aboutsummaryrefslogtreecommitdiffstats
path: root/target/arm/helper-a64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/helper-a64.c')
-rw-r--r--target/arm/helper-a64.c1099
1 files changed, 1099 insertions, 0 deletions
diff --git a/target/arm/helper-a64.c b/target/arm/helper-a64.c
new file mode 100644
index 000000000..5ae2ecb0f
--- /dev/null
+++ b/target/arm/helper-a64.c
@@ -0,0 +1,1099 @@
+/*
+ * AArch64 specific helpers
+ *
+ * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/units.h"
+#include "cpu.h"
+#include "exec/gdbstub.h"
+#include "exec/helper-proto.h"
+#include "qemu/host-utils.h"
+#include "qemu/log.h"
+#include "qemu/main-loop.h"
+#include "qemu/bitops.h"
+#include "internals.h"
+#include "qemu/crc32c.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "qemu/int128.h"
+#include "qemu/atomic128.h"
+#include "fpu/softfloat.h"
+#include <zlib.h> /* For crc32 */
+
+/* C2.4.7 Multiply and divide */
+/* special cases for 0 and LLONG_MIN are mandated by the standard */
+uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
+{
+ if (den == 0) {
+ return 0;
+ }
+ return num / den;
+}
+
+int64_t HELPER(sdiv64)(int64_t num, int64_t den)
+{
+ if (den == 0) {
+ return 0;
+ }
+ if (num == LLONG_MIN && den == -1) {
+ return LLONG_MIN;
+ }
+ return num / den;
+}
+
+uint64_t HELPER(rbit64)(uint64_t x)
+{
+ return revbit64(x);
+}
+
+void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
+{
+ update_spsel(env, imm);
+}
+
+static void daif_check(CPUARMState *env, uint32_t op,
+ uint32_t imm, uintptr_t ra)
+{
+ /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
+ if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
+ raise_exception_ra(env, EXCP_UDEF,
+ syn_aa64_sysregtrap(0, extract32(op, 0, 3),
+ extract32(op, 3, 3), 4,
+ imm, 0x1f, 0),
+ exception_target_el(env), ra);
+ }
+}
+
+void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
+{
+ daif_check(env, 0x1e, imm, GETPC());
+ env->daif |= (imm << 6) & PSTATE_DAIF;
+}
+
+void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
+{
+ daif_check(env, 0x1f, imm, GETPC());
+ env->daif &= ~((imm << 6) & PSTATE_DAIF);
+}
+
+/* Convert a softfloat float_relation_ (as returned by
+ * the float*_compare functions) to the correct ARM
+ * NZCV flag state.
+ */
+static inline uint32_t float_rel_to_flags(int res)
+{
+ uint64_t flags;
+ switch (res) {
+ case float_relation_equal:
+ flags = PSTATE_Z | PSTATE_C;
+ break;
+ case float_relation_less:
+ flags = PSTATE_N;
+ break;
+ case float_relation_greater:
+ flags = PSTATE_C;
+ break;
+ case float_relation_unordered:
+ default:
+ flags = PSTATE_C | PSTATE_V;
+ break;
+ }
+ return flags;
+}
+
+uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
+{
+ return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
+{
+ return float_rel_to_flags(float16_compare(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
+{
+ return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
+{
+ return float_rel_to_flags(float32_compare(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
+{
+ return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
+{
+ return float_rel_to_flags(float64_compare(x, y, fp_status));
+}
+
+float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float32_squash_input_denormal(a, fpst);
+ b = float32_squash_input_denormal(b, fpst);
+
+ if ((float32_is_zero(a) && float32_is_infinity(b)) ||
+ (float32_is_infinity(a) && float32_is_zero(b))) {
+ /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+ return make_float32((1U << 30) |
+ ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
+ }
+ return float32_mul(a, b, fpst);
+}
+
+float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float64_squash_input_denormal(a, fpst);
+ b = float64_squash_input_denormal(b, fpst);
+
+ if ((float64_is_zero(a) && float64_is_infinity(b)) ||
+ (float64_is_infinity(a) && float64_is_zero(b))) {
+ /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+ return make_float64((1ULL << 62) |
+ ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
+ }
+ return float64_mul(a, b, fpst);
+}
+
+/* 64bit/double versions of the neon float compare functions */
+uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return -float64_eq_quiet(a, b, fpst);
+}
+
+uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return -float64_le(b, a, fpst);
+}
+
+uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return -float64_lt(b, a, fpst);
+}
+
+/* Reciprocal step and sqrt step. Note that unlike the A32/T32
+ * versions, these do a fully fused multiply-add or
+ * multiply-add-and-halve.
