aboutsummaryrefslogtreecommitdiffstats
path: root/target/arm/cpu64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/cpu64.c')
-rw-r--r--target/arm/cpu64.c1005
1 files changed, 1005 insertions, 0 deletions
diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c
new file mode 100644
index 000000000..15245a60a
--- /dev/null
+++ b/target/arm/cpu64.c
@@ -0,0 +1,1005 @@
+/*
+ * QEMU AArch64 CPU
+ *
+ * Copyright (c) 2013 Linaro Ltd
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see
+ * <http://www.gnu.org/licenses/gpl-2.0.html>
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#ifdef CONFIG_TCG
+#include "hw/core/tcg-cpu-ops.h"
+#endif /* CONFIG_TCG */
+#include "qemu/module.h"
+#if !defined(CONFIG_USER_ONLY)
+#include "hw/loader.h"
+#endif
+#include "sysemu/kvm.h"
+#include "kvm_arm.h"
+#include "qapi/visitor.h"
+#include "hw/qdev-properties.h"
+
+
+#ifndef CONFIG_USER_ONLY
+static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ ARMCPU *cpu = env_archcpu(env);
+
+ /* Number of cores is in [25:24]; otherwise we RAZ */
+ return (cpu->core_count - 1) << 24;
+}
+#endif
+
+static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
+#ifndef CONFIG_USER_ONLY
+ { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
+ .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
+ .writefn = arm_cp_write_ignore },
+ { .name = "L2CTLR",
+ .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
+ .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
+ .writefn = arm_cp_write_ignore },
+#endif
+ { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "L2ECTLR",
+ .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
+ .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "CPUACTLR",
+ .cp = 15, .opc1 = 0, .crm = 15,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "CPUECTLR",
+ .cp = 15, .opc1 = 1, .crm = 15,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "CPUMERRSR",
+ .cp = 15, .opc1 = 2, .crm = 15,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
+ .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "L2MERRSR",
+ .cp = 15, .opc1 = 3, .crm = 15,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static void aarch64_a57_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ cpu->dtb_compatible = "arm,cortex-a57";
+ set_feature(&cpu->env, ARM_FEATURE_V8);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
+ set_feature(&cpu->env, ARM_FEATURE_AARCH64);
+ set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
+ set_feature(&cpu->env, ARM_FEATURE_EL2);
+ set_feature(&cpu->env, ARM_FEATURE_EL3);
+ set_feature(&cpu->env, ARM_FEATURE_PMU);
+ cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
+ cpu->midr = 0x411fd070;
+ cpu->revidr = 0x00000000;
+ cpu->reset_fpsid = 0x41034070;
+ cpu->isar.mvfr0 = 0x10110222;
+ cpu->isar.mvfr1 = 0x12111111;
+ cpu->isar.mvfr2 = 0x00000043;
+ cpu->ctr = 0x8444c004;
+ cpu->reset_sctlr = 0x00c50838;
+ cpu->isar.id_pfr0 = 0x00000131;
+ cpu->isar.id_pfr1 = 0x00011011;
+ cpu->isar.id_dfr0 = 0x03010066;
+ cpu->id_afr0 = 0x00000000;
+ cpu->isar.id_mmfr0 = 0x10101105;
+ cpu->isar.id_mmfr1 = 0x40000000;
+ cpu->isar.id_mmfr2 = 0x01260000;
+ cpu->isar.id_mmfr3 = 0x02102211;
+ cpu->isar.id_isar0 = 0x02101110;
+ cpu->isar.id_isar1 = 0x13112111;
+ cpu->isar.id_isar2 = 0x21232042;
+ cpu->isar.id_isar3 = 0x01112131;
+ cpu->isar.id_isar4 = 0x00011142;
+ cpu->isar.id_isar5 = 0x00011121;
+ cpu->isar.id_isar6 = 0;
