3)) { + if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { + /* CPU currently in AArch64 state and EL3 */ + return true; + } else if (!is_a64(env) && + (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { + /* CPU currently in AArch32 state and monitor mode */ + return true; + } + } + return false; +} + +/* Return true if the processor is in secure state */ +static inline bool arm_is_secure(CPUARMState *env) +{ + if (arm_is_el3_or_mon(env)) { + return true; + } + return arm_is_secure_below_el3(env); +} + +/* + * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. + * This corresponds to the pseudocode EL2Enabled() + */ +static inline bool arm_is_el2_enabled(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL2)) { + if (arm_is_secure_below_el3(env)) { + return (env->cp15.scr_el3 & SCR_EEL2) != 0; + } + return true; + } + return false; +} + +#else +static inline bool arm_is_secure_below_el3(CPUARMState *env) +{ + return false; +} + +static inline bool arm_is_secure(CPUARMState *env) +{ + return false; +} + +static inline bool arm_is_el2_enabled(CPUARMState *env) +{ + return false; +} +#endif + +/** + * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. + * E.g. when in secure state, fields in HCR_EL2 are suppressed, + * "for all purposes other than a direct read or write access of HCR_EL2." + * Not included here is HCR_RW. + */ +uint64_t arm_hcr_el2_eff(CPUARMState *env); + +/* Return true if the specified exception level is running in AArch64 state. */ +static inline bool arm_el_is_aa64(CPUARMState *env, int el) +{ + /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, + * and if we're not in EL0 then the state of EL0 isn't well defined.) + */ + assert(el >= 1 && el <= 3); + bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); + + /* The highest exception level is always at the maximum supported + * register width, and then lower levels have a register width controlled + * by bits in the SCR or HCR registers. + */ + if (el == 3) { + return aa64; + } + + if (arm_feature(env, ARM_FEATURE_EL3) && + ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { + aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); + } + + if (el == 2) { + return aa64; + } + + if (arm_is_el2_enabled(env)) { + aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); + } + + return aa64; +} + +/* Function for determing whether guest cp register reads and writes should + * access the secure or non-secure bank of a cp register. When EL3 is + * operating in AArch32 state, the NS-bit determines whether the secure + * instance of a cp register should be used. When EL3 is AArch64 (or if + * it doesn't exist at all) then there is no register banking, and all + * accesses are to the non-secure version. + */ +static inline bool access_secure_reg(CPUARMState *env) +{ + bool ret = (arm_feature(env, ARM_FEATURE_EL3) && + !arm_el_is_aa64(env, 3) && + !(env->cp15.scr_el3 & SCR_NS)); + + return ret; +} + +/* Macros for accessing a specified CP register bank */ +#define A32_BANKED_REG_GET(_env, _regname, _secure) \ + ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) + +#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ + do { \ + if (_secure) { \ + (_env)->cp15._regname##_s = (_val); \ + } else { \ + (_env)->cp15._regname##_ns = (_val); \ + } \ + } while (0) + +/* Macros for automatically accessing a specific CP register bank depending on + * the current secure state of the system. These macros are not intended for + * supporting instruction translation reads/writes as these are dependent + * solely on the SCR.NS bit and not the mode. + */ +#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ + A32_BANKED_REG_GET((_env), _regname, \ + (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) + +#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ + A32_BANKED_REG_SET((_env), _regname, \ + (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ + (_val)) + +void arm_cpu_list(void); +uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, + uint32_t cur_el, bool secure); + +/* Interface between CPU and Interrupt controller. */ +#ifndef CONFIG_USER_ONLY +bool armv7m_nvic_can_take_pending_exception(void *opaque); +#else +static inline bool armv7m_nvic_can_take_pending_exception(void *opaque) +{ + return true; +} +#endif +/** + * armv7m_nvic_set_pending: mark the specified exception as pending + * @opaque: the NVIC + * @irq: the exception number to mark pending + * @secure: false for non-banked exceptions or for the nonsecure + * version of a banked exception, true for the secure version of a banked + * exception. + * + * Marks the specified exception as pending. Note that we will assert() + * if @secure is true and @irq does not specify one of the fixed set + * of architecturally banked exceptions. + */ +void armv7m_nvic_set_pending(void *opaque, int irq, bool secure); +/** + * armv7m_nvic_set_pending_derived: mark this derived exception as pending + * @opaque: the NVIC + * @irq: the exception number to mark pending + * @secure: false for non-banked exceptions or for the nonsecure + * version of a banked exception, true for the secure version of a banked + * exception. + * + * Similar to armv7m_nvic_set_pending(), but specifically for derived + * exceptions (exceptions generated in the course of trying to take + * a different exception). + */ +void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure); +/** + * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending + * @opaque: the NVIC + * @irq: the exception number to mark pending + * @secure: false for non-banked exceptions or for the nonsecure + * version of a banked exception, true for the secure version of a banked + * exception. + * + * Similar to armv7m_nvic_set_pending(), but specifically for exceptions + * generated in the course of lazy stacking of FP registers. + */ +void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure); +/** + * armv7m_nvic_get_pending_irq_info: return highest priority pending + * exception, and whether it targets Secure state + * @opaque: the NVIC + * @pirq: set to pending exception number + * @ptargets_secure: set to whether pending exception targets Secure + * + * This function writes the number of the highest priority pending + * exception (the one which would be made active by + * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure + * to true if the current highest priority pending exception should + * be taken to Secure state, false for NS. + */ +void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq, + bool *ptargets_secure); +/** + * armv7m_nvic_acknowledge_irq: make highest priority pending exception active + * @opaque: the NVIC + * + * Move the current highest priority pending exception from the pending + * state to the active state, and update v7m.exception to indicate that + * it is the exception currently being handled. + */ +void armv7m_nvic_acknowledge_irq(void *opaque); +/** + * armv7m_nvic_complete_irq: complete specified interrupt or exception + * @opaque: the NVIC + * @irq: the exception number to complete + * @secure: true if this exception was secure + * + * Returns: -1 if the irq was not active + * 1 if completing this irq brought us back to base (no active irqs) + * 0 if there is still an irq active after this one was completed + * (Ignoring -1, this is the same as the RETTOBASE value before completion.) + */ +int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure); +/** + * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) + * @opaque: the NVIC + * @irq: the exception number to mark pending + * @secure: false for non-banked exceptions or for the nonsecure + * version of a banked exception, true for the secure version of a banked + * exception. + * + * Return whether an exception is "ready", i.e. whether the exception is + * enabled and is configured at a priority which would allow it to + * interrupt the current execution priority. This controls whether the + * RDY bit for it in the FPCCR is set. + */ +bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure); +/** + * armv7m_nvic_raw_execution_priority: return the raw execution priority + * @opaque: the NVIC + * + * Returns: the raw execution priority as defined by the v8M architecture. + * This is the execution priority minus the effects of AIRCR.PRIS, + * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting. + * (v8M ARM ARM I_PKLD.) + */ +int armv7m_nvic_raw_execution_priority(void *opaque); +/** + * armv7m_nvic_neg_prio_requested: return true if the requested execution + * priority is negative for the specified security state. + * @opaque: the NVIC + * @secure: the security state to test + * This corresponds to the pseudocode IsReqExecPriNeg(). + */ +#ifndef CONFIG_USER_ONLY +bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure); +#else +static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) +{ + return false; +} +#endif + +/* Interface for defining coprocessor registers. + * Registers are defined in tables of arm_cp_reginfo structs + * which are passed to define_arm_cp_regs(). + */ + +/* When looking up a coprocessor register we look for it + * via an integer which encodes all of: + * coprocessor number + * Crn, Crm, opc1, opc2 fields + * 32 or 64 bit register (ie is it accessed via MRC/MCR + * or via MRRC/MCRR?) + * non-secure/secure bank (AArch32 only) + * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. + * (In this case crn and opc2 should be zero.) + * For AArch64, there is no 32/64 bit size distinction; + * instead all registers have a 2 bit op0, 3 bit op1 and op2, + * and 4 bit CRn and CRm. The encoding patterns are chosen + * to be easy to convert to and from the KVM encodings, and also + * so that the hashtable can contain both AArch32 and AArch64 + * registers (to allow for interprocessing where we might run + * 32 bit code on a 64 bit core). + */ +/* This bit is private to our hashtable cpreg; in KVM register + * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 + * in the upper bits of the 64 bit ID. + */ +#define CP_REG_AA64_SHIFT 28 +#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) + +/* To enable banking of coprocessor registers depending on ns-bit we + * add a bit to distinguish between secure and non-secure cpregs in the + * hashtable. + */ +#define CP_REG_NS_SHIFT 29 +#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) + +#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ + ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ + ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) + +#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ + (CP_REG_AA64_MASK | \ + ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ + ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ + ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ + ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ + ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ + ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) + +/* Convert a full 64 bit KVM register ID to the truncated 32 bit + * version used as a key for the coprocessor register hashtable + */ +static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) +{ + uint32_t cpregid = kvmid; + if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { + cpregid |= CP_REG_AA64_MASK; + } else { + if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { + cpregid |= (1 << 15); + } + + /* KVM is always non-secure so add the NS flag on AArch32 register + * entries. + */ + cpregid |= 1 << CP_REG_NS_SHIFT; + } + return cpregid; +} + +/* Convert a truncated 32 bit hashtable key into the full + * 64 bit KVM register ID. + */ +static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) +{ + uint64_t kvmid; + + if (cpregid & CP_REG_AA64_MASK) { + kvmid = cpregid & ~CP_REG_AA64_MASK; + kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; + } else { + kvmid = cpregid & ~(1 << 15); + if (cpregid & (1 << 15)) { + kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; + } else { + kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; + } + } + return kvmid; +} + +/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a + * special-behaviour cp reg and bits [11..8] indicate what behaviour + * it has. Otherwise it is a simple cp reg, where CONST indicates that + * TCG can assume the value to be constant (ie load at translate time) + * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END + * indicates that the TB should not be ended after a write to this register + * (the default is that the TB ends after cp writes). OVERRIDE permits + * a register definition to override a previous definition for the + * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the + * old must have the OVERRIDE bit set. + * ALIAS indicates that this register is an alias view of some underlying + * state which is also visible via another register, and that the other + * register is handling migration and reset; registers marked ALIAS will not be + * migrated but may have their state set by syncing of register state from KVM. + * NO_RAW indicates that this register has no underlying state and does not + * support raw access for state saving/loading; it will not be used for either + * migration or KVM state synchronization. (Typically this is for "registers" + * which are actually used as instructions for cache maintenance and so on.) + * IO indicates that this register does I/O and therefore its accesses + * need to be marked with gen_io_start() and also end the TB. In particular, + * registers which implement clocks or timers require this. + * RAISES_EXC is for when the read or write hook might raise an exception; + * the generated code will synchronize the CPU state before calling the hook + * so that it is safe for the hook to call raise_exception(). + * NEWEL is for writes to registers that might change the exception + * level - typically on older ARM chips. For those cases we need to + * re-read the new el when recomputing the translation flags. + */ +#define ARM_CP_SPECIAL 0x0001 +#define ARM_CP_CONST 0x0002 +#define ARM_CP_64BIT 0x0004 +#define ARM_CP_SUPPRESS_TB_END 0x0008 +#define ARM_CP_OVERRIDE 0x0010 +#define ARM_CP_ALIAS 0x0020 +#define ARM_CP_IO 0x0040 +#define ARM_CP_NO_RAW 0x0080 +#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100) +#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200) +#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300) +#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400) +#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500) +#define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600) +#define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700) +#define ARM_LAST_SPECIAL ARM_CP_DC_GZVA +#define ARM_CP_FPU 0x1000 +#define ARM_CP_SVE 0x2000 +#define ARM_CP_NO_GDB 0x4000 +#define ARM_CP_RAISES_EXC 0x8000 +#define ARM_CP_NEWEL 0x10000 +/* Used only as a terminator for ARMCPRegInfo lists */ +#define ARM_CP_SENTINEL 0xfffff +/* Mask of only the flag bits in a type field */ +#define ARM_CP_FLAG_MASK 0x1f0ff + +/* Valid values for ARMCPRegInfo state field, indicating which of + * the AArch32 and AArch64 execution states this register is visible in. + * If the reginfo doesn't explicitly specify then it is AArch32 only. + * If the reginfo is declared to be visible in both states then a second + * reginfo is synthesised for the AArch32 view of the AArch64 register, + * such that the AArch32 view is the lower 32 bits of the AArch64 one. + * Note that we rely on the values of these enums as we iterate through + * the various states in some places. + */ +enum { + ARM_CP_STATE_AA32 = 0, + ARM_CP_STATE_AA64 = 1, + ARM_CP_STATE_BOTH = 2, +}; + +/* ARM CP register secure state flags. These flags identify security state + * attributes for a given CP register entry. + * The existence of both or neither secure and non-secure flags indicates that + * the register has both a secure and non-secure hash entry. A single one of + * these flags causes the register to only be hashed for the specified + * security state. + * Although definitions may have any combination of the S/NS bits, each + * registered entry will only have one to identify whether the entry is secure + * or non-secure. + */ +enum { + ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ + ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ +}; + +/* Return true if cptype is a valid type field. This is used to try to + * catch errors where the sentinel has been accidentally left off the end + * of a list of registers. + */ +static inline bool cptype_valid(int cptype) +{ + return ((cptype & ~ARM_CP_FLAG_MASK) == 0) + || ((cptype & ARM_CP_SPECIAL) && + ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); +} + +/* Access rights: + * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM + * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and + * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 + * (ie any of the privileged