aboutsummaryrefslogtreecommitdiffstats
path: root/target/arm/internals.h
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/internals.h')
-rw-r--r--target/arm/internals.h1288
1 files changed, 1288 insertions, 0 deletions
diff --git a/target/arm/internals.h b/target/arm/internals.h
new file mode 100644
index 000000000..89f7610eb
--- /dev/null
+++ b/target/arm/internals.h
@@ -0,0 +1,1288 @@
+/*
+ * QEMU ARM CPU -- internal functions and types
+ *
+ * Copyright (c) 2014 Linaro Ltd
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see
+ * <http://www.gnu.org/licenses/gpl-2.0.html>
+ *
+ * This header defines functions, types, etc which need to be shared
+ * between different source files within target/arm/ but which are
+ * private to it and not required by the rest of QEMU.
+ */
+
+#ifndef TARGET_ARM_INTERNALS_H
+#define TARGET_ARM_INTERNALS_H
+
+#include "hw/registerfields.h"
+#include "tcg/tcg-gvec-desc.h"
+#include "syndrome.h"
+
+/* register banks for CPU modes */
+#define BANK_USRSYS 0
+#define BANK_SVC 1
+#define BANK_ABT 2
+#define BANK_UND 3
+#define BANK_IRQ 4
+#define BANK_FIQ 5
+#define BANK_HYP 6
+#define BANK_MON 7
+
+static inline bool excp_is_internal(int excp)
+{
+ /* Return true if this exception number represents a QEMU-internal
+ * exception that will not be passed to the guest.
+ */
+ return excp == EXCP_INTERRUPT
+ || excp == EXCP_HLT
+ || excp == EXCP_DEBUG
+ || excp == EXCP_HALTED
+ || excp == EXCP_EXCEPTION_EXIT
+ || excp == EXCP_KERNEL_TRAP
+ || excp == EXCP_SEMIHOST;
+}
+
+/* Scale factor for generic timers, ie number of ns per tick.
+ * This gives a 62.5MHz timer.
+ */
+#define GTIMER_SCALE 16
+
+/* Bit definitions for the v7M CONTROL register */
+FIELD(V7M_CONTROL, NPRIV, 0, 1)
+FIELD(V7M_CONTROL, SPSEL, 1, 1)
+FIELD(V7M_CONTROL, FPCA, 2, 1)
+FIELD(V7M_CONTROL, SFPA, 3, 1)
+
+/* Bit definitions for v7M exception return payload */
+FIELD(V7M_EXCRET, ES, 0, 1)
+FIELD(V7M_EXCRET, RES0, 1, 1)
+FIELD(V7M_EXCRET, SPSEL, 2, 1)
+FIELD(V7M_EXCRET, MODE, 3, 1)
+FIELD(V7M_EXCRET, FTYPE, 4, 1)
+FIELD(V7M_EXCRET, DCRS, 5, 1)
+FIELD(V7M_EXCRET, S, 6, 1)
+FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
+
+/* Minimum value which is a magic number for exception return */
+#define EXC_RETURN_MIN_MAGIC 0xff000000
+/* Minimum number which is a magic number for function or exception return
+ * when using v8M security extension
+ */
+#define FNC_RETURN_MIN_MAGIC 0xfefffffe
+
+/* We use a few fake FSR values for internal purposes in M profile.
+ * M profile cores don't have A/R format FSRs, but currently our
+ * get_phys_addr() code assumes A/R profile and reports failures via
+ * an A/R format FSR value. We then translate that into the proper
+ * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
+ * Mostly the FSR values we use for this are those defined for v7PMSA,
+ * since we share some of that codepath. A few kinds of fault are
+ * only for M profile and have no A/R equivalent, though, so we have
+ * to pick a value from the reserved range (which we never otherwise
+ * generate) to use for these.
+ * These values will never be visible to the guest.
+ */
+#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
+#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
+
+/**
+ * raise_exception: Raise the specified exception.
+ * Raise a guest exception with the specified value, syndrome register
+ * and target exception level. This should be called from helper functions,
+ * and never returns because we will longjump back up to the CPU main loop.
+ */
+void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
+ uint32_t syndrome, uint32_t target_el);
+
+/*
+ * Similarly, but also use unwinding to restore cpu state.
+ */
+void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
+ uint32_t syndrome, uint32_t target_el,
+ uintptr_t ra);
+
+/*
+ * For AArch64, map a given EL to an index in the banked_spsr array.
+ * Note that this mapping and the AArch32 mapping defined in bank_number()
+ * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
+ * mandated mapping between each other.