+ */
+
+uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float16_squash_input_denormal(a, fpst);
+ b = float16_squash_input_denormal(b, fpst);
+
+ a = float16_chs(a);
+ if ((float16_is_infinity(a) && float16_is_zero(b)) ||
+ (float16_is_infinity(b) && float16_is_zero(a))) {
+ return float16_two;
+ }
+ return float16_muladd(a, b, float16_two, 0, fpst);
+}
+
+float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float32_squash_input_denormal(a, fpst);
+ b = float32_squash_input_denormal(b, fpst);
+
+ a = float32_chs(a);
+ if ((float32_is_infinity(a) && float32_is_zero(b)) ||
+ (float32_is_infinity(b) && float32_is_zero(a))) {
+ return float32_two;
+ }
+ return float32_muladd(a, b, float32_two, 0, fpst);
+}
+
+float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float64_squash_input_denormal(a, fpst);
+ b = float64_squash_input_denormal(b, fpst);
+
+ a = float64_chs(a);
+ if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+ (float64_is_infinity(b) && float64_is_zero(a))) {
+ return float64_two;
+ }
+ return float64_muladd(a, b, float64_two, 0, fpst);
+}
+
+uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float16_squash_input_denormal(a, fpst);
+ b = float16_squash_input_denormal(b, fpst);
+
+ a = float16_chs(a);
+ if ((float16_is_infinity(a) && float16_is_zero(b)) ||
+ (float16_is_infinity(b) && float16_is_zero(a))) {
+ return float16_one_point_five;
+ }
+ return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
+}
+
+float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float32_squash_input_denormal(a, fpst);
+ b = float32_squash_input_denormal(b, fpst);
+
+ a = float32_chs(a);
+ if ((float32_is_infinity(a) && float32_is_zero(b)) ||
+ (float32_is_infinity(b) && float32_is_zero(a))) {
+ return float32_one_point_five;
+ }
+ return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
+}
+
+float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float64_squash_input_denormal(a, fpst);
+ b = float64_squash_input_denormal(b, fpst);
+
+ a = float64_chs(a);
+ if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+ (float64_is_infinity(b) && float64_is_zero(a))) {
+ return float64_one_point_five;
+ }
+ return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
+}
+
+/* Pairwise long add: add pairs of adjacent elements into
+ * double-width elements in the result (eg _s8 is an 8x8->16 op)
+ */
+uint64_t HELPER(neon_addlp_s8)(uint64_t a)
+{
+ uint64_t nsignmask = 0x0080008000800080ULL;
+ uint64_t wsignmask = 0x8000800080008000ULL;
+ uint64_t elementmask = 0x00ff00ff00ff00ffULL;
+ uint64_t tmp1, tmp2;
+ uint64_t res, signres;
+
+ /* Extract odd elements, sign extend each to a 16 bit field */
+ tmp1 = a & elementmask;
+ tmp1 ^= nsignmask;
+ tmp1 |= wsignmask;
+ tmp1 = (tmp1 - nsignmask) ^ wsignmask;
+ /* Ditto for the even elements */
+ tmp2 = (a >> 8) & elementmask;
+ tmp2 ^= nsignmask;
+ tmp2 |= wsignmask;
+ tmp2 = (tmp2 - nsignmask) ^ wsignmask;
+
+ /* calculate the result by summing bits 0..14, 16..22, etc,
+ * and then adjusting the sign bits 15, 23, etc manually.
+ * This ensures the addition can't overflow the 16 bit field.