+ cpu->isar.id_aa64pfr0 = 0x00002222;
+ cpu->isar.id_aa64dfr0 = 0x10305106;
+ cpu->isar.id_aa64isar0 = 0x00011120;
+ cpu->isar.id_aa64mmfr0 = 0x00001124;
+ cpu->isar.dbgdidr = 0x3516d000;
+ cpu->clidr = 0x0a200023;
+ cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
+ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
+ cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
+ cpu->dcz_blocksize = 4; /* 64 bytes */
+ cpu->gic_num_lrs = 4;
+ cpu->gic_vpribits = 5;
+ cpu->gic_vprebits = 5;
+ define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
+}
+
+static void aarch64_a53_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ cpu->dtb_compatible = "arm,cortex-a53";
+ set_feature(&cpu->env, ARM_FEATURE_V8);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
+ set_feature(&cpu->env, ARM_FEATURE_AARCH64);
+ set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
+ set_feature(&cpu->env, ARM_FEATURE_EL2);
+ set_feature(&cpu->env, ARM_FEATURE_EL3);
+ set_feature(&cpu->env, ARM_FEATURE_PMU);
+ cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
+ cpu->midr = 0x410fd034;
+ cpu->revidr = 0x00000000;
+ cpu->reset_fpsid = 0x41034070;
+ cpu->isar.mvfr0 = 0x10110222;
+ cpu->isar.mvfr1 = 0x12111111;
+ cpu->isar.mvfr2 = 0x00000043;
+ cpu->ctr = 0x84448004; /* L1Ip = VIPT */
+ cpu->reset_sctlr = 0x00c50838;
+ cpu->isar.id_pfr0 = 0x00000131;
+ cpu->isar.id_pfr1 = 0x00011011;
+ cpu->isar.id_dfr0 = 0x03010066;
+ cpu->id_afr0 = 0x00000000;
+ cpu->isar.id_mmfr0 = 0x10101105;
+ cpu->isar.id_mmfr1 = 0x40000000;
+ cpu->isar.id_mmfr2 = 0x01260000;
+ cpu->isar.id_mmfr3 = 0x02102211;
+ cpu->isar.id_isar0 = 0x02101110;
+ cpu->isar.id_isar1 = 0x13112111;
+ cpu->isar.id_isar2 = 0x21232042;
+ cpu->isar.id_isar3 = 0x01112131;
+ cpu->isar.id_isar4 = 0x00011142;
+ cpu->isar.id_isar5 = 0x00011121;
+ cpu->isar.id_isar6 = 0;
+ cpu->isar.id_aa64pfr0 = 0x00002222;
+ cpu->isar.id_aa64dfr0 = 0x10305106;
+ cpu->isar.id_aa64isar0 = 0x00011120;
+ cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
+ cpu->isar.dbgdidr = 0x3516d000;
+ cpu->clidr = 0x0a200023;
+ cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
+ cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
+ cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
+ cpu->dcz_blocksize = 4; /* 64 bytes */
+ cpu->gic_num_lrs = 4;
+ cpu->gic_vpribits = 5;
+ cpu->gic_vprebits = 5;
+ define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
+}
+
+static void aarch64_a72_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ cpu->dtb_compatible = "arm,cortex-a72";
+ set_feature(&cpu->env, ARM_FEATURE_V8);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
+ set_feature(&cpu->env, ARM_FEATURE_AARCH64);
+ set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
+ set_feature(&cpu->env, ARM_FEATURE_EL2);
+ set_feature(&cpu->env, ARM_FEATURE_EL3);
+ set_feature(&cpu->env, ARM_FEATURE_PMU);
+ cpu->midr = 0x410fd083;
+ cpu->revidr = 0x00000000;
+ cpu->reset_fpsid = 0x41034080;
+ cpu->isar.mvfr0 = 0x10110222;
+ cpu->isar.mvfr1 = 0x12111111;
+ cpu->isar.mvfr2 = 0x00000043;
+ cpu->ctr = 0x8444c004;
+ cpu->reset_sctlr = 0x00c50838;
+ cpu->isar.id_pfr0 = 0x00000131;
+ cpu->isar.id_pfr1 = 0x00011011;
+ cpu->isar.id_dfr0 = 0x03010066;
+ cpu->id_afr0 = 0x00000000;
+ cpu->isar.id_mmfr0 = 0x10201105;
+ cpu->isar.id_mmfr1 = 0x40000000;
+ cpu->isar.id_mmfr2 = 0x01260000;
+ cpu->isar.id_mmfr3 = 0x02102211;
+ cpu->isar.id_isar0 = 0x02101110;