modes in Secure state, or Monitor mode). + * If a register is accessible in one privilege level it's always accessible + * in higher privilege levels too. Since "Secure PL1" also follows this rule + * (ie anything visible in PL2 is visible in S-PL1, some things are only + * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the + * terminology a little and call this PL3. + * In AArch64 things are somewhat simpler as the PLx bits line up exactly + * with the ELx exception levels. + * + * If access permissions for a register are more complex than can be + * described with these bits, then use a laxer set of restrictions, and + * do the more restrictive/complex check inside a helper function. + */ +#define PL3_R 0x80 +#define PL3_W 0x40 +#define PL2_R (0x20 | PL3_R) +#define PL2_W (0x10 | PL3_W) +#define PL1_R (0x08 | PL2_R) +#define PL1_W (0x04 | PL2_W) +#define PL0_R (0x02 | PL1_R) +#define PL0_W (0x01 | PL1_W) + +/* + * For user-mode some registers are accessible to EL0 via a kernel + * trap-and-emulate ABI. In this case we define the read permissions + * as actually being PL0_R. However some bits of any given register + * may still be masked. + */ +#ifdef CONFIG_USER_ONLY +#define PL0U_R PL0_R +#else +#define PL0U_R PL1_R +#endif + +#define PL3_RW (PL3_R | PL3_W) +#define PL2_RW (PL2_R | PL2_W) +#define PL1_RW (PL1_R | PL1_W) +#define PL0_RW (PL0_R | PL0_W) + +/* Return the highest implemented Exception Level */ +static inline int arm_highest_el(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL3)) { + return 3; + } + if (arm_feature(env, ARM_FEATURE_EL2)) { + return 2; + } + return 1; +} + +/* Return true if a v7M CPU is in Handler mode */ +static inline bool arm_v7m_is_handler_mode(CPUARMState *env) +{ + return env->v7m.exception != 0; +} + +/* Return the current Exception Level (as per ARMv8; note that this differs + * from the ARMv7 Privilege Level). + */ +static inline int arm_current_el(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_M)) { + return arm_v7m_is_handler_mode(env) || + !(env->v7m.control[env->v7m.secure] & 1); + } + + if (is_a64(env)) { + return extract32(env->pstate, 2, 2); + } + + switch (env->uncached_cpsr & 0x1f) { + case ARM_CPU_MODE_USR: + return 0; + case ARM_CPU_MODE_HYP: + return 2; + case ARM_CPU_MODE_MON: + return 3; + default: + if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { + /* If EL3 is 32-bit then all secure privileged modes run in + * EL3 + */ + return 3; + } + + return 1; + } +} + +typedef struct ARMCPRegInfo ARMCPRegInfo; + +typedef enum CPAccessResult { + /* Access is permitted */ + CP_ACCESS_OK = 0, + /* Access fails due to a configurable trap or enable which would + * result in a categorized exception syndrome giving information about + * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, + * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or + * PL1 if in EL0, otherwise to the current EL). + */ + CP_ACCESS_TRAP = 1, + /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). + * Note that this is not a catch-all case -- the set of cases which may + * result in this failure is specifically defined by the architecture. + */ + CP_ACCESS_TRAP_UNCATEGORIZED = 2, + /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ + CP_ACCESS_TRAP_EL2 = 3, + CP_ACCESS_TRAP_EL3 = 4, + /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ + CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, + CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, + /* Access fails and results in an exception syndrome for an FP access, + * trapped directly to EL2 or EL3 + */ + CP_ACCESS_TRAP_FP_EL2 = 7, + CP_ACCESS_TRAP_FP_EL3 = 8, +} CPAccessResult; + +/* Access functions for coprocessor registers. These cannot fail and + * may not raise exceptions. + */ +typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); +typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, + uint64_t value); +/* Access permission check functions for coprocessor registers. */ +typedef CPAccessResult CPAccessFn(CPUARMState *env, + const ARMCPRegInfo *opaque, + bool isread); +/* Hook function for register reset */ +typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); + +#define CP_ANY 0xff + +/* Definition of an ARM coprocessor register */ +struct ARMCPRegInfo { + /* Name of register (useful mainly for debugging, need not be unique) */ + const char *name; + /* Location of register: coprocessor number and (crn,crm,opc1,opc2) + * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a + * 'wildcard' field -- any value of that field in the MRC/MCR insn + * will be decoded to this register. The register read and write + * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 + * used by the program, so it is possible to register a wildcard and + * then behave differently on read/write if necessary. + * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 + * must both be zero. + * For AArch64-visible registers, opc0 is also used. + * Since there are no "coprocessors" in AArch64, cp is purely used as a + * way to distinguish (for KVM's benefit) guest-visible system registers + * from demuxed ones provided to preserve the "no side effects on + * KVM register read/write from QEMU" semantics. cp==0x13 is guest + * visible (to match KVM's encoding); cp==0 will be converted to + * cp==0x13 when the ARMCPRegInfo is registered, for convenience. + */ + uint8_t cp; + uint8_t crn; + uint8_t crm; + uint8_t opc0; + uint8_t opc1; + uint8_t opc2; + /* Execution state in which this register is visible: ARM_CP_STATE_* */ + int state; + /* Register type: ARM_CP_* bits/values */ + int type; + /* Access rights: PL*_[RW] */ + int access; + /* Security state: ARM_CP_SECSTATE_* bits/values */ + int secure; + /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when + * this register was defined: can be used to hand data through to the + * register read/write functions, since they are passed the ARMCPRegInfo*. + */ + void *opaque; + /* Value of this register, if it is ARM_CP_CONST. Otherwise, if + * fieldoffset is non-zero, the reset value of the register. + */ + uint64_t resetvalue; + /* Offset of the field in CPUARMState for this register. + * + * This is not needed if either: + * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs + * 2. both readfn and writefn are specified + */ + ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ + + /* Offsets of the secure and non-secure fields in CPUARMState for the + * register if it is banked. These fields are only used during the static + * registration of a register. During hashing the bank associated + * with a given security state is copied to fieldoffset which is used from + * there on out. + * + * It is expected that register definitions use either fieldoffset or + * bank_fieldoffsets in the definition but not both. It is also expected + * that both bank offsets are set when defining a banked register. This + * use indicates that a register is banked. + */ + ptrdiff_t bank_fieldoffsets[2]; + + /* Function for making any access checks for this register in addition to + * those specified by the 'access' permissions bits. If NULL, no extra + * checks required. The access check is performed at runtime, not at + * translate time. + */ + CPAccessFn *accessfn; + /* Function for handling reads of this register. If NULL, then reads + * will be done by loading from the offset into CPUARMState specified + * by fieldoffset. + */ + CPReadFn *readfn; + /* Function for handling writes of this register. If NULL, then writes + * will be done by writing to the offset into CPUARMState specified + * by fieldoffset. + */ + CPWriteFn *writefn; + /* Function for doing a "raw" read; used when we need to copy + * coprocessor state to the kernel for KVM or out for + * migration. This only needs to be provided if there is also a + * readfn and it has side effects (for instance clear-on-read bits). + */ + CPReadFn *raw_readfn; + /* Function for doing a "raw" write; used when we need to copy KVM + * kernel coprocessor state into userspace, or for inbound + * migration. This only needs to be provided if there is also a + * writefn and it masks out "unwritable" bits or has write-one-to-clear + * or similar behaviour. + */ + CPWriteFn *raw_writefn; + /* Function for resetting the register. If NULL, then reset will be done + * by writing resetvalue to the field specified in fieldoffset. If + * fieldoffset is 0 then no reset will be done. + */ + CPResetFn *resetfn; + + /* + * "Original" writefn and readfn. + * For ARMv8.1-VHE register aliases, we overwrite the read/write + * accessor functions of various EL1/EL0 to perform the runtime + * check for which sysreg should actually be modified, and then + * forwards the operation. Before overwriting the accessors, + * the original function is copied here, so that accesses that + * really do go to the EL1/EL0 version proceed normally. + * (The corresponding EL2 register is linked via opaque.) + */ + CPReadFn *orig_readfn; + CPWriteFn *orig_writefn; +}; + +/* Macros which are lvalues for the field in CPUARMState for the + * ARMCPRegInfo *ri. + */ +#define CPREG_FIELD32(env, ri) \ + (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) +#define CPREG_FIELD64(env, ri) \ + (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) + +#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } + +void define_arm_cp_regs_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque); +void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque); +static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) +{ + define_arm_cp_regs_with_opaque(cpu, regs, 0); +} +static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) +{ + define_one_arm_cp_reg_with_opaque(cpu, regs, 0); +} +const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); + +/* + * Definition of an ARM co-processor register as viewed from + * userspace. This is used for presenting sanitised versions of + * registers to userspace when emulating the Linux AArch64 CPU + * ID/feature ABI (advertised as HWCAP_CPUID). + */ +typedef struct ARMCPRegUserSpaceInfo { + /* Name of register */ + const char *name; + + /* Is the name actually a glob pattern */ + bool is_glob; + + /* Only some bits are exported to user space */ + uint64_t exported_bits; + + /* Fixed bits are applied after the mask */ + uint64_t fixed_bits; +} ARMCPRegUserSpaceInfo; + +#define REGUSERINFO_SENTINEL { .name = NULL } + +void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods); + +/* CPWriteFn that can be used to implement writes-ignored behaviour */ +void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value); +/* CPReadFn that can be used for read-as-zero behaviour */ +uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); + +/* CPResetFn that does nothing, for use if no reset is required even + * if fieldoffset is non zero. + */ +void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); + +/* Return true if this reginfo struct's field in the cpu state struct + * is 64 bits wide. + */ +static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) +{ + return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); +} + +static inline bool cp_access_ok(int current_el, + const ARMCPRegInfo *ri, int isread) +{ + return (ri->access >> ((current_el * 2) + isread)) & 1; +} + +/* Raw read of a coprocessor register (as needed for migration, etc) */ +uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); + +/** + * write_list_to_cpustate + * @cpu: ARMCPU + * + * For each register listed in the ARMCPU cpreg_indexes list, write + * its value from the cpreg_values list into the ARMCPUState structure. + * This updates TCG's working data structures from KVM data or + * from incoming migration state. + * + * Returns: true if all register values were updated correctly, + * false if some register was unknown or could not be written. + * Note that we do not stop early on failure -- we will attempt + * writing all registers in the list. + */ +bool write_list_to_cpustate(ARMCPU *cpu); + +/** + * write_cpustate_to_list: + * @cpu: ARMCPU + * @kvm_sync: true if this is for syncing back to KVM + * + * For each register listed in the ARMCPU cpreg_indexes list, write + * its value from the ARMCPUState structure into the cpreg_values list. + * This is used to copy info from TCG's working data structures into + * KVM or for outbound migration. + * + * @kvm_sync is true if we are doing this in order to sync the + * register state back to KVM. In this case we will only update + * values in the list if the previous list->cpustate sync actually + * successfully wrote the CPU state. Otherwise we will keep the value + * that is in the list. + * + * Returns: true if all register values were read correctly, + * false if some register was unknown or could not be read. + * Note that we do not stop early on failure -- we will attempt + * reading all registers in the list. + */ +bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); + +#define ARM_CPUID_TI915T 0x54029152 +#define ARM_CPUID_TI925T 0x54029252 + +#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU +#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX) +#define CPU_RESOLVING_TYPE TYPE_ARM_CPU + +#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU + +#define cpu_list arm_cpu_list + +/* ARM has the following "translation regimes" (as the ARM ARM calls them): + * + * If EL3 is 64-bit: + * + NonSecure EL1 & 0 stage 1 + * + NonSecure EL1 & 0 stage 2 + * + NonSecure EL2 + * + NonSecure EL2 & 0 (ARMv8.1-VHE) + * + Secure EL1 & 0 + * + Secure EL3 + * If EL3 is 32-bit: + * + NonSecure PL1 & 0 stage 1 + * + NonSecure PL1 & 0 stage 2 + * + NonSecure PL2 + * + Secure PL0 + * + Secure PL1 + * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) + * + * For QEMU, an mmu_idx is not quite the same as a translation regime because: + * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, + * because they may differ in access permissions even if the VA->PA map is + * the same + * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 + * translation, which means that we have one mmu_idx that deals with two + * concatenated translation regimes [this sort of combined s1+2 TLB is + * architecturally permitted] + * 3. we don't need to allocate an mmu_idx to translations that we won't be + * handling via the TLB. The only way to do a stage 1 translation without + * the immediate stage 2 translation is via the ATS or AT system insns, + * which can be slow-pathed and always do a page table walk. + * The only use of stage 2 translations is either as part of an s1+2 + * lookup or when loading the descriptors during a stage 1 page table walk, + * and in both those cases we don't use the TLB. + * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" + * translation regimes, because they map reasonably well to each other + * and they can't both be active at the same time. + * 5. we want to be able to use the TLB for accesses done as part of a + * stage1 page table walk, rather than having to walk the stage2 page + * table over and over. + * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access + * Never (PAN) bit within PSTATE. + * + * This gives us the following list of cases: + * + * NS EL0 EL1&0 stage 1+2 (aka NS PL0) + * NS EL1 EL1&0 stage 1+2 (aka NS PL1) + * NS EL1 EL1&0 stage 1+2 +PAN + * NS EL0 EL2&0 + * NS EL2 EL2&0 + * NS EL2 EL2&0 +PAN + * NS EL2 (aka NS PL2) + * S EL0 EL1&0 (aka S PL0) + * S EL1 EL1&0 (not used if EL3 is 32 bit) + * S EL1 EL1&0 +PAN + * S EL3 (aka S PL1) + * + * for a total of 11 different mmu_idx. + * + * R profile CPUs have an MPU, but can use the same set of MMU indexes + * as A profile. They only need to distinguish NS EL0 and NS EL1 (and + * NS EL2 if we ever model a Cortex-R52). + * + * M profile CPUs are rather different as they do not have a true MMU. + * They have the following different MMU indexes: + * User + * Privileged + * User, execution priority negative (ie the MPU HFNMIENA bit may apply) + * Privileged, execution priority negative (ditto) + * If the CPU supports the v8M Security Extension then there are also: + * Secure User + * Secure Privileged + * Secure User, execution priority negative + * Secure Privileged, execution priority negative + * + * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code + * are not quite the same -- different CPU types (most notably M profile + * vs A/R profile) would like to use MMU indexes with different semantics, + * but since we don't ever need to use all of those in a single CPU we + * can avoid having to set NB_MMU_MODES to "total number of A profile MMU + * modes + total number of M profile MMU modes". The lower bits of + * ARMMMUIdx are the core TLB mmu index, and the higher bits are always + * the same for any particular CPU. + * Variables of type ARMMUIdx are always full values, and the core + * index values are in variables of type 'int'. + * + * Our enumeration includes at the