+ */
+ signres = (tmp1 ^ tmp2) & wsignmask;
+ res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
+ res ^= signres;
+
+ return res;
+}
+
+uint64_t HELPER(neon_addlp_u8)(uint64_t a)
+{
+ uint64_t tmp;
+
+ tmp = a & 0x00ff00ff00ff00ffULL;
+ tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
+ return tmp;
+}
+
+uint64_t HELPER(neon_addlp_s16)(uint64_t a)
+{
+ int32_t reslo, reshi;
+
+ reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
+ reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
+
+ return (uint32_t)reslo | (((uint64_t)reshi) << 32);
+}
+
+uint64_t HELPER(neon_addlp_u16)(uint64_t a)
+{
+ uint64_t tmp;
+
+ tmp = a & 0x0000ffff0000ffffULL;
+ tmp += (a >> 16) & 0x0000ffff0000ffffULL;
+ return tmp;
+}
+
+/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
+uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ uint16_t val16, sbit;
+ int16_t exp;
+
+ if (float16_is_any_nan(a)) {
+ float16 nan = a;
+ if (float16_is_signaling_nan(a, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ if (!fpst->default_nan_mode) {
+ nan = float16_silence_nan(a, fpst);
+ }
+ }
+ if (fpst->default_nan_mode) {
+ nan = float16_default_nan(fpst);
+ }
+ return nan;
+ }
+
+ a = float16_squash_input_denormal(a, fpst);
+
+ val16 = float16_val(a);
+ sbit = 0x8000 & val16;
+ exp = extract32(val16, 10, 5);
+
+ if (exp == 0) {
+ return make_float16(deposit32(sbit, 10, 5, 0x1e));
+ } else {
+ return make_float16(deposit32(sbit, 10, 5, ~exp));
+ }
+}
+
+float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ uint32_t val32, sbit;
+ int32_t exp;
+
+ if (float32_is_any_nan(a)) {
+ float32 nan = a;
+ if (float32_is_signaling_nan(a, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ if (!fpst->default_nan_mode) {
+ nan = float32_silence_nan(a, fpst);
+ }
+ }
+ if (fpst->default_nan_mode) {
+ nan = float32_default_nan(fpst);
+ }
+ return nan;
+ }
+
+ a = float32_squash_input_denormal(a, fpst);
+
+ val32 = float32_val(a);
+ sbit = 0x80000000ULL & val32;
+ exp = extract32(val32, 23, 8);
+
+ if (exp == 0) {
+ return make_float32(sbit | (0xfe << 23));
+ } else {
+ return make_float32(sbit | (~exp & 0xff) << 23);
+ }
+}
+
+float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ uint64_t val64, sbit;
+ int64_t exp;
+
+ if (float64_is_any_nan(a)) {
+ float64 nan = a;
+ if (float64_is_signaling_nan(a, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ if (!fpst->default_nan_mode) {
+ nan = float64_silence_nan(a, fpst);
+ }
+ }
+ if (fpst->default_nan_mode) {
+ nan = float64_default_nan(fpst);
+ }
+ return nan;
+ }
+
+ a = float64_squash_input_denormal(a, fpst);
+
+ val64 = float64_val(a);
+ sbit = 0x8000000000000000ULL & val64;
+ exp = extract64(float64_val(a), 52, 11);
+
+ if (exp == 0) {
+ return make_float64(sbit | (0x7feULL << 52));
+ } else {
+ return make_float64(sbit | (~exp & 0x7ffULL) << 52);
+ }
+}
+
+float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
+{
+ /* Von Neumann rounding is implemented by using round-to-zero
+ * and then setting the LSB of the result if Inexact was raised.
+ */
+ float32 r;
+ float_status *fpst = &env->vfp.fp_status;
+ float_status tstat = *fpst;
+ int exflags;
+
+ set_float_rounding_mode(float_round_to_zero, &tstat);
+ set_float_exception_flags(0, &tstat);
+ r = float64_to_float32(a, &tstat);
+ exflags = get_float_exception_flags(&tstat);
+ if (exflags & float_flag_inexact) {
+ r = make_float32(float32_val(r) | 1);
+ }
+ exflags |= get_float_exception_flags(fpst);
+ set_float_exception_flags(exflags, fpst);
+ return r;
+}
+
+/* 64-bit versions of the CRC helpers. Note that although the operation
+ * (and the prototypes of crc32c() and crc32() mean that only the bottom
+ * 32 bits of the accumulator and result are used, we pass and return
+ * uint64_t for convenience of the generated code. Unlike the 32-bit
+ * instruction set versions, val may genuinely have 64 bits of data in it.
+ * The upper bytes of val (above the number specified by 'bytes') must have
+ * been zeroed out by the caller.