+ cpu->isar.id_isar1 = 0x13112111;
+ cpu->isar.id_isar2 = 0x21232042;
+ cpu->isar.id_isar3 = 0x01112131;
+ cpu->isar.id_isar4 = 0x00011142;
+ cpu->isar.id_isar5 = 0x00011121;
+ cpu->isar.id_aa64pfr0 = 0x00002222;
+ cpu->isar.id_aa64dfr0 = 0x10305106;
+ cpu->isar.id_aa64isar0 = 0x00011120;
+ cpu->isar.id_aa64mmfr0 = 0x00001124;
+ cpu->isar.dbgdidr = 0x3516d000;
+ cpu->clidr = 0x0a200023;
+ cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
+ cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
+ cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
+ cpu->dcz_blocksize = 4; /* 64 bytes */
+ cpu->gic_num_lrs = 4;
+ cpu->gic_vpribits = 5;
+ cpu->gic_vprebits = 5;
+ define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
+}
+
+void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
+{
+ /*
+ * If any vector lengths are explicitly enabled with sve<N> properties,
+ * then all other lengths are implicitly disabled. If sve-max-vq is
+ * specified then it is the same as explicitly enabling all lengths
+ * up to and including the specified maximum, which means all larger
+ * lengths will be implicitly disabled. If no sve<N> properties
+ * are enabled and sve-max-vq is not specified, then all lengths not
+ * explicitly disabled will be enabled. Additionally, all power-of-two
+ * vector lengths less than the maximum enabled length will be
+ * automatically enabled and all vector lengths larger than the largest
+ * disabled power-of-two vector length will be automatically disabled.
+ * Errors are generated if the user provided input that interferes with
+ * any of the above. Finally, if SVE is not disabled, then at least one
+ * vector length must be enabled.
+ */
+ DECLARE_BITMAP(tmp, ARM_MAX_VQ);
+ uint32_t vq, max_vq = 0;
+
+ /*
+ * CPU models specify a set of supported vector lengths which are
+ * enabled by default. Attempting to enable any vector length not set
+ * in the supported bitmap results in an error. When KVM is enabled we
+ * fetch the supported bitmap from the host.
+ */
+ if (kvm_enabled() && kvm_arm_sve_supported()) {
+ kvm_arm_sve_get_vls(CPU(cpu), cpu->sve_vq_supported);
+ } else if (kvm_enabled()) {
+ assert(!cpu_isar_feature(aa64_sve, cpu));
+ }
+
+ /*
+ * Process explicit sve<N> properties.
+ * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
+ * Check first for any sve<N> enabled.
+ */
+ if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
+ max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
+
+ if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
+ error_setg(errp, "cannot enable sve%d", max_vq * 128);
+ error_append_hint(errp, "sve%d is larger than the maximum vector "
+ "length, sve-max-vq=%d (%d bits)\n",
+ max_vq * 128, cpu->sve_max_vq,
+ cpu->sve_max_vq * 128);
+ return;
+ }
+
+ if (kvm_enabled()) {
+ /*
+ * For KVM we have to automatically enable all supported unitialized
+ * lengths, even when the smaller lengths are not all powers-of-two.
+ */
+ bitmap_andnot(tmp, cpu->sve_vq_supported, cpu->sve_vq_init, max_vq);
+ bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
+ } else {
+ /* Propagate enabled bits down through required powers-of-two. */
+ for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
+ if (!test_bit(vq - 1, cpu->sve_vq_init)) {
+ set_bit(vq - 1, cpu->sve_vq_map);
+ }
+ }
+ }
+ } else if (cpu->sve_max_vq == 0) {
+ /*
+ * No explicit bits enabled, and no implicit bits from sve-max-vq.