+ */
+static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
+{
+ static const unsigned int map[4] = {
+ [1] = BANK_SVC, /* EL1. */
+ [2] = BANK_HYP, /* EL2. */
+ [3] = BANK_MON, /* EL3. */
+ };
+ assert(el >= 1 && el <= 3);
+ return map[el];
+}
+
+/* Map CPU modes onto saved register banks. */
+static inline int bank_number(int mode)
+{
+ switch (mode) {
+ case ARM_CPU_MODE_USR:
+ case ARM_CPU_MODE_SYS:
+ return BANK_USRSYS;
+ case ARM_CPU_MODE_SVC:
+ return BANK_SVC;
+ case ARM_CPU_MODE_ABT:
+ return BANK_ABT;
+ case ARM_CPU_MODE_UND:
+ return BANK_UND;
+ case ARM_CPU_MODE_IRQ:
+ return BANK_IRQ;
+ case ARM_CPU_MODE_FIQ:
+ return BANK_FIQ;
+ case ARM_CPU_MODE_HYP:
+ return BANK_HYP;
+ case ARM_CPU_MODE_MON:
+ return BANK_MON;
+ }
+ g_assert_not_reached();
+}
+
+/**
+ * r14_bank_number: Map CPU mode onto register bank for r14
+ *
+ * Given an AArch32 CPU mode, return the index into the saved register
+ * banks to use for the R14 (LR) in that mode. This is the same as
+ * bank_number(), except for the special case of Hyp mode, where
+ * R14 is shared with USR and SYS, unlike its R13 and SPSR.
+ * This should be used as the index into env->banked_r14[], and
+ * bank_number() used for the index into env->banked_r13[] and
+ * env->banked_spsr[].
+ */
+static inline int r14_bank_number(int mode)
+{
+ return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
+}
+
+void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
+void arm_translate_init(void);
+
+#ifdef CONFIG_TCG
+void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
+#endif /* CONFIG_TCG */
+
+/**
+ * aarch64_sve_zcr_get_valid_len:
+ * @cpu: cpu context
+ * @start_len: maximum len to consider
+ *
+ * Return the maximum supported sve vector length <= @start_len.
+ * Note that both @start_len and the return value are in units
+ * of ZCR_ELx.LEN, so the vector bit length is (x + 1) * 128.
+ */
+uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len);
+
+enum arm_fprounding {
+ FPROUNDING_TIEEVEN,
+ FPROUNDING_POSINF,
+ FPROUNDING_NEGINF,
+ FPROUNDING_ZERO,
+ FPROUNDING_TIEAWAY,
+ FPROUNDING_ODD
+};
+
+int arm_rmode_to_sf(int rmode);
+
+static inline void aarch64_save_sp(CPUARMState *env, int el)
+{
+ if (env->pstate & PSTATE_SP) {
+ env->sp_el[el] = env->xregs[31];
+ } else {
+ env->sp_el[0] = env->xregs[31];
+ }
+}
+
+static inline void aarch64_restore_sp(CPUARMState *env, int el)
+{
+ if (env->pstate & PSTATE_SP) {
+ env->xregs[31] = env->sp_el[el];
+ } else {
+ env->xregs[31] = env->sp_el[0];
+ }
+}
+
+static inline void update_spsel(CPUARMState *env, uint32_t imm)
+{
+ unsigned int cur_el = arm_current_el(env);
+ /* Update PSTATE SPSel bit; this requires us to update the
+ * working stack pointer in xregs[31].
+ */
+ if (!((imm ^ env->pstate) & PSTATE_SP)) {
+ return;
+ }
+ aarch64_save_sp(env, cur_el);
+ env->pstate = deposit32(env->pstate, 0, 1, imm);
+
+ /* We rely on illegal updates to SPsel from EL0 to get trapped
+ * at translation time.
+ */
+ assert(cur_el >= 1 && cur_el <= 3);
+ aarch64_restore_sp(env, cur_el);
+}
+
+/*
+ * arm_pamax
+ * @cpu: ARMCPU
+ *
+ * Returns the implementation defined bit-width of physical addresses.
+ * The ARMv8 reference manuals refer to this as PAMax().
+ */
+static inline unsigned int arm_pamax(ARMCPU *cpu)
+{
+ static const unsigned int pamax_map[] = {
+ [0] = 32,
+ [1] = 36,
+ [2] = 40,
+ [3] = 42,
+ [4] = 44,
+ [5] = 48,
+ };
+ unsigned int parange =
+ FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
+
+ /* id_aa64mmfr0 is a read-only register so values outside of the
+ * supported mappings can be considered an implementation error. */
+ assert(parange < ARRAY_SIZE(pamax_map));
+ return pamax_map[parange];
+}
+
+/* Return true if extended addresses are enabled.
+ * This is always the case if our translation regime is 64 bit,
+ * but depends on TTBCR.EAE for 32 bit.
+ */
+static inline bool extended_addresses_enabled(CPUARMState *env)
+{
+ TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
+ return arm_el_is_aa64(env, 1) ||
+ (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
+}
+
+/* Update a QEMU watchpoint based on the information the guest has set in the
+ * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
+ */
+void hw_watchpoint_update(ARMCPU *cpu, int n);
+/* Update the QEMU watchpoints for every guest watchpoint. This does a
+ * complete delete-and-reinstate of the QEMU watchpoint list and so is
+ * suitable for use after migration or on reset.
+ */
+void hw_watchpoint_update_all(ARMCPU *cpu);
+/* Update a QEMU breakpoint based on the information the guest has set in the
+ * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
+ */
+void hw_breakpoint_update(ARMCPU *cpu, int n);
+/* Update the QEMU breakpoints for every guest breakpoint. This does a
+ * complete delete-and-reinstate of the QEMU breakpoint list and so is
+ * suitable for use after migration or on reset.