end some entries which are not "true" + * mmu_idx values in that they don't have corresponding TLBs and are only + * valid for doing slow path page table walks. + * + * The constant names here are patterned after the general style of the names + * of the AT/ATS operations. + * The values used are carefully arranged to make mmu_idx => EL lookup easy. + * For M profile we arrange them to have a bit for priv, a bit for negpri + * and a bit for secure. + */ +#define ARM_MMU_IDX_A 0x10 /* A profile */ +#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ +#define ARM_MMU_IDX_M 0x40 /* M profile */ + +/* Meanings of the bits for A profile mmu idx values */ +#define ARM_MMU_IDX_A_NS 0x8 + +/* Meanings of the bits for M profile mmu idx values */ +#define ARM_MMU_IDX_M_PRIV 0x1 +#define ARM_MMU_IDX_M_NEGPRI 0x2 +#define ARM_MMU_IDX_M_S 0x4 /* Secure */ + +#define ARM_MMU_IDX_TYPE_MASK \ + (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) +#define ARM_MMU_IDX_COREIDX_MASK 0xf + +typedef enum ARMMMUIdx { + /* + * A-profile. + */ + ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A, + ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A, + ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A, + ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A, + ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A, + ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A, + ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A, + ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A, + + ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS, + ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS, + ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS, + ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS, + ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS, + ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS, + ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS, + + /* + * These are not allocated TLBs and are used only for AT system + * instructions or for the first stage of an S12 page table walk. + */ + ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, + ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, + ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, + ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB, + ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB, + ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB, + /* + * Not allocated a TLB: used only for second stage of an S12 page + * table walk, or for descriptor loads during first stage of an S1 + * page table walk. Note that if we ever want to have a TLB for this + * then various TLB flush insns which currently are no-ops or flush + * only stage 1 MMU indexes will need to change to flush stage 2. + */ + ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB, + ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB, + + /* + * M-profile. + */ + ARMMMUIdx_MUser = ARM_MMU_IDX_M, + ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, + ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, + ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, + ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, + ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, + ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, + ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, +} ARMMMUIdx; + +/* + * Bit macros for the core-mmu-index values for each index, + * for use when calling tlb_flush_by_mmuidx() and friends. + */ +#define TO_CORE_BIT(NAME) \ + ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) + +typedef enum ARMMMUIdxBit { + TO_CORE_BIT(E10_0), + TO_CORE_BIT(E20_0), + TO_CORE_BIT(E10_1), + TO_CORE_BIT(E10_1_PAN), + TO_CORE_BIT(E2), + TO_CORE_BIT(E20_2), + TO_CORE_BIT(E20_2_PAN), + TO_CORE_BIT(SE10_0), + TO_CORE_BIT(SE20_0), + TO_CORE_BIT(SE10_1), + TO_CORE_BIT(SE20_2), + TO_CORE_BIT(SE10_1_PAN), + TO_CORE_BIT(SE20_2_PAN), + TO_CORE_BIT(SE2), + TO_CORE_BIT(SE3), + + TO_CORE_BIT(MUser), + TO_CORE_BIT(MPriv), + TO_CORE_BIT(MUserNegPri), + TO_CORE_BIT(MPrivNegPri), + TO_CORE_BIT(MSUser), + TO_CORE_BIT(MSPriv), + TO_CORE_BIT(MSUserNegPri), + TO_CORE_BIT(MSPrivNegPri), +} ARMMMUIdxBit; + +#undef TO_CORE_BIT + +#define MMU_USER_IDX 0 + +/* Indexes used when registering address spaces with cpu_address_space_init */ +typedef enum ARMASIdx { + ARMASIdx_NS = 0, + ARMASIdx_S = 1, + ARMASIdx_TagNS = 2, + ARMASIdx_TagS = 3, +} ARMASIdx; + +/* Return the Exception Level targeted by debug exceptions. */ +static inline int arm_debug_target_el(CPUARMState *env) +{ + bool secure = arm_is_secure(env); + bool route_to_el2 = false; + + if (arm_is_el2_enabled(env)) { + route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || + env->cp15.mdcr_el2 & MDCR_TDE; + } + + if (route_to_el2) { + return 2; + } else if (arm_feature(env, ARM_FEATURE_EL3) && + !arm_el_is_aa64(env, 3) && secure) { + return 3; + } else { + return 1; + } +} + +static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) +{ + /* If all the CLIDR.Ctypem bits are 0 there are no caches, and + * CSSELR is RAZ/WI. + */ + return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; +} + +/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */ +static inline bool aa64_generate_debug_exceptions(CPUARMState *env) +{ + int cur_el = arm_current_el(env); + int debug_el; + + if (cur_el == 3) { + return false; + } + + /* MDCR_EL3.SDD disables debug events from Secure state */ + if (arm_is_secure_below_el3(env) + && extract32(env->cp15.mdcr_el3, 16, 1)) { + return false; + } + + /* + * Same EL to same EL debug exceptions need MDSCR_KDE enabled + * while not masking the (D)ebug bit in DAIF. + */ + debug_el = arm_debug_target_el(env); + + if (cur_el == debug_el) { + return extract32(env->cp15.mdscr_el1, 13, 1) + && !(env->daif & PSTATE_D); + } + + /* Otherwise the debug target needs to be a higher EL */ + return debug_el > cur_el; +} + +static inline bool aa32_generate_debug_exceptions(CPUARMState *env) +{ + int el = arm_current_el(env); + + if (el == 0 && arm_el_is_aa64(env, 1)) { + return aa64_generate_debug_exceptions(env); + } + + if (arm_is_secure(env)) { + int spd; + + if (el == 0 && (env->cp15.sder & 1)) { + /* SDER.SUIDEN means debug exceptions from Secure EL0 + * are always enabled. Otherwise they are controlled by + * SDCR.SPD like those from other Secure ELs. + */ + return true; + } + + spd = extract32(env->cp15.mdcr_el3, 14, 2); + switch (spd) { + case 1: + /* SPD == 0b01 is reserved, but behaves as 0b00. */ + case 0: + /* For 0b00 we return true if external secure invasive debug + * is enabled. On real hardware this is controlled by external + * signals to the core. QEMU always permits debug, and behaves + * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. + */ + return true; + case 2: + return false; + case 3: + return true; + } + } + + return el != 2; +} + +/* Return true if debugging exceptions are currently enabled. + * This corresponds to what in ARM ARM pseudocode would be + * if UsingAArch32() then + * return AArch32.GenerateDebugExceptions() + * else + * return AArch64.GenerateDebugExceptions() + * We choose to push the if() down into this function for clarity, + * since the pseudocode has it at all callsites except for the one in + * CheckSoftwareStep(), where it is elided because both branches would + * always return the same value. + */ +static inline bool arm_generate_debug_exceptions(CPUARMState *env) +{ + if (env->aarch64) { + return aa64_generate_debug_exceptions(env); + } else { + return aa32_generate_debug_exceptions(env); + } +} + +/* Is single-stepping active? (Note that the "is EL_D AArch64?" check + * implicitly means this always returns false in pre-v8 CPUs.) + */ +static inline bool arm_singlestep_active(CPUARMState *env) +{ + return extract32(env->cp15.mdscr_el1, 0, 1) + && arm_el_is_aa64(env, arm_debug_target_el(env)) + && arm_generate_debug_exceptions(env); +} + +static inline bool arm_sctlr_b(CPUARMState *env) +{ + return + /* We need not implement SCTLR.ITD in user-mode emulation, so + * let linux-user ignore the fact that it conflicts with SCTLR_B. + * This lets people run BE32 binaries with "-cpu any". + */ +#ifndef CONFIG_USER_ONLY + !arm_feature(env, ARM_FEATURE_V7) && +#endif + (env->cp15.sctlr_el[1] & SCTLR_B) != 0; +} + +uint64_t arm_sctlr(CPUARMState *env, int el); + +static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, + bool sctlr_b) +{ +#ifdef CONFIG_USER_ONLY + /* + * In system mode, BE32 