+ */
+ if (!cpu_isar_feature(aa64_sve, cpu)) {
+ /* SVE is disabled and so are all vector lengths. Good. */
+ return;
+ }
+
+ if (kvm_enabled()) {
+ /* Disabling a supported length disables all larger lengths. */
+ for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
+ if (test_bit(vq - 1, cpu->sve_vq_init) &&
+ test_bit(vq - 1, cpu->sve_vq_supported)) {
+ break;
+ }
+ }
+ } else {
+ /* Disabling a power-of-two disables all larger lengths. */
+ for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
+ if (test_bit(vq - 1, cpu->sve_vq_init)) {
+ break;
+ }
+ }
+ }
+
+ max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
+ bitmap_andnot(cpu->sve_vq_map, cpu->sve_vq_supported,
+ cpu->sve_vq_init, max_vq);
+ if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
+ error_setg(errp, "cannot disable sve%d", vq * 128);
+ error_append_hint(errp, "Disabling sve%d results in all "
+ "vector lengths being disabled.\n",
+ vq * 128);
+ error_append_hint(errp, "With SVE enabled, at least one "
+ "vector length must be enabled.\n");
+ return;
+ }
+
+ max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
+ }
+
+ /*
+ * Process the sve-max-vq property.
+ * Note that we know from the above that no bit above
+ * sve-max-vq is currently set.
+ */
+ if (cpu->sve_max_vq != 0) {
+ max_vq = cpu->sve_max_vq;
+
+ if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
+ test_bit(max_vq - 1, cpu->sve_vq_init)) {
+ error_setg(errp, "cannot disable sve%d", max_vq * 128);
+ error_append_hint(errp, "The maximum vector length must be "
+ "enabled, sve-max-vq=%d (%d bits)\n",
+ max_vq, max_vq * 128);
+ return;
+ }
+
+ /* Set all bits not explicitly set within sve-max-vq. */
+ bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
+ bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
+ }
+
+ /*
+ * We should know what max-vq is now. Also, as we're done
+ * manipulating sve-vq-map, we ensure any bits above max-vq
+ * are clear, just in case anybody looks.
+ */
+ assert(max_vq != 0);
+ bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
+
+ /* Ensure the set of lengths matches what is supported. */
+ bitmap_xor(tmp, cpu->sve_vq_map, cpu->sve_vq_supported, max_vq);
+ if (!bitmap_empty(tmp, max_vq)) {
+ vq = find_last_bit(tmp, max_vq) + 1;
+ if (test_bit(vq - 1, cpu->sve_vq_map)) {
+ if (cpu->sve_max_vq) {
+ error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
+ error_append_hint(errp, "This CPU does not support "
+ "the vector length %d-bits.\n", vq * 128);
+ error_append_hint(errp, "It may not be possible to use "
+ "sve-max-vq with this CPU. Try "
+ "using only sve<N> properties.\n");
+ } else {
+ error_setg(errp, "cannot enable sve%d", vq * 128);
+ error_append_hint(errp, "This CPU does not support "
+ "the vector length %d-bits.\n", vq * 128);
+ }
+ return;
+ } else {
+ if (kvm_enabled()) {
+ error_setg(errp, "cannot disable sve%d", vq * 128);
+ error_append_hint(errp, "The KVM host requires all "
+ "supported vector lengths smaller "
+ "than %d bits to also be enabled.\n",
+ max_vq * 128);
+ return;
+ } else {
+ /* Ensure all required powers-of-two are enabled. */
+ for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
+ if (!test_bit(vq - 1, cpu->sve_vq_map)) {
+ error_setg(errp, "cannot disable sve%d", vq * 128);
+ error_append_hint(errp, "sve%d is required as it "
+ "is a power-of-two length smaller "
+ "than the maximum, sve%d\n",
+ vq * 128, max_vq * 128);
+ return;
+ }
+ }
+ }
+ }
+ }
+
+ /*
+ * Now that we validated all our vector lengths, the only question
+ * left to answer is if we even want SVE at all.