+ */
+uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
+{
+ uint8_t buf[8];
+
+ stq_le_p(buf, val);
+
+ /* zlib crc32 converts the accumulator and output to one's complement. */
+ return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
+}
+
+uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
+{
+ uint8_t buf[8];
+
+ stq_le_p(buf, val);
+
+ /* Linux crc32c converts the output to one's complement. */
+ return crc32c(acc, buf, bytes) ^ 0xffffffff;
+}
+
+uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
+ uint64_t new_lo, uint64_t new_hi)
+{
+ Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
+ Int128 newv = int128_make128(new_lo, new_hi);
+ Int128 oldv;
+ uintptr_t ra = GETPC();
+ uint64_t o0, o1;
+ bool success;
+ int mem_idx = cpu_mmu_index(env, false);
+ MemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
+ MemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
+
+ o0 = cpu_ldq_le_mmu(env, addr + 0, oi0, ra);
+ o1 = cpu_ldq_le_mmu(env, addr + 8, oi1, ra);
+ oldv = int128_make128(o0, o1);
+
+ success = int128_eq(oldv, cmpv);
+ if (success) {
+ cpu_stq_le_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
+ cpu_stq_le_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
+ }
+
+ return !success;
+}
+
+uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
+ uint64_t new_lo, uint64_t new_hi)
+{
+ Int128 oldv, cmpv, newv;
+ uintptr_t ra = GETPC();
+ bool success;
+ int mem_idx;
+ MemOpIdx oi;
+
+ assert(HAVE_CMPXCHG128);
+
+ mem_idx = cpu_mmu_index(env, false);
+ oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);
+
+ cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
+ newv = int128_make128(new_lo, new_hi);
+ oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
+
+ success = int128_eq(oldv, cmpv);
+ return !success;
+}
+
+uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
+ uint64_t new_lo, uint64_t new_hi)
+{
+ /*
+ * High and low need to be switched here because this is not actually a
+ * 128bit store but two doublewords stored consecutively
+ */
+ Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
+ Int128 newv = int128_make128(new_hi, new_lo);
+ Int128 oldv;
+ uintptr_t ra = GETPC();
+ uint64_t o0, o1;
+ bool success;
+ int mem_idx = cpu_mmu_index(env, false);
+ MemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
+ MemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
+
+ o1 = cpu_ldq_be_mmu(env, addr + 0, oi0, ra);
+ o0 = cpu_ldq_be_mmu(env, addr + 8, oi1, ra);
+ oldv = int128_make128(o0, o1);
+
+ success = int128_eq(oldv, cmpv);
+ if (success) {
+ cpu_stq_be_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
+ cpu_stq_be_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
+ }
+
+ return !success;
+}
+
+uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
+ uint64_t new_lo, uint64_t new_hi)
+{
+ Int128 oldv, cmpv, newv;
+ uintptr_t ra = GETPC();
+ bool success;
+ int mem_idx;
+ MemOpIdx oi;
+
+ assert(HAVE_CMPXCHG128);
+
+ mem_idx = cpu_mmu_index(env, false);
+ oi = make_memop_idx(MO_BE | MO_128 | MO_ALIGN, mem_idx);
+
+ /*
+ * High and low need to be switched here because this is not actually a
+ * 128bit store but two doublewords stored consecutively
+ */
+ cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
+ newv = int128_make128(new_hi, new_lo);
+ oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
+
+ success = int128_eq(oldv, cmpv);
+ return !success;
+}
+
+/* Writes back the old data into Rs. */
+void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
+ uint64_t new_lo, uint64_t new_hi)
+{
+ Int128 oldv, cmpv, newv;
+ uintptr_t ra = GETPC();
+ int mem_idx;
+ MemOpIdx oi;
+
+ assert(HAVE_CMPXCHG128);
+
+ mem_idx = cpu_mmu_index(env, false);
+ oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);
+
+ cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
+ newv = int128_make128(new_lo, new_hi);
+ oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
+
+ env->xregs[rs] = int128_getlo(oldv);
+ env->xregs[rs + 1] = int128_gethi(oldv);
+}
+
+void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
+ uint64_t new_hi, uint64_t new_lo)
+{
+ Int128 oldv, cmpv, newv;
+ uintptr_t ra = GETPC();
+ int mem_idx;
+ MemOpIdx oi;
+
+ assert(HAVE_CMPXCHG128);
+
+ mem_idx = cpu_mmu_index(env, false);
+ oi = make_memop_idx(MO_LE | MO_128 | MO_ALIGN, mem_idx);
+
+ cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
+ newv = int128_make128(new_lo, new_hi);
+ oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
+