is modelled in line with the + * architecture (as word-invariant big-endianness), where loads + * and stores are done little endian but from addresses which + * are adjusted by XORing with the appropriate constant. So the + * endianness to use for the raw data access is not affected by + * SCTLR.B. + * In user mode, however, we model BE32 as byte-invariant + * big-endianness (because user-only code cannot tell the + * difference), and so we need to use a data access endianness + * that depends on SCTLR.B. + */ + if (sctlr_b) { + return true; + } +#endif + /* In 32bit endianness is determined by looking at CPSR's E bit */ + return env->uncached_cpsr & CPSR_E; +} + +static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) +{ + return sctlr & (el ? SCTLR_EE : SCTLR_E0E); +} + +/* Return true if the processor is in big-endian mode. */ +static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) +{ + if (!is_a64(env)) { + return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); + } else { + int cur_el = arm_current_el(env); + uint64_t sctlr = arm_sctlr(env, cur_el); + return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); + } +} + +typedef CPUARMState CPUArchState; +typedef ARMCPU ArchCPU; + +#include "exec/cpu-all.h" + +/* + * We have more than 32-bits worth of state per TB, so we split the data + * between tb->flags and tb->cs_base, which is otherwise unused for ARM. + * We collect these two parts in CPUARMTBFlags where they are named + * flags and flags2 respectively. + * + * The flags that are shared between all execution modes, TBFLAG_ANY, + * are stored in flags. The flags that are specific to a given mode + * are stores in flags2. Since cs_base is sized on the configured + * address size, flags2 always has 64-bits for A64, and a minimum of + * 32-bits for A32 and M32. + * + * The bits for 32-bit A-profile and M-profile partially overlap: + * + * 31 23 11 10 0 + * +-------------+----------+----------------+ + * | | | TBFLAG_A32 | + * | TBFLAG_AM32 | +-----+----------+ + * | | |TBFLAG_M32| + * +-------------+----------------+----------+ + * 31 23 6 5 0 + * + * Unless otherwise noted, these bits are cached in env->hflags. + */ +FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) +FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) +FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ +FIELD(TBFLAG_ANY, BE_DATA, 3, 1) +FIELD(TBFLAG_ANY, MMUIDX, 4, 4) +/* Target EL if we take a floating-point-disabled exception */ +FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) +/* For A-profile only, target EL for debug exceptions. */ +FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2) +/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ +FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1) +FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1) + +/* + * Bit usage when in AArch32 state, both A- and M-profile. + */ +FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ +FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ + +/* + * Bit usage when in AArch32 state, for A-profile only. + */ +FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ +FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ +/* + * We store the bottom two bits of the CPAR as TB flags and handle + * checks on the other bits at runtime. This shares the same bits as + * VECSTRIDE, which is OK as no XScale CPU has VFP. + * Not cached, because VECLEN+VECSTRIDE are not cached. + */ +FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) +FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ +FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ +FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) +/* + * Indicates whether cp register reads and writes by guest code should access + * the secure or nonsecure bank of banked registers; note that this is not + * the same thing as the current security state of the processor! + */ +FIELD(TBFLAG_A32, NS, 10, 1) + +/* + * Bit usage when in AArch32 state, for M-profile only. + */ +/* Handler (ie not Thread) mode */ +FIELD(TBFLAG_M32, HANDLER, 0, 1) +/* Whether we should generate stack-limit checks */ +FIELD(TBFLAG_M32, STACKCHECK, 1, 1) +/* Set if FPCCR.LSPACT is set */ +FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ +/* Set if we must create a new FP context */ +FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ +/* Set if FPCCR.S does not match current security state */ +FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ +/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ +FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ + +/* + * Bit usage when in AArch64 state + */ +FIELD(TBFLAG_A64, TBII, 0, 2) +FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) +FIELD(TBFLAG_A64, ZCR_LEN, 4, 4) +FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) +FIELD(TBFLAG_A64, BT, 9, 1) +FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ +FIELD(TBFLAG_A64, TBID, 12, 2) +FIELD(TBFLAG_A64, UNPRIV, 14, 1) +FIELD(TBFLAG_A64, ATA, 15, 1) +FIELD(TBFLAG_A64, TCMA, 16, 2) +FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) +FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) + +/* + * Helpers for using the above. + */ +#define DP_TBFLAG_ANY(DST, WHICH, VAL) \ + (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) +#define DP_TBFLAG_A64(DST, WHICH, VAL) \ + (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL)) +#define DP_TBFLAG_A32(DST, WHICH, VAL) \ + (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) +#define DP_TBFLAG_M32(DST, WHICH, VAL) \ + (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) +#define DP_TBFLAG_AM32(DST, WHICH, VAL) \ + (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) + +#define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) +#define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH) +#define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) +#define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) +#define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) + +/** + * cpu_mmu_index: + * @env: The cpu environment + * @ifetch: True for code access, false for data access. + * + * Return the core mmu index for the current translation regime. + * This function is used by generic TCG code paths. + */ +static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) +{ + return EX_TBFLAG_ANY(env->hflags, MMUIDX); +} + +static inline bool bswap_code(bool sctlr_b) +{ +#ifdef CONFIG_USER_ONLY + /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. + * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 + * would also end up as a mixed-endian mode with BE code, LE data. + */ + return +#ifdef TARGET_WORDS_BIGENDIAN + 1 ^ +#endif + sctlr_b; +#else + /* All code access in ARM is little endian, and there are no loaders + * doing swaps that need to be reversed + */ + return 0; +#endif +} + +#ifdef CONFIG_USER_ONLY +static inline bool arm_cpu_bswap_data(CPUARMState *env) +{ + return +#ifdef TARGET_WORDS_BIGENDIAN + 1 ^ +#endif + arm_cpu_data_is_big_endian(env); +} +#endif + +void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, + target_ulong *cs_base, uint32_t *flags); + +enum { + QEMU_PSCI_CONDUIT_DISABLED = 0, + QEMU_PSCI_CONDUIT_SMC = 1, + QEMU_PSCI_CONDUIT_HVC = 2, +}; + +#ifndef CONFIG_USER_ONLY +/* Return the address space index to use for a memory access */ +static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) +{ + return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; +} + +/* Return the AddressSpace to use for a memory access + * (which depends on whether the access is S or NS, and whether + * the board gave us a separate AddressSpace for S accesses). + */ +static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) +{ + return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); +} +#endif + +/** + * arm_register_pre_el_change_hook: + * Register a hook function which will be called immediately before this + * CPU changes exception level or mode. The hook function will be + * passed a pointer to the ARMCPU and the opaque data pointer passed + * to this function when the hook was registered. + * + * Note that if a pre-change hook is called, any registered post-change hooks + * are guaranteed to subsequently be called. + */ +void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, + void *opaque); +/** + * arm_register_el_change_hook: + * Register a hook function which will be called immediately after this + * CPU changes exception level or