+ */
+ if (!cpu_isar_feature(aa64_sve, cpu)) {
+ error_setg(errp, "cannot enable sve%d", max_vq * 128);
+ error_append_hint(errp, "SVE must be enabled to enable vector "
+ "lengths.\n");
+ error_append_hint(errp, "Add sve=on to the CPU property list.\n");
+ return;
+ }
+
+ /* From now on sve_max_vq is the actual maximum supported length. */
+ cpu->sve_max_vq = max_vq;
+}
+
+static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
+ void *opaque, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ uint32_t value;
+
+ /* All vector lengths are disabled when SVE is off. */
+ if (!cpu_isar_feature(aa64_sve, cpu)) {
+ value = 0;
+ } else {
+ value = cpu->sve_max_vq;
+ }
+ visit_type_uint32(v, name, &value, errp);
+}
+
+static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
+ void *opaque, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ uint32_t max_vq;
+
+ if (!visit_type_uint32(v, name, &max_vq, errp)) {
+ return;
+ }
+
+ if (kvm_enabled() && !kvm_arm_sve_supported()) {
+ error_setg(errp, "cannot set sve-max-vq");
+ error_append_hint(errp, "SVE not supported by KVM on this host\n");
+ return;
+ }
+
+ if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
+ error_setg(errp, "unsupported SVE vector length");
+ error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
+ ARM_MAX_VQ);
+ return;
+ }
+
+ cpu->sve_max_vq = max_vq;
+}
+
+/*
+ * Note that cpu_arm_get/set_sve_vq cannot use the simpler
+ * object_property_add_bool interface because they make use
+ * of the contents of "name" to determine which bit on which
+ * to operate.
+ */
+static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
+ void *opaque, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ uint32_t vq = atoi(&name[3]) / 128;
+ bool value;
+
+ /* All vector lengths are disabled when SVE is off. */
+ if (!cpu_isar_feature(aa64_sve, cpu)) {
+ value = false;
+ } else {
+ value = test_bit(vq - 1, cpu->sve_vq_map);
+ }
+ visit_type_bool(v, name, &value, errp);
+}
+
+static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
+ void *opaque, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ uint32_t vq = atoi(&name[3]) / 128;
+ bool value;
+
+ if (!visit_type_bool(v, name, &value, errp)) {
+ return;
+ }
+
+ if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
+ error_setg(errp, "cannot enable %s", name);
+ error_append_hint(errp, "SVE not supported by KVM on this host\n");
+ return;
+ }
+
+ if (value) {
+ set_bit(vq - 1, cpu->sve_vq_map);
+ } else {
+ clear_bit(vq - 1, cpu->sve_vq_map);
+ }
+ set_bit(vq - 1, cpu->sve_vq_init);
+}
+
+static bool cpu_arm_get_sve(Object *obj, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ return cpu_isar_feature(aa64_sve, cpu);
+}
+
+static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ uint64_t t;
+
+ if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
+ error_setg(errp, "'sve' feature not supported by KVM on this host");
+ return;
+ }
+
+ t = cpu->isar.id_aa64pfr0;
+ t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
+ cpu->isar.id_aa64pfr0 = t;
+}
+
+#ifdef CONFIG_USER_ONLY
+/* Mirror linux /proc/sys/abi/sve_default_vector_length. */
+static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ int32_t default_len, default_vq, remainder;
+
+ if (!visit_type_int32(v, name, &default_len, errp)) {
+ return;
+ }
+
+ /* Undocumented, but the kernel allows -1 to indicate "maximum". */
+ if (default_len == -1) {
+ cpu->sve_default_vq = ARM_MAX_VQ;
+ return;
+ }
+
+ default_vq = default_len / 16;
+ remainder = default_len % 16;
+
+ /*
+ * Note that the 512 max comes from include/uapi/asm/sve_context.h
+ * and is the maximum architectural width of ZCR_ELx.LEN.