+ */
+void hw_breakpoint_update_all(ARMCPU *cpu);
+
+/* Callback function for checking if a breakpoint should trigger. */
+bool arm_debug_check_breakpoint(CPUState *cs);
+
+/* Callback function for checking if a watchpoint should trigger. */
+bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
+
+/* Adjust addresses (in BE32 mode) before testing against watchpoint
+ * addresses.
+ */
+vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
+
+/* Callback function for when a watchpoint or breakpoint triggers. */
+void arm_debug_excp_handler(CPUState *cs);
+
+#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
+static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
+{
+ return false;
+}
+static inline void arm_handle_psci_call(ARMCPU *cpu)
+{
+ g_assert_not_reached();
+}
+#else
+/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
+bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
+/* Actually handle a PSCI call */
+void arm_handle_psci_call(ARMCPU *cpu);
+#endif
+
+/**
+ * arm_clear_exclusive: clear the exclusive monitor
+ * @env: CPU env
+ * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
+ */
+static inline void arm_clear_exclusive(CPUARMState *env)
+{
+ env->exclusive_addr = -1;
+}
+
+/**
+ * ARMFaultType: type of an ARM MMU fault
+ * This corresponds to the v8A pseudocode's Fault enumeration,
+ * with extensions for QEMU internal conditions.
+ */
+typedef enum ARMFaultType {
+ ARMFault_None,
+ ARMFault_AccessFlag,
+ ARMFault_Alignment,
+ ARMFault_Background,
+ ARMFault_Domain,
+ ARMFault_Permission,
+ ARMFault_Translation,
+ ARMFault_AddressSize,
+ ARMFault_SyncExternal,
+ ARMFault_SyncExternalOnWalk,
+ ARMFault_SyncParity,
+ ARMFault_SyncParityOnWalk,
+ ARMFault_AsyncParity,
+ ARMFault_AsyncExternal,
+ ARMFault_Debug,
+ ARMFault_TLBConflict,
+ ARMFault_Lockdown,
+ ARMFault_Exclusive,
+ ARMFault_ICacheMaint,
+ ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
+ ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
+} ARMFaultType;
+
+/**
+ * ARMMMUFaultInfo: Information describing an ARM MMU Fault
+ * @type: Type of fault
+ * @level: Table walk level (for translation, access flag and permission faults)
+ * @domain: Domain of the fault address (for non-LPAE CPUs only)
+ * @s2addr: Address that caused a fault at stage 2
+ * @stage2: True if we faulted at stage 2
+ * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
+ * @s1ns: True if we faulted on a non-secure IPA while in secure state
+ * @ea: True if we should set the EA (external abort type) bit in syndrome
+ */
+typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
+struct ARMMMUFaultInfo {
+ ARMFaultType type;
+ target_ulong s2addr;
+ int level;
+ int domain;
+ bool stage2;
+ bool s1ptw;
+ bool s1ns;
+ bool ea;
+};
+
+/**
+ * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
+ * Compare pseudocode EncodeSDFSC(), though unlike that function
+ * we set up a whole FSR-format code including domain field and
+ * putting the high bit of the FSC into bit 10.
+ */
+static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
+{
+ uint32_t fsc;
+
+ switch (fi->type) {
+ case ARMFault_None:
+ return 0;
+ case ARMFault_AccessFlag:
+ fsc = fi->level == 1 ? 0x3 : 0x6;
+ break;
+ case ARMFault_Alignment:
+ fsc = 0x1;
+ break;
+ case ARMFault_Permission:
+ fsc = fi->level == 1 ? 0xd : 0xf;
+ break;
+ case ARMFault_Domain:
+ fsc = fi->level == 1 ? 0x9 : 0xb;
+ break;
+ case ARMFault_Translation:
+ fsc = fi->level == 1 ? 0x5 : 0x7;
+ break;
+ case ARMFault_SyncExternal:
+ fsc = 0x8 | (fi->ea << 12);
+ break;
+ case ARMFault_SyncExternalOnWalk:
+ fsc = fi->level == 1 ? 0xc : 0xe;
+ fsc |= (fi->ea << 12);
+ break;
+ case ARMFault_SyncParity:
+ fsc = 0x409;
+ break;
+ case ARMFault_SyncParityOnWalk:
+ fsc = fi->level == 1 ? 0x40c : 0x40e;
+ break;
+ case ARMFault_AsyncParity:
+ fsc = 0x408;
+ break;
+ case ARMFault_AsyncExternal:
+ fsc = 0x406 | (fi->ea << 12);
+ break;
+ case ARMFault_Debug:
+ fsc = 0x2;
+ break;
+ case ARMFault_TLBConflict:
+ fsc = 0x400;
+ break;
+ case ARMFault_Lockdown:
+ fsc = 0x404;
+ break;
+ case ARMFault_Exclusive:
+ fsc = 0x405;
+ break;
+ case ARMFault_ICacheMaint:
+ fsc = 0x4;
+ break;
+ case ARMFault_Background:
+ fsc = 0x0;
+ break;
+ case ARMFault_QEMU_NSCExec:
+ fsc = M_FAKE_FSR_NSC_EXEC;
+ break;
+ case ARMFault_QEMU_SFault:
+ fsc = M_FAKE_FSR_SFAULT;
+ break;
+ default:
+ /* Other faults can't occur in a context that requires a
+ * short-format status code.
