diff options
Diffstat (limited to 'target/arm/kvm.c')
-rw-r--r-- | target/arm/kvm.c | 1059 |
1 files changed, 1059 insertions, 0 deletions
diff --git a/target/arm/kvm.c b/target/arm/kvm.c new file mode 100644 index 000000000..bbf1ce7ba --- /dev/null +++ b/target/arm/kvm.c @@ -0,0 +1,1059 @@ +/* + * ARM implementation of KVM hooks + * + * Copyright Christoffer Dall 2009-2010 + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include "qemu/osdep.h" +#include <sys/ioctl.h> + +#include <linux/kvm.h> + +#include "qemu-common.h" +#include "qemu/timer.h" +#include "qemu/error-report.h" +#include "qemu/main-loop.h" +#include "qom/object.h" +#include "qapi/error.h" +#include "sysemu/sysemu.h" +#include "sysemu/kvm.h" +#include "sysemu/kvm_int.h" +#include "kvm_arm.h" +#include "cpu.h" +#include "trace.h" +#include "internals.h" +#include "hw/pci/pci.h" +#include "exec/memattrs.h" +#include "exec/address-spaces.h" +#include "hw/boards.h" +#include "hw/irq.h" +#include "qemu/log.h" + +const KVMCapabilityInfo kvm_arch_required_capabilities[] = { + KVM_CAP_LAST_INFO +}; + +static bool cap_has_mp_state; +static bool cap_has_inject_serror_esr; +static bool cap_has_inject_ext_dabt; + +static ARMHostCPUFeatures arm_host_cpu_features; + +int kvm_arm_vcpu_init(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + struct kvm_vcpu_init init; + + init.target = cpu->kvm_target; + memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); + + return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); +} + +int kvm_arm_vcpu_finalize(CPUState *cs, int feature) +{ + return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature); +} + +void kvm_arm_init_serror_injection(CPUState *cs) +{ + cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, + KVM_CAP_ARM_INJECT_SERROR_ESR); +} + +bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, + int *fdarray, + struct kvm_vcpu_init *init) +{ + int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1; + int max_vm_pa_size; + + kvmfd = qemu_open_old("/dev/kvm", O_RDWR); + if (kvmfd < 0) { + goto err; + } + max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE); + if (max_vm_pa_size < 0) { + max_vm_pa_size = 0; + } + vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size); + if (vmfd < 0) { + goto err; + } + cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); + if (cpufd < 0) { + goto err; + } + + if (!init) { + /* Caller doesn't want the VCPU to be initialized, so skip it */ + goto finish; + } + + if (init->target == -1) { + struct kvm_vcpu_init preferred; + + ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred); + if (!ret) { + init->target = preferred.target; + } + } + if (ret >= 0) { + ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); + if (ret < 0) { + goto err; + } + } else if (cpus_to_try) { + /* Old kernel which doesn't know about the + * PREFERRED_TARGET ioctl: we know it will only support + * creating one kind of guest CPU which is its preferred + * CPU type. + */ + struct kvm_vcpu_init try; + + while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { + try.target = *cpus_to_try++; + memcpy(try.features, init->features, sizeof(init->features)); + ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try); + if (ret >= 0) { + break; + } + } + if (ret < 0) { + goto err; + } + init->target = try.target; + } else { + /* Treat a NULL cpus_to_try argument the same as an empty + * list, which means we will fail the call since this must + * be an old kernel which doesn't support PREFERRED_TARGET. + */ + goto err; + } + +finish: + fdarray[0] = kvmfd; + fdarray[1] = vmfd; + fdarray[2] = cpufd; + + return true; + +err: + if (cpufd >= 0) { + close(cpufd); + } + if (vmfd >= 0) { + close(vmfd); + } + if (kvmfd >= 0) { + close(kvmfd); + } + + return false; +} + +void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) +{ + int i; + + for (i = 2; i >= 0; i--) { + close(fdarray[i]); + } +} + +void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) +{ + CPUARMState *env = &cpu->env; + + if (!arm_host_cpu_features.dtb_compatible) { + if (!kvm_enabled() || + !