mode. The hook function will be + * passed a pointer to the ARMCPU and the opaque data pointer passed + * to this function when the hook was registered. + * + * Note that any registered hooks registered here are guaranteed to be called + * if pre-change hooks have been. + */ +void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void + *opaque); + +/** + * arm_rebuild_hflags: + * Rebuild the cached TBFLAGS for arbitrary changed processor state. + */ +void arm_rebuild_hflags(CPUARMState *env); + +/** + * aa32_vfp_dreg: + * Return a pointer to the Dn register within env in 32-bit mode. + */ +static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) +{ + return &env->vfp.zregs[regno >> 1].d[regno & 1]; +} + +/** + * aa32_vfp_qreg: + * Return a pointer to the Qn register within env in 32-bit mode. + */ +static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) +{ + return &env->vfp.zregs[regno].d[0]; +} + +/** + * aa64_vfp_qreg: + * Return a pointer to the Qn register within env in 64-bit mode. + */ +static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) +{ + return &env->vfp.zregs[regno].d[0]; +} + +/* Shared between translate-sve.c and sve_helper.c. */ +extern const uint64_t pred_esz_masks[4]; + +/* Helper for the macros below, validating the argument type. */ +static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x) +{ + return x; +} + +/* + * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB. + * Using these should be a bit more self-documenting than using the + * generic target bits directly. + */ +#define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0) +#define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1) + +/* + * AArch64 usage of the PAGE_TARGET_* bits for linux-user. + */ +#define PAGE_BTI PAGE_TARGET_1 +#define PAGE_MTE PAGE_TARGET_2 + +#ifdef TARGET_TAGGED_ADDRESSES +/** + * cpu_untagged_addr: + * @cs: CPU context + * @x: tagged address + * + * Remove any address tag from @x. This is explicitly related to the + * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. + * + * There should be a better place to put this, but we need this in + * include/exec/cpu_ldst.h, and not some place linux-user specific. + */ +static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) +{ + ARMCPU *cpu = ARM_CPU(cs); + if (cpu->env.tagged_addr_enable) { + /* + * TBI is enabled for userspace but not kernelspace addresses. + * Only clear the tag if bit 55 is clear. + */ + x &= sextract64(x, 0, 56); + } + return x; +} +#endif + +/* + * Naming convention for isar_feature functions: + * Functions which test 32-bit ID registers should have _aa32_ in + * their name. Functions which test 64-bit ID registers should have + * _aa64_ in their name. These must only be used in code where we + * know for certain that the CPU has AArch32 or AArch64 respectively + * or where the correct answer for a CPU which doesn't implement that + * CPU state is "false" (eg when generating A32 or A64 code, if adding + * system registers that are specific to that CPU state, for "should + * we let this system register bit be set" tests where the 32-bit + * flavour of the register doesn't have the bit, and so on). + * Functions which simply ask "does this feature exist at all" have + * _any_ in their name, and always return the logical OR of the _aa64_ + * and the _aa32_ function. + */ + +/* + * 32-bit feature tests via id registers. + */ +static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0; +} + +static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1; +} + +static inline bool isar_feature_aa32_lob(const ARMISARegisters *id) +{ + /* (M-profile) low-overhead loops and branch future */ + return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3; +} + +static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0; +} + +static inline bool isar_feature_aa32_aes(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0; +} + +static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1; +} + +static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0; +} + +static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0; +} + +static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0; +} + +static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0; +} + +static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0; +} + +static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0; +} + +static inline bool isar_feature_aa32_dp(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0; +} + +static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0; +} + +static inline bool isar_feature_aa32_sb(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0; +} + +static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0; +} + +static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0; +} + +static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0; +} + +static inline bool isar_feature_aa32_ras(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0; +} + +static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0; +} + +static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id) +{ + /* + * Return true if M-profile state handling insns + * (VSCCLRM, CLRM, FPCTX access insns) are implemented + */ + return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3; +} + +static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id) +{ + /* Sadly this is encoded differently for A-profile and M-profile */ + if (isar_feature_aa32_mprofile(id)) { + return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0; + } else { + return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3; + } +} + +static inline bool isar_feature_aa32_mve(const ARMISARegisters *id) +{ + /* + * Return true if MVE is supported (either integer or floating point). + * We must check for M-profile as the MVFR1 field means something + * else for A-profile. + */ + return isar_feature_aa32_mprofile(id) && + FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0; +} + +static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id) +{ + /* + * Return true if MVE is supported (either integer or floating point). + * We must check for M-profile as the MVFR1 field means something + * else for A-profile. + */ + return isar_feature_aa32_mprofile(id) && + FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2; +} + +static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id) +{ + /* + * Return true if either VFP or SIMD is implemented. + * In this case, a minimum of VFP w/ D0-D15. + */ + return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0; +} + +static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id) +{ + /* Return true if D16-D31 are implemented */ + return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2; +} + +static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0; +} + +static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id) +{ + /* Return true if CPU supports single precision floating point, VFPv2 */ + return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0; +} + +static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id) +{ + /* Return true if CPU supports single precision floating point, VFPv3 */ + return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2; +} + +static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id) +{ + /* Return true if CPU supports double precision floating point, VFPv2 */ + return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0; +} + +static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id) +{ + /* Return true if CPU supports double precision floating point, VFPv3 */ + return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2; +} + +static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id) +{ + return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id); +} + +/* + * We always set the FP and SIMD FP16 fields to indicate identical + * levels of support (assuming SIMD is implemented at all), so + * we only need one set of accessors. + */ +static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0; +} + +static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1; +} + +/* + * Note that this ID register field covers both VFP and Neon FMAC, + * so should usually be tested in combination with some other + * check that confirms the presence of whichever of VFP or Neon is + * relevant, to avoid accidentally enabling a Neon feature on + * a VFP-no-Neon core or vice-versa. + */ +static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0; +} + +static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1; +} + +static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2; +} + +static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3; +} + +static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id) +{ + return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4; +} + +static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4; +} + +static inline bool isar_feature_aa32_pan(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0; +} + +static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2; +} + +static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id) +{ + /* 0xf means "non-standard IMPDEF PMU" */ + return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 && + FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; +} + +static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id) +{ + /* 0xf means "non-standard IMPDEF PMU" */ + return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 && + FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf; +} + +static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0; +} + +static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0; +} + +static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0; +} + +static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0; +} + +static inline bool isar_feature_aa32_dit(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0; +} + +static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id) +{ + return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0; +} + +/* + * 64-bit feature tests via id registers. + */ +static inline bool isar_feature_aa64_aes(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0; +} + +static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1; +} + +static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0; +} + +static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0; +} + +static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1; +} + +static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0; +} + +static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0; +} + +static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0; +} + +static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0; +} + +static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0; +} + +static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0; +} + +static inline bool isar_feature_aa64_dp(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0; +} + +static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0; +} + +static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0; +} + +static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2; +} + +static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0; +} + +static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0; +} + +static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0; +} + +static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id) +{ + /* + * Return true if any form of pauth is enabled, as this + * predicate controls migration of the 128-bit keys. + */ + return (id->id_aa64isar1 & + (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) | + FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) | + FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) | + FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0; +} + +static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id) +{ + /* + * Return true if pauth is enabled with the architected QARMA algorithm. + * QEMU will always set APA+GPA to the same value. + */ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0; +} + +static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2; +} + +static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0; +} + +static inline bool isar_feature_aa64_sb(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0; +} + +static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0; +} + +static inline bool isar_feature_aa64_frint(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0; +} + +static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0; +} + +static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2; +} + +static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0; +} + +static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id) +{ + /* We always set the AdvSIMD and FP fields identically. */ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf; +} + +static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id) +{ + /* We always set the AdvSIMD and FP fields identically wrt FP16. */ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1; +} + +static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2; +} + +static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2; +} + +static inline bool isar_feature_aa64_sve(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0; +} + +static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0; +} + +static inline bool isar_feature_aa64_vh(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0; +} + +static inline bool isar_feature_aa64_lor(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0; +} + +static inline bool isar_feature_aa64_pan(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0; +} + +static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2; +} + +static inline bool isar_feature_aa64_uao(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0; +} + +static inline bool isar_feature_aa64_st(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0; +} + +static inline bool isar_feature_aa64_bti(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0; +} + +static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0; +} + +static inline bool isar_feature_aa64_mte(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2; +} + +static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 && + FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; +} + +static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 && + FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf; +} + +static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0; +} + +static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2; +} + +static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0; +} + +static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0; +} + +static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0; +} + +static inline bool isar_feature_aa64_dit(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0; +} + +static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0; +} + +static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0; +} + +static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0; +} + +static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2; +} + +static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0; +} + +static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0; +} + +static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0; +} + +static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0; +} + +static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0; +} + +static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0; +} + +static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id) +{ + return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0; +} + +/* + * Feature tests for "does this exist in either 32-bit or 64-bit?" + */ +static inline bool isar_feature_any_fp16(const ARMISARegisters *id) +{ + return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id); +} + +static inline bool isar_feature_any_predinv(const ARMISARegisters *id) +{ + return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id); +} + +static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id) +{ + return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id); +} + +static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id) +{ + return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id); +} + +static inline bool isar_feature_any_ccidx(const ARMISARegisters *id) +{ + return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id); +} + +static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id) +{ + return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id); +} + +/* + * Forward to the above feature tests given an ARMCPU pointer. + */ +#define cpu_isar_feature(name, cpu) \ + ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); }) + +#endif |