+ */
+ g_assert_not_reached();
+ }
+
+ fsc |= (fi->domain << 4);
+ return fsc;
+}
+
+/**
+ * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
+ * Compare pseudocode EncodeLDFSC(), though unlike that function
+ * we fill in also the LPAE bit 9 of a DFSR format.
+ */
+static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
+{
+ uint32_t fsc;
+
+ switch (fi->type) {
+ case ARMFault_None:
+ return 0;
+ case ARMFault_AddressSize:
+ fsc = fi->level & 3;
+ break;
+ case ARMFault_AccessFlag:
+ fsc = (fi->level & 3) | (0x2 << 2);
+ break;
+ case ARMFault_Permission:
+ fsc = (fi->level & 3) | (0x3 << 2);
+ break;
+ case ARMFault_Translation:
+ fsc = (fi->level & 3) | (0x1 << 2);
+ break;
+ case ARMFault_SyncExternal:
+ fsc = 0x10 | (fi->ea << 12);
+ break;
+ case ARMFault_SyncExternalOnWalk:
+ fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
+ break;
+ case ARMFault_SyncParity:
+ fsc = 0x18;
+ break;
+ case ARMFault_SyncParityOnWalk:
+ fsc = (fi->level & 3) | (0x7 << 2);
+ break;
+ case ARMFault_AsyncParity:
+ fsc = 0x19;
+ break;
+ case ARMFault_AsyncExternal:
+ fsc = 0x11 | (fi->ea << 12);
+ break;
+ case ARMFault_Alignment:
+ fsc = 0x21;
+ break;
+ case ARMFault_Debug:
+ fsc = 0x22;
+ break;
+ case ARMFault_TLBConflict:
+ fsc = 0x30;
+ break;
+ case ARMFault_Lockdown:
+ fsc = 0x34;
+ break;
+ case ARMFault_Exclusive:
+ fsc = 0x35;
+ break;
+ default:
+ /* Other faults can't occur in a context that requires a
+ * long-format status code.
+ */
+ g_assert_not_reached();
+ }
+
+ fsc |= 1 << 9;
+ return fsc;
+}
+
+static inline bool arm_extabort_type(MemTxResult result)
+{
+ /* The EA bit in syndromes and fault status registers is an
+ * IMPDEF classification of external aborts. ARM implementations
+ * usually use this to indicate AXI bus Decode error (0) or
+ * Slave error (1); in QEMU we follow that.
+ */
+ return result != MEMTX_DECODE_ERROR;
+}
+
+#ifdef CONFIG_USER_ONLY
+void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
+ MMUAccessType access_type,
+ bool maperr, uintptr_t ra);
+void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
+ MMUAccessType access_type, uintptr_t ra);
+#else
+bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
+ MMUAccessType access_type, int mmu_idx,
+ bool probe, uintptr_t retaddr);
+#endif
+
+static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
+{
+ return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
+}
+
+static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
+{
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ return mmu_idx | ARM_MMU_IDX_M;
+ } else {
+ return mmu_idx | ARM_MMU_IDX_A;
+ }
+}
+
+static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
+{
+ /* AArch64 is always a-profile. */
+ return mmu_idx | ARM_MMU_IDX_A;
+}
+
+int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
+
+/*
+ * Return the MMU index for a v7M CPU with all relevant information
+ * manually specified.
+ */
+ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
+ bool secstate, bool priv, bool negpri);
+
+/*
+ * Return the MMU index for a v7M CPU in the specified security and
+ * privilege state.