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { + /* We can't report this error yet, so flag that we need to + * in arm_cpu_realizefn(). + */ + cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; + cpu->host_cpu_probe_failed = true; + return; + } + } + + cpu->kvm_target = arm_host_cpu_features.target; + cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; + cpu->isar = arm_host_cpu_features.isar; + env->features = arm_host_cpu_features.features; +} + +static bool kvm_no_adjvtime_get(Object *obj, Error **errp) +{ + return !ARM_CPU(obj)->kvm_adjvtime; +} + +static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp) +{ + ARM_CPU(obj)->kvm_adjvtime = !value; +} + +static bool kvm_steal_time_get(Object *obj, Error **errp) +{ + return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF; +} + +static void kvm_steal_time_set(Object *obj, bool value, Error **errp) +{ + ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; +} + +/* KVM VCPU properties should be prefixed with "kvm-". */ +void kvm_arm_add_vcpu_properties(Object *obj) +{ + ARMCPU *cpu = ARM_CPU(obj); + CPUARMState *env = &cpu->env; + + if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { + cpu->kvm_adjvtime = true; + object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get, + kvm_no_adjvtime_set); + object_property_set_description(obj, "kvm-no-adjvtime", + "Set on to disable the adjustment of " + "the virtual counter. VM stopped time " + "will be counted."); + } + + cpu->kvm_steal_time = ON_OFF_AUTO_AUTO; + object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get, + kvm_steal_time_set); + object_property_set_description(obj, "kvm-steal-time", + "Set off to disable KVM steal time."); +} + +bool kvm_arm_pmu_supported(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3); +} + +int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa) +{ + KVMState *s = KVM_STATE(ms->accelerator); + int ret; + + ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE); + *fixed_ipa = ret <= 0; + + return ret > 0 ? ret : 40; +} + +int kvm_arch_init(MachineState *ms, KVMState *s) +{ + int ret = 0; + /* For ARM interrupt delivery is always asynchronous, + * whether we are using an in-kernel VGIC or not. + */ + kvm_async_interrupts_allowed = true; + + /* + * PSCI wakes up secondary cores, so we always need to + * have vCPUs waiting in kernel space + */ + kvm_halt_in_kernel_allowed = true; + + cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); + + if (ms->smp.cpus > 256 && + !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) { + error_report("Using more than 256 vcpus requires a host kernel " + "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2"); + ret = -EINVAL; + } + + if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) { + if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) { + error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap"); + } else { + /* Set status for supporting the external dabt injection */ + cap_has_inject_ext_dabt = kvm_check_extension(s, + KVM_CAP_ARM_INJECT_EXT_DABT); + } + } + + return ret; +} + +unsigned long kvm_arch_vcpu_id(CPUState *cpu) +{ + return cpu->cpu_index; +} + +/* We track all the KVM devices which need their memory addresses + * passing to the kernel in a list of these structures. + * When board init is complete we run through the list and + * tell the kernel the base addresses of the memory regions. + * We use a MemoryListener to track mapping and unmapping of + * the regions during board creation, so the board models don't + * need to do anything special for the KVM case. + * + * Sometimes the address must be OR'ed with some other fields + * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). + * @kda_addr_ormask aims at storing the value of those fields. + */ +typedef struct KVMDevice { + struct kvm_arm_device_addr kda; + struct kvm_device_attr kdattr; + uint64_t kda_addr_ormask; + MemoryRegion *mr; + QSLIST_ENTRY(KVMDevice) entries; + int dev_fd; +} KVMDevice; + +static QSLIST_HEAD(, KVMDevice) kvm_devices_head; + +static void kvm_arm_devlistener_add(MemoryListener *listener, + MemoryRegionSection *section) +{ + KVMDevice *kd; + + QSLIST_FOREACH(kd, &kvm_devices_head, entries) { + if (section->mr == kd->mr) { + kd->kda.addr = section->offset_within_address_space; + } + } +} + +static void kvm_arm_devlistener_del(MemoryListener *listener, + MemoryRegionSection *section) +{ + KVMDevice *kd; + + QSLIST_FOREACH(kd, &kvm_devices_head, entries) { + if (section->mr == kd->mr) { + kd->kda.addr = -1; + } + } +} + +static MemoryListener devlistener = { + .name = "kvm-arm", + .region_add = kvm_arm_devlistener_add, + .region_del = kvm_arm_devlistener_del, +}; + +static void kvm_arm_set_device_addr(KVMDevice *kd) +{ + struct kvm_device_attr *attr = &kd->kdattr; + int ret; + + /* If the device control API is available and we have a device fd on the + * KVMDevice struct, let's use the newer API + */ + if (kd->dev_fd >= 0) { + uint64_t addr = kd->kda.addr; + + addr |= kd->kda_addr_ormask; + attr->addr = (uintptr_t)&addr; + ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); + } else { + ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); + } + + if (ret < 0) { + fprintf(stderr, "Failed to set device address: %s\n", + strerror(-ret)); + abort(); + } +} + +static void kvm_arm_machine_init_done(Notifier *notifier, void *data) +{ + KVMDevice *kd, *tkd; + + QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { + if (kd->kda.addr != -1) { + kvm_arm_set_device_addr(kd); + } + memory_region_unref(kd->mr); + QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); + g_free(kd); + } + memory_listener_unregister(&devlistener); +} + +static Notifier notify = { + .notify = kvm_arm_machine_init_done, +}; + +void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, + uint64_t attr, int dev_fd, uint64_t addr_ormask) +{ + KVMDevice *kd; + + if (!kvm_irqchip_in_kernel()) { + return; + } + + if (QSLIST_EMPTY(&kvm_devices_head)) { + memory_listener_register(&devlistener, &address_space_memory); + qemu_add_machine_init_done_notifier(¬ify); + } + kd = g_new0(KVMDevice, 1); + kd->mr = mr; + kd->kda.id = devid; + kd->kda.addr = -1; + kd->kdattr.flags = 0; + kd->kdattr.group = group; + kd->kdattr.attr = attr; + kd->dev_fd = dev_fd; + kd->kda_addr_ormask = addr_ormask; + QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); + memory_region_ref(kd->mr); +} + +static int compare_u64(const void *a, const void *b) +{ + if (*(uint64_t *)a > *(uint64_t *)b) { + return 1; + } + if (*(uint64_t *)a < *(uint64_t *)b) { + return -1; + } + return 0; +} + +/* + * cpreg_values are sorted in ascending order by KVM register ID + * (see kvm_arm_init_cpreg_list). This allows us to cheaply find + * the storage for a KVM register by ID with a binary search. + */ +static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx) +{ + uint64_t *res; + + res = bsearch(®idx, cpu->cpreg_indexes, cpu->cpreg_array_len, + sizeof(uint64_t), compare_u64); + assert(res); + + return &cpu->cpreg_values[res - cpu->cpreg_indexes]; +} + +/* Initialize the ARMCPU cpreg list according to the kernel's + * definition of what CPU registers it knows about (and throw away + * the previous TCG-created cpreg list). + */ +int kvm_arm_init_cpreg_list(ARMCPU *cpu) +{ + struct kvm_reg_list rl; + struct kvm_reg_list *rlp; + int i, ret, arraylen; + CPUState *cs = CPU(cpu); + + rl.n = 0; + ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); + if (ret != -E2BIG) { + return ret; + } + rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); + rlp->n = rl.n; + ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); + if (ret) { + goto out; + } + /* Sort the list we get back from the kernel, since cpreg_tuples + * must be in strictly ascending order. + */ + qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); + + for (i = 0, arraylen = 0; i < rlp->n; i++) { + if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { + continue; + } + switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + case KVM_REG_SIZE_U64: + break; + default: + fprintf(stderr, "Can't handle size of register in kernel list\n"); + ret = -EINVAL; + goto out; + } + + arraylen++; + } + + cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); + cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); + cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, + arraylen); + cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, + arraylen); + cpu->cpreg_array_len = arraylen; + cpu->cpreg_vmstate_array_len = arraylen; + + for (i = 0, arraylen = 0; i < rlp->n; i++) { + uint64_t regidx = rlp->reg[i]; + if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { + continue; + } + cpu->cpreg_indexes[arraylen] = regidx; + arraylen++; + } + assert(cpu->cpreg_array_len == arraylen); + + if (!write_kvmstate_to_list(cpu)) { + /* Shouldn't happen unless kernel is inconsistent about + * what registers exist. + */ + fprintf(stderr, "Initial read of kernel register state failed\n"); + ret = -EINVAL; + goto out; + } + +out: + g_free(rlp); + return ret; +} + +bool write_kvmstate_to_list(ARMCPU *cpu) +{ + CPUState *cs = CPU(cpu); + int i; + bool ok = true; + + for (i = 0; i < cpu->cpreg_array_len; i++) { + struct kvm_one_reg r; + uint64_t regidx = cpu->cpreg_indexes[i]; + uint32_t v32; + int ret; + + r.id = regidx; + + switch (regidx & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + r.addr = (uintptr_t)&v32; + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); + if (!ret) { + cpu->cpreg_values[i] = v32; + } + break; + case KVM_REG_SIZE_U64: + r.addr = (uintptr_t)(cpu->cpreg_values + i); + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); + break; + default: + abort(); + } + if (ret) { + ok = false; + } + } + return ok; +} + +bool write_list_to_kvmstate(ARMCPU *cpu, int level) +{ + CPUState *cs = CPU(cpu); + int i; + bool ok = true; + + for (i = 0; i < cpu->cpreg_array_len; i++) { + struct kvm_one_reg r; + uint64_t regidx = cpu->cpreg_indexes[i]; + uint32_t v32; + int ret; + + if (kvm_arm_cpreg_level(regidx) > level) { + continue; + } + + r.id = regidx; + switch (regidx & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + v32 = cpu->cpreg_values[i]; + r.addr = (uintptr_t)&v32; + break; + case KVM_REG_SIZE_U64: + r.addr = (uintptr_t)(cpu->cpreg_values + i); + break; + default: + abort(); + } + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); + if (ret) { + /* We might fail for "unknown register" and also for + * "you tried to set a register which is constant with + * a different value from what it actually contains". + */ + ok = false; + } + } + return ok; +} + +void kvm_arm_cpu_pre_save(ARMCPU *cpu) +{ + /* KVM virtual time adjustment */ + if (cpu->kvm_vtime_dirty) { + *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime; + } +} + +void kvm_arm_cpu_post_load(ARMCPU *cpu) +{ + /* KVM virtual time adjustment */ + if (cpu->kvm_adjvtime) { + cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT); + cpu->kvm_vtime_dirty = true; + } +} + +void kvm_arm_reset_vcpu(ARMCPU *cpu) +{ + int ret; + + /* Re-init VCPU so that all registers are set to + * their respective reset values. + */ + ret = kvm_arm_vcpu_init(CPU(cpu)); + if (ret < 0) { + fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); + abort(); + } + if (!write_kvmstate_to_list(cpu)) { + fprintf(stderr, "write_kvmstate_to_list failed\n"); + abort(); + } + /* + * Sync the reset values also into the CPUState. This is necessary + * because the next thing we do will be a kvm_arch_put_registers() + * which will update the list values from the CPUState before copying + * the list values back to KVM. It's OK to ignore failure returns here + * for the same reason we do so in kvm_arch_get_registers(). + */ + write_list_to_cpustate(cpu); +} + +/* + * Update KVM's MP_STATE based on what QEMU thinks it is + */ +int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) +{ + if (cap_has_mp_state) { + struct kvm_mp_state mp_state = { + .mp_state = (cpu->power_state == PSCI_OFF) ? + KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE + }; + int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); + if (ret) { + fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", + __func__, ret, strerror(-ret)); + return -1; + } + } + + return 0; +} + +/* + * Sync the KVM MP_STATE into QEMU + */ +int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) +{ + if (cap_has_mp_state) { + struct kvm_mp_state mp_state; + int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); + if (ret) { + fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", + __func__, ret, strerror(-ret)); + abort(); + } + cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? + PSCI_OFF : PSCI_ON; + } + + return 0; +} + +void kvm_arm_get_virtual_time(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + struct kvm_one_reg reg = { + .id = KVM_REG_ARM_TIMER_CNT, + .addr = (uintptr_t)&cpu->kvm_vtime, + }; + int ret; + + if (cpu->kvm_vtime_dirty) { + return; + } + + ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); + if (ret) { + error_report("Failed to get KVM_REG_ARM_TIMER_CNT"); + abort(); + } + + cpu->kvm_vtime_dirty = true; +} + +void kvm_arm_put_virtual_time(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + struct kvm_one_reg reg = { + .id = KVM_REG_ARM_TIMER_CNT, + .addr = (uintptr_t)&cpu->kvm_vtime, + }; + int ret; + + if (!cpu->kvm_vtime_dirty) { + return; + } + + ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); + if (ret) { + error_report("Failed to set KVM_REG_ARM_TIMER_CNT"); + abort(); + } + + cpu->kvm_vtime_dirty = false; +} + +int kvm_put_vcpu_events(ARMCPU *cpu) +{ + CPUARMState *env = &cpu->env; + struct kvm_vcpu_events events; + int ret; + + if (!kvm_has_vcpu_events()) { + return 0; + } + + memset(&events, 0, sizeof(events)); + events.exception.serror_pending = env->serror.pending; + + /* Inject SError to guest with specified syndrome if host kernel + * supports it, otherwise inject SError without syndrome. + */ + if (cap_has_inject_serror_esr) { + events.exception.serror_has_esr = env->serror.has_esr; + events.exception.serror_esr = env->serror.esr; + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); + if (ret) { + error_report("failed to put vcpu events"); + } + + return ret; +} + +int kvm_get_vcpu_events(ARMCPU *cpu) +{ + CPUARMState *env = &cpu->env; + struct kvm_vcpu_events events; + int ret; + + if (!kvm_has_vcpu_events()) { + return 0; + } + + memset(&events, 0, sizeof(events)); + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); + if (ret) { + error_report("failed to get vcpu events"); + return ret; + } + + env->serror.pending = events.exception.serror_pending; + env->serror.has_esr = events.exception.serror_has_esr; + env->serror.esr = events.exception.serror_esr; + + return 0; +} + +void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + + if (unlikely(env->ext_dabt_raised)) { + /* + * Verifying that the ext DABT has been properly injected, + * otherwise risking indefinitely re-running the faulting instruction + * Covering a very narrow case for kernels 5.5..5.5.4 + * when injected abort was misconfigured to be + * an IMPLEMENTATION DEFINED exception (for 32-bit EL1) + */ + if (!arm_feature(env, ARM_FEATURE_AARCH64) && + unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) { + + error_report("Data abort exception with no valid ISS generated by " + "guest memory access. KVM unable to emulate faulting " + "instruction. Failed to inject an external data abort " + "into the guest."); + abort(); + } + /* Clear the status */ + env->ext_dabt_raised = 0; + } +} + +MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) +{ + ARMCPU *cpu; + uint32_t switched_level; + + if (kvm_irqchip_in_kernel()) { + /* + * We only need to sync timer states with user-space interrupt + * controllers, so return early and save cycles if we don't. + */ + return MEMTXATTRS_UNSPECIFIED; + } + + cpu = ARM_CPU(cs); + + /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ + if (run->s.regs.device_irq_level != cpu->device_irq_level) { + switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; + + qemu_mutex_lock_iothread(); + + if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { + qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], + !!(run->s.regs.device_irq_level & + KVM_ARM_DEV_EL1_VTIMER)); + switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; + } + + if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { + qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], + !!(run->s.regs.device_irq_level & + KVM_ARM_DEV_EL1_PTIMER)); + switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; + } + + if (switched_level & KVM_ARM_DEV_PMU) { + qemu_set_irq(cpu->pmu_interrupt, + !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); + switched_level &= ~KVM_ARM_DEV_PMU; + } + + if (switched_level) { + qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", + __func__, switched_level); + } + + /* We also mark unknown levels as processed to not waste cycles */ + cpu->device_irq_level = run->s.regs.device_irq_level; + qemu_mutex_unlock_iothread(); + } + + return MEMTXATTRS_UNSPECIFIED; +} + +void kvm_arm_vm_state_change(void *opaque, bool running, RunState state) +{ + CPUState *cs = opaque; + ARMCPU *cpu = ARM_CPU(cs); + + if (running) { + if (cpu->kvm_adjvtime) { + kvm_arm_put_virtual_time(cs); + } + } else { + if (cpu->kvm_adjvtime) { + kvm_arm_get_virtual_time(cs); + } + } +} + +/** + * kvm_arm_handle_dabt_nisv: + * @cs: CPUState + * @esr_iss: ISS encoding (limited) for the exception from Data Abort + * ISV bit set to '0b0' -> no valid instruction syndrome + * @fault_ipa: faulting address for the synchronous data abort + * + * Returns: 0 if the exception has been handled, < 0 otherwise + */ +static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss, + uint64_t fault_ipa) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + /* + * Request KVM to inject the external data abort into the guest + */ + if (cap_has_inject_ext_dabt) { + struct kvm_vcpu_events events = { }; + /* + * The external data abort event will be handled immediately by KVM + * using the address fault that triggered the exit on given VCPU. + * Requesting injection of the external data abort does not rely + * on any other VCPU state. Therefore, in this particular case, the VCPU + * synchronization can be exceptionally skipped. + */ + events.exception.ext_dabt_pending = 1; + /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */ + if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) { + env->ext_dabt_raised = 1; + return 0; + } + } else { + error_report("Data abort exception triggered by guest memory access " + "at physical address: 0x" TARGET_FMT_lx, + (target_ulong)fault_ipa); + error_printf("KVM unable to emulate faulting instruction.\n"); + } + return -1; +} + +int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) +{ + int ret = 0; + + switch (run->exit_reason) { + case KVM_EXIT_DEBUG: + if (kvm_arm_handle_debug(cs, &run->debug.arch)) { + ret = EXCP_DEBUG; + } /* otherwise return to guest */ + break; + case KVM_EXIT_ARM_NISV: + /* External DABT with no valid iss to decode */ + ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss, + run->arm_nisv.fault_ipa); + break; + default: + qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", + __func__, run->exit_reason); + break; + } + return ret; +} + +bool kvm_arch_stop_on_emulation_error(CPUState *cs) +{ + return true; +} + +int kvm_arch_process_async_events(CPUState *cs) +{ + return 0; +} + +void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) +{ + if (kvm_sw_breakpoints_active(cs)) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; + } + if (kvm_arm_hw_debug_active(cs)) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; + kvm_arm_copy_hw_debug_data(&dbg->arch); + } +} + +void kvm_arch_init_irq_routing(KVMState *s) +{ +} + +int kvm_arch_irqchip_create(KVMState *s) +{ + if (kvm_kernel_irqchip_split()) { + perror("-machine kernel_irqchip=split is not supported on ARM."); + exit(1); + } + + /* If we can create the VGIC using the newer device control API, we + * let the device do this when it initializes itself, otherwise we + * fall back to the old API */ + return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); +} + +int kvm_arm_vgic_probe(void) +{ + int val = 0; + + if (kvm_create_device(kvm_state, + KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { + val |= KVM_ARM_VGIC_V3; + } + if (kvm_create_device(kvm_state, + KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { + val |= KVM_ARM_VGIC_V2; + } + return val; +} + +int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level) +{ + int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq; + int cpu_idx1 = cpu % 256; + int cpu_idx2 = cpu / 256; + + kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) | + (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT); + + return kvm_set_irq(kvm_state, kvm_irq, !!level); +} + +int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, + uint64_t address, uint32_t data, PCIDevice *dev) +{ + AddressSpace *as = pci_device_iommu_address_space(dev); + hwaddr xlat, len, doorbell_gpa; + MemoryRegionSection mrs; + MemoryRegion *mr; + + if (as == &address_space_memory) { + return 0; + } + + /* MSI doorbell address is translated by an IOMMU */ + + RCU_READ_LOCK_GUARD(); + + mr = address_space_translate(as, address, &xlat, &len, true, + MEMTXATTRS_UNSPECIFIED); + + if (!mr) { + return 1; + } + + mrs = memory_region_find(mr, xlat, 1); + + if (!mrs.mr) { + return 1; + } + + doorbell_gpa = mrs.offset_within_address_space; + memory_region_unref(mrs.mr); + + route->u.msi.address_lo = doorbell_gpa; + route->u.msi.address_hi = doorbell_gpa >> 32; + + trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); + + return 0; +} + +int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, + int vector, PCIDevice *dev) +{ + return 0; +} + +int kvm_arch_release_virq_post(int virq) +{ + return 0; +} + +int kvm_arch_msi_data_to_gsi(uint32_t data) +{ + return (data - 32) & 0xffff; +} + +bool kvm_arch_cpu_check_are_resettable(void) +{ + return true; +} |