+ env->xregs[rs + 1] = int128_getlo(oldv);
+ env->xregs[rs] = int128_gethi(oldv);
+}
+
+/*
+ * AdvSIMD half-precision
+ */
+
+#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
+
+#define ADVSIMD_HALFOP(name) \
+uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return float16_ ## name(a, b, fpst); \
+}
+
+ADVSIMD_HALFOP(add)
+ADVSIMD_HALFOP(sub)
+ADVSIMD_HALFOP(mul)
+ADVSIMD_HALFOP(div)
+ADVSIMD_HALFOP(min)
+ADVSIMD_HALFOP(max)
+ADVSIMD_HALFOP(minnum)
+ADVSIMD_HALFOP(maxnum)
+
+#define ADVSIMD_TWOHALFOP(name) \
+uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
+{ \
+ float16 a1, a2, b1, b2; \
+ uint32_t r1, r2; \
+ float_status *fpst = fpstp; \
+ a1 = extract32(two_a, 0, 16); \
+ a2 = extract32(two_a, 16, 16); \
+ b1 = extract32(two_b, 0, 16); \
+ b2 = extract32(two_b, 16, 16); \
+ r1 = float16_ ## name(a1, b1, fpst); \
+ r2 = float16_ ## name(a2, b2, fpst); \
+ return deposit32(r1, 16, 16, r2); \
+}
+
+ADVSIMD_TWOHALFOP(add)
+ADVSIMD_TWOHALFOP(sub)
+ADVSIMD_TWOHALFOP(mul)
+ADVSIMD_TWOHALFOP(div)
+ADVSIMD_TWOHALFOP(min)
+ADVSIMD_TWOHALFOP(max)
+ADVSIMD_TWOHALFOP(minnum)
+ADVSIMD_TWOHALFOP(maxnum)
+
+/* Data processing - scalar floating-point and advanced SIMD */
+static float16 float16_mulx(float16 a, float16 b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ a = float16_squash_input_denormal(a, fpst);
+ b = float16_squash_input_denormal(b, fpst);
+
+ if ((float16_is_zero(a) && float16_is_infinity(b)) ||
+ (float16_is_infinity(a) && float16_is_zero(b))) {
+ /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+ return make_float16((1U << 14) |
+ ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
+ }
+ return float16_mul(a, b, fpst);
+}
+
+ADVSIMD_HALFOP(mulx)
+ADVSIMD_TWOHALFOP(mulx)
+
+/* fused multiply-accumulate */
+uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
+ void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float16_muladd(a, b, c, 0, fpst);
+}
+
+uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
+ uint32_t two_c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float16 a1, a2, b1, b2, c1, c2;
+ uint32_t r1, r2;
+ a1 = extract32(two_a, 0, 16);
+ a2 = extract32(two_a, 16, 16);
+ b1 = extract32(two_b, 0, 16);
+ b2 = extract32(two_b, 16, 16);
+ c1 = extract32(two_c, 0, 16);
+ c2 = extract32(two_c, 16, 16);
+ r1 = float16_muladd(a1, b1, c1, 0, fpst);
+ r2 = float16_muladd(a2, b2, c2, 0, fpst);
+ return deposit32(r1, 16, 16, r2);
+}
+
+/*
+ * Floating point comparisons produce an integer result. Softfloat
+ * routines return float_relation types which we convert to the 0/-1
+ * Neon requires.
+ */
+
+#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
+
+uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ int compare = float16_compare_quiet(a, b, fpst);
+ return ADVSIMD_CMPRES(compare == float_relation_equal);
+}
+
+uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ int compare = float16_compare(a, b, fpst);
+ return ADVSIMD_CMPRES(compare == float_relation_greater ||
+ compare == float_relation_equal);
+}
+
+uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ int compare = float16_compare(a, b, fpst);
+ return ADVSIMD_CMPRES(compare == float_relation_greater);
+}
+
+uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float16 f0 = float16_abs(a);
+ float16 f1 = float16_abs(b);
+ int compare = float16_compare(f0, f1, fpst);
+ return ADVSIMD_CMPRES(compare == float_relation_greater ||
+ compare == float_relation_equal);
+}
+
+uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float16 f0 = float16_abs(a);
+ float16 f1 = float16_abs(b);
+ int compare = float16_compare(f0, f1, fpst);
+ return ADVSIMD_CMPRES(compare == float_relation_greater);
+}
+
+/* round to integral */
+uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
+{
+ return float16_round_to_int(x, fp_status);
+}
+
+uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
+{
+ int old_flags = get_float_exception_flags(fp_status), new_flags;
+ float16 ret;
+
+ ret = float16_round_to_int(x, fp_status);
+
+ /* Suppress any inexact exceptions the conversion produced */
+ if (!(old_flags & float_flag_inexact)) {
+ new_flags = get_float_exception_flags(fp_status);
+ set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+ }
+
+ return ret;
+}
+
+/*
+ * Half-precision floating point conversion functions
+ *
+ * There are a multitude of conversion functions with various
+ * different rounding modes. This is dealt with by the calling code
+ * setting the mode appropriately before calling the helper.