+ */
+ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
+ bool secstate, bool priv);
+
+/* Return the MMU index for a v7M CPU in the specified security state */
+ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
+
+/* Return true if the stage 1 translation regime is using LPAE format page
+ * tables */
+bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
+
+/* Raise a data fault alignment exception for the specified virtual address */
+void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
+ MMUAccessType access_type,
+ int mmu_idx, uintptr_t retaddr) QEMU_NORETURN;
+
+/* arm_cpu_do_transaction_failed: handle a memory system error response
+ * (eg "no device/memory present at address") by raising an external abort
+ * exception
+ */
+void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
+ vaddr addr, unsigned size,
+ MMUAccessType access_type,
+ int mmu_idx, MemTxAttrs attrs,
+ MemTxResult response, uintptr_t retaddr);
+
+/* Call any registered EL change hooks */
+static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
+{
+ ARMELChangeHook *hook, *next;
+ QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
+ hook->hook(cpu, hook->opaque);
+ }
+}
+static inline void arm_call_el_change_hook(ARMCPU *cpu)
+{
+ ARMELChangeHook *hook, *next;
+ QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
+ hook->hook(cpu, hook->opaque);
+ }
+}
+
+/* Return true if this address translation regime has two ranges. */
+static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
+{
+ switch (mmu_idx) {
+ case ARMMMUIdx_Stage1_E0:
+ case ARMMMUIdx_Stage1_E1:
+ case ARMMMUIdx_Stage1_E1_PAN:
+ case ARMMMUIdx_Stage1_SE0:
+ case ARMMMUIdx_Stage1_SE1:
+ case ARMMMUIdx_Stage1_SE1_PAN:
+ case ARMMMUIdx_E10_0:
+ case ARMMMUIdx_E10_1:
+ case ARMMMUIdx_E10_1_PAN:
+ case ARMMMUIdx_E20_0:
+ case ARMMMUIdx_E20_2:
+ case ARMMMUIdx_E20_2_PAN:
+ case ARMMMUIdx_SE10_0:
+ case ARMMMUIdx_SE10_1:
+ case ARMMMUIdx_SE10_1_PAN:
+ case ARMMMUIdx_SE20_0:
+ case ARMMMUIdx_SE20_2:
+ case ARMMMUIdx_SE20_2_PAN:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Return true if this address translation regime is secure */
+static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+ switch (mmu_idx) {
+ case ARMMMUIdx_E10_0:
+ case ARMMMUIdx_E10_1:
+ case ARMMMUIdx_E10_1_PAN:
+ case ARMMMUIdx_E20_0:
+ case ARMMMUIdx_E20_2:
+ case ARMMMUIdx_E20_2_PAN:
+ case ARMMMUIdx_Stage1_E0:
+ case ARMMMUIdx_Stage1_E1:
+ case ARMMMUIdx_Stage1_E1_PAN:
+ case ARMMMUIdx_E2:
+ case ARMMMUIdx_Stage2:
+ case ARMMMUIdx_MPrivNegPri:
+ case ARMMMUIdx_MUserNegPri:
+ case ARMMMUIdx_MPriv:
+ case ARMMMUIdx_MUser:
+ return false;
+ case ARMMMUIdx_SE3:
+ case ARMMMUIdx_SE10_0:
+ case ARMMMUIdx_SE10_1:
+ case ARMMMUIdx_SE10_1_PAN:
+ case ARMMMUIdx_SE20_0:
+ case ARMMMUIdx_SE20_2:
+ case ARMMMUIdx_SE20_2_PAN:
+ case ARMMMUIdx_Stage1_SE0:
+ case ARMMMUIdx_Stage1_SE1:
+ case ARMMMUIdx_Stage1_SE1_PAN:
+ case ARMMMUIdx_SE2:
+ case ARMMMUIdx_Stage2_S:
+ case ARMMMUIdx_MSPrivNegPri:
+ case ARMMMUIdx_MSUserNegPri:
+ case ARMMMUIdx_MSPriv:
+ case ARMMMUIdx_MSUser:
+ return true;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+ switch (mmu_idx) {
+ case ARMMMUIdx_Stage1_E1_PAN:
+ case ARMMMUIdx_Stage1_SE1_PAN:
+ case ARMMMUIdx_E10_1_PAN:
+ case ARMMMUIdx_E20_2_PAN:
+ case ARMMMUIdx_SE10_1_PAN:
+ case ARMMMUIdx_SE20_2_PAN:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/* Return the exception level which controls this address translation regime */
+static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+ switch (mmu_idx) {
+ case ARMMMUIdx_SE20_0:
+ case ARMMMUIdx_SE20_2:
+ case ARMMMUIdx_SE20_2_PAN:
+ case ARMMMUIdx_E20_0:
+ case ARMMMUIdx_E20_2:
+ case ARMMMUIdx_E20_2_PAN:
+ case ARMMMUIdx_Stage2:
+ case ARMMMUIdx_Stage2_S:
+ case ARMMMUIdx_SE2:
+ case ARMMMUIdx_E2:
+ return 2;
+ case ARMMMUIdx_SE3:
+ return 3;
+ case ARMMMUIdx_SE10_0:
+ case ARMMMUIdx_Stage1_SE0:
+ return arm_el_is_aa64(env, 3) ? 1 : 3;
+ case ARMMMUIdx_SE10_1:
+ case ARMMMUIdx_SE10_1_PAN:
+ case ARMMMUIdx_Stage1_E0:
+ case ARMMMUIdx_Stage1_E1:
+ case ARMMMUIdx_Stage1_E1_PAN:
+ case ARMMMUIdx_Stage1_SE1:
+ case ARMMMUIdx_Stage1_SE1_PAN:
+ case ARMMMUIdx_E10_0:
+ case ARMMMUIdx_E10_1:
+ case ARMMMUIdx_E10_1_PAN:
+ case ARMMMUIdx_MPrivNegPri:
+ case ARMMMUIdx_MUserNegPri:
+ case ARMMMUIdx_MPriv:
+ case ARMMMUIdx_MUser:
+ case ARMMMUIdx_MSPrivNegPri:
+ case ARMMMUIdx_MSUserNegPri:
+ case ARMMMUIdx_MSPriv:
+ case ARMMMUIdx_MSUser:
+ return 1;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Return the TCR controlling this translation regime */
+static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+ if (mmu_idx == ARMMMUIdx_Stage2) {
+ return &env->cp15.vtcr_el2;
+ }
+ if (mmu_idx == ARMMMUIdx_Stage2_S) {
+ /*
+ * Note: Secure stage 2 nominally shares fields from VTCR_EL2, but
+ * those are not currently used by QEMU, so just return VSTCR_EL2.