+ */
+ if (remainder || default_vq < 1 || default_vq > 512) {
+ error_setg(errp, "cannot set sve-default-vector-length");
+ if (remainder) {
+ error_append_hint(errp, "Vector length not a multiple of 16\n");
+ } else if (default_vq < 1) {
+ error_append_hint(errp, "Vector length smaller than 16\n");
+ } else {
+ error_append_hint(errp, "Vector length larger than %d\n",
+ 512 * 16);
+ }
+ return;
+ }
+
+ cpu->sve_default_vq = default_vq;
+}
+
+static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+ int32_t value = cpu->sve_default_vq * 16;
+
+ visit_type_int32(v, name, &value, errp);
+}
+#endif
+
+void aarch64_add_sve_properties(Object *obj)
+{
+ uint32_t vq;
+
+ object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
+
+ for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
+ char name[8];
+ sprintf(name, "sve%d", vq * 128);
+ object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
+ cpu_arm_set_sve_vq, NULL, NULL);
+ }
+
+#ifdef CONFIG_USER_ONLY
+ /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
+ object_property_add(obj, "sve-default-vector-length", "int32",
+ cpu_arm_get_sve_default_vec_len,
+ cpu_arm_set_sve_default_vec_len, NULL, NULL);
+#endif
+}
+
+void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
+{
+ int arch_val = 0, impdef_val = 0;
+ uint64_t t;
+
+ /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
+ if (cpu->prop_pauth) {
+ if (cpu->prop_pauth_impdef) {
+ impdef_val = 1;
+ } else {
+ arch_val = 1;
+ }
+ } else if (cpu->prop_pauth_impdef) {
+ error_setg(errp, "cannot enable pauth-impdef without pauth");
+ error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
+ }
+
+ t = cpu->isar.id_aa64isar1;
+ t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
+ t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
+ t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
+ t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
+ cpu->isar.id_aa64isar1 = t;
+}
+
+static Property arm_cpu_pauth_property =
+ DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
+static Property arm_cpu_pauth_impdef_property =
+ DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
+
+/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
+ * otherwise, a CPU with as many features enabled as our emulation supports.
+ * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
+ * this only needs to handle 64 bits.
+ */
+static void aarch64_max_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ if (kvm_enabled()) {
+ kvm_arm_set_cpu_features_from_host(cpu);
+ } else {
+ uint64_t t;
+ uint32_t u;
+ aarch64_a57_initfn(obj);
+
+ /*
+ * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
+ * one and try to apply errata workarounds or use impdef features we
+ * don't provide.
+ * An IMPLEMENTER field of 0 means "reserved for software use";
+ * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
+ * to see which features are present";
+ * the VARIANT, PARTNUM and REVISION fields are all implementation
+ * defined and we choose to define PARTNUM just in case guest
+ * code needs to distinguish this QEMU CPU from other software
+ * implementations, though this shouldn't be needed.
+ */
+ t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
+ t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
+ t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
+ t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
+ t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
+ cpu->midr = t;
+
+ t = cpu->isar.id_aa64isar0;
+ t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
+ t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
+ t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
+ t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
+ t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
+ t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
+ cpu->isar.id_aa64isar0 = t;
+
+ t = cpu->isar.id_aa64isar1;
+ t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
+ t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
+ t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
+ t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);
+ cpu->isar.id_aa64isar1 = t;
+
+ t = cpu->isar.id_aa64pfr0;
+ t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
+ t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
+ t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
+ t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
+ t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);
+ cpu->isar.id_aa64pfr0 = t;
+
+ t = cpu->isar.id_aa64pfr1;
+ t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
+ t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);
+ /*
+ * Begin with full support for MTE. This will be downgraded to MTE=0
+ * during realize if the board provides no tag memory, much like
+ * we do for EL2 with the virtualization=on property.