+ */
+
+uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ /* Invalid if we are passed a NaN */
+ if (float16_is_any_nan(a)) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_int16(a, fpst);
+}
+
+uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
+{
+ float_status *fpst = fpstp;
+
+ /* Invalid if we are passed a NaN */
+ if (float16_is_any_nan(a)) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_uint16(a, fpst);
+}
+
+static int el_from_spsr(uint32_t spsr)
+{
+ /* Return the exception level that this SPSR is requesting a return to,
+ * or -1 if it is invalid (an illegal return)
+ */
+ if (spsr & PSTATE_nRW) {
+ switch (spsr & CPSR_M) {
+ case ARM_CPU_MODE_USR:
+ return 0;
+ case ARM_CPU_MODE_HYP:
+ return 2;
+ case ARM_CPU_MODE_FIQ:
+ case ARM_CPU_MODE_IRQ:
+ case ARM_CPU_MODE_SVC:
+ case ARM_CPU_MODE_ABT:
+ case ARM_CPU_MODE_UND:
+ case ARM_CPU_MODE_SYS:
+ return 1;
+ case ARM_CPU_MODE_MON:
+ /* Returning to Mon from AArch64 is never possible,
+ * so this is an illegal return.
+ */
+ default:
+ return -1;
+ }
+ } else {
+ if (extract32(spsr, 1, 1)) {
+ /* Return with reserved M[1] bit set */
+ return -1;
+ }
+ if (extract32(spsr, 0, 4) == 1) {
+ /* return to EL0 with M[0] bit set */
+ return -1;
+ }
+ return extract32(spsr, 2, 2);
+ }
+}
+
+static void cpsr_write_from_spsr_elx(CPUARMState *env,
+ uint32_t val)
+{
+ uint32_t mask;
+
+ /* Save SPSR_ELx.SS into PSTATE. */
+ env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
+ val &= ~PSTATE_SS;
+
+ /* Move DIT to the correct location for CPSR */
+ if (val & PSTATE_DIT) {
+ val &= ~PSTATE_DIT;
+ val |= CPSR_DIT;
+ }
+
+ mask = aarch32_cpsr_valid_mask(env->features, \
+ &env_archcpu(env)->isar);
+ cpsr_write(env, val, mask, CPSRWriteRaw);
+}
+
+void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
+{
+ int cur_el = arm_current_el(env);
+ unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
+ uint32_t spsr = env->banked_spsr[spsr_idx];
+ int new_el;
+ bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
+
+ aarch64_save_sp(env, cur_el);
+
+ arm_clear_exclusive(env);
+
+ /* We must squash the PSTATE.SS bit to zero unless both of the
+ * following hold:
+ * 1. debug exceptions are currently disabled
+ * 2. singlestep will be active in the EL we return to
+ * We check 1 here and 2 after we've done the pstate/cpsr write() to
+ * transition to the EL we're going to.
+ */
+ if (arm_generate_debug_exceptions(env)) {
+ spsr &= ~PSTATE_SS;
+ }
+
+ new_el = el_from_spsr(spsr);
+ if (new_el == -1) {
+ goto illegal_return;
+ }
+ if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
+ /* Disallow return to an EL which is unimplemented or higher
+ * than the current one.
+ */
+ goto illegal_return;
+ }
+
+ if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
+ /* Return to an EL which is configured for a different register width */
+ goto illegal_return;
+ }
+
+ if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
+ goto illegal_return;
+ }
+
+ qemu_mutex_lock_iothread();
+ arm_call_pre_el_change_hook(env_archcpu(env));
+ qemu_mutex_unlock_iothread();
+
+ if (!return_to_aa64) {
+ env->aarch64 = 0;
+ /* We do a raw CPSR write because aarch64_sync_64_to_32()
+ * will sort the register banks out for us, and we've already
+ * caught all the bad-mode cases in el_from_spsr().