+ */
+ return &env->cp15.vstcr_el2;
+ }
+ return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
+}
+
+/* Return the FSR value for a debug exception (watchpoint, hardware
+ * breakpoint or BKPT insn) targeting the specified exception level.
+ */
+static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
+{
+ ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
+ int target_el = arm_debug_target_el(env);
+ bool using_lpae = false;
+
+ if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
+ using_lpae = true;
+ } else {
+ if (arm_feature(env, ARM_FEATURE_LPAE) &&
+ (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
+ using_lpae = true;
+ }
+ }
+
+ if (using_lpae) {
+ return arm_fi_to_lfsc(&fi);
+ } else {
+ return arm_fi_to_sfsc(&fi);
+ }
+}
+
+/**
+ * arm_num_brps: Return number of implemented breakpoints.
+ * Note that the ID register BRPS field is "number of bps - 1",
+ * and we return the actual number of breakpoints.
+ */
+static inline int arm_num_brps(ARMCPU *cpu)
+{
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
+ } else {
+ return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
+ }
+}
+
+/**
+ * arm_num_wrps: Return number of implemented watchpoints.
+ * Note that the ID register WRPS field is "number of wps - 1",
+ * and we return the actual number of watchpoints.
+ */
+static inline int arm_num_wrps(ARMCPU *cpu)
+{
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
+ } else {
+ return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
+ }
+}
+
+/**
+ * arm_num_ctx_cmps: Return number of implemented context comparators.
+ * Note that the ID register CTX_CMPS field is "number of cmps - 1",
+ * and we return the actual number of comparators.
+ */
+static inline int arm_num_ctx_cmps(ARMCPU *cpu)
+{
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
+ } else {
+ return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
+ }
+}
+
+/**
+ * v7m_using_psp: Return true if using process stack pointer
+ * Return true if the CPU is currently using the process stack
+ * pointer, or false if it is using the main stack pointer.
+ */
+static inline bool v7m_using_psp(CPUARMState *env)
+{
+ /* Handler mode always uses the main stack; for thread mode
+ * the CONTROL.SPSEL bit determines the answer.
+ * Note that in v7M it is not possible to be in Handler mode with
+ * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
+ */
+ return !arm_v7m_is_handler_mode(env) &&
+ env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
+}
+
+/**
+ * v7m_sp_limit: Return SP limit for current CPU state
+ * Return the SP limit value for the current CPU security state
+ * and stack pointer.
+ */
+static inline uint32_t v7m_sp_limit(CPUARMState *env)
+{
+ if (v7m_using_psp(env)) {
+ return env->v7m.psplim[env->v7m.secure];
+ } else {
+ return env->v7m.msplim[env->v7m.secure];
+ }
+}
+
+/**
+ * v7m_cpacr_pass:
+ * Return true if the v7M CPACR permits access to the FPU for the specified
+ * security state and privilege level.
+ */
+static inline bool v7m_cpacr_pass(CPUARMState *env,
+ bool is_secure, bool is_priv)
+{
+ switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
+ case 0:
+ case 2: /* UNPREDICTABLE: we treat like 0 */
+ return false;
+ case 1:
+ return is_priv;
+ case 3:
+ return true;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/**
+ * aarch32_mode_name(): Return name of the AArch32 CPU mode
+ * @psr: Program Status Register indicating CPU mode
+ *
+ * Returns, for debug logging purposes, a printable representation
+ * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
+ * the low bits of the specified PSR.
+ */
+static inline const char *aarch32_mode_name(uint32_t psr)
+{
+ static const char cpu_mode_names[16][4] = {
+ "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
+ "???", "???", "hyp", "und", "???", "???", "???", "sys"
+ };
+
+ return cpu_mode_names[psr & 0xf];
+}
+
+/**
+ * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
+ *
+ * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
+ * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
+ * Must be called with the iothread lock held.
+ */
+void arm_cpu_update_virq(ARMCPU *cpu);
+
+/**
+ * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
+ *
+ * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
+ * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
+ * Must be called with the iothread lock held.
+ */
+void arm_cpu_update_vfiq(ARMCPU *cpu);
+
+/**
+ * arm_mmu_idx_el:
+ * @env: The cpu environment
+ * @el: The EL to use.
+ *
+ * Return the full ARMMMUIdx for the translation regime for EL.
+ */
+ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
+
+/**
+ * arm_mmu_idx:
+ * @env: The cpu environment
+ *
+ * Return the full ARMMMUIdx for the current translation regime.
+ */
+ARMMMUIdx arm_mmu_idx(CPUARMState *env);
+
+/**
+ * arm_stage1_mmu_idx:
+ * @env: The cpu environment
+ *
+ * Return the ARMMMUIdx for the stage1 traversal for the current regime.