+ */
+ t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);
+ cpu->isar.id_aa64pfr1 = t;
+
+ t = cpu->isar.id_aa64mmfr0;
+ t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
+ cpu->isar.id_aa64mmfr0 = t;
+
+ t = cpu->isar.id_aa64mmfr1;
+ t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
+ t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
+ t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
+ t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
+ t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
+ t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
+ cpu->isar.id_aa64mmfr1 = t;
+
+ t = cpu->isar.id_aa64mmfr2;
+ t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
+ t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
+ t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
+ cpu->isar.id_aa64mmfr2 = t;
+
+ t = cpu->isar.id_aa64zfr0;
+ t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* PMULL */
+ t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);
+ t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);
+ cpu->isar.id_aa64zfr0 = t;
+
+ /* Replicate the same data to the 32-bit id registers. */
+ u = cpu->isar.id_isar5;
+ u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
+ u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
+ u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
+ u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
+ u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
+ u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
+ cpu->isar.id_isar5 = u;
+
+ u = cpu->isar.id_isar6;
+ u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
+ u = FIELD_DP32(u, ID_ISAR6, DP, 1);
+ u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
+ u = FIELD_DP32(u, ID_ISAR6, SB, 1);
+ u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
+ u = FIELD_DP32(u, ID_ISAR6, BF16, 1);
+ u = FIELD_DP32(u, ID_ISAR6, I8MM, 1);
+ cpu->isar.id_isar6 = u;
+
+ u = cpu->isar.id_pfr0;
+ u = FIELD_DP32(u, ID_PFR0, DIT, 1);
+ cpu->isar.id_pfr0 = u;
+
+ u = cpu->isar.id_pfr2;
+ u = FIELD_DP32(u, ID_PFR2, SSBS, 1);
+ cpu->isar.id_pfr2 = u;
+
+ u = cpu->isar.id_mmfr3;
+ u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
+ cpu->isar.id_mmfr3 = u;
+
+ u = cpu->isar.id_mmfr4;
+ u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
+ u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
+ u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
+ u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
+ cpu->isar.id_mmfr4 = u;
+
+ t = cpu->isar.id_aa64dfr0;
+ t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
+ cpu->isar.id_aa64dfr0 = t;
+
+ u = cpu->isar.id_dfr0;
+ u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
+ cpu->isar.id_dfr0 = u;
+
+ u = cpu->isar.mvfr1;
+ u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */
+ u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
+ cpu->isar.mvfr1 = u;
+
+#ifdef CONFIG_USER_ONLY
+ /* For usermode -cpu max we can use a larger and more efficient DCZ
+ * blocksize since we don't have to follow what the hardware does.
+ */
+ cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
+ cpu->dcz_blocksize = 7; /* 512 bytes */
+#endif
+
+ /* Default to PAUTH on, with the architected algorithm. */
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
+ qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
+
+ bitmap_fill(cpu->sve_vq_supported, ARM_MAX_VQ);
+ }
+
+ aarch64_add_sve_properties(obj);
+ object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
+ cpu_max_set_sve_max_vq, NULL, NULL);
+}
+
+static void aarch64_a64fx_initfn(Object *obj)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ cpu->dtb_compatible = "arm,a64fx";
+ set_feature(&cpu->env, ARM_FEATURE_V8);
+ set_feature(&cpu->env, ARM_FEATURE_NEON);
+ set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
+ set_feature(&cpu->env, ARM_FEATURE_AARCH64);
+ set_feature(&cpu->env, ARM_FEATURE_EL2);
+ set_feature(&cpu->env, ARM_FEATURE_EL3);
+ set_feature(&cpu->env, ARM_FEATURE_PMU);
+ cpu->midr = 0x461f0010;
+ cpu->revidr = 0x00000000;
+ cpu->ctr = 0x86668006;
+ cpu->reset_sctlr = 0x30000180;
+ cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
+ cpu->isar.id_aa64pfr1 = 0x0000000000000000;
+ cpu->isar.id_aa64dfr0 = 0x0000000010305408;
+ cpu->isar.id_aa64dfr1 = 0x0000000000000000;
+ cpu->id_aa64afr0 = 0x0000000000000000;
+ cpu->id_aa64afr1 = 0x0000000000000000;
+ cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
+ cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
+ cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
+ cpu->isar.id_aa64isar0 = 0x0000000010211120;
+ cpu->isar.id_aa64isar1 = 0x0000000000010001;
+ cpu->isar.id_aa64zfr0 = 0x0000000000000000;
+ cpu->clidr = 0x0000000080000023;
+ cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
+ cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
+ cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
+ cpu->dcz_blocksize = 6; /* 256 bytes */
+ cpu->gic_num_lrs = 4;
+ cpu->gic_vpribits = 5;
+ cpu->gic_vprebits = 5;
+
+ /* Suppport of A64FX's vector length are 128,256 and 512bit only */
+ aarch64_add_sve_properties(obj);
+ bitmap_zero(cpu->sve_vq_supported, ARM_MAX_VQ);
+ set_bit(0, cpu->sve_vq_supported); /* 128bit */
+ set_bit(1, cpu->sve_vq_supported); /* 256bit */
+ set_bit(3, cpu->sve_vq_supported); /* 512bit */
+
+ /* TODO: Add A64FX specific HPC extension registers */
+}
+
+static const ARMCPUInfo aarch64_cpus[] = {
+ { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
+ { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
+ { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
+ { .name = "a64fx", .initfn = aarch64_a64fx_initfn },
+ { .name = "max", .initfn = aarch64_max_initfn },
+};
+
+static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
+}
+
+static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
+{
+ ARMCPU *cpu = ARM_CPU(obj);
+
+ /* At this time, this property is only allowed if KVM is enabled. This
+ * restriction allows us to avoid fixing up functionality that assumes a
+ * uniform execution state like do_interrupt.