+ */
+ cpsr_write_from_spsr_elx(env, spsr);
+ if (!arm_singlestep_active(env)) {
+ env->pstate &= ~PSTATE_SS;
+ }
+ aarch64_sync_64_to_32(env);
+
+ if (spsr & CPSR_T) {
+ env->regs[15] = new_pc & ~0x1;
+ } else {
+ env->regs[15] = new_pc & ~0x3;
+ }
+ helper_rebuild_hflags_a32(env, new_el);
+ qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
+ "AArch32 EL%d PC 0x%" PRIx32 "\n",
+ cur_el, new_el, env->regs[15]);
+ } else {
+ int tbii;
+
+ env->aarch64 = 1;
+ spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
+ pstate_write(env, spsr);
+ if (!arm_singlestep_active(env)) {
+ env->pstate &= ~PSTATE_SS;
+ }
+ aarch64_restore_sp(env, new_el);
+ helper_rebuild_hflags_a64(env, new_el);
+
+ /*
+ * Apply TBI to the exception return address. We had to delay this
+ * until after we selected the new EL, so that we could select the
+ * correct TBI+TBID bits. This is made easier by waiting until after
+ * the hflags rebuild, since we can pull the composite TBII field
+ * from there.
+ */
+ tbii = EX_TBFLAG_A64(env->hflags, TBII);
+ if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
+ /* TBI is enabled. */
+ int core_mmu_idx = cpu_mmu_index(env, false);
+ if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
+ new_pc = sextract64(new_pc, 0, 56);
+ } else {
+ new_pc = extract64(new_pc, 0, 56);
+ }
+ }
+ env->pc = new_pc;
+
+ qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
+ "AArch64 EL%d PC 0x%" PRIx64 "\n",
+ cur_el, new_el, env->pc);
+ }
+
+ /*
+ * Note that cur_el can never be 0. If new_el is 0, then
+ * el0_a64 is return_to_aa64, else el0_a64 is ignored.
+ */
+ aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
+
+ qemu_mutex_lock_iothread();
+ arm_call_el_change_hook(env_archcpu(env));
+ qemu_mutex_unlock_iothread();
+
+ return;
+
+illegal_return:
+ /* Illegal return events of various kinds have architecturally
+ * mandated behaviour:
+ * restore NZCV and DAIF from SPSR_ELx
+ * set PSTATE.IL
+ * restore PC from ELR_ELx
+ * no change to exception level, execution state or stack pointer
+ */
+ env->pstate |= PSTATE_IL;
+ env->pc = new_pc;
+ spsr &= PSTATE_NZCV | PSTATE_DAIF;
+ spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
+ pstate_write(env, spsr);
+ if (!arm_singlestep_active(env)) {
+ env->pstate &= ~PSTATE_SS;
+ }
+ helper_rebuild_hflags_a64(env, cur_el);
+ qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
+ "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
+}
+
+/*
+ * Square Root and Reciprocal square root
+ */
+
+uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
+{
+ float_status *s = fpstp;
+
+ return float16_sqrt(a, s);
+}
+
+void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
+{
+ /*
+ * Implement DC ZVA, which zeroes a fixed-length block of memory.
+ * Note that we do not implement the (architecturally mandated)
+ * alignment fault for attempts to use this on Device memory
+ * (which matches the usual QEMU behaviour of not implementing either
+ * alignment faults or any memory attribute handling).
+ */
+ int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
+ uint64_t vaddr = vaddr_in & ~(blocklen - 1);
+ int mmu_idx = cpu_mmu_index(env, false);
+ void *mem;
+
+ /*
+ * Trapless lookup. In addition to actual invalid page, may
+ * return NULL for I/O, watchpoints, clean pages, etc.
+ */
+ mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
+
+#ifndef CONFIG_USER_ONLY
+ if (unlikely(!mem)) {
+ uintptr_t ra = GETPC();
+
+ /*
+ * Trap if accessing an invalid page. DC_ZVA requires that we supply
+ * the original pointer for an invalid page. But watchpoints require
+ * that we probe the actual space. So do both.
+ */
+ (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
+ mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
+
+ if (unlikely(!mem)) {
+ /*
+ * The only remaining reason for mem == NULL is I/O.
+ * Just do a series of byte writes as the architecture demands.
+ */
+ for (int i = 0; i < blocklen; i++) {
+ cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
+ }
+ return;
+ }
+ }
+#endif
+
+ memset(mem, 0, blocklen);
+}