+ */
+#ifdef CONFIG_USER_ONLY
+static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
+{
+ return ARMMMUIdx_Stage1_E0;
+}
+#else
+ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
+#endif
+
+/**
+ * arm_mmu_idx_is_stage1_of_2:
+ * @mmu_idx: The ARMMMUIdx to test
+ *
+ * Return true if @mmu_idx is a NOTLB mmu_idx that is the
+ * first stage of a two stage regime.
+ */
+static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
+{
+ switch (mmu_idx) {
+ case ARMMMUIdx_Stage1_E0:
+ case ARMMMUIdx_Stage1_E1:
+ case ARMMMUIdx_Stage1_E1_PAN:
+ case ARMMMUIdx_Stage1_SE0:
+ case ARMMMUIdx_Stage1_SE1:
+ case ARMMMUIdx_Stage1_SE1_PAN:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
+ const ARMISARegisters *id)
+{
+ uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
+
+ if ((features >> ARM_FEATURE_V4T) & 1) {
+ valid |= CPSR_T;
+ }
+ if ((features >> ARM_FEATURE_V5) & 1) {
+ valid |= CPSR_Q; /* V5TE in reality*/
+ }
+ if ((features >> ARM_FEATURE_V6) & 1) {
+ valid |= CPSR_E | CPSR_GE;
+ }
+ if ((features >> ARM_FEATURE_THUMB2) & 1) {
+ valid |= CPSR_IT;
+ }
+ if (isar_feature_aa32_jazelle(id)) {
+ valid |= CPSR_J;
+ }
+ if (isar_feature_aa32_pan(id)) {
+ valid |= CPSR_PAN;
+ }
+ if (isar_feature_aa32_dit(id)) {
+ valid |= CPSR_DIT;
+ }
+ if (isar_feature_aa32_ssbs(id)) {
+ valid |= CPSR_SSBS;
+ }
+
+ return valid;
+}
+
+static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
+{
+ uint32_t valid;
+
+ valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
+ if (isar_feature_aa64_bti(id)) {
+ valid |= PSTATE_BTYPE;
+ }
+ if (isar_feature_aa64_pan(id)) {
+ valid |= PSTATE_PAN;
+ }
+ if (isar_feature_aa64_uao(id)) {
+ valid |= PSTATE_UAO;
+ }
+ if (isar_feature_aa64_dit(id)) {
+ valid |= PSTATE_DIT;
+ }
+ if (isar_feature_aa64_ssbs(id)) {
+ valid |= PSTATE_SSBS;
+ }
+ if (isar_feature_aa64_mte(id)) {
+ valid |= PSTATE_TCO;
+ }
+
+ return valid;
+}
+
+/*
+ * Parameters of a given virtual address, as extracted from the
+ * translation control register (TCR) for a given regime.
+ */
+typedef struct ARMVAParameters {
+ unsigned tsz : 8;
+ unsigned select : 1;
+ bool tbi : 1;
+ bool epd : 1;
+ bool hpd : 1;
+ bool using16k : 1;
+ bool using64k : 1;
+} ARMVAParameters;
+
+ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
+ ARMMMUIdx mmu_idx, bool data);
+
+static inline int exception_target_el(CPUARMState *env)
+{
+ int target_el = MAX(1, arm_current_el(env));
+
+ /*
+ * No such thing as secure EL1 if EL3 is aarch32,
+ * so update the target EL to EL3 in this case.
+ */
+ if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
+ target_el = 3;
+ }
+
+ return target_el;
+}
+
+/* Determine if allocation tags are available. */
+static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
+ uint64_t sctlr)
+{
+ if (el < 3
+ && arm_feature(env, ARM_FEATURE_EL3)
+ && !(env->cp15.scr_el3 & SCR_ATA)) {
+ return false;
+ }
+ if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
+ uint64_t hcr = arm_hcr_el2_eff(env);
+ if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
+ return false;
+ }
+ }
+ sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
+ return sctlr != 0;
+}
+
+#ifndef CONFIG_USER_ONLY
+
+/* Security attributes for an address, as returned by v8m_security_lookup. */
+typedef struct V8M_SAttributes {
+ bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
+ bool ns;
+ bool nsc;
+ uint8_t sregion;
+ bool srvalid;
+ uint8_t iregion;
+ bool irvalid;
+} V8M_SAttributes;
+
+void v8m_security_lookup(CPUARMState *env, uint32_t address,
+ MMUAccessType access_type, ARMMMUIdx mmu_idx,
+ V8M_SAttributes *sattrs);
+
+bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
+ MMUAccessType access_type, ARMMMUIdx mmu_idx,
+ hwaddr *phys_ptr, MemTxAttrs *txattrs,
+ int *prot, bool *is_subpage,
+ ARMMMUFaultInfo *fi, uint32_t *mregion);
+
+/* Cacheability and shareability attributes for a memory access */
+typedef struct ARMCacheAttrs {
+ unsigned int attrs:8; /* as in the MAIR register encoding */
+ unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
+} ARMCacheAttrs;
+
+bool get_phys_addr(CPUARMState *env, target_ulong address,
+ MMUAccessType access_type, ARMMMUIdx mmu_idx,
+ hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
+ target_ulong *page_size,
+ ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
+ __attribute__((nonnull));
+
+void arm_log_exception(int idx);
+
+#endif /* !CONFIG_USER_ONLY */
+
+/*
+ * The log2 of the words in the tag block, for GMID_EL1.BS.
+ * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
+ */
+#define GMID_EL1_BS 6
+
+/* We associate one allocation tag per 16 bytes, the minimum. */
+#define LOG2_TAG_GRANULE 4
+#define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
+
+/*
+ * SVE predicates are 1/8 the size of SVE vectors, and cannot use
+ * the same simd_desc() encoding due to restrictions on size.
+ * Use these instead.
+ */
+FIELD(PREDDESC, OPRSZ, 0, 6)
+FIELD(PREDDESC, ESZ, 6, 2)
+FIELD(PREDDESC, DATA, 8, 24)
+
+/*
+ * The SVE simd_data field, for memory ops, contains either
+ * rd (5 bits) or a shift count (2 bits).
+ */
+#define SVE_MTEDESC_SHIFT 5
+
+/* Bits within a descriptor passed to the helper_mte_check* functions. */
+FIELD(MTEDESC, MIDX, 0, 4)
+FIELD(MTEDESC, TBI, 4, 2)
+FIELD(MTEDESC, TCMA, 6, 2)
+FIELD(MTEDESC, WRITE, 8, 1)
+FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9) /* size - 1 */
+
+bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
+uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
+
+static inline int allocation_tag_from_addr(uint64_t ptr)
+{
+ return extract64(ptr, 56, 4);
+}
+
+static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
+{
+ return deposit64(ptr, 56, 4, rtag);
+}
+
+/* Return true if tbi bits mean that the access is checked. */
+static inline bool tbi_check(uint32_t desc, int bit55)
+{
+ return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
+}
+
+/* Return true if tcma bits mean that the access is unchecked. */
+static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
+{
+ /*
+ * We had extracted bit55 and ptr_tag for other reasons, so fold
+ * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
+ */
+ bool match = ((ptr_tag + bit55) & 0xf) == 0;
+ bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
+ return tcma && match;
+}
+
+/*
+ * For TBI, ideally, we would do nothing. Proper behaviour on fault is
+ * for the tag to be present in the FAR_ELx register. But for user-only
+ * mode, we do not have a TLB with which to implement this, so we must
+ * remove the top byte.
+ */
+static inline uint64_t useronly_clean_ptr(uint64_t ptr)
+{
+#ifdef CONFIG_USER_ONLY
+ /* TBI0 is known to be enabled, while TBI1 is disabled. */
+ ptr &= sextract64(ptr, 0, 56);
+#endif
+ return ptr;
+}
+
+static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
+{
+#ifdef CONFIG_USER_ONLY
+ int64_t clean_ptr = sextract64(ptr, 0, 56);
+ if (tbi_check(desc, clean_ptr < 0)) {
+ ptr = clean_ptr;
+ }
+#endif
+ return ptr;
+}
+
+/* Values for M-profile PSR.ECI for MVE insns */
+enum MVEECIState {
+ ECI_NONE = 0, /* No completed beats */
+ ECI_A0 = 1, /* Completed: A0 */
+ ECI_A0A1 = 2, /* Completed: A0, A1 */
+ /* 3 is reserved */
+ ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
+ ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
+ /* All other values reserved */
+};
+
+/* Definitions for the PMU registers */
+#define PMCRN_MASK 0xf800
+#define PMCRN_SHIFT 11
+#define PMCRLC 0x40
+#define PMCRDP 0x20
+#define PMCRX 0x10
+#define PMCRD 0x8
+#define PMCRC 0x4
+#define PMCRP 0x2
+#define PMCRE 0x1
+/*
+ * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
+ * which can be written as 1 to trigger behaviour but which stay RAZ).
+ */
+#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
+
+#define PMXEVTYPER_P 0x80000000
+#define PMXEVTYPER_U 0x40000000
+#define PMXEVTYPER_NSK 0x20000000
+#define PMXEVTYPER_NSU 0x10000000
+#define PMXEVTYPER_NSH 0x08000000
+#define PMXEVTYPER_M 0x04000000
+#define PMXEVTYPER_MT 0x02000000
+#define PMXEVTYPER_EVTCOUNT 0x0000ffff
+#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
+ PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
+ PMXEVTYPER_M | PMXEVTYPER_MT | \
+ PMXEVTYPER_EVTCOUNT)
+
+#define PMCCFILTR 0xf8000000
+#define PMCCFILTR_M PMXEVTYPER_M
+#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
+
+static inline uint32_t pmu_num_counters(CPUARMState *env)
+{
+ return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
+}
+
+/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
+static inline uint64_t pmu_counter_mask(CPUARMState *env)
+{
+ return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
+}
+
+#ifdef TARGET_AARCH64
+int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
+int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
+int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
+int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
+#endif
+
+#endif