+ */
+ if (value == false) {
+ if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
+ error_setg(errp, "'aarch64' feature cannot be disabled "
+ "unless KVM is enabled and 32-bit EL1 "
+ "is supported");
+ return;
+ }
+ unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
+ } else {
+ set_feature(&cpu->env, ARM_FEATURE_AARCH64);
+ }
+}
+
+static void aarch64_cpu_finalizefn(Object *obj)
+{
+}
+
+static gchar *aarch64_gdb_arch_name(CPUState *cs)
+{
+ return g_strdup("aarch64");
+}
+
+static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
+{
+ CPUClass *cc = CPU_CLASS(oc);
+
+ cc->gdb_read_register = aarch64_cpu_gdb_read_register;
+ cc->gdb_write_register = aarch64_cpu_gdb_write_register;
+ cc->gdb_num_core_regs = 34;
+ cc->gdb_core_xml_file = "aarch64-core.xml";
+ cc->gdb_arch_name = aarch64_gdb_arch_name;
+
+ object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
+ aarch64_cpu_set_aarch64);
+ object_class_property_set_description(oc, "aarch64",
+ "Set on/off to enable/disable aarch64 "
+ "execution state ");
+}
+
+static void aarch64_cpu_instance_init(Object *obj)
+{
+ ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
+
+ acc->info->initfn(obj);
+ arm_cpu_post_init(obj);
+}
+
+static void cpu_register_class_init(ObjectClass *oc, void *data)
+{
+ ARMCPUClass *acc = ARM_CPU_CLASS(oc);
+
+ acc->info = data;
+}
+
+void aarch64_cpu_register(const ARMCPUInfo *info)
+{
+ TypeInfo type_info = {
+ .parent = TYPE_AARCH64_CPU,
+ .instance_size = sizeof(ARMCPU),
+ .instance_init = aarch64_cpu_instance_init,
+ .class_size = sizeof(ARMCPUClass),
+ .class_init = info->class_init ?: cpu_register_class_init,
+ .class_data = (void *)info,
+ };
+
+ type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
+ type_register(&type_info);
+ g_free((void *)type_info.name);
+}
+
+static const TypeInfo aarch64_cpu_type_info = {
+ .name = TYPE_AARCH64_CPU,
+ .parent = TYPE_ARM_CPU,
+ .instance_size = sizeof(ARMCPU),
+ .instance_finalize = aarch64_cpu_finalizefn,
+ .abstract = true,
+ .class_size = sizeof(AArch64CPUClass),
+ .class_init = aarch64_cpu_class_init,
+};
+
+static void aarch64_cpu_register_types(void)
+{
+ size_t i;
+
+ type_register_static(&aarch64_cpu_type_info);
+
+ for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
+ aarch64_cpu_register(&aarch64_cpus[i]);
+ }
+}
+
+type_init(aarch64_cpu_register_types)